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Abstract

THE ART OF CODE
Maurice J. Black

Vicki Mahaffey

The Art of Code originates at the nexus of literature’s and computing culture’s related but
distinct aesthetic systems. Arguing that software’s increasing abstraction from hardware has
defined computer programming practices for the last half-century, this dissertation shows how
that abstraction has shaped the aesthetics, politics, and professional culture of programming.
Specifically, the dissertation examines how some programmers have adopted a literary approach
to coding, describing carefully crafted code as “beautiful,” “elegant,” “expressive,” and “poetic™;
writing and reading programs as literary texts; and even producing hybrid artifacts that are at once
poems and programs. The project has two central goals: first, to show how identifiably linguistic
sensibilities have influenced programming theory and culture; second, to show how programming
theory, as a body of knowledge that thinks deeply about the semantics and organization of
textual structures, can contribute to the project of literary study. As such, the dissertation’s
three chapters work together to provide both an aesthetic history of computing culture and a
related analysis of how programming aesthetics can inform modern criticsm. Chapter One
outlines a range of historical, technological, philosophical, political, and legal conceptions of
what software is, focusing on how those conceptions have shaped our ideas about how software

should be written, distributed, and protected. Chapter Two discusses the aesthetic history of code,

examining the importance of the literary ideal to programming culture. Chapter Three examines
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the intersections between modern programming theory and the authorial practices employed by
James Joyce, arguing that understanding computer programming as a literary technique, a mode
of writing with inherent artistic capabilities, enables a powerful re-imagining of the complex
linguistic and structural experiments Joyce conducts in Finnegans Wake. Concluding with a
reconsideration of Martin Heidegger’s conceptions of rechné and poiésis, The Art of Code aims to
initiate philosophical inquiry into the complex, dynamic interrelationship between the semantics of

computer programming and of literature.
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Larry and Andy Wachowski's 1999 film The Matrix presents a world, some two hundred years
from the present, that has been reduced by its own technological self-indulgence to a shattered,
blackened shell of itself, a stark, ruined landscape filled with the burnt stumps of skyscrapers and
overhung by roiling, scorched skies. In its vision of an earth destroyed by humanity’s war against
its own too-human machines, The Matrix belongs to a post-apocalyptic tradition that includes

H. G. Wells’s Time Mackine, Franklin Schaffner’s Planet of the Apes, and Ridley Scott’s Blade
Runner—Dbut with one important difference. In Wells’s fiction and in recent film, the fantasy of a
devastated future is rendered as an unrecognizable alienation from our own comfortable present. In
Planet of the Apes, for example, the main character assumes he has crash-landed on a primitive
planet, and the full horror of his situation is revealed only at the end: it is not until he stumbles
across a half-buried, defaced Statue of Liberty that he realizes the desolate place he has discovered
is the Earth of the future. In The Matrix, by contrast, post-apocalyptic ruination is largely hidden
from sight by an eponymous software application so powerful and complex that it is capable of
(re)generating reality itself.

People living in the Matrix do not realize that their lives are programmed to seem to be real:
that is the nature of the Matrix, to simulate “reality” so thoroughly that the fact of that simulation
ceases to be recognizable as such. Nor do people living in the Matrix realize that their bodies have
been turned into the batteries that power the Matrix along: that is the purpose of the Matrix, to
keep itself up and running by hamessing the whole energy of humankind. In its fantasy of a
post-apocalyptic world programmed to look and feel exactly like 1999, The Matrix brings the
tradition inaugurated by Wells full circle. Whereas Wells dreamt of a machine that would allow
people to travel back and forth through time, The Matrix envisions a program that prevents people
from seeing that time itself has run out. Whereas Wells depicted a weirdly regressive future
populated by creepy mutants, The Matrix depicts a weirdly familiar future populated by ourselves.
In the one, crucial differences between us and them, now and then, what is and what might be

are maintained in the moment of flirting with their disappearance. In the other, there are no
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differences: The Matrix does not ask us to consider what might happen someday; it asks us to
consider whether we are already in the Matrix.

Through the trope of the non-existent future, then, The Matrix is really fantasizing about the
present. On one level, this is so obvious it hardly needs saying: it’s hard not to notice that a
story about a world decimated by computers that have become too smart for our own good is a
story that is running on the worried excitement animating our confused, impassioned debates
about cyberspace and artificial intelligence. On another level, though, the manner of the film’s
engagement with the present moment is far from obvious: if you’re unfamiliar with the history of
computing, it’s hard to notice that The Matrix is as much in love with digital technology as it is
anxious about it. Indeed, its seemingly technophobic story about a world decimated by computers
is also a story about how computer programmers can save the world.

In The Matrix, it isn’t whether you compute that matters—the film knows better than to
propose an unworkable distinction between technophiles who plug in and technophobes who
don’t—but how you compute. In a world where electronic neuronal implants collapse meaningful
distinctions between experiential and virtual reality, no life is untouched by computers; instead,
people are differentiated by how well they understand the computing code that quite literally
shapes their lives. Indeed, the film’s “good guys,” the small band of rebel programmers who hope
to free the human race from enslavement, are the people who have made themselves responsible
for understanding how the Matrix works. Their programming skill is such that they can not only
conceptualize how an enormous virtual reality generator such as the Matrix could be created, but
they can also see through the aesthetic illusions the Matrix generates and into the computing code
that underpins it. The rebel hackers keep an eye on the Matrix by sitting in front of screens that
scroll endless columns of green, luminous code; in tum, their eyes automatically translate that code
into the virtual reality it projects: buildings, streets, people, and so on. As the rebels become more
adept at reading, understanding, and translating the Matrix’s code, they learn to move, work, and
fight more effectively within the hallucinatory structure the program generates. The film’s action
thus moves fluidly between two interconnected and competing realities: the illusory facade of the

virtual Matrix and the barren, desolate world underpinning it. In the former, invisible computing
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code is the agent of coercive domination,; in the latter, reading and “hacking” visible code becomes
a means of resistance and liberation.

I begin this study with The Matrix because the film’s handling of computing code and computer
programming, although steeped in science fiction convention, is not all futuristic fantasy. In fact,
by making the visibility of computer code the site of a political struggle for human freedom, The
Matrix imports as a central structural element a charged computing debate that is by now more
than a quarter-century old: corporate interests in keeping software source code secret versus a
grassroots libertarian programming philosophy that historians and anthropologists of computing
culture have called the “hacker ethic.” As explained by writers such as Steven Levy, Eric Raymond,
and Pekka Himanen, the hacker ethic evolved as the discipline of programming itself evolved,
effectively becoming an underground constitution governing the writing and distribution of
computer programs. The hacker ethic argues that program source code should circulate freely and
openly among programmers and computer users, and that corporations and courts should not
attempt to restrict that free circulation by means of patents, copyrights, trade secrets, or other
technical or legal mechanisms. Indeed, the alliance The Matrix draws between visible, open code
and the future of human liberty strongly resonates with arguments about computing code advanced
by programming activists such as Richard Stallman, founder of the Free Software Foundation, and
legal theorists such as Lawrence Lessig, author of books outlining the intersection of constitutional
law and computing architecture. Given the ubiquity of computing technology in the twenty-first
century Western world, Stallman, Lessig, and others argue that corporate or governmental
restrictions on code—particularly software companies’ proprietary “blackboxing” practices and
governments’ willingness to legislate and enforce restrictive intellectual property laws—are so
far-reaching that they have the potential to erode not only the freedom of programmers but the
very liberal tradition itself. Specifically, they contend that to withhold code from users infringes
on freedoms that are essential to truly liberal societies: Lessig speaks of how closed computing
architectures are simultaneously architectures of control that ignore the democratic ideal; Stallman
speaks more locally, focusing on how blackboxing infringes on the user’s freedom of expression:

blackboxed code is code that the reader may neither read nor adapt to his needs. So unrelenting
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are Stallman and Lessig on this point that their efforts to defend liberal ideals for the digital age
resonate strongly with Friedrich Hayek’s rationale for writing his Constitution of Liberty: “If old
truths are to retain their hold on men’s minds, they must be restated in the language and concepts of
successive generations” (1). Defenders of free software have in this regard modemized the classic
defense of liberty, upgrading its rhetoric and reach for our digital age. Although the chapters that
follow focus on programming literary aesthetics, they must by necessity take into account these
intimately related political and ethical struggles for programming freedom.!

The Matrix dramatizes these debates about programming freedom when it centers on a
hacker named Neo, a sort of digitized Christ figure who is given the unenviable job of redeeming
humankind from the evil posed by unacknowledged, unseen code. When a cellular phone call from
an underground resistance movement informs him that he is “The One” who can save the world,
Neo responds with a self-doubt and an epistemological incredulity that prevail through most of the
film. His insecurity and skepticism only lift when Neo, during a climactic battle with the Agents
who program, patrol, and protect the Matrix, finally begins to comprehend the nature of the
electronic simulation that surrounds him, an epiphany the film records through Neo’s eyes as the
moment he learns to see past the program’s projected reality and into its underlying source code.
This understanding, and the confidence that comes with it, translates immediately into absolute
mastery of the dominating system. One moment, an unenlightened Neo’s life is in danger of

being snuffed out by his own residual belief in Matrix-generated reality (though his body is not

!Concerning itself specifically with corporate and legal restrictions on computing source
code, this study foregoes extensive discussion of electronic civil liberties issues. It should be
noted, however, that legislation governing matters such as digital copyright or strong encryption
technology can seriously inhibit programmers’ attempts to write, publish, and circulate code.
Forbidding any attempt to circumvent electronic copyright protection on digital media, the Digital
Millennium Copyright Act explicitly prevents certain kinds of program from being written. In
2001, the FBI jailed Russian programmer Dimitri Skylarov, who had written a program for
circumventing copy-protection on electronic books, and held him in United States custody for five
months—even though Skylarov had written his program in Russia and had not broken any United
States laws. For a detailed discussion of recent digital copyright legislation, see Marcia Wilbur’s
book The Digital Millennium Copyright Act. For an excellent history of the struggles between
computer hackers and the U.S. Federal government over the regulation of strong encryption
technology, see Steven Levy’s Crypto: How the Code Rebels Beat the Government—Saving
Privacy in the Digital Age.
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really “there,” given that the rebels project themselves into the Matrix by plugging their minds
temporarily into the program’s virtual reality, he will die if his mind believes he has been killed);
the next moment, a newly empowered Neo defeats the forces of evil with one hand while his eyes
process the bright green code surging all around him. In The Matrix, domination originates in
inaccessible source code: the Matrix owns those who can’t, or won't, familiarize themselves with
it. Likewise, the only way to defeat the Matrix is to access and reprogram its source code. The
film's message is clear: the victim of the future is the complacent luddite who doesn’t think twice
about depending on machines whose inner workings are a mystery; the savior is the hacker, the

individual whose complex passion for programming forms the basis of an entire ethical system.?

The convoluted history of the word “hacker” deserves some clarification at this point. Until
the mid-1980s, “hacker” indicated a skillful, talented, and dedicated computer programmer; this
is how Steven Levy uses the word in his laudatory 1984 book Hackers: Heroes of the Computer
Revolution. The word acquired negative connotations when mid-1980s journalists adopted it to
describe teenage pranksters and rogue programmers who put their computer skills to malicious
or criminal use. Real hackers, trying to preserve the purity of their terminology, coined the term
“cracker” to describe these computer pranksters and criminals; the neologism hints most obviously
at safe-cracking, but, true to the habitual wordplay of hacker culture, also conjures the image
of a boastful, lying braggart (a Renaissance usage). The Jargon File, a glossary of computing
terminology developed collaboratively across the ARPANET in the early 1970s and still maintained
today, quotes Shakespeare’s King John to make this point clear: “What cracker is this same that
deafs our ears / With this abundance of superfluous breath?” (Act I, Scene ii). Despite these efforts,
the neologism largely failed to catch on, and the negative connotation of “hacker’” remains the
dominant one in popular use today. Attitudes toward the term vary, even within computing culture.
Finnish programmer Linus Torvalds, creator of the Linux operating system kernel, notes that “I
usually try to avoid the term ‘hacker.” In personal conversations with technical people, I would
probably call myself a hacker. But lately the term has come to mean something else: underage
kids who have nothing better to do than sit around electronically breaking into corporate data
centers” (Torvalds 122). However, in exploring programming history, culture, and ethics, writers
such as Eric Raymond and Pekka Himanen have recently tried to restore the term to its original
dignified implications: for them, it signifies programming skill, technical mastery, and adherence
to the programmers’ code of honor known as the “hacker ethic.” I also use the term “hacker”
in this dissertation in this way, to skilled programmers for whom the act, and art, of computer
programming is imbued with a self-consciously ethical and aesthetic purpose.
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Although The Matrix provides a useful analogical framework for beginning to think through issues
in computing culture, any appeal to the film for the truth of programming politics must end with an
admission of the glossy, aestheticized vision the film puts forth. The way The Matrix reformulates
the history of hackers’ struggle against proprietary code—turning it into a series of carefully
choreographed martial arts battles between a stylish and ethnically diverse band of rebel men and
women and a homogeneous group of white male Agents uniformly outfitted in reflective shades
and dark business suits—is expressly and literally fantastic. The very act of reading, understanding,
and reprogramming code is similarly imbued with science-fiction convention, so much so that the
film depicts mere attentive human eyes performing the translation between executing application
and underlying source code. If you spend enough time watching glowing hexadecimal characters
scrolling on a screen, The Matrix suggests, you will naturally acquire, just as a child acquires
language, the ability to make sense of what looks at first to be a mass of jumbled signs. In the
real world, as subsequent chapters will make clear, acquiring access to the source code that
underpins computing applications is a vastly more difficult, more complex, and more politically
and economically fraught process. That said, however, The Matrix’s sleek and stylized portrayal of
computing programmers’ desperate bid for human freedom makes the film an ideal entry point to a
study of computing code’s aesthetics. Positioning computer programming as a means of stylized
resistance to crude, ugly domination, the film ultimately values a particularly artistic attitude to the
work of coding: this attitude is revealed in the film when the rebel hackers deride the Matrix for
its ugly glitches or admire their own programming handiwork in the illegitimate and subterfugal
additions they make to its structure. Highlighting the “applied aesthetic™ that has historically been
a foundational element of programming practice, the film ultimately draws parallels between the
aesthetic and political trends in computing programming history that will be central to this study.
More specifically, The Matrix focuses its computer programming aesthetic by picking up on
another practice common in computing culture—the tendency to understand writing code as a

process akin to writing literature.
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Relying heavily on literary and theoretical allusions to interpret for the lay viewer the
technological and epistemological struggles it depicts, The Matrix figures two books into its
structure: Jean Baudrillard’s Simulations and Lewis Carroll’s Alice s Adventures in Wonderland.
The first appears as a hollow book: when not grinding away in a cubicle at a giant software
corporation, Neo runs a black market sideline in illicit software, copies of which he stores inside a
box that looks like Baudrillard’s text. The second appears as a series of guiding metaphors. The
resistance movement first gets Neo’s attention by breaking into his home computer and advising
him to “follow the white rabbit”; later, when Neo has to decide between joining the resistance
or just going home, Morpheus, the movement’s leader, explains that living within the Matrix’s
virtual reality entails self-consciously accepting a view of life as literature: “You take the blue
pill and the story ends,” he tells Neo; “You wake in your bed and you believe whatever you want
to believe ... You take the red pill and you stay in Wonderland and I show you how deep the
rabbit-hole goes.” In The Matrix, Baudrillard’s Simulations is itself a simulation, a fake book about
fakery in a world so perfectly fabricated that it can readily absorb the very theories that ought to
debunk it. Conversely, The Matrix sees Alice's Adventures in Wonderland not as a story about a
dreamed reality, but as a frame of reference for reality itself: when Neo goes down the rabbit-hole,
he falls into the truth about the world. That truth, however, is the truth of simulation. One of the
first things Morpheus says to Neo when he introduces the young hacker to the simulated nature of
Matrix-generated reality is “Welcome to the desert of the real,” a quotation from Baudrillard’s
Simulations. The film thus unfurls by way of a double indebtedness to its oddly matched pair of
muses, a stammering Victorian mathematician with a penchant for building logical problems into
children’s dreamscapes, and a postmodernist, postcapitalist French theorist best known for his
provocative theses about how Disneyworld, television, and other virtual realities have come to
supplant objective reality. The reason for The Matrix’s dependence on literary and literary critical
models quickly becomes clear: at its most basic level, Matrix-generated reality is itself text, a
vast web of code that, in its two-dimensional incarnation, can be viewed, read, interpreted, and
analyzed. Only a literary sensibility, Morpheus implies, will allow Neo to inhabit, and finally

master, that incarcerating textual world; only a literary sensibility will allow him to understand
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computing code as a flexible language that can be reshaped and rewritten to the ends of freedom
rather than domination.

The Matrix’s subtie dependence on literary metaphor draws upon the embedded relationship
between computing code and literary aesthetics that will be the focus of this dissertation. The Art
of Code will argue that aesthetics, specifically textual aesthetics, has constituted a foundational
element of programming practice and culture ever since the mid-1950s, when compiler technology
began to enable translations between higher-level programming languages and machine code.
These developments freed computer operators from the laborious, mathematically intensive work
of writing computer programs directly in binary or hexadecimal machine code; they also coincided
with a shift toward electronic business data processing that created a new class of computing
professional: the programmer. No longer reliant upon the expertise of trained mathematicians
and engineers, corporations hired workers who demonstrated an aptitude for working with new
high-level languages such as FORTRAN or COBOL. Crafting their professional identity around
computers, yet lacking the formal mathematical or engineering training considered de rigeur in
computing’s earliest years, these new programmers came to shape their professional identities
around their work with high-level languages. From the computing industry’s rapid expansion, then,
came a burgeoning computing culture with its own traditions, its own politics, and its own finely
honed sense of aesthetics. As writers such as Steven Levy, Eric Raymond, Glyn Moody, and Pekka
Himanen have repeatedly stressed, computer programmers from the 1950s onward began to
regard themselves embodying a radically divided identity: they were artists as much as engineers,
bohemians as much as corporate workers. Understanding their programs as carefully crafted texts
that are as much for reading as for running, programmers have historically relied heavily on
traditional aesthetic ideals of formal elegance, crisp and creative expression, striking originality,
local precision, and gorgeous overall effect to guide their work.

This understanding of code as an aesthetic artifact partly explains programmers’ longstanding

impulse to share their code openly rather than hiding it in proprietary, inaccessible binary formats.}

3Binary code will work on computers but is indecipherable to the human reader. I will explore
the technical and political ramifications of binary-only code distribution in Chapter One.

9
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In the foreword to Donald Rosenberg’s Open Source: The Unauthorized White Papers, Linux
programmer Jon Hall writes that he once lacked a concrete understanding of why programmers
willingly gave away their software source code; then it struck him that the aesthetics of code
itself constituted a powerful motivation—or, as he puts it, “Very few amateur painters put their
paintings in a dark closet” (xi). Just as painters exhibit their work to others and benefit from
critical commentary on it, programmers improve their skill by offering their code for critique and
by studying the programs written by their more accomplished and talented peers. Although Hall
draws his analogy from the visual arts, programmers more commonly seek a formal mastery of
language;, in fact, so firm are the associations between programming skill and linguistic elegance
that Eric Raymond advises aspiring hackers to work on their language skills as well as their
programming skills, encouraging them to develop their facility with puns and wordplay alongside
their understanding of programming theory and languages (246). Among masterful programmers,
one set of compositional skills begets the other; writing code is to them as syntactically demanding
and as potentially inspiring as writing poetry is to a poet. In fact, for many expert programmers,
producing line after line of elegant, expressive code is not only analogous to writing a perfectly
structured sonnet or a flawlessly balanced iambic couplet; programming is itself a poetic
undertaking. Throughout this study I will argue that programmers’ approach to their work
represents a merger of aesthetic sensibilities that challenges conventional distinctions between the
work of the programmer and that of the poet.

The Art of Code finds its inspiration at the nexus of literature’s and computing culture’s
related but distinct aesthetic systems. In the chapters that follow, I seek not only to untangle the
complicated knot that they form, but also to show how important it is to both cultures to identify
the strands within the knot. It will thus be my goal in this dissertation to aestheticize the work
of computer programmers in a very different way than does The Matrix. I strive here not to
impose a trendy postmodern paradigm onto computer programming practice, nor to define a new
“cyberaesthetic™ for the digital era, but rather to examine from a literary perspective an aesthetic
that has always been deeply embedded in computer programming culture and that can be regarded

as foundational to it. In exploring this merger of aesthetic sensibilities, this dissertation will study

10
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the emergence of programming aesthetics during the 1950s, will discuss how those aesthetics took
on specifically literary connotations in ensuing decades, and will analyze the implications of
programming aesthetics for critical and theoretical debates within literary studies. The project
has five central goals: first, to show how revolutions in computing architecture and programming
methodology have shaped and refined the aesthetics of code; second, to outline a responsible
historiography of code (an undertaking that involves challenging how cultural and literary
theorists have appropriated code and used it metaphorically in ways that systematically ignore
the history, culture, and aesthetics of programming culture); third, to show how an identifiably
literary aesthetic emerged as part of programming practice, and to show how that aesthetic came to
depend on theories of authorship and models of close reading that, at least until recently, were
regarded as essential to the literary critical enterprise; fourth, to show how a literary appreciation
of programming aesthetics not only allows for a sophisticated literary theoretical understanding
of programming history but advances our understanding of literary form itself (I focus here on
the late expenmental writings of James Joyce); and fifth, to show how, in developing alternative
concepts of authorship, and in making the “beauty” of code into a powerfully motivating political
force, programming aesthetics challenge the current tendency among professional literary scholars
to regard “the literary” and “the aesthetic™ as mere agents of false consciousness, as naive
mystifications that shelter dominant ideologies from literary theory’s radical critique.

This study thus aims to supplement, to historicize, and to extend debates on computing
technology as they are currently conducted within the humanities, particularly within departments
of language and literature. In doing so, it takes a field—computer programming—that has recently
fallen under the purview of cultural theory, and resituates it within the realm of traditional literary
study. There are compelling methodological reasons for such an undertaking. First, the past
decade has seen a series of impassioned and extraordinarily polarized debates about the impact
of electronic textualities, digital archives, the Internet, and other computer-mediated phenomena
on everything from the future of scholarly work to the very fabric of human identity. I argue that
these debates, refracted as they have been through the polarized and hyperbolic rhetoric of the

“culture wars,” have failed to import into literary studies a solid understanding of computing or

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



programming history; as such, this study will attempt to counteract and correct some prevailing
distortions that continue to shape the theoretical reception of computers within the humanities.
Specifically, [ wish to argue that literary scholars have overlooked the deep literary affiliations
embedded in the history and art of computer programming; when they do invoke computing
code, it serves merely as a convenient synecdoche for all manner of radical and transgressive
political and aesthetic agendas. Acting as a counterweight to these approaches, this study insists
that theoretical generalizations about code, about the political effects of “digital culture,” and
about the ontological nature of “‘cyberspace” must ultimately be rooted in an understanding

of how computers, computer programs, and computing networks actually function. In other
words, to understand the progressive technical and cultural abstractions that have been built atop
computing hardware and software, one must also understand the underlying mechanisms of those
electronic and coded systems and appreciate the technical and cultural histories underpinning their
construction. Second, [ contend in this study that traditional textual hermeneutics is simply an
indispensable tool for understanding programmers’ aesthetic conception of what code is and
about what writing code means. As such, a founding conviction of this project is that a nuanced,
historically informed, and genuinely interdisciplinary understanding of our evolving technological
landscape has been further impoverished by cultural critics’ recent virulent reaction against
traditional text-based hermeneutic approaches. However, because programmers often understood
their code as an art form, and, more often than not, as a literary art form, it is a strange irony of
the history that I trace that the text-based hermeneutic strategies so frequently derided by cultural
theorists as politically retrograde and theoretically naive simply provide the most progressive and
illuminating tools available for articulating the special aesthetic valences of programming practice.
Rather than aligning the computer with the emergence of the postmodern condition, an assumption
that animates many literary theorists’ interests in computing, I suggest that a responsible theoretical
investigation of code’s history and aesthetics brings the computer closer to a modernist sensibility
than a postmodern one. The trajectory of the dissertation, which begins with the earliest attempts
to program digital computers in the 1940s and ends with a comparative study of programming

theory and Joyce'’s authorial evolution, is designed to reflect that theoretical realignment.
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1L

The dissertation is divided into three chapters, which work together to provide an aesthetic
history of computing culture, an analysis of how the literary idea has structured the history
of programming practice, and a related analysis of how an understanding of the computer
programmer’s special relationship to literary aesthetics can serve to inform the project of modemn
literary critical analysis. To ground this project theoretically and historically, the dissertation
begins by tracing competing, and often conflicting, ways of situating software within a wider
cultural framework. This work is necessary because software’s cultural history has been almost
entirely neglected by academic computing historians, who have focused the bulk of their efforts on
computing’s mathematical and engineering prehistory and on the early construction of computers
before and during World War II; and by computer scientists, whose historical efforts have been
devoted primarily to documenting exhaustively the technical intricacies of the many different
programming languages that emerged onto the computing scene from the 1940s onward. What
we lack at present are comprehensive and synthetic cultural histories of code, histories that could
provide a sound historiographical basis for the study of code’s literary aesthetics. In outlining
existing approaches to computing’s history, my goal in this chapter is not necessarily to privilege
one mode of investigation over another, but to highlight the inadequacies of various approaches
and to argue for a more informed, more genuinely interdisciplinary approach to code’s convoluted
and complex history and ontology. As such, I concentrate on tightly intertwined and constantly
shifting historical, technological, philosophical, political, and legal conceptions of what software is
and has been, focusing particularly on how those conceptions have shaped our ideas about how
software should be written, distributed, and protected. While contributing to the self-contained
argument of Chapter One, these sections also provide essential background material for the theses
about programming practice that I will explore elsewhere in this study.

My goal in the first sections of Chapter One is to concentrate on the histories of computing
architecture, programming methodology, and software economics to outline the complex

interconnections among technical innovation, evolving corporate structures, and the cultures that
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have grown up around computer programming over the last half century. Beginning with the
intense digital computing research conducted during World War I, I focus mostly on architectural
and methodological developments in the United States. At the University of Pennsylvania’s Moore
School of Engineering in the mid-1940s, a team of engineers and mathematicians collaborated

to build one of the first large-scale programmable digital computers, a machine known as
ENIAC. My focus here is less on the physical construction of early computers (this history has
been documented extensively by computing historians) than on the conceptual architecture
developed in parallel with ENIAC that has come to define modern computing, a theoretical model
commonly known today as the “von Neumann” or “stored program” architecture. Showing how
computer programming history can be understood as a history of progressive abstraction from both
computing hardware and the foundational binary code that computers natively “understand,” the
first section of the chapter explores both how this stored program architecture enabled computing
hardware and software to become distinctly separate entities and how it allowed the creation of the
high-leve! programming languages that divided computer programs according to their closeness
to their human author (high-level source code) or the computers that run them (low-level binary
code). In short, [ argue that the architectural and methodological revolutions of the 1940s and
1950s uitimately abstracted code into language, and that that crucial abstraction both shaped the
identity of programmers (as writers) and set the stage for future political battles over defining code
and defining the nature of software authorship.

The layered relationships among high-level source code, low-level binary code, and computing
hardware, coupled with the software sharing traditions that arose among programmers and
corporations during the 1950s, enabled rapid early advances in computer rrogramming theory and
practice. In turn, these early decades saw computer programmers, members of a new professional
discipline nestled uncomfortably between the authoritative, established fields of mathematics and
electrical engineering, establish strong internal cultural traditions that came to define the practice
and craft of writing software. As programmers differentiated themselves from mathematicians
and engineers and came to understand themselves as writers, as skilled manipulators of language

and syntax, the uninhibited, unregulated exchange of code became enshrined as a core tenet of
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their grassroots ethic. This ethic ensured a high degree of openness between programmers and
corporations; in turn, this spirit of co-operative code sharing helped the nascent programming
profession to grow and flourish at an extraordinarily rapid rate. This was one way in which the
architecture of computing hardware and software helped shape the operative aesthetic models and
political conditions under which early programmers worked. However, alternative economic

and political ramifications of the von Neumann architecture emerged in the 1970s to threaten

the libertarian traditions developed within early programming culture. I discuss the corporate
and economic background to that shift, describing how computer programs, understood until

the mid-1960s as “value-added” enhancements to expensive and fragile hardware installations,
became commercial products in their own right as hardware dropped radically in cost during the
late 1960s and 1970s. As the economic status of software changed, it became clear that stored
program hardware architectures could enforce secrecy and closure just as easily as they had
previously enabled openness and cooperation. The chapter analyzes how the establishment of a
defined software industry in the 1970s led corporations to exploit the economic potential of the
stored-program architecture, using that architecture’s enabling internal division of programs into
source and object code to protect their products from unauthorized duplication, appropriation, and
alteration. This process, called “blackboxing,” was an affront to the traditions of free information
exchange established over the first three decades of programming culture, and some programmers
have struggled ever since to keep code free and open, even as corporations and courts have invoked
technological methods and legal mechanisms designed to protect source code from disclosure and
free exchange. I discuss some programming movements that arose in response to this corporate
and legal clampdown (and to the profit motives driving that clampdown), and outline the various
pragmatic, ethical, and aesthetic rationales that underpin their actions.

The chapter then considers an alternative approach to computing code’s cultural history,
discussing the theoretical, ideological work that the computer performs in contemporary literary
and cultural studies. In this section I argue that while programmers and computing scientists
have imposed layers of theoretical abstraction upon computing hardware to aid their work in

programming and controlling computers, cultural theorists have imposed an additional layer
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of metaphysical abstraction upon the computer, one that works to advance explicit ideological
agendas. “Cyberspace,” as this abstraction has become known, serves as a consensual utopian
geography where cultural studies’ enduring political preoccupations (including, but not limited to,
race, class, gender, power, and embodiment) can find a more or less ideal resolution. Reading a
series of choice cybertheoretical texts, [ discuss how code circulates in the “integrated circuit”
(the phrase is Donna Haraway'’s) of cultural theory as a metaphoric means of theorizing the future
of subjectivity, race, gender, society, and even reality itself. | argue that using the computer as a
platform for this metaphysical and political utopia not only displaces engagement with the real
conditions surrounding the writing, refining, circulating, and even marketing of software at the
turn of the century, but works against a responsible scholarly analysis of code’s literary aesthetics.
My aim will be to preserve the ideal of more closely integrating computing and literary histories
while differentiating the fantasies propounded by cybertheory from the realities cybertheory
ignores. Turning to the writings of legal theorist Lawrence Lessig, I argue for models of computing
abstraction that are more historically, ideologically, and aesthetically responsible. Lessig’s
investigations into code’s political and technological architectures will allow me to argue for a
“layered” model of cyberspace that respects the history outlined in the chapter’s earlier sections
while opening the possibility for a developed literary aesthetics of code.

Drawing upon the historiographical and methodological framework outlined in Chapter One,
my second chapter develops the aesthetic history of code further, examining the importance of
the literary ideal to programmers and to programming culture. The chapter first discusses the
specifically literary turn within programming history and culture, showing how literary philosophy
became an influential element of programming theory (for instance, the preeminent computer
scientist Donald Knuth, whose magisterial Art of Computer Programming is a definitive reference
for programmers, has frequently stated his belief that programming is as much a literary art as it
is a mathematical or engineering process). The chapter’s second section studies an area where
the literary status of code is hotly contested: the ongoing legal debates about the applicability of
patent and copyright law to computing code. At the core of this debate, one finds a contentious

ongoing argument about what code is, about how it functions, and about whether writing code
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constitutes an act of engineering or a mode of creative expression. In one sense, code is a utilitarian
component in a machine; code exists so that computers can perform work. But code, because of
the complex abstractions enabled by the von Neumann architecture, is also a fextual entity, written
by programmers in defined high-level languages. Confounding traditional distinctions between the
expressive and the utilitarian, the creative and the functional, code ultimately challenges the very
metaphysical basis of intellectual property law.

The chapter’s first two sections propose that the complex ontological blurring that emerges
from these legal debates signals the need for literary critics to recognize and understand the literary
sensibility that has helped shape programming history. The chapter’s remaining sections explore
that literary sensibility by analyzing three central episodes in the history of code as a literary,
artistic artifact. First, [ will demonstrate how a “literary” practice of close reading code has been
central to shaping programming culture and practice. From Ken Thompson, co-creator of UNIX,
who formed a UNIX “reading group” at the University of California, Berkeley, in 1975, to John
Lions, an Australian computer science professor whose 1977 annotated critical edition of Unix
Version 6 became a textbook for his programming course, to Daniel Bovet and Marco Cesati,
who recently published a book encouraging people to close read the Linux kernel’s source code,
programmers have built strong literary and literary critical values into their notions of teaching,
learning, and sharing the art and science of computer code. I further this discussion by examining a
second central episode in code’s literary history: Donald Knuth’s “literate programming” system
of computer programming. Explicitly exhorting programmers to understand writing programs
as a new way of writing literature, Knuth designed his literate programming method so that
programmers could closely integrate the compilation of source code with its publication. In
a literate programming system, a programmer/author’s completed source code becomes both an
executable binary intended for use in a computer system and an annotated critical edition intended
for traditional publication on paper. To this end, Knuth included in the literate programming
system his TgX digital typography program, a piece of software that incorporates not only Knuth’s
ideas about the aesthetics and philosophy of programming but his exhaustive, meticulous research

into the history of print culture. The orientation of literate programming, then, is to encourage
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programmers to become authors, to see as the final product of their effort not only a working
program but a beautiful published edition of their writing. Moving on from literate programming,
the chapter’s final section focuses on “Perl poetry,” a poetic genre created by Perl programmers

in the early 1990s. Combining close attention to poetic form with equally close attention to the
parameters of the Perl programming language, Perl poets such as Sharon Hopkins strive to produce
texts that are at one and the same time literary artifacts and working programs. In their close
integration of coding practice and poetics, literate programming and Perl poetry exemplify and
celebrate the “art of code.”

Building on these discussions of code’s literary dimensions, Chapter Three examines a series
of telling intersections between modemn programming theory and the models of literary authorship
employed by James Joyce. The chapter begins by outlining the engineering metaphors that Joyce
frequently used to describe his late authorial practices and by showing how critics’ manipulation
and extension of those metaphors has culminated in a critical vision of Joyce as a “software
engineer.” In an attempt to concretize those engineering and computing metaphors and show
how they can work as more than vague analogies, the chapter suggests that deep structural
affinities exist between Joyce’s late authorial processes and a sophisticated, complex paradigm
known as object-oriented programming that has dominated programming theory for the past two
decades. My argument in this chapter is that an understanding of computer programming as
a literary technique, a mode of writing with inherent aesthetic capabilities, enables a powerful
re-imagining of the complex linguistic and structural experiments Joyce conducts in Finnegans
Wake. Specifically, | want to suggest that contemporary programming theory can enable us to build
upon and revise the structural models of Finnegans Wake developed by Joyceans such as Clive
Hart, A. Walton Litz, and David Hayman. Although the chapter initially proceeds in an analogical,
formalist manner, it ends by historicizing the connections between Joyce and object-oriented
programming. Finally, tracing the roots of the object-oriented paradigm to modemnist theories
of child psychology, the chapter concludes by studying how Joyce’s conceptualization of the
Wake intersects with his lifelong deliberations about how children think and learn. The purpose

of historicizing these theoretical claims about Joyce is to argue for a conception of computer
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programming that is deeply indebted to modemnist ideals of authorship and, in turn, to propose
the need for further historical and theoretical work situating modern computer programming in
relation to the modernist tradition.

The conclusion to The Art of Code draws together many of the dissertation’s concemns in a
reconsideration of Martin Heidegger’s technological aesthetics. This reconsideration responds
to post-Heideggerian theorists of technology such as Hubert Dreyfus and Albert Borgmann, for
whom Heidegger’s technological speculations (in “The Question Concerning Technology” and
other texts) have licensed a profoundly reactionary aesthetic stance toward modern computing
systems. Although Drefyus, Borgmann, and others envision technology’s detrimental impact
on core societal values (Borgmann'’s recent Holding on to Reality reinforces the idea that
computing technology has set us on a Matrix-like course toward ontological oblivion), | argue
in the conclusion that Heidegger is concemned less with technology per se than with the impact
of technology upon traditional aesthetic values. What the rational, mechanistic twentieth
century lacks, per Heidegger’s philosophical diagnosis, is a sense of historical and ontological
groundedness—hence Heidegger both romanticizes a Rhine valley peasant lifestyle that he sees
as continuous with Ancient Greek ontology and valorizes aesthetic celebrations that understand
language itself as part of a larger philosophical return to origins. Extending Heidegger’s
aesthetic analysis to the models of computer programming practice explored within the body
of the dissertation, the conclusion argues that computer programming practice lends itself to
Heideggerian analysis as an area where poiésis self-consciously “presences forth™ from within
technology; programmers’ approaches to their work thus question the readings of Heidegger that
underlie pessimistic speculations such as Borgmann’s. While the conclusion cannot do justice to
the vast body of philosophical work on the nature of technology, it does suggest the need to situate
Heidegger much more carefully in relation to technological aesthetics, particularly in relation to
the literary poetics of programming with which this dissertation is concerned.

In the last analysis, The Art of Code offers a comparative history of recent developments in
literary and computing cultures. Recent decades have seen the explicit politicization of both

literary critical and computing cultures, although their respective politicizations have taken effect
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in very different ways and for very different reasons. The first has demonstrated its political
commitments by all but abandoning literature and aesthetics as its subject matter (witness the rise
of new historicism, cultural studies, cultural materialism, body criticism, and a related assortment
of expressly political methodologies that increasingly disregard literary subject matter) and even
by demonstrating its loss of faith in aesthetics through its reification of ugliness at the level of
critical style and choice of subject matter—with the goal of transgressing and destabilizing the
literary canon for political effect, cultural theorists now turn with ready alacrity to subjects such as
madness, torture, pain, monstrosity, pornography, and disease. Computing culture, on the other
hand, has adopted a traditional model of literary aesthetics as a means of effecting change, finding
political utility and social value in the well-crafted product that is at once entirely usable and
wholly beautiful to contemplate. The distinctions are clearly evident in the respective disciplines’
discourses: whereas terms such as “elegant” and “beautiful” circulate freely in computer culture to
describe well-crafted code, elegance, beauty and all their synonyms have been effectively exiled
from the vocabulary of literary and cultural theory, where their use now signifies only the presence
of theoretical naivete and ideological mystification. The point of the comparison is threefold: first,
to question literary criticism’s deliberate equation of aesthetics and of “traditional” literary value
with irresponsibly apolitical, even reactionary, theoretical stances; second, to reclaim the traditional
close-reading methodologies of literary scholarship as powerful tools for technological analysis
and political critique; and third, to show how necessary computing knowledge is to a responsible
literary and cultural studies—both as part of textual transmission and cultural formation and as

an increasingly important part of literary history. The Art of Code is both frankly polemical

and openly hopeful: the hope of the polemic is to forge productive, informed bridges between

the semantics of computer programming and of literature, and to open new ground for debate on
the complex, dynamic interrelationship between politics and aesthetics. Because the aim of the
dissertation is finally to open new fields of inquiry, it is often more suggestive than definitive,
covering more territory rather than less so that I can ask broader and ultimately more pressing

questions about the history and future of literary and technological aesthetics.
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Chapter 1

Crossed Wires: Historiographies of
Code
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For all its enigmatically opaque symbolism, Stanley Kubrick’s 200/: A Space Odyssey
(1968) reflects an ideal of clarity that was dear to the heart of 1960s programming philosophy:
that humans and digital computers could one day interact through the transparent medium of
ordinary conversational English. Instead of laboriously entering arcane commands via a teletype
terminal, the standard human—computer interface at the time the film was made, Kubrick’s
astronauts communicate with their mainframe computer HAL as if HAL were another human
being on board: speaking to the computer, they conduct maintenance checks with it, even play
chess against it. Moreover, Kubrick extends HAL's perceptive powers beyond mere speech
comprehension: when the astronauts attempt to talk privately in a space pod about HAL’s
dangerously literal interpretation of its programmed instructions, the computer “overhears” their
conversation by reading their lips. A film in which computers are capable of comprehending
speech—and even of lipreading—looks to be a fantastic, if potentially Orwellian, vision for a
far-distant future; nonetheless, dismissing Kubrick as a technophobic reactionary would ignore the
complexity and sophistication of his response to computing technology. While Kubrick shares
with contemporary figures such as Hubert Drefyus a profound distrust of artificially generated
intelligences, 2001: A Space Odyssey also reveals his deep interest in the debates, pursuits, and
ambitions of 1950s and 1960s computing culture and theory.

On the surface, Kubrick’s film feeds a paranoid technophobic vision of intelligent machinery
run amok: the film derives much of its suspense and terror from the combination of HAL's ability
to understand spoken instructions and its programmed inclination to interpret those instructions
absolutely literally. Emphasizing the destructive capacity of a pure, logical intelligence untempered
by emotional or ethical understanding, Kubrick’s 200/ was received within technological circles
and the mass media alike as a searing critique of early Artificial Intelligence research. Yet the film
also appealed to computer programmers and theorists by exemplifying a vision that by 1968 had
long animated their work: to bring human—computer interaction into the realm of language, and
ultimately to develop a means of communicating with computers that would be as linguistically
transparent as human speech. That vision’s animating ideal was, and remains, that of progressive

abstraction from lower-level machinic and computational processes to higher-level, more human

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



faculties. Just as humans can conduct conversations without necessarily understanding the complex
lower-level neurobiological and auditory mechanisms that make speech possible, early computing
researchers sought to make the work of telling computers what to do accessible and easy by
distancing the method of programming from the internal workings of the computing hardware.
Kubrick explicitly acknowledges the mechanisms of such abstraction in the film’s famous climactic
scene: in order to disarm the megalomaniacal HAL, astronaut Dave Bowman tears out the memory
modules that contain the computer’s programming instructions. As the astronaut removes more and
more of HAL’s code, the computer “regresses” through ever more infantile stages, singing *Daisy,
daisy ... " and gurgling like a baby just before it finally shuts down. Kubrick’s representation is
striking: as the astronaut strips away the higher faculties conferred through HAL's software, the
computer undergoes a developmental and linguistic devolution that reflects its reversion to pure
mechanism. Without its programmed capacity for the mechanical equivalent of abstract reasoning,
HAL can exist only as a harmless, “lifeless” chunk of hardware, just like any standard IBM
mainframe of the era.! In dramatizing a pseudo-psychological reversal of software’s developmental
history, Kubrick’s film captures the essence of that history: over time, the process of programming
digital computers has grown ever more abstract (in its relation to the machine) while at the same
time growing ever more transparent (in its relation to the human beings who write and read
programs for those machines). More to the point, the history of software’s gradual abstraction from
hardware is also the history of programming’s language acquisition: as HAL understood English,
so computers since the 1950s have “understood” a variety of programming languages, including
FORTRAN, COBOL, and C, each of which allows a programmer to give instructions to a computer
without resorting to the difficult, complex machine code that computers can directly interpret.

I will be concerned throughout this chapter to articulate some of the major cultural, political,
and aesthetic effects of machine code’s abstraction into ever more complex and capable
programming languages. First, [ examine how abstracting code from hardware made it possible

for programmers to conceptualize their work as a new kind of writing rather than as an esoteric

Indeed, as many commentators have noted, the name HAL makes a thinly veiled allusion to
IBM, the letters H, 4, and L being those that respectively precede /, B, and M in the alphabet.
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form of mathematics; as [ will show in this chapter and in the next, this emphasis on writing

has been crucial both in shaping programming sensibilities and in imbuing the act of computer
programming with an identifiably literary aesthetic. Second, I show how the abstractions afforded
by high-level computing languages enabled programmers to write portable programs that could be
shared across computers and among computing architectures; this “share-ability” of software has
had important cultural and political effects, the many valences of which [ will trace throughout this
chapter. Third, I show how the advent of high-level programming languages paradoxically created
the potential for the very obverse of code sharing: they allowed programmers and corporations

to “blackbox” their code, to prevent users from seeing programs in their high-level (i.e., most
legible) form by distributing them only in their simplest, most inaccessible (i.e., least abstract)
binary formats. Over the past sixty years, these three phenomena have interacted in different, but
always decisive, ways to shape the field of software development, the cultures that have grown up
around it, and the ideals of authorship that drive it. Indeed, it is hardly an exaggeration to suggest
that software’s entire cultural, corporate, and legal history may be understood in terms of the
interrelated effects of code’s abstraction into language.

This chapter traces the principal trajectory of those effects, locating its roots in the earliest days
of digital computing history, following it through the dark days of corporate and legal restrictions
on software distribution, then watching it find its current incaration in the conflict between
blackboxing and software sharing that characterizes our present computing era—an era in which
powerful corporate and legal enforcement confronts the vibrant and colorful, if comparatively
tiny, “open source” and “free software” movements. As such, this chapter reflects one of the
driving methodological convictions of this dissertation: that any responsible analysis of computing
culture’s politics and social impact must be anchored both in a material understanding of how
computers actually work and in an historical understanding of where computing code came from
and how it has evolved over time.

Trying to arrive at such an understanding is itself a radically interdisciplinary undertaking:
one can find the cultural history of code articulated in a variety of academic contexts—including

computing history, the history and sociology of science, cultural studies (especially in the area
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of cultural studies known as cybertheory), legal studies, and computing science—as well as in
non-academic contexts such as the growing published literature on open source and free software,
and in computer programmers’ efforts to document their own history and culture. As will become
clear in this chapter and in the next, the history and even the ontology of computing code is

a hotly contested and intensely disputed field of inquiry. Furthermore, vehement disputes over
the definition and history of computing code take place against a backdrop of academic neglect:
computing historians have shied almost entirely away from software as an object of study, focusing
their efforts instead on computing’s mathematical and engineering prehistory and on the early
construction of computers before and during World War [1. Work on the history of the computer
after 1970 is rare; the cultural history of programming, with which I will be primarily concerned in
this study, has been almost entirely neglected.? In a 2002 article, computing historian Michael

Mahoney bemoans the present sad state of software history:

We have practically no historical accounts of how, starting in the early 1950s,
government, business, and industry put their operations on the computer. Aside
from a few studies with a primarily sociological focus in the 1970s, programming

as a new technical activity and programmers as a new labor force have received no
historical attention. Except for very recent studies of the origins and development of
the Internet, we have no substantial histories of the word processor, the spreadsheet,
communications, or the other software on which the personal computer industry and
some of the nation’s largest personal fortunes rest. (“Software: The Self-Programming
Machine” 92)

In his 1998 History of Modern Computing, Paul Ceruzzi observes how existing software histories
have tended to assume one of two distinct shapes (9). The first type of history charts the rise of
individual software companies—such as IBM, Microsoft, Oracle, or Apple—and situates those

companies’ software products within a corporate and marketing framework.> Written largely for a

2 An important and timely study of programming’s emergence as a professional discipline is
Nathan L. Ensmenger’s 2001 dissertation From “Black Art” to Industrial Discipline: The Software
Crisis and the Management of Programmers. Martin Campbell-Kelly and William Aspray’s
Computer: A History of the Information Machine is another important study that carefully situates
programming methodology within the context of an emerging software industry—see especially
chapters 8 and 11.

3See, for example, Daniel Ichbiah and Susan Knepper’s The Making of Microsoft, James
Wallace and Jim Erickson’s Hard Drive: Bill Gates and the Making of the Microsoft Empire,
Stephen Manes’s and Paul Andrews’s Gates: How Microsofi's Mogul Reinvented an Industry—and
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general audience, these histories tend to ignore the technical aspects of software development,
focusing instead on how particular software products have contributed to the reputations of
particular companies, or on how they enable computer users to think and work in different ways.
The second type of software history noted by Ceruzzi charts the rise of individual programming
languages such as FORTRAN, COBOL, and Simula, and is primarily concerned with how each
language worked at a particular moment to enable programmers to extract different kinds of
functionality from the computer’s hardware. Computer scientists and historians from the 1960s
onward have expended a great deal of effort documenting the technical history of computer
programming languages; we now have articles and conference proceedings that enumerate
exhaustively the formal intricacies of the many different languages constructed from the 1940s

onward.? Studies written in this mode are often highly formalist, focusing more on the technical

Made Himself the Richest Man in America, John Scully’s Odyssey: Pepsi to Apple . .. A Journey
of Adventures, Ideas, and the Future, and Steven Levy’s Insanely Great: The Life and Times of
Macintosh, the Computer that Changed Everything.

4Donald Knuth and Luis Trabb Pardo give a comprehensive survey of the earliest languages
in their paper “The Early Development of Programming Languages.” Tracing developments in
programming methodology during the first decade of digital computing’s history, Knuth and Pardo
offer a useful prehistory to the study of high-level programming languages. Methods studied
include Zuse’s Plankalkiil (1945), Goldstine and von Neumann’s Flow Diagrams (1946), Curry’s
Composition (1948), Mauchly er. al.’s Short Code (1949), Burks’s Intermediate PL (1950),
Rutishauser’s Klammerausdriicke (1951), Bohm’s Formules (1951), Glennie’s AUTOCODE
(1952), Hopper et. al.’s A-2 (1953), Laning and Zierler’s Algebraic Interpreter (1953), Backus
et. al.’s FORTRAN (1954-57), Brooker’s Mark | AUTOCODE (1954), Ershov’s IIII (1955),
Kamynin and Liubimskii’s [TII-2 (1955), Germs and Porter’s BACAIC, Elsworth er. al.’s Kompiler
2 (1955), Blum’s ADES (1956), Perlis et. al.’s IT (1956), and Katz et. al.’s MATH-MATIC
(1956-58). Usefully, Knuth and Pardo give a practical elucidation of these early programming
systems by coding a sample algorithm in each language they study. Saul Rosen’s 1967 collection
Programming Systems and Languages attempts to trace a history of programming languages up
to that point, while Jean Sammet’s detailed 1969 study Programming Languages: History and
Fundamentals gives technical descriptions of the many major languages then in use. Wenger’s
1975 article “Programming Languages—The First 25 Years” offers a useful survey of programming
developments until the mid-1970s, as does Allen Tucker’s 1977 book Programming Languages.
Richard Wexelblat’s monumental 1981 collection History of Programming Languages collects
the proceedings of the 1978 ACM SIGPLAN History of Programming Languages Conference.
Reprinting detailed contemporary discussion sessions on the languages FORTRAN, ALGOL,
LISP, COBOL, APT, JOVIAL, GPSS, SIMULA, JOSS, BASIC, PL/I, SNOBOL, and APL, the
volume gives a comprehensive overview of the methodological schools of thought that governed
language development through programming’s first three decades. A more recent volume in the
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intricacies of language development than on the economic and cultural contexts where those
languages were used. As such, neither type of history draws substantive links among economic
contexts, corporate histories, programming methodologies, and the evolving technology of the
extraordinarily dynamic computing field. Nor do they address how the vital, intensely creative
culture of programmers was essential both to the evolution of complex programming languages
and to the growing success of the software industry.

In the years since Ceruzzi’s book was published, a new kind of software history has started to
emerge, one that begins to address at least some of these omissions. This new type of history charts
the rise of the free software and open source software movements that arose during the 1980s and
1990, relating these movements to the history and traditions of hacker programming culture that
originated mostly in academic computing centers during the late 1950s and 1960s. As such, this
strand of history begins to address how economic and ideological factors have shaped the cultural
and authorial traditions of programming and how those traditions in turn have affected and even
determined what kinds of software get written. Even so, this new brand of software history often
largely fails to place itself firmly within the longer evolutionary history of computing technology
and software development. Although several books stand out as noteworthy in their attempts
to collate the dispersed history and lore of hacker programming culture,’ many have a strictly

circumscribed focus on 1990s open source projects such as the Linux operating system kemnel, the

same vein is Thomas Bergin and Richard Gibon's 1996 edited collection History of Programming
Languages—II.

5 An admirable early attempt is Steven Levy’s 1984 study Hackers: Heroes of the Computer
Revolution. A more recent example focused around the rise of Linux culture is Glyn Moody’s
2001 book Rebel Code: The Inside Story of Linux and the Open Source Revolution. Pekka
Himanen’s 2001 study The Hacker Ethic and the Spirit of the Information Age takes a wider
historical and philosophical view, showing how the creative playfulness cultivated by computer
programmers challenges rigid and punitive concepts of work developed under the Protestant ethic.
The essays collected in Di Bona et. al.’s Open Sources: Voices from the Open Source Revolution
provide a variety of perspectives on the 1990s resurgence of hacker culture, by contributors who
include Larry Wall, Bruce Perens, Tim O’Reilly, Michael Tiemann, and Richard Stallman. Eric
Raymond, the self-proclaimed “anthropologist” of hacker programming culture, has collected
many computer-related writings in his 1999 book The Cathedral & the Bazaar: More of Raymond’s
work, including a work-in-progress on Unix hacker culture, may be found on his comprehensive
Web site: see http://www.tuxedo.org/“esr/.
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Apache web server, or the Perl programming language. As a rule, histories of free software and the
open source movement also have a deceptively circumscribed political vision, overlooking the
temporal complexity of computing history in order to cast the recent iconoclastic programming
movements as straightforward protests against the powerful software empires that arose during the
1980s and 1990s.

While existing software histories all cover important territory, then, they also collectively
fail to integrate the different stories they tell. Indeed, as Mahoney indicates, a truly synthetic
history of digital computing—one that links economic, political, cultural, corporate, and military
histories to the development of computing architectures, software engineering methodologies, and
programming cultures—has yet to be written. My aim in this chapter is not to attempt such a
comprehensive synthesis, but rather to prepare the way for the particular undertaking of this
dissertation, firstly by gesturing toward the kinds of insights that can arise from a more textured
and nuanced approach to programming history than has yet been the norm, and secondly by
challenging distorted and ahistorical appropriations of that history in the cultural studies subgenre
of cybertheory. This chapter thus traces a strategically partial history of software from the 1940s to
the present, paying particular attention to how changes in hardware architecture and programming
methodology altered what it meant to write and share software; to the cultures that grew up around
computers as those changes took effect; to how government and corporate interests responded
differently at different times to the values of those cultures, particularly to their adoption of
bohemian literary sensibilities and to their libertarian tendency to oppose restrictions upon the
free circulation of code; to how software in the late 1960s became a product traded on an open,
competitive market; to how some programmers have managed, in the face of great corporate and
legal pressure, to maintain the traditions of software sharing established in computing’s early
days; and to how programmers, corporations, and lawyers have been divided ever since about the
legal status of code, the ethics of “blackboxing” code, and about what it means for software
to be “free.” In tracing the contours of this complex and multi-layered history, these sections
lay the groundwork for the main project of this dissertation: to identify, explicate, and analyze

how certain movements within programming culture have framed their relationship to code as a
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relationship with a shared corpus of elegantly written, freely shared, historically resonant literary
texts. In particular, this chapter’s analysis of software’s abstraction into language prepares the way
for Chapter Two, which traces in detail how programmers came to understand their work less as
an exercise in clever manipulation of machine code than as a writerly, linguistic endeavor; and
for Chapter Three, which argues for a reciprocal relationship between programming and literary
theory by showing how programming theory can constitute a useful analytical tool for interpreting
late modemnist textual experimentation.

Lastly, in their emphasis on grounded, technologicaily informed analysis, these sections
serve as a point of contrast to “cybertheoretical” or “technocultural™ discourse, which uses the
computer to anchor an entirely different, largely unearned set of theoretical claims. No effort to
articulate a historically and materially responsible literary aesthetics of code would be complete
without a commentary on literary and cultural theory’s attempts to theorize the computer. As
such, the chapter ends by analyzing cultural studies’ theories of the computer age, theories that
(as commentators such as Robert Markley and Richard Coyne have noted) rely on a metaphysics
that is nominally extrapolated from, yet remains almost entirely ignorant of, computing history
and culture. Showing how cultural studies’ theories about the computer—which tend to center
on virtual realities, cyborgian (dis)embodiment, “posthuman” subjectivity, and transgressively
nonlinear textualities—are neither embedded in nor derived from an awareness or understanding of
the technology about which they so lavishly fantasize, I will argue that these theories’ literally
fantastic nature, what Richard Coyne calls their “technoromanticism,” has at once materially
shaped humanist scholars’ perception of computing and drastically limited the scope and utility
of that perception. Because these fantasies are at once so dominant and so uninformed, they
largely blind literary scholars both to the complex historiographical and political issues raised by
and within computing history and to the aesthetic importance computer programming theory and
practice has for our understanding of literary history. Because my larger goal in this study is to
outline a historically and philosophically responsible analysis of the conjunction between computer
programming and literary aesthetics, the aim of this critique is not merely to expose the sloppy

philosophical and methodological models that underpin the vast majority of cybertheoretical
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analyses. In exposing cybertheory’s inadequacies, I argue that we need a new way to think
computing history within literary studies, one that refuses to treat the computer or computing code
as a blank slate on which to build utopian fantasies about identity, embodiment, and textuality,
one that instead situates itself in a truly interdisciplinary and informed way among the various
fields and philosophies that computing integrates. It is partly because computing history has been
alternately ignored and mishandled by cultural theorists that I include so much corrective detail

in this study about the complex cultural and aesthetic history that has accumulated around the

computer in the past half-century.

1.1 From Code to Language

I begin this section by looking at a theoretical eclipse, a small but telling moment of conceptual
maneuvering that marks one cultural critic’s move to historicize and aestheticize the computer.
In “A Tale of Two Aesthetics,” the opening chapter of her 1995 book Life on the Screen, Sherry
Turkle maps an aesthetic schema onto computing history, dividing computing systems into two
distinct types, modernist and postmodernist. In Turkle’s labels and in her eagerness to apply them
to different kinds of computing systems, one discerns the kind of territorial mapping endemic to
1990s cultural criticism, whereby cultural theorists routinely classified texts and authors along
theoretical and ideological lines, often dividing them into “traditional” and “radical” camps. In a
polarized schema where “traditional” serves as a code word for unenlightened conservatism and
where “radical” indicates putatively progressive dissections of Western aesthetic, philosophical,
cultural, and economic values, modernism itself, despite its own historical dependence on restless
and inventive formal experimentation, became a suspicious category, aligned at best with a
politically suspect nostalgia for literary tradition, aligned at worst with the fascist politics of
Nazi Germany. Postmodernism, as the term suggests, became modernism’s successor, promising
to resolve modernism’s political complications by replacing the earlier movement’s emphases

on tradition and aesthetic value with its own particular brand of subversive, ahistorical surface

playfulness. Turkle’s aesthetic schema, then, is far from politically neutral: importing the
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political associations of modernism and postmodernism into a categorical schema that purports
to historicize mid-1990s attitudes toward the personal computer, Turkle ultimately gives us a
categorization that reveals as much about the ideological stances of cultural theory as it elides
about computing history.

According to Turkle’s schema, a computing system organized around a “modernist” aesthetic
is one that requires its user to “figur(e] out the hierarchy of underlying structure and rules”
(35); by contrast, a “postmodernist” interface design “‘encourages] users to stay at a surface
level of visual representation” (34). Turkle’s “tale of two aesthetics” takes shape around two
complementary axes: the contrast between command-line interfaces and graphical user interfaces,
as represented respectively by Microsoft’s MS-DOS and Apple’s Macintosh OS; and the
interlocking contrast between users of these systems, who, she alleges, adhere respectively to
modemist and postmodernist models of subjectivity. Expanding on the surface/depth model that
has long dominated discussions of the postmodern condition, Turkle deploys spatial metaphors
to describe how these modern and postmodern users interact with their machines. Arguing that
MS-DOS gives its users “access to the guts of the operating system,” Turkle quotes an accountant
who cites discomfort with the play of surfaces as his reason for scoming the graphical, icon-based
Macintosh interface: “[On the Macintosh] you are just dealing with representations,” he claims;
“I like the thing itself. [ want to get my hands dirty” (39); she also cites a physicist who “enjoys
the feeling of virtual dirt on his hands and feels threatened by opaque objects that are not of his
own devising” (39). Modernist computing subjectivities, then, are characterized by a distrust of
seemingly transparent but actually opaque representations and a quest for meaning and clarity
beneath their deceptive surfaces. In the postmodem Macintosh world, by contrast, “the user [is]
presented with a scintillating surface on which to float, skim, and play. There [is] nowhere visible
to dive” (34). Turkle’s luxuriant language extends these contrasting subjectivities into contrasting
models of erotic pleasure: the physical enjoyment the Macintosh lover takes in sensualized
surfaces, in floating, skimming, playing without a need to “dive” into the computer contrasts

with the MS-DOS user’s compulsion to *get inside the machine,” his penetrative need to access
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the command line.% For Turkle, the competing pulls of modemist and postmodemnist aesthetics
and erotics form the basis of a historical split within personal computing culture: “[B]y the late
1980s, the culture of personal computing found itself becoming practically two cultures, divided
by allegiance to computing systems. There was IBM reductionism vs. Macintosh simulation and
surface: an icon of the modernist technological utopia vs. an icon of postmodem reverie” (36). In
Turkle’s vision, computing history is almost perfectly analogous to the history of postmodernism
itself: as we live today in a Baudrillardian world of simulated surfaces, so do we compute.

Such a formulation is not unique to Turkle: a significant precursor to Life on the Screen’s
technological divisions is Robert Pirsig’s Zen and the Art of Motorcycle Maintenance (1976),
whose protagonist anticipates Turkle’s spatial aesthetic categorizations when he differentiates
between “classic” and “romantic” approaches to the technological world. Pirsig, too, divides
adherents of these approaches according to elemental subjective distinctions: technological
classicists are those who appreciate the “tremendous richness of underlying form”; technological
romantics understand technology “primarily in terms of immediate experience” (76). As with
Turkle’s modernist and postmodemist models of computing, Pirsig’s distinctions themselves
form the basis for an entire history and philosophy: Pirsig’s narrator, himself a compulsive
technological classicist, uses motorcycle maintenance to ground an elaborate philosophical system,
tinkering obsessively with his motorcycle as a way to fine-tune his evolving ideas about Western
metaphysics. In the process, he grows endlessly irritated with his friend John, whose trenchant
technological romanticism makes him refuse even to glance under the hood of his bike, even makes
him throw up his hands in despair whenever he encounters the slightest mechanical problem. For
the narrator, John’s adamant unwillingness to learn how his motorcycle works signifies John’s lack

of engagement with everything but appearances and surfaces.

6Turkle explains that her analysis holds true for Microsoft Windows, too, since “unlike the
Macintosh operating system, [Windows] is only a program that runs on top of the MS-DOS
operating system” (38). This qualification—while correct when Turkle’s book was published—does
not hold true for versions of Windows built atop Microsoft’s “NT” core; this include Windows NT,
Windows 2000, and Windows XP. In addition, Apple has since issued a revamped and modernized
version of its Macintosh operating system built upon a BSD Unix core. Released in April 2001,
“Mac OS X" features a Unix command-line interface that now allows Macintosh users access to
the “depth” Turkle associates with MS-DOS.
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Turkle’s surface/depth distinctions work in similarly divisive ways: while MS-DOS users
spend their computing time “inside” the machine, getting their hands dirty amid its “guts,”
Macintosh users float on the computer’s “surface,” avoiding contamination by the virtual “dirt”
that lies beneath their interface. These metaphors both introduce and ground Life on the Screen, a
title whose very preposition gives an intriguing insight into the book’s focus: its basic premise is
that in a matter of a very few years, everything will be mediated by the computer, even human
emotion, sensation, sex, love, and desire—in other words, even those things that we understand
as most human, niost separate from machinery, most intrinsically what and who we are. Turkle
thus sets out to analyze subjectivities that indulge in an endless play of surfaces, that use the
“scintillating surface” of the computer screen to mediate their entire lives. Unlike Pirsig, however,
Turkle does not interrogate the founding presuppositions of her aesthetic models. Faced with a
complex and deceptively singular machine, the computer, Turkle simplifies her object of analysis
into stock categories. Faced with a relatively simple machine, the motorcycle, Pirsig problematizes
it, subjecting to scrupulous philosophical scrutiny the classic/romantic duality upon which the
technological world ostensibly relies, taking his motorcycle to pieces as he dismantles the
philosophical foundation upon which his perception of it rests. Turkle, by contrast, neglects to
historicize the divide she posits, failing, for example, to recognize that the MS-DOS command-line
interface—which arrived on the computing scene in 1981—is itself a “scintillating surface,” the
result of three decades’ worth of accumulated abstraction from the real “guts” of computing
hardware. For all its seeming mechanical roughness, for all its apparent proximity to the guts of
the machine, the MS-DOS interface nonetheless constitutes a sophisticated “representation” of
lower-level computational processes, one that positions the user as one who can command the
machine’s hardware by typing in selected predefined commands. It is here that Turkle’s spatial
metaphors reveal their historiographical inadequacy: a simple categorical model imported from
the lexicon of cultural and critical theory cannot begin to account for the complex, multivalent

historical evolution of the computer.” Taking a wider historical view, the move away from the

"For a historical survey of computer interface evolution, see Susan B. Barnes’s “Computer
Interfaces” and her 1995 doctoral dissertation The Development of Graphical User Interfaces from
1970 10 1993.
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“guts” of computing hardware began not in 1984 with Apple Computer’s launch of its GUI-driven
Macintosh computer, as Turkle’s analysis implies, but in the mid-1940s with the invention of the
“stored program” computer architecture, a development I will discuss in detail below. While
hardly as resolutely “superficial” as the Mac OS, MS-DOS must be understood as a complex
representational system in its own right, one whose creation itself represents the culmination

of thirty-five years’ worth of research into increasingly abstract techniques for programming

and controlling computer systems. The remainder of this dissertation will insist that computing
history cannot adequately be framed by metaphors and analogies derived from literary and cultural
theory; instead I argue that computing historiography must be understood as a model of layered
abstraction that finds its historical origins in the technological revolutions of World War II and that
continues to unfold today. The remainder of this chapter is devoted to explaining what that layered
model is and how it came into being. Chapter Two will explore how that layered abstraction led
to the development of programming languages and a distinct programming aesthetics; the final

chapter will discuss the consequences of these developments for literary history and theory.

Both the mathematical ideas that underpin computing and the first attempts to construct
mechanical calculating devices long predate the developments of the mid-twentieth century.®
However, it is important to understand that these theoretical and practical explorations largely
constituted distinct and separate traditions until fused together by the computing revolutions of the
1940s. Building on a mathematical tradition that comprises the work of Leibniz, Boole, and others,
Alan Turing laid the theoretical groundwork for general-purpose computing in the 1930s with his
“universal Turing machine” concept. Consisting of a read/write head and an infinitely long paper
tape divided into squares, Turing’s machine is an abstract theoretical representation of a general

purpose computing device. Capable of reading, printing, and deleting symbols on the paper tape, it

8In The Universal Computer: The Road from Leibniz to Turing, Martin Davis outlines the
mathematical discoveries that laid the groundwork for digital computing. George Chase’s “History
of Mechanical Computing Machinery” surveys early attempts to build mechanical computing
devices. Martin Campbell-Kelly and William Aspray’s Computer: A History of the Information
Machine emphasizes historical continuities between early attempts to mechanize the field of
information processing and the evolution of digital computing.
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can exist in a number of different “functional states™; its future actions, in turn, are determined by
its present state, by the data it reads, and by a predefined instruction set. This deceptively simple
device has enormous flexibility and power: in his famous 1936 paper “On Computable Numbers
with an Application to the Entscheidungsproblem,” Turing used it to argue that “[i]t is possible to
invent a single machine which can be used to compute any computable sequence” (241). However,
the hardware that turned Turing’s abstract insights into concrete realities emerged from an entirely
different tradition—the centuries-long effort to engineer sophisticated calculating devices.

This engineering tradition, which stretches through John Napier (1550-1617), Blaise Pascal
(1623-1666), Charles Babbage (1791-1871) and others culminated in the 1940s with the creation
of electronic calculating machines that were also program-controlled digital computers. Fusing
mathematical and engineering insights, these computers were fully-fledged embodiments of the
general purpose Turing machine. In the 1950s, we see the emergence of a third distinct computing
tradition. After mathematical discoveries and syntheses had made computing theoretically possible
and engineering innovations had embodied those theoretical possibilities in working machines, a
need arose to control those machines, to produce the instruction sets that Turing had identified

as an essential element of any general-purpose computational device. This need gave birth

to the discipline of computer programming, whose distinct culture and aesthetics will concern

me in this study. To fully comprehend that culture and aesthetics, however, it is first necessary

to understand the historical origins of computer programming and to study the evolution of its
various technological and social practices. As such, [ turn now to the moment when the need for
programming first arose: the early digital computers that emerged from wartime scientific research
in the 1940s.

The theoretical and practical strands of computing research identified above were forced
together by the exigencies of World War II, when the need for better wartime technoiogies
shaped the first major advances in digital computing. By 1942, the Allies’ ground-based
anti-aircraft weapons had already proved woefully inadequate at combating the Nazis’ fast, highly
maneuverable airplanes; likewise, the Allies desperately needed better weaponry to improve the

accuracy of their offensive shelling. The Allies rallied to build better, more sophisticated guns,
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but then hit a mathematical stumbling block: they could not deploy new guns in the field without
first calculating the tables that told gunners where to shoot. In order to hit a fast-moving airplane,
ground-based gunners had to shoot not at the plane but in front of it; successful strikes depended
on knowing exactly how far in front of the flying plane to aim. Shooting at ground-based targets
required similar calculations: gunners had to aim above the target to compensate for the parabolic
curve of the shell’s trajectory. Because each gun had to be calibrated and aimed differently,
even the most highly-skilled and practiced gunner could not shoot accurately without consulting
sets of precalculated firing tables. In turn, each new type of gun required a new set of tables. It
was this need to calculate ever more ballistics tables for ever more new guns that spurred the
development of digital computing in the United States. In Britain, by contrast, it was cryptanalysis,
particularly efforts to break the German ENIGMA cipher, that fueled the most important
computing developments. At Bletchley Park in England, a team of technicians led by Alan Turing
developed special-purpose codebreaking computers—such as Colossus—that had many structural
similarities to those being designed in the United States. As important as these British computing
developments were to the Allied war effort, the historical impact of the machines themselves has
been minimal: the British government classified the Bletchley Park codebreaking work top secret
and went so far as to destroy Colossus and other computers used to do it.® It was not until the
1970s that the British government began to release World War II cryptanalytical documents and
photographs to the Public Record Office and Science Museum. American computing projects,
by contrast, were relatively open to interested parties and early British computing engineers and
mathematicians traveled to the United States in the post-war years to further their interest in the
field. The contrast between the closed, classified computing projects of Bletchley Park and the

relatively open, public developments in the United States explains why post-war British computers

9Konrad Zuse's Z3, the world’s first working programmable electromechanical digital
computer, was completed in 1941 but was also destroyed during the war. A replica of the Z3, built
in 1960, is now on display in the Deutsches Museum in Munich. Completion of a subsequent Zuse
machine, the Z4, was disrupted by air raids in Berlin; the machine was taken to several locations
before arriving at the Eidgenossisch Technische Hochschule in Zurich, where it remained in use
until 1955.
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were based largely on American models.'°

A major U S. site for developing and testing new artillery and munitions was the Aberdeen
Proving Ground in Maryland, which outsourced much of the detailed, time-consuming work of
drawing up firing tables to teams of young women volunteers at the University of Pennsylvania’s
Moore School of Engineering.!! Known informally as the “Moore School girls,” these women
worked full time calculating ballistics tables with the aid of simple desk calculating machines.'?
This process was absurdly arduous. Because a typical ballistics table included entries for around
three thousand different trajectories, and because each trajectory took between one and two days to
calculate by hand, preparing a single table cost a team of one hundred women approximately a
month’s worth of time and labor. Even the Moore School’s state of the art mechanical differential
analyzer, which then-undergraduate Herman Lukoff describes as a “tremendous maze of shafts,
gears, motors, servos, etc.” (18), took a month to calculate a similar table (Campbell-Kelly and
Aspray 83). In the hope of devising a more efficient way to automate these mass calculations,
John Mauchly, a Moore School instructor whose wife had the job of supervising the young women
“computers,” began to explore the possibility of building an alternative computing machine, one
that would vastly outstrip both human effort and that of the mechanical differential analyzer

in its ability to perform large numbers of calculations quickly and accurately. Mauchly joined

10The first working stored-program computers were built in the United Kingdom: the Manchester
Mark I was completed in 1948 at the University of Manchester, and Maurice Wilkes revealed
a more powerful stored-program design at Cambridge University the following year. Atsushi
Akera explains this apparent historical anomaly by pointing out that “there was a straightforward
integration between the mathematical and engineering aims of the British projects that pushed their
work forward more rapidly” while “U.S. projects were plagued by overambitious goals, diffuse
research interests, and financial difficulties™ (69).

1! Atsushi Akera notes that ballistics calculations are based on a branch of mathematics known
as analysis, which was a standard part of the University of Pennsylvania mathematics curriculum at
the time (65). Moore School women would thus have been familiar with the mathematical theories
underpinning the problem of ballistics calculation.

'2Quoting the Oxford English Dictionary definition of computer as “one who computes; a
calculator, reckoner; specifically a person employed to make calculations in an observatory,
in surveying, etc.,” Martin Campbell-Kelly and William Aspray note that the word computer
originally indicated a human occupation. This use of the term was dominant in the nineteenth
century, and was still in common use prior to World War II (9). Only after World War II did the
word computer come primarily to signify electronic calculating devices.
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forces with a talented young University of Pennsylvania engineer named John Presper Eckert and
together they designed the computer that would become known as ENIAC. An electronic system
of unparalleled size and complexity, ENIAC's design consisted of 18,000 vacuum tubes, 70,000
resistors, 10,000 capacitors, 6,000 switches, and 1,500 relays. It cost almost half a million dollars
to build; when finally constructed it weighed thirty tons, and filled a large room. '?

Although ENIAC never actually contributed to the war effort—it was not ready for production
work until November 1945—its construction marked a quantum leap over previous attempts to
automate calculating technology. In particular, ENIAC offered a raw processing speed that far
exceeded the capabilities of existing mechanical and electromechanical devices. Consider that
in 1937, Howard Aiken, then a graduate student in theoretical physics at Harvard, drew up a
proposal for an electromechanical calculating machine and presented it to IBM, which provided
more than $100,000 in funding and a great deal of talented engineering support to develop, build,
and test the “IBM Automatic Sequence Controlled Calculator”—otherwise known as the Harvard
Mark I. When Aiken’s machine'® ran its first test program in January 1943, it could process
two hundred instructions per minute, a computational feat that absolutely captured the public
imagination—American Weekly called the Mark I “Harvard’s robot superbrain,” and Popular
Science Monthly's headline was “Robot Mathematician Knows All the Answers” (Campbell-Kelly
and Aspray 74). But when Mauchly and Eckert’s digital ENIAC became operational less than three
years later, it could manage five thousand operations per second, making it a thousand times faster

than Aiken’s computer. The ENIAC’s processing speed, phenomenal for the time, spoke to the key

3For a history of the ENIAC computer, see Scott McCartney’s ENIAC: The Triumphs and
Tragedies of the World's First Computer. Arthur and Alice Burks’s 1981 article “The ENIAC:
First General-Purpose Electronic Computer” offers a highly-detailed technical description of the
ENIAC’s architecture, as does Jan Van der Spiegel, er. al. ’s “The ENIAC: History, Operation and
Reconstruction in VLSL.” The latter article recounts how a team of University of Pennsylvania
faculty and students celebrated the ENIAC’s 50th anniversary in 1996 by reconstructing the
thirty-ton machine on a 7.4 x 5.3 mm square silicon chip.

14Aiken, then a Navy lieutenant, took charge of the Mark I during World War II, but to call
him its “inventor” is to fall victim to Aiken’s own distorted version of history. At the Mark I's
official dedication on August 7, 1944, Aiken took full credit as the machine’s sole inventor; his
arrogant, self-interested appropriation of IBM’s engineering efforts and research dollars infuriated
the company’s founder, Thomas J. Watson. See Campbell-Kelly and Aspray 69-76.
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role computers played in a war where technological research and development were crucial to
military strategy and home defense.'> It also spoke to the key role the war played in creating the
conditions for modern computing.

The invention of large scale, general purpose, electronic digital computers during the 1940s
marks the beginning of the history of software abstraction that concems me here. While we take
categorical distinctions between “hardware” and “software” for granted today, it is important to
note that this seemingly self-evident distinction simply did not exist in the nascent days of digital
computing; indeed, the very idea of a computer as a general-purpose programmable device (the
concept that underpins our modern use of computers to send e-mail, compose word-processed
documents, calculate spreadsheets, and perform countless other tasks) was largely absent from
the earliest computing projects. Although Turing had laid the theoretical groundwork for general
purpose computing a decade earlier, the urgency of the war effort led early architects and coders to
focus almost exclusively on the computer’s potential for performing high-speed calculations. For
instance, Howard Aiken, skeptical about the computer’s potential as a general-purpose information
processing device, once wrote that “if it should turn out that the basic logics of a machine designed
for the numerical solution of differential equations coincide with the logics of a machine intended
to make bills for a department store, I would regard this as the most amazing coincidence that I
have ever encountered” (qtd. in Davis 140). So certain was Aiken that computers should be
designed to perform specialized functions that he completely failed to recognize the computer’s
commercial potential as an information processing device. Seeing no future whatsoever in business
computing, he forecast that the American market for computers would never grow beyond five or
six commercial machines (Ceruzzi 13).

Even though we can now appreciate the absurdity of Aiken’s prediction—by the early
twenty-first century it is now almost impossible to imagine a business that doesn 't utilize digital
computing in some manner—his beliefs were commonly held in digital computing’s earliest years:

R. W. Hamming remarks that programmers did not fully realize until the early 1950s that the

150n the role of the military in computing research from the early 1940s until the early 1960s,
see Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War
America 43-T3.
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computer could do more than just crunch numbers (Metropolis er. al. 8). By the ime computers
started to move into the corporate world in the mid-1950s, though, it was clear that those who
saw only a limited role for computers in business had grossly underestimated both the wide
appeal and the broad applicability of high-speed data processing. The truth of Alan Turing’s 1936
demonstration was by then apparent to all: general-purpose computers could apply the same basic
logical processes to any computable problem. It was thus far from an “amazing coincidence” that
computers could calcuiate department store bills just as easily as they could solve differential
equations; such versatility was, indeed, the very point of computers. The key to making computers
usable—and therefore profitable—lay not in designing them to perform specific functions or
calculations, but in building general-purpose hardware that could easily be programmed to perform
any task. This was easier said than done: important conceptual and architectural changes had to
occur before Turing’s theoretical concepts could be translated into general-purpose computers that
were fast, flexible, and easy to program. For our purposes, the most significant of these changes
involved refining and simplifying the means by which computers could be told what to do. Thus

I focus here on two crucial components of the modemn, multi-purpose computer: the creation

of software (as an abstraction from hardware) and the related development of programming
languages.

Few technological inventions bear less similarity to their earliest ancestors than the
programmable digital computer. One can easily trace the genealogy of the automobile, train, and
airplane from their earliest incarnations to their modern counterparts; however, the sleek laptops
and handheld PDAs on which we compute today bear almost no resemblance to the hulking
thirty-ton ENIAC, even though they are unimaginably more powerful. What holds true for the
computer’s external architecture also holds true for its programming architecture, so much so that
programming techniques of the 1940s would be virtually unrecognizable to most programmers
today. The earliest programmers had no notion of the “integrated development environments,”
“virtual machines,” “programming languages,” or even “operating systems” that help automate
the work of giving instructions to a modern computer: in the absence of such programming aids,

their work mostly entailed inputting the exact machine instructions (in binary or octal code)
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necessary for the computer to carry out a particular task and specifying to the computer exactly
where the instructions and data would be stored in memory. Such direct interaction with the
computer’s low-level processes presumed a familiarity with the mathematics of computation itself:
specifying even basic operations required the programmer to produce complex sequences of
machine instructions. After writing these instructions in the numerical, extraordinarily abstract
notation of machine code, the coder would punch them onto paper tape, and feed the code into
the machine via a mechanical reading device. Although this heavily mechanized, manual system
of early coding had numerous methodological limitations, it was this reliance upon tape or card
readers that posed the most immediate problem for wartime computing architects. Given that the
main rationale for powerful computers was high-speed numbercrunching, these crude input devices
seriously limited the processing speed of the computer itself; a computer could function only as
fast as the tape or cards could be fed into it. As we will see, architectural improvements designed
to overcome these speed limitations also had a profound impact on programming methodology.'¢
Electromechanical computers invented by the early 1940s (such as the Harvard Mark I) were
already pushing punched card equipment to their limits. When Mauchly and Eckert built the
much faster ENIAC in 1944, they faced a now-classic engineering conundrum: a computing
system is only as fast as its slowest or most limited component. The problem was elementary.
For the ENIAC to run at its full five-thousand-instructions-per-second capacity, input speed had
to keep pace with processing speed—as Mauchly himself put it, “calculations can be performed
at high speed only if instructions are supplied at high speed” (qtd. in Ceruzzi 22). Adding tape
readers or punched card readers as input devices was an untenable solution, yet no technology
yet existed to deliver instructions at the rapid rate of five thousand per second. In desperation,

Eckert and Mauchly dispensed with input devices altogether and set up a mechanism for

16 A useful overview of computer architecture’s evolution is Richard E. Smith’s “Historical
Overview of Computer Architecture.” Smith notes how many of the basic concepts that define
computing were already in place by 1950: “There are many computers in use today that rely on
few architectural concepts that appeared later than 1950; most computers rely on none introduced
after 1965. Even recent concepts such as reduced instruction set computing (R/SC) and paralle!
processing simply reintroduce older architectural ideas, adapting them to work in new systems™
(279).
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hardwiring instructions into the computer by means of a plug board. The resulting “programs™
were very far from what we have come to expect from software today: Martin Campbell-Kelly and
William Aspray describe the appearance of the programmed ENIAC as “rather like a telephone
exchange, with hundreds of patch cords connecting up the different units of the machine to route
electrical signals from one point to another” (89). Mauchly and Eckert adopted this solution
under the presumption that the repetitive nature of ballistics calculations, the ENIAC’s original
intended purpose, would obviate the need for extensive rewiring. However, the original purpose
of the ENIAC became redundant before the machine became operational; instead of calculating
ballistics trajectories, ENIAC was deployed in the service of various other scientific and military
projects. ENIAC thus turned out to be a more general-purpose machine than Mauchly and Eckert
had anticipated; consequently, the need for extensive reprogramming far exceeded their initial
expectations. ENIAC’s coders programmed the machine by laboriously rewiring its hardware, a
process that could take hours, or even days, and that had to be repeated each time the engineers
wanted the machine to do something new. Scott McCartney notes the degree of difficulty faced
by ENIAC’s early programmers, a group of seven Moore School women, who “were given little
instruction on how to make the thing work—not even an incomprehensible manual. All they had
were block diagrams and wiring schematics, and the chance to quiz engineers” (96-97). Although
one of these women, Jean Bartik, remembers programming the ENIAC as “the most exciting work
[ ever did” (97), others were less appreciative of Mauchly and Eckert’s inelegant input solution:
Stan Augarten calls the task of building a functional program from the ENIAC’s endless muddle of
cables, plugs, and switches “a one-way ticket to the mad house™ (128)."

Despite its cumbersome architecture, the ENIAC sparked enormous interest among engineers
and mathematicians, and the post-war Moore School became a focal point for modern computing
innovation. Taking the potential of digital computing far beyond the original goal of calculating
ballistics trajectories, talented mathematicians, logicians, and engineers worked there to design

and build the machine that would become the ENIAC’s successor: the EDVAC. One of the

17For more on ENIAC’s early programmers, see W. Barkley Fritz’s 1996 article “The Women of
ENIAC”
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EDVAC designers’ main goals was to overcome the obvious structural shortcomings that had
forced the ENIAC’s inventors to improvise the makeshift and unwieldy programming solution
embodied in Mauchly and Eckert’s hotwired plug board. A principal figure in this collaboration
was the legendary mathematician John von Neumann, who had left Hungary in 1930 to join the
mathematics faculty at nearby Princeton University. An expert in numerous fields, including
meteorology, hydrodynamics, stellar astronomy, game theory, ballistics, and statistics, von
Neumann served on several national wartime committees and had joined the Aberdeen Proving
Grounds in 1940 as a technical consultant. By 1943, von Neumann became aware that the
mathematical complexity of wartime scientific projects—particularly the complex partial
differential equations crucial to the Los Alamos atomic bomb effort—could benefit greatly
from the power of digital computing. While he expressed interest in various nascent computing
innovations of the era (among them Howard Aiken’s Mark I, George Stibitz’s electromechanical
relay computers, and Jan Schilt’s computing work at Columbia’s Watson Scientific Computing
Laboratory), he was fascinated by the ENIAC, which he first discovered in 1944 through an
accidental train platform encounter with Moore School engineer Herbert Goldstine. Recognizing
how the digital computers under devclopment at the Moore School could facilitate unprecedented
breakthroughs in mathematical and scientific research, von Neumann visited the University of
Pennsylvania in 1944 and became a consultant member of its computing team shortly afterward.'®
Von Neumann immediately recognized the architectural limitations that so hampered the
ENIAC and set about collaborating with its engineers to design the ENIAC’s successor, the
EDVAC. In June 1945, he circulated the seminal First Draft of a Report on the EDVAC, a
document that proposed theoretical solutions to many of the ENIAC’s outstanding structural and
conceptual constraints. Although von Neumann listed himself as the sole author of the Report,
and has consequently often been given sole credit for its insights, the innovations contained in

the document were actually developed collaboratively among von Neumann, Eckert, Mauchly,

18For a summary of John von Neumann’s work in computing, see William Aspray’s “John von
Neumann’s Contributions to Computing and Computer Science.” Von Neumann’s own computing
papers are collected in William Aspray and Arthur Burks’s edited collection Papers of John von
Neumann on Computing and Computer Theory.
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and other mathematicians and engineers.'? The Report’s most noteworthy breakthrough was its
proposal for a series of new logical and structural principles for approaching computer design.
Now known as the “von Neumann architecture,” these principles radically and definitively altered
the face of computing, so much so that they continue to define computing today. The von Neumann
architecture’s central innovation was the idea of the “stored program,” which made it possible for
computers to “read in” programs via a traditional card or tape reader, and store them in memory
as digital code.”® A computer designed according to the “stored program” model would execute
programs from memory, thus circumventing the structural limitations that had so hampered the
ENIAC. A stored program computer was not limited by the slow speed of manual input devices; a
program could run as fast as electrical pulses could travel through its circuitry.

The stored program model did more than just solve the mechanical problems that plagued the
ENIAC: it also effectively restructured the very idea of the computer itself. Able to store both
instructions and data as binary code, the “stored program” computer was a profoundly different
kind of machine than its predecessors. Where earlier computers were primarily mechanical, the
von Neumann computer was fully digital; its instruction sets did not reside in paper, tape, or
wiring, but were instead stored in the computer’s memory as electronic data. The invention of the
digital computer thus marked the separation of computer hardware from computer programs: itis
on this fundamental separation of hardware and what would eventually become known as software
that all subsequent debate about the nature of code rests.

As we have seen, early programming methodology was fraught with inefficiency. Whether
inputting machine code on punched tapes or wiring cables into plugboards, programmers found
their work to be a difficult, frustrating, and error-prone business. Howard Aiken based his

pessimism about the future of digital computing in part on the painfully laborious process of

19For a discussion of the Report’s authorship and an ensuing split between those interested in
the research and commercial potential of the stored-program computer, see Campbell-Kelly and
Aspray 87-97.

20The EDVAC’s memory was itself greatly enhanced by John Presper Eckert’s research into
mercury delay lines, which could store far more information than the vacuum tubes previously
used in the ENIAC. Aspray and Campbell-Kelly note that delay lines “produce[d] a 100-to-1
improvement in the amount of electronics used and [made] large amounts of storage feasible™ (92).
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creating programs: in the 1940s and 1950s, Aiken repeatedly stressed that computers could only be
programmed by trained mathematicians; noting that such mathematicians were extremely scarce.
he proclaimed that “[i]f all the machines now being built are completed, there would not be enough
mathematicians to run them” (qtd. in Cohen 27). However, programmers struggled to prove the
pessimistic Aiken wrong. Many of the earliest computing pioneers actively sought ways to make
programs easier to write, concentrating their efforts on inventing ways to circumvent the necessity
of writing programming routines from scratch every time they were needed. Efforts to automate
the programming process produced two effects that would prove foundational for the development
of future computing cultures and programming aesthetics: firstly, a culture of software sharing
emerged to enable code to be recycled; secondly, machine code was abstracted into higher-level
programming languages.

Programmers shared information so that they could avoid the huge waste of time and effort
involved in rewriting the same basic tools and utilities each time they were needed. Grace Murray
Hopper, one of the Harvard Mark I's first programmers, recalls the informal process for obtaining
shared code: “If I needed a sine subroutine, I'd whistle at {a fellow programmer] and say ‘Can
I have your sine subroutine?’,” she remembers, “and I'd copy it out of his notebook.” Looking
back, she notes that “as early as 1944 we started putting together things which would make it
easier to write more accurate programs and get them written faster” (Wexelblat 8). Understood as
a kind of public cheat sheet, the earliest computing code existed primarily as written notation,
often scribbled in notebooks or even on scraps of paper. Such informal information sharing
was pivotal to early computing culture and flourished through the 1950s and 1960s as computer
hardware manufacturers, corporate customers, and individual programmers cooperated to share
programs. The main incentive for such cooperative code-sharing was a pragmatic one. As Paui
Armer explained in 1956: “The amount of redundant effort was horrendous; the cost of developing
a system for using the machine, and a set of routines to go with that system, was usually in excess
of a year’s rental for the equipment” (124). So eager were companies to reduce that redundant
effort that they formed cooperative groups where they could swap and “recycle” code. SHARE,

formed in 1955 to facilitate the sharing of code for the IBM 704, was the largest such cooperative,
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bringing together programmers from such disparate companies as Bell Labs, Boeing, Dow
Chemicals, Esso, General Motors, General Electric, Lockheed, Los Alamos, MIT, Rand, SAC,
Standard Oil, and Union Carbide. As this list of unlikely alliances indicates, even companies that
competed directly with one another for business—such as Esso and Standard Oil—were happy to
collaborate in creating and sharing code.

The pragmatic practice of sharing subroutines had far-reaching—if unintended—effects on the

shape of software itself. Computing historian I. Bernard Cohen notes that

The chief programmer of Mark I, Richard M. Bloch, kept a notebook in which he
wrote out pieces of code that had been checked out and were known to be correct.
... Both Bloch and Bob Campbell had notebooks full of such pieces of code. Years
later, the programmers realized that they were pioneering the art of subroutines and
actually developing the possibility of building compilers. (“Howard Aiken and the
Dawn of the Computer Age” 117)

Subroutines, segments of standard code that could be stored in a library and “plugged in” to other
programs as needed, were the first major innovation in making computer programs faster and easier
to write. John von Neumann and Herbert Goldstine advocated using subroutines in their 1948
three-part report “Planning and Coding Problems for an Electronic Computing Instrument,” and a
great boon came in 1951 when English engineers Maurice Wilkes, David Wheeler, and Stanley
Gill published The Preparation of Programs for an Electronic Digital Computer: With Special
Reference to the EDSAC and the Use of a Library of Subroutines. As the title indicates, the volume
reprinted a library of subroutines for use with Cambridge University’s EDSAC, the first working
stored-program computer.! The book circulated so widely among programmers of the early 1950s
that it effectively cemented a tradition of sharing code. At the same time, Grace Murray Hopper
further encouraged the use of subroutines by creating a “compiler,” an automatic device that would
copy subroutine code into programs and eliminate the tedium associated with hand-editing register
addresses.? First released in 1951, Hopper’s innovation dramatically reduced the time and effort

required to assemble complex working programs.

2l For a detailed account of early programming activity on Cambridge’s EDSAC, see Martin
Campbell-Kelly’s “Programming the EDSAC: Early Programming Activity at the University of
Cambridge.”

22 Although Hopper used the term compiler, her invention was not a compiler in the modemn

sense. Hopper’s program only automated subroutine handling; it did not translate high-level
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During the 1950s, the stored-program architecture’s potential to advance programming
methodology began to become clear. Because the von Neumann architecture allowed computers to
store instructions in memory as electronic data, it also enabled programmers to write programs that
could themselves write the low-level binary code that formerly had to be written by hand. This
new technology allowed software to become what Michael Mahoney calls a “self-programming
machine” (91). The 1950s saw both the rise of “assemblers,” which allowed programmers to
replace machine code with a shorthand symbolic notation known as assembly language, and then
the emergence of fully-fledged high-level programming languages and compilers.® The first such
language was developed by IBM between 1954 and 1957. The brainchild of programmer and
mathematician John Backus, it was known as FORTRAN (FORmula TRANslation).

FORTRAN's successes were twofold: first, it allowed programs to be written in concise,
readily comprehensible mathematical notation; second, the FORTRAN compiler would then
translate that notation into efficient machine code without the programmer needing any knowledge
of low-level computational processes.>* Jean Sammett gives a sample problem that FORTRAN

could be used to solve:

Construct a subroutine with parameters A and B such that A and B are integers
and 2 < A < B. For every odd integer K with A < K < B, compute
F(K) = 3K + sin(K))? if K is a prime, and f(K) = (4K +cos(K))? if K isnota
prime. For each K, print K, the value of f(K), and the word PRIME or NONPRIME
as the case may be.

Assume there exists a subroutine or function PRIME(K') which determines
whether or not K is a prime, and assume that library routines for square root, sine, and
cosine are available. (151)

programming languages into low-level machine code. However, for a remarkably forward-looking
paper that anticipates many modem programming techniques, see Grace Murray Hopper’s “The
Education of a Computer” (1952).

BFor the sake of brevity, I eclipse here the many important automatic coding systems developed
prior to 1957 that helped pave the way for high-level programming languages. Chief among them
are Short Code, A-2, and A-3 (developed for the UNIVAC), Speedcoding (for the IBM 701) and
the Laning and Zierler system (for Whirlwind).

2450hn Backus describes the evolution toward FORTRAN, as well as the development of
FORTRAN [, II, and III, in “The History of FORTRAN I, II, and II1.” Nathan Ensmenger
explores the implications of both FORTRAN and COBOL for 1950s programming culture in his
doctoral dissertation; see From “Black Art" to Industrial Discipline: The Software Crisis and the
Management of Programmers 58-179.
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Here is the FORTRAN program that solves this problem:

SUBROUTINE PROBLEM (A, B)
INTEGER A, B
J = 2*(A/2) + 1
DO 10 K = J, B, 2
T= K
IF (PRIME(K) .EQ. 1) GO TO 2
E = SQRT (4.*T + COS (T))
WRITE (1, 5) K, E
GO TO 10
2 E = SQRT (3.*T + SIN(T))
10 CONTINUE
5 FORMAT (16, F8.2, 4X, 8H NONPRIME)
6 FORMAT (16, F8.2, 4X, SH PRIME)
RETURN
END

Once translated into machine code and executed on the computer, this FORTRAN program

will calculate the required results. Because the program draws its square root, sine, and cosine
subroutines from a separate code library, the programmer does not have to tell the computer

how to calculate these functions. In fact, the programmer can rely on the compiler to include
pre-written library functions automatically in the compiled code; there was no need for the
programmer to know how these library functions worked or even how they were themselves
programmed. Although FORTRAN handled large data structures poorly and was limited, at least in
its early incarations, to a specific manufacturer’s architecture, its use of both subroutine libraries
and high-level programming concepts constituted a major step toward the kinds of computer
programming practice that we know today.

Beginning with FORTRAN, the 1950s saw a number of increasingly sophisticated mechanisms
for enabling what we can now understand as programming’s progressive abstraction from
computing hardware. A wide variety of programming languages followed the first version of
FORTRAN, each one aiming to make it easier for a programmer to accomplish particular tasks
in more intuitive and/or discipline-specific ways.?> Chief among these was COBOL (COmmon

Business Oriented Language), which was developed by an independent committee of programmers

25Major languages introduced during the period 1957-1970 include ALGOL 58, Flowmatic, IPL
V, FORTRAN II, ALGOL 60, COBOL, LISP, PL/1, ALGOL 68, Pascal, and Simula.
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and computer manufacturers working with the Department of Defense. Designed to meet the
needs of business computing, COBOL allowed programmers to communicate instructions in an

English-like syntax. Sammett offers the following example of a COBOL sort routine (337):

OPEN INPUT INPUT-FILE-1, OUTPUT FILE-2, FILE-3.

SORT SORT-FILE-1 ASCENDING FIELD-AA DESCENDING

FIELD-BB ASCENDING FIELD-CC INPUT PROCEDURE

RECORD-SELECTION OUTPUT PROCEDURE

PROCESS-SORTED-RECORDS. CLOSE INPUT-FILE-T,

FILE-2, FILE-3. STOP RUN.
While many professional computer scientists expressed contempt for COBOL—Edsger Dijkstra
said that the language “cripples the mind” (Shneiderman 350)—the language offered several
advantages over FORTRAN. Chief among these was its support for machine-independence:
COBOL provided a standard language that could transcend the architectural specifics of individual
manufacturers’ computers. COBOL was also arguably less intimidating than FORTRAN, giving
programmers at least the illusion that they were “speaking” to the computer in their own language.
In COBOL, we can see the goal reflected in Kubrick’s 200! A Space Odyssey, that of the
computer that understands instructions delivered in something resembling ordinary written (and
possibly spoken) English, and of programmers who interact with their computer without needing
to know the intricacies of its hardware architecture.

Software’s abstraction from hardware is, for the purposes of this dissertation, the single most
important aspect of early programming history. It was the modernization of computing architecture
that enabled code to become a form of writing; the aesthetic ramifications of that shift will be
discussed in Chapter Two. This shift also had important cultural and political ramifications:
the transition from numerical, machinic programming techniques to more abstract, linguistic,
syntactical approaches enabled code to become both a highly contentious object of economic
competition and a deeply rewarding scene of cultural formation. In the next two sections, I will
develop these claims, charting some of the central social, economic, and political effects of
code’s linguistic abstraction in order to show how the writtenness of code gave rise to both an

extremely profitable software market and an extremely vital culture of resistance to that market.
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An understanding of these political and cultural movements is essential to grasp the political

ramifications of coding aesthetics.

1.2 Inventing and Regulating Software

In Questioning Technology, philosopher Andrew Feenberg draws on the work of Bruno Latour to
discuss how technology designers can embed political choices within mechanical devices in such a
way as to enable and naturalize particular techno-political orders. For example, Feenberg shows
how nineteenth-century machinery embodied and reinforced certain assumptions about workforce
demographics. By designing machines to match children’s stature, Feenberg argues, industrialists
“hard-wired” child labor into technical devices; only in retrospect do we find those encoded
political choices unnatural, ideological, and disturbing (86-87). In general, Feenberg argues,
such political and social agendas have historically been a determining factor in technological
design: “disputes over the definition of technologies are settled by privileging one among many
possible configurations,” he writes. “This process, called closure, yields an ‘exemplar’ for further
development in the field.” The von Neumann architecture proved to be just such an exemplar: not
only do the majority of today’s computers still follow the conceptual model developed almost sixty
years ago, but the computing industry has capitalized on the economic and political potential built
into that model. This section elucidates the technopolitical choices hardwired into computing
architecture during the 1940s and discusses the entwined technical and cultural ramifications of
those choices over the following decades.

In designing the stored program computer, the Moore School engineers were also designing a
series of political and economic potentials. In the era preceding the von Neumann architecture,
programs had been “open,” visible to the trained eye in the masses of cables and plugs that
composed them; by contrast, the “stored program” concept made it possible to lock digital code
inside machines in an invisible, virtually inaccessible form. As a technological guarantor of
secrecy and intellectual property rights, the stored program architecture had enormous economic

potential. As I noted above, higher-level programming languages enabled programmers to write
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software that could be independent from both individual computers and specific computing
architectures; the stored program model made it possible to protect the completed software. In
effect, these languages created the potential for software to become a valuable new commodity; the
result of the von Neumann architecture, they contained within them the possibility of a software
industry. That economic potential in turn had enormous political ramifications: a software
industry built on the computer’s capacity to “hide” code would be an industry that threatened the
collaborative culture of programming to its very core.

As we know all too well, corporations eventually capitalized on the economic potential of the
von Neumann architecture. It took several decades for that to happen, however. In this section
and the one that follows, I will address the technological and social developments of the years
between code’s abstraction and code’s commaodification, concentrating specifically on why that
commodification was deferred, on the crystallization of a highly individualistic and artistic
programming culture during those precious unregulated years, and on how it was that the term of
code’s corporate deferral finally came to a close.

The absence of a large-scale software industry during the 1950s and 1960s looks at first
to be a peculiar lapse in an otherwise impeccably opportunistic economy; on second glance,
it proves to have been an extremely powerful marketing strategy for the dominant hardware
manufacturer of the era: IBM. By 1960, the majority of computers in use were IBM models; so
unrivalled was Big Blue that its seven smaller mainframe competitors had become known as
“the seven dwarves” (Campbell-Kelly and Aspray 135). IBM’s market share increased steadily
during the 1960s: by 1969, the company had captured fully three-quarters of the worldwide
mainframe market (Campbell-Kelly and Aspray 147). A major producer of software as well as
hardware, IBM supplied entire suites of programs to major client industries such as banking, retail,
and manufacturing. IBM did not, however, sell this software separately from hardware as an
independent, independently valuable entity; instead, IBM based its business model around leasing
a complete package of hardware, software, and support services. Larger companies employed their
own programmers to write customized software for individual business needs, and many of these

programmers and clients in turn readily swapped and recycled their code through groups such as
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SHARE. IBM was thus well positioned to profit from this software sharing culture: cross-company
collaboration among programmers saved IBM much of the time and money it would otherwise
have devoted to providing extensive and redundant support services (“programming support” at the
time often involved providing customers with custom-coded solutions to their software needs). The
more code in free circulation, the greater the variety of programs one could “borrow” from IBM’s
growing software library or from one’s fellow programmers. The greater the variety of shareable
programs, the more valuable IBM computers became to the various companies and government
agencies that used them to do business. By not charging money for software, ironically, IBM
cornered the computing market.

During the 1960s, IBM both established seemingly inassailable market dominance and began to
make a serious bid for control over the nature and definition of programming itself. Thus it was not
surprising that by the end of the decade the U.S. government had become concerned about IBM’s
seeming monopoly. With an antitrust suit looming, IBM appointed a task force in December 1968
to review its software bundling strategy. However, this action by itself was not enough to appease
the government: in January 1969, the Department of Justice initiated an antitrust investigation
against IBM, an action that definitively altered both the culture of software sharing and the nature
of software development. On June 30, 1969, IBM announced sweeping defensive changes in its
business model: as of January 1, 1970 it would reduce the price of hardware leases by three
percent, but would sell software and systems support services separately. By enabling independent
programmers and other companies to write commercial software for [BM hardware, IBM hoped
to downplay its monopolistic profile, and so deter litigation. This did not happen—in fact, the
government’s investigation of IBM dragged on until 1982, when the Reagan Administration
dismissed it as being “without merit” (Ceruzzi 171). IBM thus retained its dominant market share
in hardware, which was after all the more “valuable” part of the computer, but its 1969 decision

opened software to the creative opportunities and economic pressures of the free market.26

261p her article “A View from the Sixties: How the Software Industry Began,” Lucanne Johnson
notes that some commercial products—such as Applied Data Research’s AUTOFLOW—were
available as early as 1965. Johnson points to Larry Welke’s 1967 software product catalog for
additional evidence that some commercial software development preceded IBM’s unbundling

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IBM’s defensive maneuvering had an enormous impact upon the programming industry: its
1969 decision essentially marks the moment when the established culture of software sharing
came under pressure from a newly-created software industry. By unbundling software from
hardware, IBM effectively created a software market in which any third-party vendor could freely
write and sell software compatible with IBM computers. One effect of this free-market software
economy was that competition came definitively to replace collaboration. As software, once an
“enhancement” to computing hardware, increasingly became a commodity in its own right, the
tradition of software sharing was jeopardized: where companies once had an incentive to share
code, they now had a profit motive not to share. Thus do we begin to see how the stored program
architecture contained within it a number of potential political effects. The first of these was the
creation of the software market; the second of these effects is software blackboxing.

Where the creation of the software market grew out of government concerns that IBM was
monopolizing the computing industry, blackboxing arose out of a corporate desire to monopolize
code. The story of blackboxing solidified around another computing innovation of the 1970s: the
personal computer. It’s the story of the violent ideological clash between two emergent computing
cultures: that of the profit-oriented software entrepreneur and that of the community-oriented
hobbyist programmer whose social and technological fulfillment revolves around sharing code. As
“hobbyist” computers suitable for private, individual use became available during the mid-1970s,
clubs arose where home users could meet and share ideas. The Homebrew Computer Club,
probably the most famous such amateur association, held its first meeting on March 5th, 1975.
Homebrew, and the many other clubs like it that sprang up across the U.S. from the 1970s onward,
continued the traditions of software sharing that had emerged in mainframe programming culture
thirty years before, bringing them into the home, where they both flourished and met with a serious
and ongoing challenge from the corporate interests they publicly and unrepentantly flouted. In

short, personal computers put programmers on a collision course with the new software market.

announcement. She does accept, however, that IBM’s decision “helped to legitimize the concept of
paying for software and was a great boon to the growing software industry. It represented a major
change in the environment that was created by IBM, which totally dominated the computer market

... throughout the 1960s” (102).
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An irony of the new culture of hobbyist program sharing was that it quickly met with
opposition from hobbyist programmers themselves. While most hobbyists saw software sharing
as a form of sociability and wanted simply to share code freely and without constraint, some
entrepreneurial programmers saw the chance to turn a profit writing software for the home
computer. One of the first public expressions of the new commercial sentiment came in 1975 from
none other than a nineteen-year-old Bill Gates, who, with his friend Paul Allen, had co-authored
a version of BASIC for the early hobbyist Altair computer manufactured by Model Instrument
Telemetry Systems (MITS). Rather than making Altair BASIC freely available to users, Gates
and Allen offered it for sale through the MITS product catalog. Unlike other hobbyist software
circulating at that time, BASIC was not meant to be freely shared; it was meant only to be sold
for profit. When Altair owners shared copies of the software anyway, tensions between the new
corporate desire for economic control and the hobbyist’s traditional desire for free, unfettered
redistribution of code reached fever pitch. Altair BASIC’s angry young developer, furious at losing
his royalties, published an outraged “Open Letter to Hobbyists” in computing newsletters across
the country. Outlining an uncompromisingly profit-oriented theory of software development,
Gates’s letter proved to be a galvanizing wakeup cail for hackers and hobbyists who wanted to
keep software free. “To me, the most critical thing in the hobby market right now is the lack of
good software courses, books, and software itself,” Gates begins. Under such conditions, “Will
quality software be written for the hobby market?” Gates outlines his answer: quality software will
only emerge if professional programmers work full-time to develop and improve it. Building on
this assumption, Gates advances arguments for the professionalization of programming work and
the consequent economic compensation that programmers deserve. However, software sharing,
in Gates’s view, makes compensation—and, as a result, the professionalization of software
development—next to impossible. Contrasting the time, effort, and expense he and Allen had put
into developing BASIC with the low profits the system generated (he estimates that less than ten
percent of Altair BASIC owners actually paid for the program), Gates proceeds to berate hobbyists

who share software:

As the majority of hobbyists must be aware, most of you steal your software. Hardware
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must be paid for, but software is something to share. Who cares if the people who
worked on it get paid?

Is this fair? One thing you don’t do by stealing software is get back at MITS
for some problem you may have had. MITS doesn’t make money selling software.
The royalty paid to us, the manual, the tape and the overhead make it a break-even
operation. One thing you do is prevent good software from being written. Who can
afford to do professional work for nothing? What hobbyist can put 3 man-years into
programming, finding all bugs, documenting his product and distribute for free? The
fact is, no one besides us has invested a lot of money in hobby software. We have
written 6000 BASIC and are writing 8080 APL and 6800 APL, but there is very little
incentive to make this software available to hobbyists. Most directly, the thing you do
is theft.

What about the guys who re-sell Altair BASIC, aren’t they making some money
on hobby software? Yes, but those who have been reported to us may lose in the end.
They are the ones who give hobbyists a bad name, and should be kicked out of any
club meeting they show up at. (Qtd. in Manes and Andrews 91-92)

A clarion call for the corporatization of code, Gates’s letter makes four main assertions: first,
that there is such a thing as a hobbyist software “market”; second, that quality software will not
be written for the hobbyist software market unless professionals do it; third, that professionals
will not write software for the hobbyist market unless they are well compensated; fourth, that
professional programmers won't get paid if hobbyists continue the hacker tradition of sharing
software. On the basis of these assertions, Gates draws a damning conclusion about both the future
of technology and the viability of hobbyist culture: “One thing you do is prevent good software
from being written.” Later I will show that these assumptions are both false and disingenuous;
Gates was not only wrong, he was insincere. For now, I want simply to note that Gates’s strategic
manipulation of logic allows him to reach two extraordinarily self-serving conclusions—that
sharing software is stealing (“Most directly, the thing you do is theft”), and that people who
share—or “steal”’—software will be caught and presumably punished (they “may lose in the end”).
Equating the time-honored tradition of software sharing with criminal behavior, Gates’s
threatening letter set the tone for increased legal restrictions on the production and distribution of
software in the coming decade. As such, Gates’s letter marked a corresponding change in the status
of computing code itself: once understood as information that could—and should—be shared and
freely modified, computer programs became licensed products whose distribution could—and

should—be regulated by law. Over the next decade, software came increasingly under the twin
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purviews of intellectual property law and corporate restrictions on source code distribution.
Between copyrighting programs and preventing customers from seeing the actual code, software
companies purposefully enacted the sort of proprietary vision Gates the teenaged hobbyist had so
presciently articulated. The spectacular corporate success of Microsoft speaks to the brilliance of
Gates’s conceptual strategy.

There is a word for what Gates’s logic eventually produced: “blackboxing.” Blackboxing refers
to the now-commonplace corporate custom of keeping source code a closely-guarded secret while
still providing customers with usable software. Blackboxing is possible technologically because
there is a division between source code, or the code programmers write, and object code, or
the code computers read. As we have seen, modern programmers typically write software in
“high-level” programming languages such as C or C++, languages that have been designed to
reflect the conceptual structures of programming problems rather than the “low-level” instruction
sets that computers execute, or process, when running a program. The version of a program that is
written in programming language is called “source code.” “Object code” is the binary version of
the program, the ones and zeroes the computer itself reads. A concrete illustration may be useful
here to explain the difference between the two. Here is the source code for a short program, written
inC:

#include <stdio.h>

int main(int argc, char **argv)

{

printf ("Hello World!\n");

return O;

}

This program tells the computer to print “Hello World!” on the screen. But the computer cannot
read this program as written. In order to read or execute this program, the source code has to be
translated into sequences of binary code. That translation is effected by a compiler, which converts
it into a piece of object code (also known as an “executable” or simply a “binary™). Compiling the
above source code would produce an executable binary file composed of object code; running that

binary file would—as expected—cause the computer to print the phrase “Hello World!” on the
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screen. Real-world programs are a great deal more complex than the one above, of course, but they
nonetheless operate according to the same principle: no matter how complicated the program, the
mechanism through which binary code comes into being is the same. In all cases, source code files
and object code files ultimately exist as separate, autonomous, and independent entities.

The elemental split between source and object code has fueled decades of debate about what
code is, about how code should be distributed, and about what it means to own it. Without source
code files, curious programmers cannot find out how programs function—nor can they change how
programs work, or fix bugs if they find them. Here is a visual representation of compiled binary

code derived from the C program referenced above:

1111000000000000000000000100010111111111110011001101
0000001000100100010000011101011000101111111000010000
1101100010111111110001000101000011111100001110001101
1101110001111111101010000010001010101000000101010111
1010000000000011101011000001100010100111001100000001
0000000000000101000111110100000000000011101000010110
11110111111111211111111000111000100000001011001111110
1011101011000010101110101100011011011100011111111010
0000000101010111010000000000100000001011100011111111
0110100001101010011010000000110111101111111011111111

This is only a brief excerpt from the binary code. Although “Hello World!” is a short and simple C
program, a complete binary representation of its object code would run for many printed pages.
Even in the more compact hexadecimal (base 16) format, the object code is no more hospitable to
the human eye. Here is a small section of the hexadecimal object code:

BEC8B4DOCFF4904780E8B118A45088802FF010FB6COEBOBS1FF
508E8BF120000595983F8FF8B451075058308FF5DC3FF005DC3
78B7C24108BC74F85C07E218B74241856FF742418FF742414E8
FFFFF83C40C833EFF74078BC74F85C07FE35F5S5EC3538B5C240C
C34B565785C07E268B7C241C8B7424100FBE065746FF74241C5
SFFFFFF83C40C833FFF74078BC34B85C07FE25FSESBC38B4424
300048B008B40FCC38B4424048300088B088B41F88B51FCC38B
48300048B00668B40FCC3A120AE4000566A1485C05E7507B800
00EB063BC67D078BC6A320AE40006A0450E80613000059A3189
0085C05975216A0456893520AE4000E8ED12000055A3189E400

Because it is difficult to decompile object code (i.e., to deduce from an executable binary the source

code used to construct it), the “Hello World!” program can be blackboxed simply by keeping its

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



source file secret—a fact behind much of the power wielded by the software industry today.?’ If
a software company chooses to keep its source code under lock and key (as almost all do), the
text of its programs will remain a mystery to all but the programmers who wrote it. While end
users may acquire functional programs from the company in binary format (usually by purchasing
CD-ROMs or by downloading executables over the Internet) the source code underlying them
remains proprietary and hidden. Microsoft Word is a classic example: millions of people use the
ubiquitous word-processing program every day, yet relatively few programmers have ever seen a
line of its source code. The measures taken to use secrecy as a guarantor of future profit can be
extreme: Pekka Himanen comments that “information is guarded to such an extent that when one
visits an information-technology company, sometimes one cannot avoid the impression that all

these locks protecting information make the building similar to a maximume-security prison” (45).

1.3 Rebel Code: Free Software and Open Source

The proprietary system of software production and distribution holds obvious advantages for
software companies: selling blackboxed binaries can generate enormous revenues, and secret
source code can be used as the basis for further exclusive product development. But insofar as
blackboxing impedes software sharing, it represents a real threat to both programming culture
and the quality of the code. As a result, this system of software development has given rise to a
number of pragmatic and ethical objections—objections that have fuelled a crusade among leading
hackers to keep software free. There are a variety of personalities and political positions within

this crusade, and I will outline the most significant of these shortly. But first I want to discuss

27In theory, special computer programs called “disassemblers” or “reverse compilers” can
convert binary executable code back into source code. However, given that different “high-level”
commands can produce the same binary executable file, the re-created source code often bears
little similarity to the original. Reverse compilers also cannot reconstruct programmers’ code
comments, which are often vital to understanding the structure of code. Wary of code theft,
many commercial software firms employ an additional technique known as “obfuscation” that
renders reverse compilation efforts useless; furthermore, most commercial software licenses
legally prohibit attempts to reverse compile the program’s object code. It is therefore practically
difficult—and often illegal—to recover meaningful source code from compiled binaries. For more
on reverse compilation, see C. Cifuentes’s doctoral dissertation Reverse Compilation Techniques.
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what all opponents of blackboxing have in common: a deep, abiding commitment to what they
affectionately call hacker culture.

By the mid-1960s, most computers were being used to aid scientific research and to process
business data. In research labs and corporate data processing centers, programming had, as we
have seen, a distinct tradition and a unique set of constraints. At the same time, a new computing
culture, with its own distinct rituals and values, was beginning to emerge in computing labs around
the country: that of the computing hacker. At academic centers such as MIT, young technophiles
were turning their creative and intellectual energy toward computing and laying the groundwork
for a culture that would become a vital force in computing over the next several decades. That
culture, which grew up around the microcomputer revolution of the 1960s and 1970s and gradually
merged with the “hobbyist” countercultural movements of the 1970s and 1980s, is centered on
a deeply-rooted set of beliefs about what it means to program, what it means to be an artist,
even about what it means to be alive. Hackers live programming as artists live their art; they see
themselves as a community of committed, creative people who are devoted both to perfecting their
craft and to living life as an extension of that craft.

Burrell Smith, the brain behind the Apple Macintosh computer, notes that programmers share
a distinct psychology. That psychology, which he half-lovingly, half-jokingly dubs the *‘hacker
mentality,” owes more to a state of mind than to a specific set of computer skills: “Hackers can do
almost anything and be a hacker. You can be a hacker carpenter. It’s not necessarily high tech. |
think it has to do with craftsmanship and caring about what you’re doing” (qtd. in Himanen
7). Eric Raymond concurs, noting that what he calls “the hacker attitude” can be found “at the
highest levels of any science or art” (qtd. in Himanen 7). Hackers commonly combine their
artistic approach to code with other artistic talents, notably literature and music. Programmers
who consider themselves to be hackers see their “hacker mentality” as having more to do with an
attitude toward life than with their computing expertise. That attitude is a special combination of

aesthetic sense and problem solving. As Eric Raymond explains it in a discussion of Unix hacking,
To do the Unix philosophy right, you have to be loyal to excellence. You have to

believe that software is a craft worth all the intelligence and passion you can muster
... Software design and implementation should be a joyous art, and a kind of high-level
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play. To do the Unix philosophy right, you need to have (or recover) that attitude. You

need to care. You need to play. You need to be willing to explore. (Qtd. in Himanen 6)
A programming mentality that extends beyond computing to such artistic pursuits as literature and
music is a mentality that sees the precise, specialized work of writing code as an artistic activity
akin to more traditional creative modes such as making music or writing novels. It is also a
mentality that understands its particular expertise as importantly secondary to its style of reasoning
and its attitude toward creating; programming, in the programming mentality, is paradoxically not
essential to it. What is essential to it is a unique way of working. Pekka Himanen elaborates this
concept in his book The Hacker Ethic, which sees hacker culture as emblematic of a new work
culture that rejects the Protestant ethic of asceticism. As Himanen defines it, the “hacker ethic”
speaks to an individual’s capacity for total spiritual absorption in the creative process: to his
powerful commitment to getting a thing done right on the one hand, and on the other hand to his
equally powerful commitment to play, to making work into a game.

Linus Torvalds’s experience writing Linux offers an exemplary instance of this mentality.
During the months Torvalds spent writing the initial Linux kernel code, he scarcely left the tiny
Helsinki bedroom where he worked. His computer sat on a desk next to his bed, and he describes
rolling right out of bed into his chair to program, and then rolling right back into bed again when
he was exhausted. He worked without reference to time—black curtains on the windows prevented
him from knowing whether it was night or day—and interrupted his programming only to sleep
and eat (Torvalds 64). His absorption was total, his enjoyment was complete, and his mental life
became more real, and more rewarding, than the more worldly existence he had temporarily
vacated. Torvalds speaks of the fascination of programming, noting that “you get to create your
own world, and the only thing that limits what you can do are the capabilities of the machine.” He
stresses, too, that the best programmers seek creative, elegant solutions to problems: instead of
generating a mundane, generic solution, a great programmer “would know to write a beautiful
program that attacks the problem in a new way that, in the end, is the right way” (Torvalds 74).

As hackers have fought to preserve their culture in the face of blackboxing, two individuals

have emerged as leaders: Richard Stallman and Eric Raymond. Stallman and Raymond both feel
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strongly that code should never be kept secret, that anyone should be free to read it—and even to
revise and rewrite it. Both men have launched grassroots movements to raise awareness about

the ethical and practical problems with corporate blackboxing and to promote the cause of what
Stallman calls “free software” and what Raymond, whose libertarian dynamism leads him to view
the issues somewhat differently than the more controlling, more evangelical Stallman, calls “open
source software.” Where Stallman focuses on the injustice of blackboxing, which he sees as a theft
of the vital, life-giving culture of software sharing, Raymond concentrates on the practical benefits
of sharing source code, pointing out how blackboxing ensures buggy code while code sharing
creates the conditions under which errors crop up more rarely and are more easily and quickly
fixed.

Ethical objections to software blackboxing find their most ardent exemplification in the
controversial and uncompromising figure of Richard Stallman, founder and president of the Free
Software Foundation. Stallman, who entered Harvard in 1970 to study mathematics and physics,
quickly joined the community of talented computer programmers working at MIT’s Al Lab, a
world-famous Artificial Intelligence research center. Working—and often even living—at the Al
Lab for the better part of a decade, Stallman spent most of his time refining and extending the
Incompatible Time-Sharing System (ITS) that ran on the Digital PDP-10 minicomputer;?® one of
his most important contributions was the powerful and versatile Emacs text editor, which is still in
widespread use today. When the AI Lab community dissolved in the early 1980s after most of its
members had been hired away by commercial software developers, an outraged and devastated
Stallman channeled his prodigious programming talents into developing free software. In 1984 he
embarked on the enormously ambitious GNU Project, aiming to recreate his lost community by

writing a completely free UNIX-like operating system and development platform.?® Although the

28The name “Incompatible Time-Sharing System” (ITS) is a typical hacker pun, its object being
the Compatible Time-Sharing System (CTSS) created by MIT professor F. J. Corbaté for IBM’s
7094 computer. CTSS, widely associated with IBM-style bureaucracy, was repellant to hackers and
ITS became their choice altemative.

29With the demise of the PDP-10, ITS, which was tightly bound to that architecture, no longer
had a platform on which to run. Stallman chose to emulate UNIX because UNIX could be ported
to almost any computing platform, and it was clearly the system most favored by hackers as a
replacement for ITS.
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GNU Project’s much-detayed Hurd kernel remains under development,®® many GNU utilities are
found today in the free software system known as Linux.’! More to the point, the GNU project
became the cultural catalyst Stallman wanted it to be, drawing programmers and users from around
the world into close, mutually beneficial contact through the rich tradition of code sharing.

As much a moral statement as it is a means of providing pragmatic alternatives to blackboxed
code, Stallman’s project is built around an ideal of liberty. Indeed, when he speaks of “free
software,” he does not mean software distributed for no cost—although much free software is free
in that sense—but software that is not bound by restrictive, proprietary licensing requirements.
Stallman repeatedly insists that “free software” is a matter of freedom, not cost.>? To be considered
“free” in Stallman’s terms, software should meet the four requirements outlined in the Free

Software Foundation’s “Free Software Definition™: it should give you “the freedom to run the

30Together with the GNU Mach microkernel and the C library, Hurd lies at the core of the GNU
system. A set of servers running atop Mach, Hurd implements basic system services such as the
file system, interrupt and exception handling, network protocols, and thread scheduling. Eschewing
the monolithic kernel approach favored by Linux developers, GNU designers have opted for an
object-oriented microkernel design. At the time of writing, the Hurd kernel is not yet ready for
production use, but is making significant progress. Up-to-date information about Hurd is available
at this Web site: http: //www.gnu.org/software/hurd/hurd. html.

3 Strictly speaking, “Linux” describes only the operating system kernel started by Linus Torvalds
in 1991. However, the term “Linux” is also often used as shorthand for the entire operating system
built around this kernel. Because GNU software has been instrumental in Linux development, and
because a great many GNU utilities are included with Linux distributions, Richard Stallman has
argued that the operating system should properly be called “GNU/Linux.” In this document [ use
“Linux” to indicate the Linux kernel, and GNU/Linux to indicate an extended operating system
built atop that kernel.

321n April 2001, when Stallman gave a talk at MIT entitled “Copyright and Globalization in
the Age of Computer Networks,” he refused to allow his talk to be broadcast over the Internet.
He explained why: “The software they use for web broadcasting requires the user to download
certain software in order to receive the broadcast. That software is not free software. It’s available
at zero price but only as an executable, which is a mysterious bunch of numbers. What it does
is secret. You can’t study it; you can’t change it; and you certainly can’t publish it in your own
modified version. And those are among the freedoms that are essential in the definition of ‘free
software.” So if I am to be an honest advocate for free software, I can hardly go around giving
speeches, then put pressure on people to use non-free software. I’d be undermining my own cause.
And if [ don’t show that I take my principles seriously, I can’t expect anybody else to take them
seriously.” These remarks come from an edited transcript of Stallman’s talk, available on the
Web at http://media-in-transition.mit.edu/forums/copyright/index_
transcript.html
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program, for any purpose”; “the freedom to study how the program works, and adapt it to your
needs”; “the freedom to redistribute copies so you can help your neighbor”; and *the freedom to
improve the program, and release your improvements to the public, so that the whole community
benefits.”33 Because the freedom to study or modify software necessitates access to source code,
Staliman vigorously opposes licensing arrangements—whether copyrights or patents—that prevent
access to source code or that forbid its modification and redistribution and has written his own
licence, the General Public Licence (GPL), designed to keep code free.’*

Where ethical objections to blackboxing revolve around lofty philosophical ideals, pragmatic
objections to blackboxing generally center around the more mundane issues surrounding the
quality and cost of proprietary software. Computer programs are rarely (if ever) released free of
errors, and consumers of blackboxed software must endure extant flaws until such time as the
companies concerned release modified or upgraded versions—months, or even years, may pass
before outstanding bugs are fixed. Pragmatic objections to software blackboxing are articulated
most powerfully and fervently in Eric Raymond’s “The Cathedral and the Bazaar,” an essay that
is frequently cited as a foundational document for the modern open source software movement.
In this essay, Raymond posits two basic models for software development: the “cathedral” and
the “bazaar” models of his title. Under the *“cathedral” model, a small team of developers works
upon a piece of software until they have perfected it; only then do they release it to a wider
audience. The “cathedral” process, slow, inefficient, and unnecessarily centralized in Raymond’s
opinion, is the one employed by the GNU Project as well as by commercial developers; for all
his emphasis on free software, Richard Stallman is, to Raymond’s mind, a cathedral builder.
The bazaar model, by contrast, embodies the open-source philosophy of “release early, release
often”: early versions of barely working code are released on publicly-accessible servers; the code
is then maintained, developed, and deepened through the collaborative efforts of programmers

all over the world. Emphasizing the importance of “open source” to programmers, to users, and

3The Free Software Definition is available on the Free Software Foundation’s Web site at
http://www.fsf.org/philosophy/free-sw.html

341 take up the issue of software as intellectual property again in Chapter Two. A discussion of
Stallman’s General Public License may be found in Chapter Three.
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to the future of software, the open-source movement advocates the distribution of source code
along with precompiled binaries; it actively encourages users to become co-developers; and it asks
programmers who read, analyze, and improve the source code to retumn their enhancements to the
program’s user-base. Raymond’s bazaar development model thus presupposes Stallman’s model of
intellectual property, but it circumvents Staliman’s tendency toward central planning by advocating
the rapid circulation of code. Limiting or hampering that rapid circulation, in Raymond’s view,
also impedes the highly productive open-source development model. The Linux kernel, the Apache
Web server, and the Sendmail e-mail delivery program are all examples of “bazaar”-style software
development. In their extraordinarily high quality they lend weight to Raymond’s claim that the
fast-paced open-source development model often results in high-quality code: because open source
software is frequently and continuously updated, it tends to have fewer bugs and more usable
features than code produced and maintained under the cathedral model .3

As closely tied as the open source and free software movements are, philosophical tensions
exist between the two movements. Open-source advocates focus on marketing their philosophy as a
viable corporate business model, for instance, and many major corporations—notably IBM—have
thus made major investments in the Linux kernel, the Apache web server, and other open source
projects. Those open-source proponents are frequently embarrassed by the anti-corporate overtones
of Stallman’s “free software” rhetoric—indeed the very name “open source” was coined in an
intentional effort to avoid the problematic word “free.” Open-source even has various alternative
licenses to Stallman’s GPL—these include the Mozilla Public License, the Perl “Artistic License,”

and the X-Window System License.3¢ In 1997, the guidelines for licensing free software were

3SIronically, even Microsoft seems to agree with this proposition. In November 1998,
confidential Microsoft memoranda (authored in August of that year) were leaked to Raymond,
who published annotated versions on his Web site. Known as the “Halloween Documents,”
they outline suggestions for Microsoft’s strategic response to the open-source initiative. The
memo worries about the impact of open-source upon Microsoft revenue, noting that “recent case
studies provide very dramatic evidence ...that commercial quality can be achieved / exceeded
by OSS [open-source software] projects.” The Halloween Documents may be read on-line at
http://www.opensource.org/halloween/

36For a comprehensive list of public software licenses, see Appendix A of Donald K.
Rosenberg’s Open Source: The Unauthorized White Papers.
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formalized as the Open Source Definition. This Definition “allows greater liberties with licensing
than the GPL does. In particular, the Open Source Definition allows greater promiscuity when
mixing proprietary and open-source software” (DiBona er. al. 3). In response, Stallman worries
that these “greater liberties with licensing” will entail reduced liberties for software users, and
charges that “the rhetoric of ‘Open Source’ focuses on the potential to make high quality, powerful
software, but shuns the ideas of freedom, community, and principle” (Staliman, “The GNU
Operating System and the Free Software Movement” 69-70).

Despite these philosophical differences, however, what both the free software movement and
the open source movement have in common is a deep and abiding sense of programming as an art,
and of code as an essentially literary aesthetic form. I will develop that claim in the next chapter;
for now, | want simply to note that the politics and poetics of contemporary computing culture all
depend on the political, economic, technological and social potentials contained within the von
Neumann architecture. That architecture, combined with the high-level programming techniques it
made possible, enabled mechanical systems of plugs and cables to be abstracted into language; that
abstraction in turn created the conditions for both the flourishing proprietary software market we
know today and for competing notions of computer programs as forms of aesthetic expression that
should be freely shared and available to all.

Chapter Two of this dissertation discusses how an aesthetic, explicitly literary attitude toward
textuality has become central to computing culture; Chapter Three argues that we can use
advanced modemn programming philosophies to make sense of Joyce’s compositional approach
to Finnegans Wake. My argument in these chapters is that the seemingly separate fields (and
thought systems) of literary studies and computing are actually crucially embedded in one another,
and that study of one can illuminate the other. The remaining sections of this chapter examine
the institutional and political divides that prevent such a mutually beneficial interpenetration of
cultures and thought systems from taking place. It will be my contention that the humanities has
figured “the computer” in a way that has done more to sustain a debilitating divide between the
two fields than to integrate them in mutuaily enabling, creative ways. I will argue here that far

from generating useful knowledge or deep understanding of computing within the humanities,
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“cybertheory” or “cyberstudies”—as the academy calls its theoretical approach to computer-related
topics—produces a fantasy about computers that is largely divorced from the culture, history, and
technology of computing itself. Furthermore, I will contend that cybertheory appropniates the
computer to serve political agendas that are in many ways antithetical to the issues with which

computing culture is itself concerned; this political dislocation in itself perpetuates the divide

between the two fields.

1.4 Consensual Hallucinations: Producing a Metaphysics of Code

William Gibson coined the term “cyberspace” in his 1984 novel Neuromancer, using it to describe
the dystopic realm of a fully networked world where existence is synonymous with computerized
communication. Literary and cultural critics quickly took up the term, importing it into their theory
and their thought. By the late end of the decade, “cyberspace” was an up and coming interpretive
category, significant enough to warrant its own academic conference, held in May 1990 at the
University of Texas at Austin. The proceedings of The First Conference on Cyberspace in turn
became the basis for the first scholarly anthology on the subject, Cyberspace: First Steps. Edited
by Michael Benedikt, organizer and arbiter of the conference, it collected many of the papers
delivered at that initial gathering. As such, Cyberspace: First Steps both announced the arrival of a
new field of inquiry and set out to set the tone and the terms of that inquiry.

Cyberspace: First Steps takes Gibson’s novel as both inspiration and deterrent: Gibson’s vision
of cyberspace as “the mutual connective fabric of the conceptual universe,” the “consensual
hallucination” of “billions of legitimate operators,” carried the possibility of scholarly creativity,
of a world that was whatever one theorized it to be; his depiction of cyberspace as profoundly
dystopic cut off that theoretical prospect at the roots, suggesting that to be enclosed within
cyberspace was every bit as oppressive as enclosure within any other totalizing system. The origins
of cybertheory lie at this impasse. As Benedikt explains it in his introduction, cyberspace is “an
unhappy word, perhaps, if it remains tied to the desperate, dystopic vision of the near future found

in the pages of Neuromancer (1984) and Count Zero (1987)—visions of corporate hegemony and
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urban decay, of neural implants, of a life in paranoia and pain—but a word, in fact, that gives a
name to a new stage, a new and irresistible development in the elaboration of human culture and
business under the sign of technology” (1). From the beginning, cybertheory’s project has been to
envision this “new stage” by idealizing the computer, to produce an “irresistible” utopian vision of
all that a fully networked world could be.

At the heart of that utopian vision was the term cyberspace itself, a metaphor taken from a
fantasy novel that became the architectural principle of a new scholarly discourse. In Cyberspace
Textuality: Computer Technology and Literary Theory, Marie-Laure Ryan describes the theoretical
excitement embedded within early invocations of the term “cyberspace.” The very word, she
notes, “captures the growing sense that beyond—or perhaps on—the computer screen lies a
‘New Frontier’ both enticing and forbidden, a frontier awaiting exploration, promising discovery,
threatening humanistic values, hatching new genres of discourse, altering our relation to the
written word, and questioning our sense of self and of embodiment” (1). Describing cyberspace in
frankly science fictional terms, Ryan captures the manner in which scholarship centered on this
new analytical category cast itself as a sort of armchair intergalactic adventure. Cybertheory is
rife with the language of exploration and settlement; the work of the cybertheorist is that of the
pioneer: her principle activities are to map the philosophical terrain and to lay the intellectual
foundation for cyberspace’s theoretical development. Benedikt thus calls cyberspace a “common
mental geography” that has the potential to become a “collective memory or hallucination, an
agreed-upon territory of mythical figures, symbols, rules, and truths, owned and traversable by all
who learned its ways, and yet free of the bounds of physical space and time” (2-3). Cyberspace:
First Steps clearly evokes in its title the image of the inaugural footprint, the act of laying claim to
new territory by making a mark upon it. The allusion to U.S. astronaut Neil Armstrong’s 1969
moonwalk—itself a territorial series of first steps—is unmistakable. So is the fantastic character of
the field, which developed as a quasi-analytical, deliberately speculative adjunct to Gibson's own
fantasy fiction.

The power—and credibility—of cybertheory lay, ironically, in its frankly fictional nature. As

the sci-fi feel of the language surrounding the discourse suggests, cybertheory had virtually no
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pretension to comprehend or care about the actual workings of technology. It was concerned
almost exclusively with conceptualizing cyberspace as a realm beyond the material world—beyond
even the technology that brought it into being—where, by definition, anything was possible. By
the mid- to late 1990s, “New Frontier” fervor had centered itself on the most pressing problems of
contemporary literary and cultural theory; the objects of cybertheoretical analyses were largely the
stock categories already heavily favored by cultural studies (race, class, gender, sexuality, and,
more broadly, the body and identity), and the aims of these analyses were to show how cyberspace
offered solutions to problems—and problematics—that could simply never be resolved in a world
bound by material constraints.

Cybertheory thus found its analytical niche in the symbolic resolution of real world problems.
Centering its conceptual efforts on the central questions of its parent methodology, cultural studies,
the newest and savviest field on the block advanced its own “cyber-categories” (post-human
identity, cyberfeminism, the cyborg, and so on) as the messianic fulfillment of cultural studies’
theoretical and political fantasies. The leaders within the field were explicit about the visionary,
imaginative aspect of their work: Michael Benedikt even invokes Gibson’s concept of “consensual
hallucination™ to describe the constructive work of the cybertheorist, which proceeds according to
an extra-rational thought process he dubs “mytho-logic” (7). Where Gibson understood cyberspace
as a disturbing sign of complicity with a mechanized hegemony, then, Benedikt and other founding
cybertheorists understood it as a description of the subversive, potentially transformative power of
their scholarly vision. Producing idealized narratives of what cyberspace could be, theorizing the
virtual in order to make it real, cybertheory is the academic arm of science fiction.

As in other space stories—Star Trek, Star Wars, Alien—anything is possible in cyberspace. In
cyberspace, ideas don’t have the gravitational pull of reality. The result is to give political visions
analytical purchase. Ironically, the groundlessness of the “space’” metaphor allows analytical
agendas to ground themselves. As such, cybertheory has cast itself as the last, best hope of cultural
studies. Conceived in response to the rise of cultural studies in the late 1980s, it both set itself out
as a form of cultural studies and as the answer to some of the central problems cultural studies

posed. As cultural studies sought to problematize identity by foregrounding race, class, and gender
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as the primary theoretical categories, cybertheory set out to be the scene within cultural studies
where those theoretical problems could be symbolically resolved.

Cybertheorists have thus devoted their efforts almost exclusively to mapping the categories,
politics, and modus operandi of cultural studies onto the post-Internet technological landscape.
As such, cybertheory has primarily attempted to register the effects of networked computing
technology upon race, class, gender, the body, and other sub-categories of identity, and to theorize
the utopian modes of “posthuman” subjectivity and corporeality that its proponents envision
emerging in cyberspace. Regrettably, the field contains little sustained engagement with computing
technology as a material or historical entity in its own right. This willful ignorance of the history
and technology of computing has powerfully distorting effects—chief among them the capacity
for distortion itself. This is best viewed by looking at the sheer range of visions cyberspace has
been used to anchor. In their wildly divergent, mutually contradictory guises, the literature of
cyberspace speaks eloquently, if inadvertently, to both the conceptual utility of the concept and to
its methodological failings.

Optimistic critics are busily dedicated to the belief that computers are the portals to a freer,
better future. Positive predictions for cyberspace center on the belief that the Internet can
unmake rigid social boundaries separating races, classes, nations, genders, sexualities, ages,
creeds, and so on; such readings get much of their power from the art of powerful—if frequently
convoluted—assertion. Donna Haraway’s essay “A Cyborg Manifesto: Science, Technology, and
Socialist-Feminism in the Late Twentieth Century” is commonly felt to be the founding moment of
the “positive” or celebratory readings of computers, and it models the art of celebratory assertion
so convincingly that hordes of critics have followed in her wake. In her “Manifesto,” Haraway
uses the image of the cyborg—a being part human, part chip; part woman, part “integrated
circuit”—to propose a socialist feminism that has since become the basis of what feminist theory
calls “postfeminism,” a type of radical gender politics that ties together a number of strands in
current poststructuralist and feminist theory and that is ultimately interested in theorizing what
Haraway herself named as the ultimate goal of her “ironic vision™: “a world without gender.” As

Barbara Kennedy explains it, “Cyberfeminism has been crucial to the current élan of cross-cultural,
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theoretical and differential plateaux of contemporary feminisms . .. Post-feminism seeks to rethink
the feminist voices of the 1990s, to present situational ethics, where we need to move beyond
debates of binary thinking in which gender is perceived as immutably masculine or feminine: we
should be concerned to go beyond established notions of gendered identity or subjectivity” (Bell
and Kennedy 284). The computer’s power to anchor fantastic visions of a new world order—or
rather a new world (dis)order—has thus become the basis for an entire school of feminist, or
post-feminist thought (see especially work by Chela Sandoval, Judith Squires, and of course
Haraway herself). Likewise, the computer underpins similarly liberatory visions of popular culture
and subcultures (as exemplified in work by theorists such as Vivian Sobchack, Arturo Escobar, and
Andrew Ross), queer sexualities and embodiment (as exemplified in work by theorists such as
Timothy Leary, Gareth Branwyn, and Sandy Stone), and space and colonization (as discussed in
the work of Ziauddin Sardar and David Bell). Routledge’s 2000 anthology, The Cybercultures
Reader (edited by David Bell and Barbara Kennedy), is a testament to the breadth and energy of
the bright side of cybertheory, not to mention its blithe self-confidence (the book announces itself
as the cybercultures reader, not a cybercultures reader).

Other critics mirror this logic, yet reverse its optimistic emphasis, arguing that the computer
is about to cost us our identities and even our culture. Relying on a watered-down, essentially
Marxian idea of the machine as that which inevitably mechanizes, and so dehumanizes, its user,
the pessimistic strand of cybertheory foretells a future dystopia that accepts Gibson’s equation
of technological expansion with personal diminishment. Alammist, even bitter visions of what
this all-encompassing mediation will mean for our capacity to live meaningful lives are to be
found in the work of theorists like David Noble, who are adamant in their belief that computers
are destroying such basic and essential entities as education and even books. From the outset,
then, cyberstudies has treated the computer as a grounding mechanism for a series of competing
analytical agendas. Within cyberstudies, computing has become the basis for dreams of liberation,
for nightmares of imprisonment, for cyborg manifestos, for conservative calls to preserve tradition.
As Mark Poster writes in The Mode of Information, “The literature on recent developments

in electronic technology and their impact upon technology has generally gravitated around
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three poles: prophecies of salvation (we are entering the age of the post-human, and our mental
and physical faculties will be enhanced); prophecies of doom (the advent of the post-human is
inevitable, but it will mean the loss of all that is worth preserving in our cultural heritage); and
Luddite calls to resistance (something can be done to defend our humanity against the steady
advance of the machine)” (114). The wide range of ideas about what “cyberspace” is and what it
can be, the range of readings of what it is doing to our bodies, our minds, our culture, and our
future, point to the imaginative power of “cyberspace,” a concept that has provided us less with
practical insight or actual knowledge than with seemingly endless critical energy.

The point is not that one reading of the computer is more “right” or “wrong” than another,
but, rather, that so many readings have been written from so many perspectives about what the
computer means for the future of the body, the subject, identity, culture, and politics. Unburdened
by the constraints of technological understanding, floating free of its own historical context, the
computer is a profoundly productive metaphor, one that can stimulate and sustain any number of
fantastic interpretations precisely because it is itself a cipher, a very visible, increasingly central
part of our culture whose real mechanisms are little known and less understood. Paul Virilio has
described the manic quality of the interpretive energy that surrounds the computer as “frantic
interpretosis,” a phrase that precisely captures both the unending, unstoppable quality of this
emerging discourse and the desperation, even panic, that underwrites it. Within cultural studies,
there are many sites of such “frantic interpretosis™: the body, nation, and the Renaissance stage, to
take a few prominent examples, have all been read so many ways as so many things that they have
ceased to carry much meaning in themselves, becoming instead the means by which larger cultural
phenomena (race, gender, class, materiality, modemity, nationalism, identity) can be interpreted.
Through cybertheory, the computer has become one such site; its particular symbolic work has
been to locate or ground what I will call here our looming post-postmodemity, the growing sense
that once “identity” shifts onto the “platform” of the computer, we will either lose sight of cultural
phenomena such as the body, race, gender, or class, or become free to manipulate those categories
however and whenever we want.

A common cybertheoretical theme is to perfect the transformative promise of cultural studies

7
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by projecting its agenda onto an unreal plane. As early as 1991, Michael Benedikt explicitly
acknowledged the imaginative dimension of scholarship centered on cyberspace: “All the authors
address themselves to the topic with extraordinary seriousness, acumen, and enthusiasm, even
though—and perhaps because—the varieties of cyberspace they imagine, describe, and sometimes
criticize, do not yet exist. Indeed, the very definition of cyberspace may well be in their hands (or
yours, dear reader)” (23). Since its inception, the goal of cyberstudies has remained constant: to
develop an interpretive mode unfettered by reality, to create a space within criticism for futuristic
imagining, to perfect the project of cultural studies by producing an interpretive analogue of
science fiction. The subject of that fiction is the computer. The plot is the story of how the
computer engineers a new global culture. As we have seen, even analyses of computers that are
hostile to the utopian vision of cybertheory participate in this plot, accepting as a matter of faith
that the computer will become—may have already become—not only the primary transmitter of
culture, but the location of culture itself. In this, they follow the lead of Gibson himself, whose
founding gesture was to define cyberspace as a realm whose dysphoric impact was predicated on
its capacity to displace—and so become—the way we live.

It is crucial to see how deeply readings of cyberspace, whether optimistic or pessimistic,
positive or negative, depend on an unexamined and largely uninformed idea of the computer. Like
the vampire in Dracula or the creature in Alien, the computer’s power to scare and thrill depends
on its status as part of the “unknown.” Whether prophesying doom and gloom or predicting endless
utopian liberations, cybertheorists have one thing in common: they use the computer to advance
a preconceived political agenda, and they license themselves to do so by strategically ignoring
both how computers work and what animates computing culture. In this, too, they follow Gibson,
who freely admits that his portrayals of science are not based on careful research or technical
understanding: “Most of the time I don’t know what I’m talking about when it comes to the
scientific or logical rationales that supposedly underpin my books” (qtd. in Coyne 29).

Taken together, cybertheoretical readings of the computer’s impact on culture are so extreme,
and so extremely out of tune with one another, that we ought to wonder just how much real

research underpins any of it. But this question has not been asked, as factual knowledge is neither
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necessary nor conducive to fantasy. Regardless of what the fantasy is, however, the perspectives I
have sketched above are fantasies. Indeed, what unifies paranoid and celebratory cybertheory is
that few people on either side of the debate have an abiding interest in or deep understanding of
either how computers work or what the people who work on them are like. That’s tautological: if
they had knowledge they could not have the fantasy. As it stands, though, the fantasies that polarize
and paralyze the debate about computing in the humanities threaten to paralyze the humanities
themselves.

Cybertheory tends to focus on modes of Internet-mediated experience and communication
(what Lawrence Lessig calls the “content layer” of the computer), and it does so at the expense
of the “code layer” and “physical layer” (these terms are also Lessig’s) that, as we have seen,
make up the computer’s complex operational totality. In this, cybertheory has allowed itself to be
seduced by the special effects of the phenomenon it theorizes: as the computer-generated reality of
“cyberspace” largely obscures the specific hardware and software that enable those encounters,
so the cybertheorist conveniently ignores the complex mechanism that creates the effect of
cyberspace. The concept of cyberspace seems, indeed, to be expressly designed for the purpose of
keeping computers decontextualized. The very word signals the strategically ungrounded quality
of the discourse, whose *“space™ not only floats free of constraint, but also remains eternally empty.
Moreover, as we have seen, the term “cyberspace” situates itself within a metaphorical lexicon
of exploration and conquest that has become the defining terminology of the field. The aim is to
configure the cultural impact—present and future—of the computer as an endlessly mappable,
infinitely expanding, borderless unbounded space. As a term, cyberspace empties the computer of
inconvenient content while at the same time permanently dislocating it. Cyberspace, one gathers, is
truly the final analytical frontier.

Some cybertheorists have attempted to grapple with the computer as mechanism. But even
when critics do try to approach the “physical layer” of technology, or the “code layer” of
software, they typically revert to the familiar terminology of cultural studies analogy. A striking
example of such rhetorical maneuvering may be found in Deborah Lupton’s 1995 essay “The

Embodied Computer/User.” In a section entitled “The Frightening Computer,” Lupton analyzes the
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phenomenon of “computerphobia’

Computers, unlike many other household or workplace machines, appear inherently
enigmatic in the very seamlessness of their hardware. Most people have not the
faintest idea what lies inside the hard plastic shell of their PC. The arcane jargon

of the compuiing world, with its megabytes, RAMs [sic], MHz and so on, is a new
language that is incomprehensible to the uninitiated. It is a well-known truism that the
manuals that come with computer technology are incomprehensible and that computer
“experts” are equally unable to translate jargon into easily understood language to help
users unfamiliar with the technology. (484)

Having demonized computers and computer experts as frighteningly “enigmatic” and “arcane,”
Lupton goes on to compare the “incomprehensible™ and “frightening” computer to that catch-all
staple of cultural studies discourse, the monster: “There is something potentially monstrous about
computer technology, in its challenging of traditional boundaries,” she writes. “Fears around
monsters relate to their liminal status, the elision of one category of life and another, particularly
if the human is involved, as in the Frankenstein monster” (484). Lupton concludes her essay by
drawing a dark and menacing analogy with another favorite discursive site of cultural studies: the
unstable female body. The final sentence of her essay reads: “As with the female body, a site of
intense desire and emotional security but also threatening engulfment, the inside of the computer
body is dark and enigmatic, potentially leaky, harbouring danger and contamination, vulnerable to
invasion” (487). By calling computers “monstrous,” “female,” “threatening,” and “dangerous,” and
indicting computing terminology as “incomprehensible,” Lupton frees her reader and herself from
responsibility for knowing anything about computers, while at the same time giving that reader
language with which to “theorize” computers anyway. The cultural theorist can take comfort from
the scare quotes Lupton strategically places around “computer ‘expert,”” which reassure us that
such putative “experts” are at best locked within a prison house of language, speaking an “arcane
jargon” that cannot possibly translate into “easily understood language.” Bridging that gap becomes
the responsibility of the cybertheorist, who accomplishes her end by comparing computers to other
“liminal” categories dear to cultural theory. Pronounced incapable of meaning anythiné on its own
terms, the computer becomes both a monster and a female body, sites that, in the logic of cultural

studies, have no distinct ontology but are instead only able to produce meaning analogically.’’

37Erin O’Connor notes the seemingly boundless theoretical utility of the monster within
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The dominance of “content”-centered interpretation has not gone entirely unquestioned. For
example, Mark Hansen begins his recent study Embodying Technesis: Technology Beyond Writing
by challenging the authority of what he terms the “culturalist position” on technology. Correctly
charging that cultural theorists “invoke technology not for its own sake but as an enabling means
and a material support for a more pressing account of subject constitution,” Hansen notes that
theorists pervasively use technology “as a concrete placeholder for the alterity that has become, at
least in the post-modern academic scene, a compulsory component of any respectable account of
subjectivity” (5). Hansen responds to the theoretical limitations of cultural theory by outlining a
corrective materialist direction for future technocultural criticism that will “liberat[e] technological
materiality from its illegitimate, rhetorically imposed reduction,” and “reposition [technology]
as the motive mechanism of an antiformalist, externally oriented neodeconstructive critical
practice responsive to the ‘demands’ of embodied reality” (21). In other words, Hansen proposes
to focus on the materiality of technology that technocultural criticism elides, and to use that
focus as a basis for a new radically materialist critical practice. Repeatedly urging his reader to
“embrac[e] technologies as materially robust entities,” he strives to use technology as a “site fora
resistance against the imperialism of theoretical (or linguistic) idealism™ (8). Hansen’s response to
cybertheory is thus to indict its exclusive focus upon identity and subjectivity as complict with the
“imperialism of theoretical idealism,” and to push for an ever-more material materialism. However,
such an insistence upon what Hansen calls “robust materiality” would surely privilege the first,
physical layer: the ever-evolving web of microchips, circuits, and networks that ultimately underlie

and underpin the very possibility of digital data transmission. As such, it does not account for the

cultural studies discourse. She writes: “Forming the centerpiece of studies on issues as varied as
reproduction, imperialism, creativity, spectacle, and the rise of mass culture, monsters seem not
only to be everywhere, but also to be able to mean just about anything. Whatever the context,
though, the ‘monster’ is a figure for what is transgressive and liminal” (210). Meanwhile, feminist
cultural studies frequently figure the female body as a productive site of unauthorized, transgressive
meaning—in Uneven Developments: The Ideological Work of Gender in Mid-Victorian England,
for instance, Mary Poovey proposes that the anaesthetized female body has a “problematic capacity
to produce meanings other than and in excess of” what doctors intended. So similar is the work
that female bodies and monsters do that they are often theoretically conjoined, as in Mary Russo’s
Female Grotesque: Risk, Excess, and Modernity or Nina Auerbach’s Woman and the Demon: The
Life of a Victorian Myth.
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ever-increasing theoretical abstraction of computing code from computing hardware. Hampered
by a failure to integrate the symbolic component of programming, Hansen’s analysis ultimately
suffers from the opposite problem to Lupton’s.

A central contention of The Art of Code is that a nuanced, historically-inflected understanding
of computing must acknowledge both the abstractions described in earlier sections of this chapter
and the aesthetic, cultural, and political effects of those abstractions. However, a lack of specificity
is endemic to discussions of technology that come from within the literary and cultural studies
traditions. The result is as predictable as it is condemnable: distorted analytical paradigms that
underwrite inaccurate and irresponsible histories. David Bell’s introduction to The Cybercultures
Reader unwittingly offers a telling summary of these distorted paradigms. According to
Bell, there are four main ways of examining cyberspace. The first is to think of cyberspace
“cartographically or schematically,” as “the sum of the hardware that facilitates its practice.” But
such a hardware-oriented reading, Bell warns, would have to acknowledge the origins of the
Internet in “the war machine”; in fact, “we might see traces of military-industrial ideologies still
at work in the technologies we now befriend and entrust” (2). That, it is implied, would be bad.
The second approach is to consider “the political economy of cyberspace”; however, this would
also be bad because it would involve “seeing in the systems a coding which mutates the logic of
industrial (global) capitalism—domination, expansion, incorporation, consumerism—into digital,
viral form” (2). Because such readings yield undesirable insights that complicate any attempt
to embrace the computer as an agent of liberatory critical practice, they are not in themselves
particularly desirable.

Bell sketches out two alternative approaches, “the traces of which have to be set aside from the

ones sketched above™:

On the one hand we have the impacts of science fiction on the ways cyberspace works
for us, and on the other we have the experiential, subjective sense of the hallucinatory
(wired) world we are engaging with. Let’s begin with science fiction. An important
component of a cultural approach to cyberspace is to find it in our imaginations,

to read its symbolic forms and meanings, to cross-reference to the ways in which

it is represented. As many of the essays in this book make clear, we need to read
cyberspace at the intersections of technology and representation, and see the two as
mutually implicated in constituting our approach.. ..
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What we find in cyberspace is the result of this complex interplay, which
works at the level of subjectivity to produce something akin to Gibson’s consensual
hallucination; for if we ask the question ‘Where are we when we are in cyberspace?’,
we have to move beyond the simple answer that, physically, we are seated in front of
a monitor, our fingers at work on the keyboard. We are there, to be sure, but we're
simultaneously making ourselves over as data, as bits and bytes, as code, relocating
ourselves in the space behind the screen, between screens, everywhere and nowhere.
Moreover, if we believe certain strings of cyberhype, when we are in cyberspace
we can be who we want to be; we (re)present ourselves as we wish to ... we can be
multiple, a different person (or even not a person!) each time we enter cyberspace,
playing with our identities, taking ourselves apart and rebuilding ourselves in endless
new configurations. (3)

Although Bell insists that “‘we need to read cyberspace at the intersections of technology

and representation,” his alternative methodologies perform an extraordinary displacement of
technology in favor of representation, subjectivity, and fantasy. Bell’s liberatory visions are
derived from science fiction (particularly William Gibson’s characterization of cyberspace as a
“consensual hallucination” in Neuromancer), and from the realm of personal experience, from
what he calls our “experiential, subjective sense of the hallucinatory (wired) world.” In these
idealized paradigms, technology merely provides a point of entry into cyberspace: from his seat in
front of the monitor, the cybertheorist moves into “the space behind the screen,” and ultimately
exists “between screens, everywhere and nowhere.” Like Neo in The Matrix, the cybertheorist has
fallen down the rabbit hole, and, like Neo, the cybertheorist will reinvent herself “as data, as bits
and bytes, as code,” in the process appropriating “actual” data, bits, bytes, and code as metaphors
for the “endless new configurations™ of subjectivity made possible “in the space behind the
screen, between screens,” everywhere and nowhere. In Bell’s ideal analytical world, technology
loses all historical and material grounding as actual technologies evaporate in the movement of
cyberspatial transformation, where they are replaced by allegorical technologies representing the
endlessly malleable body and the multiple personalities of the cybertraveler. Concemed more with
eliding the computer’s historical origins than with investigating them, Bell’s reader consistently
shirks scholarly responsibility in order to avoid linking cyberspace to global capitalism and the
military-industrial complex. It is remarkable that nowhere in the hefty Cybercultures Reader do we

find any account of the people who actually imagined and “architected” the Internet.
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The costs of such flagrant disregard for the history of the computer lead to conflations and
distortions of the kinds found in Herbert Sussman’s recent short essay “Machine Dreams: The
Culture of Technology.” In this methodological manifesto, Sussman encourages nineteenth-century
scholars to imagine what he calls “Victorian technoculture” as an important antecedent to
contemporary computing technology. “[T]here are the stirrings of a new project in Victorian
studies,” announces Sussman, and that project involves “recuperating the technological
imagination, the ‘technological feeling’ of the [Victorian] age” (198). As Sussman correctly points
out, the Victorians were fascinated with machines, engines, and contraptions of all shapes and
sizes; but when Sussman effectively collapses two hundred years of technological development
into a sentence, declaring that “we have seen in our own society the transformation from an
economy of iron and steel, continuous with the Victorian factory and the Manchester of Engels,
to a ‘post-industrial’ age; from the machine as snorting locomotive or smoking blast-furnace to
the machine as sleek, intelligent rival of the human, from production in fluff-filled mills and
superheated foundries to immaculate, if still toxic, microchip plants” (198), he essentially makes
the Victorian technological experience coextensive with our present. For Sussman, locomotives,
blast-furnaces, personal computers, and microchips join seamlessly into one technocuitural
narrative.3® Sussman even lists the main technological anxieties of Victorians in ways that
conveniently echo both the dominant concerns of Victorianist criticism over the past two decades
and the prevailing themes of contemporary cybertheory. His list includes “panoptical surveillance;
issues of gender in the masculine ideal of self-control and the attractions of the robotic female;
machinery as spectacle; [...] a deconstructive sense of the machine figured in debates about
prosthesis; and especially the challenge of the unprecedented ‘self-acting’ or intelligent machine to
the idea of the human” (199). The list is instructive. In Sussman’s world, technology signals a

range of anxieties that are strikingly consistent—and strikingly postmodern—over time. To hear

38 Another remarkable instance of this type of argument appears in Tom Standage’s The Victorian
Internet: The Remarkable Story of the Telegraph and the Nineteenth Century's On-line Pioneers.
Standage’s book effectively situates the Victorians as the originators of the Internet. Sussman
excitedly echoes these connections between wired Victorian and wired Victorianist, announcing
that “the e-mail of Victorianists now speeds through the material base of undersea phone wires laid
down by the Victorians themselves” (200).
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him tell it, the Victorian technocrat is not substantially different from the postmodern theorycrat,
nor was the era of the steam engine substantially different from the age of the microchip.
Sussman’s argument may not, finally, tell us much about Victorian technocuiture, but it tells us a
great deal about tie reductive nature of cultural studies argument.

One must question the usefulness of proceeding with definitions that ignore, or wilfully
obscure, important historical and technological differences. Lumping together superheated
foundries with overclocked microchips—or suggesting that Victorians tapping out telegrams are
no different from Victorianists tapping out e-mail—ultimately disregards the specific contexts of
technological innovations, the specific cultures that produced them, and the specific material and
aesthetic natures of the technologies themselves. When placed under scrutiny, neither Hansen’s
insistence on the “robust materiality” of technology nor Sussman’s blithe continuum between
technologies past and present can begin to offer an adequate conceptualization of either digital
computer technology or the aesthetic mentality that has led computer programmers to shape that

technology for more than half a century.

1.5 A Manifesto for Informed Theory

The argumentative stasis regarding computers in the humanities finds its antithesis in the markedly
productive, even revolutionary, debates and theories about computing being conducted among
hackers themselves. Whereas a number of people in the academy are using computers to forward
interpretations that finally fail to take computers into account, there are a number of programmers
who have found themselves called upon to provide interpretations of the computer research they
have undertaken. The difference between the two groups is as amusing as it is telling. Where

the one group is made up of politicized theorists who feel no responsibility to grasp the actual
technology or issues they expound upon, the other has repeatedly bumped up against politics
despite its best efforts to avoid doing so. Ironically, those who are most qualified to explain the
politics of computing are the hackers who have had to explain—often under duress—their beliefs,

their work, and the way their beliefs and work shape one another. This happens commonly enough
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that Eric Raymond and Linus Torvalds, two of the most influential such spokesmen of recent
years, have coined a term for it: the accidental revolutionary. Each uses it in the title of a recent
book: Eric Raymond’s Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary began as a series of self-published web essays designed to document
the anthropology of hacker culture. Torvalds was cajoled into writing his recent memoir, Just For
Fun: The Story of an Accidental Revolutionary, by the public perception of him as the brilliant,
anarchic mastermind behind the open source movement—a perception Torvalds persistently tries
throughout the book to deflate, dismantle, explode, undermine, ridicule, and finally destroy.

As Raymond and Torvalds use it, the term “accidental revolutionary” speaks to priorities
as well as artitudes: where cybertheorists consciously style themselves as radical, political,
transgressive thinkers, as people whose ideas about computers will revolutionize our ideas about,
well, everything, “accidental revolutionaries” find transgression thrust upon them. Torvalds has
tellingly referred to himself as the “‘hood ornament” of the open source movement, while Raymond
refuses to inhabit the role of Hacker Laureate by writing as idiosyncratically and widely as
ever—his Web site includes sections on his pro-gun sentiments and his libertarian politics, and he
has recently begun writing a “weblog” that deals with everything from sex to terrorism. While
“accidental revolutionaries” such as Raymond and Torvalds don’t particularly enjoy the limelight
or the label, they have striven to offer the leadership and the philosophy that their fellow hackers
have demanded of them. The stance of the accidental revolutionary is thus characteristically ironic
and eamnest by turns, and the “‘gurus” of the movement are as self-effacing as they are important.

Not surprisingly, given their history and their counter-culture, hackers are absorbed by
questions that have a great deal to do with what it means to defy the incredibly powerful marketing
juggemaut that has grown up around computers, especially around operating systems. These
questions have to do with articulating a continued, ongoing rationale for resisting the huge, hugely
lucrative economic system that has allowed software giants like Microsoft, Apple, Oracle and
others to make billions of dollars selling something that hackers believe should be free. As such,
hackers are equally concerned with both philosophy (why give up a chance to get rich?) and with

pragmatics (how do you do meaningful work outside the system, and how do you share it with
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others?). Hackers’ philosophical pragmatism, or pragmatic philosophy, is a heady mixture of
whys and hows that give deep, consequential meaning to the hacker’s work while also explaining
precisely what hacking is and why the non-computing world should care about the work hackers
do. Richard Stallman has been a pioneer in this respect, having entered the political fray almost
a decade before Torvalds and Raymond, and his “GNU Manifesto,” which [ will discuss below,
exemplifies hacker philosophy, combining as it does a set of reasons why programmers should
join the free software movement and listing off the kinds of code he would most like hackers to
contribute to his ongoing GNU project.

Cyberstudies does not devote much space to the questions that preoccupy hackers. For the
hacker, the central issues have to do with where code comes from, who owns it, who writes it,
and how good it is. For the cybertheorist, there is just the impersonal, artifactual monolith: the
computer. No sense of culture surrounds that monolith, apart from the vaguely amorphous culture
that monolith is said to redefine. No sense of history surrounds it, apart from the vaguely defined
past and amorphously free or imprisoned future that monolith is said to separate. And this means
that no sense of specificity surrounds the computer, either. In cyberstudies there is little sense that
computers differ from one another in what they do and how they do it, nor is there a sense that there
are such things as operating systems and platforms, even though these are the things that more than
anything else shape one’s experience with a computer (the same PC can run a plethora of different
operating systems; at a certain point, the hardware has less to do with one’s relative liberation or
constraint than software). Where both cybertheorists and hackers might be seen as aestheticizing
the computer, then, there is a pronounced difference between their modes of aesthetics and their
effects. For the cybertheorist, aestheticizing the computer (metaphorizing it) is a means of
making it signify politically. For the hacker, adopting an aesthetic attitude toward coding practice
inevitably pushes code into the political realm. Taking an aesthetic attitude toward programming
quickly becomes paipably political. Taking an aesthetic attitude toward The Computer quickly
becomes palpably bogus. As such, the cybertheorist’s desire to make pronouncements about the
nature of computers without actually studying computers results in all manner of buggy arguments.

The phenomenon I am talking about here, as well as the divide between the cybertheorist’s
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fantastical computer and the hacker’s actual one, can best be seen through a simple exercise in
comparing and contrasting analogous documents from cyberstudies and hacker culture. In what
follows, I will read a foundational text of cybertheory, Donna Haraway’s “Cyborg Manifesto,”
against its sister document in hacker culture, Richard Stallman’s hortatory, impassioned “GNU
Manifesto.” Aside from the lucky coincidence of their names, there are compelling historical and
theoretical reasons to put these pieces side by side. Haraway’s essay was written in 1983, and an
early version of it was first published in the “Orwell 1984 volume of Das Argument. Its final
version appeared in her book Simians, Cyborgs, and Women: The Reinvention of Nature in 1991.
Stallman’s manifesto was published online in 1985, and acquired its footnote text in 1993 (adding
footnotes in response to his readers’ responses and questions was all the revision Stallman was
willing to do). Written, disseminated, and revised during the same stretch of years, both essays
purport to bring before their audience a state of emergency and to set out a plan of action for
implementing or creating a better future. The one is centered on addressing the moment in the
history of computing when profit-seeking corporations and their restrictive licensing procedures
stopped the free circulation of code within the hacker community. The other is centered on using
the idea of code to theorize how the capitalist system of patriarchal domination oppresses women.
Stallman’s is a pragmatic approach to liberation: he wants to free software from economic
constraint by writing lots of free software. Haraway’s is a philosophic approach to freedom: her
desire is to free women theoretically by releasing their discourse from the constraints of traditional
rhetoric (whether feminist or patriarchal). Comparing the two can tell us a great deal about the
nature, and the costs, of the schism between cybertheory and programming practice.

Apart from their historical and nominal contiguity, Haraway and Stallman’s essays share a
deeply activist belief in the absolute necessity of unfettered freedom, particularly freedom of
expression. Both are profoundly committed to and concerned with forming and maintaining
communities in the face of what they see as intolerable economic and technological control (what
Haraway calls “the commodification of everything”). Both are profoundly committed to and
concerned with how populations marginalized by this control (women, hackers) can use the tools

most natural to them to fight back. Stallman encourages his fellow hackers to resist commercial
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licensing and join him in writing superior free code; Haraway encourages women to resist the
rigid structures of patriarchal capitalism by developing their innately fluid relationship to all
boundaries—economic, philosophic, ideological, national, sexual, ethnic, or linguistic. Both see
computer technology as the means of effecting a better, freer future—for Stallman, real software
will combat real problems and inequities in the present system of writing and distributing software;
for Haraway, the metaphor of the cyborg will combat real problems and inequities in the present
global distribution of power, wealth, and prestige. In short, both essays are the very calculated
utterances of very intentional revolutionaries (Stallman is perhaps the one hacker who deliberately
and resolutely identifies his activism not as an accident, but as a conscious choice and a serious,
lifelong commitment).

Despite these broad similarities, however, each author pursues revolution in his or her own
way. The most obvious difference between the two is, indeed, succinctly expressed in their own
statements of purpose. Stallman announces: “So that [ can continue to use computers without
dishonor, [ have decided to put together a sufficient body of free software so that I will be able to
get along without any software that is not free.” Haraway, by contrast, says that “This chapter is an
argument for pleasure in the confusion of boundaries and for responsibility in their construction.
It is also an effort to contribute to socialist-feminist culture and theory in a postmodemist,
non-naturalist mode and in the utopian tradition of imagining a world without gender, which is
perhaps a world without genesis, but maybe also a world without end” (151). In other words,
Stallman is building a system; Haraway is trying to dismantle one.

This basic structural difference extends to the authors’ respective styles and subject
matter. Haraway’s manifesto is a heady post-structuralist cocktail of several distinct political
discourses—socialism, radical feminism, Marxist matenialism. It is also a post-structuralism whose
most important feature is, arguably, its obscurity. Indeed, as if her “Cyborg Manifesto” were first
of all a manifesto for obfuscation, Haraway begins by announcing not the problem she seeks to
address, nor the solution she wants to propose, but the complexity of her own prose. The essay’s
first subsection is titled, “An ironic dream of a common language for women in the integrated

circuit,” and the first sentence of that first subsection announces that
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This chapter is an effort to build an ironic political myth faithful to feminism,
socialism, and materialism. Perhaps more faithful as blasphemy is faithful, than

as reverent worship and identification. Blasphemy has always seemed to require
taking things very seriously. I know no better stance to adopt from within these
secular-religious, evangelical traditions of US politics, including the politics of
socialist-feminism. Blasphemy protects one from the moral majority within, while
still insisting on the need for community. Blasphemy is not apostasy. Irony is about
contradictions that do not resolve into larger wholes, even dialectically, about the
tension of holding incompatible things together, because both or all are necessary
and true. Irony is about humor and serious play. It is also a rhetorical strategy and a
political method, one I would like to see more honoured within socialist-feminism. At
the center of my ironic faith, my blasphemy, is the image of the cyborg.

While the overall gist of Haraway’s project can be intuited by someone familiar with the basic
parameters of her discourse (it would be a stretch to suggest the essay is truly clear to anyone, and
I suspect Haraway herself would disavow complete control over her meaning), someone new to
cultural theory will be unable to identify the discourses Haraway plans to blaspheme, and will
thus be utterly lost from the outset. By contrast, Stallman’s essay makes crystal clear reading for a
programmer, and even, certain especially technical passages aside, pretty clear reading for anyone
else. Where Haraway opens with a catalogue of categories that she intends to unmake, Stallman
opens with a catalogue of the components that have already been made, and a list of those yet to be
created.

So far we have an Emacs text editor with Lisp for writing editor commands, a source
level debugger, a yacc-compatible parser generator, a linker, and around 35 utilities.
A shell (command interpreter) is nearly completed. A new portable optimizing C
compiler has compiled itself and may be released this year. An initial kernel exists
but many more features are needed to emulate Unix. When the kemel and compiler
are finished, it will be possible to distribute a GNU system suitable for program
development. We will use TgX as our text formatter, but an nroff is being worked
on. We will use the free, portable X window system as well. After this we will add a
portable Common Lisp, an Empire game, a spreadsheet, and hundreds of other things,
plus on-line documentation. We hope to supply, eventually, everything useful that
normally comes with a Unix system, and more.

Neither of these languages is comprehensible to an outsider, but the quality and kind of that
incomprehensibility differs profoundly. Haraway adopts an obfuscating, obfuscatory language that
cannot readily be pinned down. This is her way of articulating a feminism that is not prescriptive

(a la Catharine MacKinnon) but that, to her mind, allows readers to move fluidly across normally
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rigid boundaries. Stallman adopts a precise, professional language that is intended to pin down
the exact state of the GNU project at the time that he writes. This is his way of telling fellow
programmers exactly what is needed and of prescribing for them exactly what they must do.
Simply put, then, the difficulty of Haraway's language comes from her desire to unsettle our sense
of language and the world it represents; the difficulty of Stallman’s language comes from his
determination to communicate difficult design concepts with as much accuracy as possible.

The stylistic and thematic differences between Haraway and Stallman’s approaches have
far-reaching effects for the relative powers of their futuristic visions. On a practical level, Stallman
will know when he has achieved his vision of freedom; Haraway will not know when she has
fully dismantled the patriarchal, capitalist, and discursive obstacles that block the way to hers.
On a philosophical level, Stallman’s vision harks backward to the ideals of liberty and free
speech enshrined in the constitution and the First Amendment. (When Staliman talks about “free
software” he means not software that is given away at no cost—although much free software is
free in that sense—but software that is not bound by restrictive licenses. As he succinctly puts
it, software should be “free as in speech, not as in beer.”) Haraway, by contrast, looks forward
to a post-patriarchal feminist-socialist utopia whose values and ethics are—and must always
be—undefined. Most damning of all is what these differences mean for their political goals.
Stallman’s essay actively works in the service of the thing he is arguing for by stating the problem
clearly, recruiting programmers to the cause with well-defined reasons, and by describing projects
he would like programmers to take on. Over the years, thousands of programmers have read
Stallman’s call to arms and have joined his cause. Haraway’s essay, by contrast, impales itself on
the sharp inconsistency of its own uninformed cyber-rhetoric.

Haraway’s dominant image is the cyborg, which she defines as “a cybernetic organism, a
hybrid of machine and organism, a creature of social reality as well as a creature of fiction,” and
her main vehicle for communicating the power of this hybrid organism is the notion of “code.”
“The cyborg is a kind of disassembled and reassembled, postmodern collective and personal self,”
Haraway writes; “This is the self feminists must code” (163). “Coding,” for Haraway is an image

for rewriting, or even for overwriting, the self that has itself always already been “coded” by
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what she terms “the informatics of domination,” those categories of meaning that forcibly limit
our conception of what a “self,” or a cyborgian post-self, might be: “communications sciences
and modern biologies are constructed by a common move—the translation of the world into a
problem of coding, a search for a common language in which all resistance to instrumental control
disappears and all heterogeneity can be submitted to disassembly, reassembly, investment, and
exchange” (164). Coding is, in other words, Haraway’s word for both the dominant mechanisms of
control in the information age and the means of wresting control away from oppressive ideologies:
“The phallogocentric origin stories most crucial for feminist cyborgs are built into the literal
technologies—technologies that write the world, biotechnology and microelectronics—that have
recently textualized our bodies as code problems on the grid of C3I. Feminist cyborg stories
have the task of recoding communication and intelligence to subvert command and control.” In
Haraway’s essay, “coding” operates as both the descriptor for massive social control and the
liberatory metaphor for feminist self-creation.

For Haraway, cyborgs are the special creatures of these massive codifications: “Modern
medicine is . . . full of cyborgs, of couplings between organism and machine, each conceived
as coded devices, in an intimacy and with a power that was not generated in the history of
sexuality. .. And modern war is a cyborg orgy, coded by C3I, command-control-communication-
intelligence, an $84 billion item in 1984’s US defence budget” (151). Bom of the untoward
blending of body and machine, cyborgs are thus the things best equipped to overturn the codified
informatics of domination from within: “Technological determination is only one ideological
space opened up by the reconceptions of machine and organism as coded texts through which we
engage in the play of writing and reading the world,” she notes; “No objects, spaces, or bodies are
sacred in themselves; any component can be interfaced with any other if the proper standard, the
proper code, can be constructed for processing signals in a common language™ (152, 163). “Code,”
for Haraway, is at once ideology and the actual code written into prosthetics and pacemakers
and artificial intelligence and weapons; “code,” one might say, encodes the largely unwitting
complicity of computer technology with the largely oppressive and dangerous powers that be. The

ability of “coding” to convey the idea of a cyborg playfully and effectively undermining the system
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from within thus depends on Haraway’s extraordinarily unproblematic notion of code as a kind of
writing that is presently entirely in the hands of the too-entitled, too thoughtless few, the scientists,
technologists, capitalists, and warmongers whose special access to code gives them corresponding
access to political and economic power. Hence the special force of Haraway’s designation of the
cyborg as “the self feminists must code.”

But what does it really mean to speak of coding a self? And what does it mean to speak
of coding a self in the very moment that coders are themselves trying to write a free code that
will let them be themselves? Haraway's equation of coding with domination is based on utter
ignorance of the “oppression” that coding was undergoing at the very moment she was writing. As
Stallman points out in his contemporaneous manifesto, when corporations make it illegal to give
away code, they deprive programmers of the fundamental gesture of friendship in hacker culture:
sharing one’s carefully crafted code with others. Stallman’s free software project is as much about
salvaging an endangered culture as it is about staging an outraged protest against the proprietary,
stingy economics of corporations. Code is, to Stallman’s mind, and, indeed, to the minds of
everyone participating in the open-source movement (which is now, thanks to Linux, the largest
collaborative project in the history of the world), far more aligned with art and free expression than
with capitalism, nationalism, sexism, or any of the other -isms Haraway stacks onto it. Code is
also, to Stallman’s mind, and to the open source philosophy he speaks for, a fragile, susceptible
thing whose vulnerability to corporate exploitation means it must be steadfastly protected (hence,
for example, Stallman’s special copyleft licensing procedure, which ensures that software licensed
under it will always be free).

Haraway’s vision of cyborgian feminists resisting the encoded oppression of capitalist
patriarchy by metaphorically coding new, improved versions of themselves begins to look
unrealistically ambitious alongside Stallman’s far more literal plea for programmers to reclaim
themselves and their culture by recovering their dying tradition of writing code for the love of it and
then giving that code freely to fellow programmers and, eventually, the world. Indeed, by assuming
so blithely that code belongs to the victors, Haraway manages to reinforce the very equations she

claims she wants to dismantle. Participating in the sort of logic that Stallman is trying to resist, i.e.,
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the belief that code is automatically the sole, proprietary possession of the dominant economic few,
Haraway’s manifesto is manifestly misguided. It secures its vision of transgressive women at the
expense of a technological reality it knows nothing about, and so ironically plays into the hands of
controlling corporate interests by granting it a priori all the control it desires eventually to have.
Haraway's “transgressive” reclamation of coding for the purpose of feminist liberation is thus more
nonsensical than activist, more reactionary than rebellious. One can only speculate about what the
essay might have looked like if its author had informed herself of the actual, complex politics of
computing culture during the 1980s. But one thing is sure: if Haraway had investigated the reality
behind her metaphors, her metaphors would have acted very differently indeed.

In this chapter, [ have demonstrated two distinct, hermeneutically apposite modes of theoretical
engagement with the computer: while programmers have historically layered methodological
abstractions onto the computer in order to facilitate the work of coding, recent cultural theorists
have layered metaphysical abstractions onto the computer as a means of advancing their political
projects. The one has obfuscated the other: as cultural theorists have appropriated the computer
for their own analytical ends, they have effectively obscured programmers’ own philosophical
engagement with their work. As a result, they have neglected to identify an important new
addition to their own field; by mapping politicized interpretive frameworks onto a machine that
they assume has no ties to aesthetic or literary history, they have failed to see the very real, vital
interplay between programming and literary cultures. In the next chapter, I will explore that
interplay, showing how the historical evolution of software technology enabled—some might say

necessitated—a corresponding evolution in programmers’ conception of their work.
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Chapter 2

“At the Edge of Language”: The Art of
Code
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Code!
an ode to Grace Murray Hopper, 1906—1988,
maker of a computer compiler and verifier of COBOL

Poet to poet. [ imagine you

at the edge of language, at the start of summer

in Wolfeboro, New Hampshire, writing code.

You have no sense of time. No sense of minutes, even.
They cannot reach inside your world,

your grey workstation

with when yet now never and once.

You have missed the other seven.

This is the eighth day of creation.

The peacock has been made, the rivers stocked.
The rainbow has leaned down to clothe the trout.
The earth has found its pole, the moon its tides.
Atoms, energies have done their work,

have made the world, have finished it, have rested.
And we call this Creation. And you missed it.

The line of my horizon, solid blue
appears at last fifty years away

from your fastidious, exact patience:
The first sign that night will be day

is a stir of leaves in this Dublin suburb
and air and invertebrates and birds,

as the earth resorts again

to its explanations:

Its shadows. Its reflections. Its words.

You are west of me and in the past.

Dark falls. Light is somewhere else.

The fireflies come out above the lake.

You are compiling binaries and zeroes.
The given world is what you can translate.
And you divide the lesser from the greater.

Let there be language—

even if we use it differently:

I never made it timeless as you have.
I never made it numerate as you did.
And yet I use it here to imagine

'I am grateful to Eavan Boland for permission to cite “Code™ here in full.
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how at your desk in the twilight

legend, history and myth of course,

are gathering in Wolfeboro, New Hampshire,
as if to a memory. As if to a source.

Maker of the future, if the past

is fading from view with the light

outside your window and the single file

of elements and animals, and all the facts

of origin and outcome, which will never find
their way to you or shelter in your syntax—

Let it make no difference.

We are still human. There is still light

in my suburb and you are in my mind—

head bowed, old enough to be my mother—

writing code before the daylight goes.

I am writing at a screen as blue

as any hill, as any lake, composing this

to show you how the world begins again:

One word at a time.

One woman to another.
Eavan Boland’s paean to computer programming is an exceptional moment in the history of poetry.
First, in apostrophizing someone most poets and readers of poetry probably have never heard of,
the poem demands biography. Who, it wants us to ask, is Grace Murray Hopper? Second, in
addressing Hopper “poet to poet,” Boland’s poem operates from the premise that writing computer
code is not only analogous to writing poetry, but effectively the same. The implication is startling:
Boland's “Code” essentially announces the expansion of the poetic canon to include a mode of
writing—and a particular writer—that many see as the furthest possible thing from literary art.
Code, Boland asserts, is not like poetry; it is poetry. And programmers are not like poets; they are
poets.

It is not clear what Grace Murray Hopper, a mathematician who did much of her programming

as an officer in the U.S. Navy, would have had to say about Boland’s claim. A pioneering figure
in computer programming during the 1940s and 1950s, Hopper was born in New York City in

1906, received a degree in mathematics and physics from Vassar College in 1928, and joined

Vassar's mathematics faculty as an instructor in 1931. In 1934 she became the first woman to
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earn a Ph.D. in mathematics from Yale, and in 1941 she won promotion at Vassar to the rank of
associate professor. In December 1943 she resigned her academic position to join the Navy
WAVES (Women Accepted for Voluntary Emergency Service). The Navy promoted her to the
rank of lieutenant in July 1944, and issued her wartime assignment: a Harvard University project
dedicated to computing mathematical tables for the Bureau of Ordnance. Hopper’s commanding
officer at Harvard was Lieutenant Howard Aiken, and she got her first exposure to computing when
she helped him program his electromechanical computer, the Automatic Sequence Controlled
Calculator—also known as the Harvard Mark 1.

After the war, Hopper reverted to inactive status in the Navy reserve, accepted a Harvard
research fellowship in engineering sciences and applied physics, and continued to pursue her
burgeoning interest in computing. In 1949 she joined the Eckert-Mauchly Computer Corporation
founded by the engineers responsible for building the ENIAC digital computer at the University of
Pennsylvania’s Moore School, where she remained through the company’s subsequent incarnations
as Remington Rand, Sperry-Rand, and UNIVAC. In 1966, Hopper returned to active service in the
Navy, working there for the next two decades to standardize its plethora of computer programming
languages. By the time of her retirement in 1986, Hopper had been promoted to the rank of
rear-admiral; at seventy-nine, she was the oldest officer on active duty in the American armed
forces. Hopper died on January Ist, 1992 (not in 1988, as Boland claims).

It is hard to imagine Hopper, who spent her life steadily climbing the then-masculine ladder of
academic, military, and corporate rank, recognizing herself in the feminist romanticism of Boland’s
poem. Rear Admiral Hopper would most likely not have had much patience with this depiction of
her as a sort of techno—earth mother or digital goddess. Nonetheless, Boland’s choice of Hopper as
the image of the programmer-poet is peculiarly apt. In the 1950s, Grace Murray Hopper conducted
important research into compilers, programs that would eventually translate human-authored

“high-level” code into machine-readable instructions.? Fueled by her—correct—conviction that

2 A point of clarification: as | mentioned in Chapter One, Hopper’s “compiler” was not what is
now known as a compiler. Modern compilers translate high-level source code into low-level object
code, while Hopper’s “compiler” only allowed programmers automatically to assemble subroutines
into a larger program. Nonetheless, Boland refers to Hopper as “the maker of a computer compiler”
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high-level programming languages would one day replace hand-coded machine language as human
beings’ dominant mode of interaction with computer systems, she wrote compiler software for the
BINAC and UNIVAC systems and published influential scientific papers on the subject. Deeply
interested in advancing the craft of software development, Hopper traveled extensively to promote
advanced programming techniques; so successful were her efforts that William Aspray and Martin
Campbell-Kelly consider her “the driving force behind advanced programming techniques for
commercial computers, and the world’s foremost female computing professional” of the 1950s
(121). “Probably no one did more to change the conservative culture of 1950s programmers than
did Grace Hopper,” they conclude (187).

Nonetheless, it is strangely appropriate that Boland would structure her tribute to the author of
compiler software through a series of translations between forms of language and communication;
insofar as the poem renders Hopper’s computing achievements in poetic form, it is itself a compiler.
Drawing out an aesthetic relationship between poetry and code, Boland’s poem ultimately makes
the correspondence between the two modes of creation the beautiful thing that her poem describes.
Indeed, Boland’s poem is a paean of appreciation twice over. On one level, it is a feminist
memorial to women’s work, an ode “from poet to poet” spoken across time and space by “one
woman to another” that posits parallels between its subject, Grace Murray Hopper, “maker of a
computer compiler and verifier of COBOL,” and its author, Eavan Boland, maker of a poem about
a woman programmer whose work resembles the work of writing poetry. On another level, “Code”
is an ontological experiment, a poem about what makes a poem a poem and a poet a poet that
posits an essential symmetry between a poem and a program, the language poets write “one word
at a time,” and the language programmers write and compile into binaries: “Let there be language,”
writes Boland, “even if we use it differently.” The one meaning is largely transparent: the poem
is a feminist celebration of women’s fundamental connectedness across time, space, and craft,

a testament to a unifying femaleness that subsumes lesser distinctions such as age, geography,

and uses the term in its modern form, to refer to a program that translates source code into object
code (“You are compiling binaries and zeroes. / The given world is what you can translate”). Given
the centrality of Boland’s compilation/translation analogy to her poem, I follow her logic in this
reading, despite its historical inaccuracies.
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and profession. [t is easy to read Boland’s analogies between computer programmer and poet as
merely reinforcing this vision of female interconnectedness, and yet this would ignore another,
more obscured meaning: “Code” is itself a sort of code, a poem about how poetic computing code
can only be fully read by those who already understand—and write—code as poetry. Boland
makes a parallel between poetic process and programming the basis for her imaginative, reverent
identification with Grace Murray Hopper (I never made [language] timeless as you have / I
never made it numerate as you did. / And yet I use it here to imagine”). In making this parallel,
Boland draws on an analogy that has long been central to computing culture: among programmers,
writing code is frequently understood as writing poetry, and the programmer himself—if he is any
good—is often thought of as an artist.

For Boland, seeing code and poetry as not only analogous, but as two economical and
aesthetically pleasing ways of condensing meaning, is far from troubling. Indeed, it is the means
of enabling one woman to identify with another, an identification that in tumn becomes the
means of celebrating women'’s professional and artistic achievements. But Boland’s portrayal is
exceptional, at least in literary circles. As this chapter will show, computer programmers have
long embraced the idea of computing code as an aesthetic form that possesses literary qualities;
yet twentieth-century writers and literary critics have only begun to entertain a concept of poetry
capable of encompassing the kind of creation that is computing code.> However, rather than
adding to the expanding body of literature that considers possibilities for poetry in an age of “New
Media,” this chapter pursues the sinuous analogies uncovered in Boland’s poem in order to trace
the historical and theoretical connections between computer programming and literary practice.
In so doing, I hope both to expand critical conceptions of poetic practice, and to demonstrate
how models of reading and writing that literary scholars have come to regard as redundant or
reactionary actually retain a great deal of aesthetic and political vitality in programming circles.

The chapter is divided into five main sections. The first deals with computer scientists,

3Some notable recent studies have considered the interpenetration of technology and poetry;
foremost among them are Marjorie Perloff’s Radical Artifice: Writing Poetry in the Age of Media,
Michael Davidson’s Ghostlier Demarcations: Modern Poetry and the Material Word, and Carrie
Noland’s Poetry at Stake: Lyric Aesthetics and the Challenge of Technology.
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computer programmers, and historians of computing culture whose writings and theoretical models
implicitly or explicitly present computer programming as an aesthetic endeavor. | will show that
despite the enormous changes and advances that have taken place in computing technology and
programming methodology over the past half-century, programmers and computing theorists have
consistently employed aesthetic and literary concepts to explain the nature and meaning of their
work. The enormously influential work of Donald Knuth, who has dedicated himself to “the art
of computer programming” since the early 1960s, will be particularly important in framing this
discussion.

The chapter’s second section examines ongoing legal debates about software copyright and
patents in order to focus on the troubled ontological status of contemporary computing code. As |
will show, this debate hinges on the question of whether writing code constitutes a creative activity
akin to literary production, or whether programming is more properly understood as an engineering
practice with purely utilitarian value. The purpose of this section will be to demonstrate that the
ontological status of computing code is not a mere question of metaphor or semnantics; it is central
to one of the most heated and economically significant legal debates of our time.

While the first two sections of the chapter concentrate on defining computing code, the
last three focus on the common historical practice—at least in computing culture—of reading
code as a textual, aesthetic entity. The third section includes a discussion of John Lions, whose
Commentary on Unix 6th Edition with Source Code has been called a “literary criticism” of the
Unix operating system; it is followed by an analysis of Donald Knuth’s “literate programming”
methodology, which enables programmers to generate functional object code for computers while
simultaneously producing beautifully typeset, intuitively structured code for the human reader. The
chapter concludes with a study of the crossover genre of Perl poetry, where poems written in the
programming language Perl are simultaneously programs that can be executed (a Perl poem is not
formally “valid” unless both machines and human beings can read it).

Each section of this chapter aims to illuminate a particular aspect of the close-knit relationship
between code and literature; the overall trajectory of the sections constitutes in turn an attempt

to trouble oppositions that have traditionally worked to prevent literary critics from recognizing
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code as a literary genre. As a whole, the chapter will allow me both to question the unexamined
assumption that the work of code is not on the same level, or even the same terrain, as writing

poetry, and to argue for new ways—and new languages—for conceptualizing the “literary.”

2.1 Programming Aesthetics

The aesthetic history of code originated in 1843 when Ada Augusta Lovelace (daughter of
Lord Byron) published one of the first theoretical articles on computing. Lovelace wrote her
article in collaboration with the remarkable English inventor Charles Babbage, whose most
important theoretical invention forms its subject. Babbage, often heralded as the man who
designed the first computer, made his most important contribution to the history of computing
during the 1830s when he designed a sophisticated machine called the Analytical Engine. The
Analytical Engine succeeded an earlier Babbage invention, the Difference Engine, with this crucial
distinction: while the Difference Engine could only calculate navigational tables, the Analytical
Engine could perform any programmable operation its operator could specify. Babbage never
managed to build a working model of the Analytical Engine. Even so, its design comprised many
elements of the modern digital computer, including a central processing unit, a memory unit, and
input-output devices. As such the machine signaled to those who understood it the advent of a
new technological era. Ada Lovelace, Babbage’s friend and advocate, was intensely interested
in Babbage’s machine, and in 1843 she collaborated with Babbage to produce an extensively
annotated translation of Italian engineer Luigi Menabrea’s 1842 article on Babbage’s Analytical
Engine, “Notions sur la machine analytique.” Lovelace described the programmable Analytical
Engine in the notes, writing that

The distinctive characteristic of the Analytical Engine, and that which has rendered
it possible to endow mechanism with such extensive faculties as bid fair to make
this engine the executive right-hand of algebra, is the introduction into it of the
principle which Jacquard devised for regulating, by means of punched cards, the
most complicated patterns in the fabrication of brocaded stuffs. It is in this that the
distinction between the two engines lies. Nothing of the sort exists in the Difference
Engine. We may say most aptly that the Analytical Engine weaves algebraical
patterns just as the Jacquard loom weaves flowers and leaves.. ..
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[T]he Analytical Engine does not occupy common ground with mere “calculating
machines.” It holds a position wholly its own; and the considerations it suggests are
most interesting in their nature. In enabling mechanisms to combine together general
symbols, in successions of unlimited variety and extent, a uniting link is established
between the operations of matter and the abstract mental processes of the most abstract
branch of mathematical science. A new, a vast, and a powertul language is developed
for the future use of analysis, in which to wield its truths so that these may become of
more speedy and accurate practical application for the purposes of mankind than the
means hitherto in our possession have rendered possible. Thus not only the mental
and the material, but the theoretical and the practical in the mathematical world,
are brought into more intimate and effective connexion with each other. We are not
aware of its being on record that anything partaking of the nature of what is so well
designated the Analytical Engine has been hitherto proposed, or even thought of, as a
practical possibility, any more than the idea of a thinking or of a reasoning machine.
(qtd. in Rheingold 34)

Noting that the Analytical Engine establishes “a uniting link ... between the operations of matter
and ... abstract mental processes,” Lovelace recognized that as a programmable device, the digital
computer constitutes a technology whose purpose is mimetic rather than simply mechanical:
what impressed her about Babbage’s work was the prospect of a machine that could materialize
thought—of an “engine” that was “analytical.”

In the passage quoted above, Lovelace struggles to describe what she saw as mathematics’
remarkable ability to “endow mechanism with such extensive faculties,” to externalize—and
mechanize—that highest and most human of functions: abstract reasoning. She speaks of the
Analytical Engine as a sort of cognitive loom that “weaves algebraical patterns.” She speaks of the
Analytical Engine’s combinatorial weaving of “general symbols” as a type of language formation
(“a new, vast, and a powerful language is developed for the future use of analysis”). She speaks of
the uniqueness and superiority of the machine capable of generating the language that will “wield
... truths” beneficial to “mankind.” For Ada Lovelace, “the idea of a thinking or of a reasoning
machine” conjures Romantic images of poetic genius—the Analytical Engine “does not occupy
common ground with mere ‘calculating machines.’ It holds a position wholly its own.” Byron’s
daughter effectively casts Babbage’s machine as a technological Byronic hero and casts the work
of controlling and instructing that machine as an aesthetic act (“not only the mental and the

material, but the theoretical and the practical in the mathematical world, are brought into more
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intimate and effective connexion with each other”). While J. A. N. Lee writes that Lovelace “[saw]
the syntactic format of poetry as an analog to the format of programs” (80), [ propose here that
Lovelace’s aesthetic conception of programming signals more than a mere analogy. In her writings,
Lovelace repeatedly tries to make programming itself into an art form.

Although Ada Lovelace’s actual scientific contributions to Babbage’s computing projects
are a matter of dispute among historians,* her figural contribution to programming history is
foundational. Just as Howard Aiken “consciously saw himself as Babbage’s twentieth-century
successor” (Campbell Kelly and Aspray 71), early programmers self-consciously resurrected the
aesthetic language of Byron’s daughter to describe their craft. Although the idea that computer
programming is a creative art has persisted throughout modern programming culture—often
sustaining that culture, giving it identity, and allowing it to thrive—it is important to note how
that aesthetic idea has evolved alongside computing architectures themselves. While Lovelace
aestheticizes computer programming by applying Romantic metaphors to Babbage’s mechanical
calculating, programmers from the 1950s onward grounded their aesthetic models in the stored
program computer based around the von Neumann architecture (described in Chapter One). Under
the architecture of the modern digital computer, as we have seen, code became an ontological
entity in its own right, independent of hardware or of any other evidently material manifestation.

Writing in Computer Power and Human Reason (1976), Joseph Weizenbaum discusses the

4Joan Baum eulogizes Lovelace as “a remarkable lady, overlooked in the history of science,
a Victorian woman working presciently in a man’s field” (xiv); Howard Rheingold calls her the
“founcing parent of the art and science of programming” (31); and the U.S. Department of Defense
even named its ADA programming language after her. Recent computing historians have been more
skeptical about Lovelace’s accomplishments, often blaming distortions of fact upon celebratory
feminist historiography. Doron Swade criticizes the tendency to lionize Lovelace, saying that
“[s]he is celebrated as a woman who had apparently defied the oppression of her sex to make a
mark in a man’s world, and the need for such champions has regrettably distorted her contribution™
(169). Martin Campbell-Kelly and William Aspray comment that “the extent of Lovelace’s
intellectual contribution to the Sketch has been much exaggerated in recent years.. .. Scholarship of
the last decade has shown that most of the technical content and all of the programs in the Sketch
were Babbage’s work™ (57). Babbage scholar Bruce Collier is most blunt: he calls Lovelace “the
most overrated figure in the history of computing” (qtd. in Swade 168). Swade summarizes the
debate about Lovelace’s understanding of mathematics and her contributions to Babbage’s projects;
see 155-171.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aesthetic implications of this shift:

There is a distinction between physically embodied machines, whose ultimate function
is to transduce energy or deliver power, and abstract machines, i.e., machines that
exist only as ideas. The laws which the former embody must be a subset of the laws
that govern the real world. The laws that govern the behavior of abstract machines
are not so constrained. ... A computer running under control of a stored program

is thus detached from the real world in the same way that every abstract game is.

... The computer, then, is a playing field on which one may play out any game one can
imagine. (111-13)

Computer Power and Human Reason is a deeply reactionary work, a product of Weizenbaum's
virulent antipathy to the field of Artificial Intelligence and to emergent cultures of computer
hackers. Nevertheless, Weizenbaum is prepared to admit the aesthetic and imaginative potential
of the stored program architecture. Recognizing that architecture’s crucial distinction between
physically embodied machines (computing hardware) and abstract machines (the digital processes
running within that hardware), Weizenbaum identifies those abstract machines (‘“‘machines that
exist only as ideas™) as extensions of the human imagination. While physically embodied hardware
is governed by physical laws, the abstract “machines” (or digital processes) running on that
hardware are limited only by the limits of human invention. Despite Weizenbaum’s resolute
opposition to the idea that computers could exhibit human faculties such as intelligence or reason,
he admits that computer programmers can—and do—understand code as a medium for aesthetic
creation. The Romantic spirit of his vision thus echoes the spirit of Lovelace’s original conception
of the computer as a poetic machine.

The metaphoric work that Ada Lovelace had to do in order to convert Babbage’s engines into
poetic constructs was extreme; at times her language seems strained to the breaking point by its
efforts to aestheticize Babbage’s unbuilt Analytical Engine. But as mechanisms for software
abstraction took effect during the second half of the twentieth century, attempts to aestheticize
code did not seem nearly as contrived; what was for Lovelace a flight of fancy is for modern
programmers simply the proper language for describing the work that they do. In what follows,

I will trace the evolution of the aesthetic analogy in twentieth-century computing culture. That
analogy has two main phases, corresponding to the shift from machine language to more abstract

high-level programming languages. As coding techniques were abstracted into language, the

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



aesthetic imagery surrounding programming evolved from a generalized aesthetic language to a
specifically literary one. By the time high-level programming languages came into widespread use
during the 1960s, it had become customary to conceptualize programming as a form of literary
composition.

Since the early days of stored-program computing, programmers have not only compared their
work to art, they have believed that their work is art. Early programming aesthetics were born
out of necessity—given the significant constraints of memory and processing power in early
computers, programmers needed to make programs perform complex tasks with as few instructions
as possible. Writing elegant, compact code was quickly elevated to the status of an artform: John
Backus, who wrote the FORTRAN programming language at IBM between 1954 and 1957,
observed that early programmers who wrote in the dense, difficult machine language or assembly
language “rightly regarded their work as a complex, creative art that required human inventiveness
to produce an efficient program” (“History of FORTRAN™ 25). Correspondingly, corporations
sought to hire programmers who manifested a creative, artistic sensibility. Nathan Ensmenger
notes that during the 1950s, “creativity and a mild degree of personal eccentricity” were widely
believed to be signs of programming talent. (39). Though they were technically “organization
men,” programmers were very far from following either corporate norms of hierarchical behavior
or, in some cases, from feeling loyalty to corporations themselves. Modeling themselves after
creative artists, computer programmers enjoyed more individual autonomy than was normal within
the 1950s corporate structure; corporations, in turn, tolerated programmers’ bohemian, aesthetic
ideals in the belief that an aesthetic sensibility was best suited to the job of programming.

While the association of code with art permeated early corporate programming culture, it
crystallized most clearly in the figure of the computer hacker. Unlike corporate programmers,
hackers largely spent their time on minicomputers—smaller, transistor-based computers that
started to appear in the late 1950s—in academic computing centers, and were thus even more free
than their corporate counterparts to explore the aesthetic potential of code. In Hackers, Steven
Levy gives a detailed history of the art of code during this era, showing how the term “hacker”

has always indicated a mastery of computers and programming that goes beyond mere technical
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proficiency and reaches into the realm of the artistic. Levy’s description of a young hacker named
Peter Deutsch approaching MIT’s TX-0 computer in 1959 makes this aesthetic association clear:
“Something about the orderliness of the computer instructions appealed to him: he would later
describe the feeling as the same kind of eerily transcendent recognition that an artist experiences
when he discovers the medium that is absolutely right for him. This is where I belong”™ (17, original
emphasis). These early programming enthusiasts fully understood that the flexibility and potential
of the computer was limited only by the flexibility and potential of its programmer: a computer
could do anything a programmer could make it do. The belief that “you can create art and beauty
on a computer” was deeply embedded in the “hacker ethic,” the foundational manifesto of hacker
culture (30). For hackers, “code had a beauty of its own” (Levy 30).

The programming aesthetic Backus and Levy describe in early corporate and hacker
programming cultures is firmly grounded in the mechanics of machine and assembly language
programming. However, as I described in Chapter One, programming techniques during the
1960s moved away from these abstruse, difficult methods and toward more accessible, flexible,
and hardware-independent “high-level” languages. This shift also marked the moment that
corporations began formally to “manage” the programmer by defining and delimiting his work. In
Windows on the Workplace, Joan Greenbaum notes how one important technological development,
IBM’s unified System/360 architecture, marked the advent of a new understanding of the nature

and culture of programming:

The first step that management took to gain control over the programming workforce
was to divide the conceptual work of programming from the more physical tasks

of computer operations. Although this division was put into effect in the aerospace
industry in the mid-1950s and subsequently used by companies that had defense
contracts, it wasn’t until the mid-1960s that it spread elsewhere. By 1965, when IBM
began installing the general-purpose System 360, both the more expensive hardware
(a large mainframe computer) and the easier to use software (an operating system that
could be controlled through commands rather than operators working switches), gave
upper and middle managers room to begin enforcing the separation of programming
from operations. Operators were to stay in the “machine room” tending the computer,

5In his 2001 dissertation From “Black Art” to Industrial Discipline: The Software Crisis and
the Management of Programmers, Nathan Ensmenger gives an invaluable review of the managerial
literature surrounding 1950s and 1960s corporate software development—see especially pp. 1243,

and pp. 93-165.
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while programmers were to sit upstairs and write the instructions. Those of us in the
field at the time remember feeling that a firm division of labor had been introduced
almost overnight. (44-45)

These new managerial distinctions between programmers and operators, writers and mechanics,
worked to contain what had become a fairly unruly, iconoclastic group within the corporate
structure. With System/360, IBM introduced a hardware design that not only streamlined
programming, but in so doing made it possible for corporations to streamline, control,
and discipline programmers themselves. This managerial potential would only grow as
machine-independence became an important design factor in high-level programming languages.®
As programmers lost contact with hardware, they became writers who no longer needed to
understand how to manipulate the intricate idiosyncrasies of specific mechanical systems. This in
turn represented a threat to the culture of programming that had grown up over the previous two
decades: as hardware operation became separate from software production, programmers risked
losing to bureaucratic compartmentalization the bohemian independence of their craft. However,
programmers responded to these new programming techniques by adapting the aesthetic imagery
that had grown up around early coding practice. Once the work of manipulating machine code
had been abstracted into the work of manipulating language, the act of programming computers
began to take on specifically literary connotations. As IBM project manager Fred Brooks put it in

his 1975 book The Mythical Man-Month: “The programmer, like the poet, works only slightly

$Writing in 1998, Yale computer scientist David Gelernter criticizes the by-then thirty-year-long
managerial effort to eliminate aesthetics from programming practice. Noting that “[a] good
programmer can be a hundred times more productive than an average one, easily,” Gelernter argues
that “[t]he gap has little to do with technical or mathematical or engineering training, much to
do with taste, good judgment, [and] aesthetic gifts.” Corporations ignore this fact at their peril.
Criticizing software managers for their failure properly to appreciate the aesthetic component
of software development, and for their tendency to “discipline” the aesthetic turn wherever it is
found, Gelernter argues that “[t]he fact that software’s biggest hits are exactly the systems that are
repeatedly praised for elegance . ..ought to be a clue to the flummoxed industry that elegance has
something to do with good software, that there is a connection somewhere between aesthetics and
success” (Machine Beauty 26). To facilitate the production of better software, Gelerter proposes
dissolving educational barriers that define “computer science” as a scientific or engineering
discipline and isolate it from aesthetics. “Great technology is beautiful technology,” he writes. “If
we care about technology excellence, we are foolish not to train our young scientists and engineers
in aesthetics, elegance, and beauty” (Machine Beauty 129).
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removed from pure thought-stuff. He builds his castles in the air, from air, creating by exertion
of the imagination.” Dependent on language rather than on machines, programmers could now
easily understand their dematerialized “exertion of the imagination” as an explicitly literary form
of composition.

The first true high-level programming language, FORTRAN, appeared in 1957, and was
followed by literally hundreds of others. Writing in 1991, programming language historian Jean
Sammet comments on the role of literary aesthetics in driving this linguistic explosion:

In my judgement, it is the personal needs and interests of people far more than the

functional needs which have led to the creation of more than 1,000 languages over a

35 year period. First, there are enormous differences of personal taste on style and

syntax. One need only look at COBOL and APL as representative of the extremes of

readable/verbose and concise/cryptic notation to see that point, and there are strong

defenders of each approach. In fact, when one looks at the rationale for creating a new

language, one often finds a statement along the lines of “my new language will be

easier to use or better to write or read than any of the preceding ones.” However, the

new language designer generally has very little evidence to support that claim, and in

the last analysis it almost always boils down to a question of personal style and taste.

(“Programming Language History” 49, my emphasis)
It has become commonplace for programmers to comment on the “expressive” potential of different
programming languages, just as literary authors might compare the expressive possibilities of
French and English or of different poetic forms. Indeed, programmers have often criticized the
aesthetic merit of various languages. Legendary programming theorist Edsger Dijkstra claimed
that programming COBOL “cripples the mind,” and other programmers called the language
“ugly” (Shneiderman 30). As a counterpoint, consider Alan Perlis describing the language Algol
60: “This language proved to be an object of stunning beauty,” he remarks. “Where Algol 58
was considered quite properly to be a draft, Algol 60 was appreciated, almost immediately, as
a rounded work of art” (Wexelblat 88). For Eric Raymond, the expressive potential of LISP (an
Artificial Intelligence language developed by John McCarthy in the late 1950s) was the key to
the flourishing of hacker culture during the 1960s and 1970s: “LISP freed ... hackers to think in
unusual and creative ways. It was a major factor in their success, and remains one of hackerdom’s

favorite languages™ (11). Although the move from machine language to higher-level languages

had what some programmers considered to be negative consequences—chief among them being
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loss of contact with computing hardware—it allowed for the creation of a new programming
sensibility. By the 1960s, the programmer’s “complex, creative art” had taken on the contours

of a specifically literary enterprise. In his classic 1971 study, The Psychology of Computer
Programming, Gerald Weinberg notes how poetic conceptions of code had played a crucial role in
shaping the programming mentality: “At first blush, poetic language would seem to have no place
in programming, yet it plays a role which should be increasingly recognized. ... A programmer
would not really be a programmer who did not at some time consider his program as an esthetic
object” (209). The shift from the “complex, creative art” Backus recognized in the 1950s to the
“poetic language” Weinberg identifies in the 1970s is largely a result of the move from machine
and assembly code to high-level programming language.

The most extensive treatment of the programmer’s art is the multi-volume, four-decade-long
project of Stanford computer scientist Donald E. Knuth: The Art of Computer Programming. In
1962, publishing company Addison Wesley approached the 24-year-old Knuth, then a Ph.D.
candidate in mathematics and already an accomplished computer programmer, and asked him
to write a book on compilers. Knuth immediately sketched out a twelve-chapter book dealing
with computer programming techniques and began work—but the book quickly took on a life of
its own. By 1966 he had drafted almost three thousand pages. Almost forty years and three
monumental volumes later, Knuth’s magnum opus is nowhere near completion. Volume 4 of the
projected seven-volume series has been underway since 1975, has itself been divided into three
subvolumes, and—according to Knuth’s Web site—is tentatively scheduled to appear in 2007.
Despite its unfinished state, The Art of Computer Programming was chosen by American Scientist
magazine as one of the twelve most important scientific monographs of the twentieth century
(Morrison and Morrison 61). The 1974 Turing Award, the 1979 National Medal of Science, and
the 1996 Kyoto Prize have cemented Knuth's reputation as one of the monumental figures in
modemn computer science. The Art of Computer Programming has achieved an almost biblical
status in the programming world, mostly thanks to Knuth’s meticulous, exhaustive research into
his subject matter. But Knuth’s work is not merely a definitive reference guide or the key to all

computing mythologies; what distinguishes his writing is his abiding concern with the philosophy
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and aesthetics of computer programming, and his oft-repeated insistence on the literary qualities of
computer code. The first sentence of the first volume of The Art of Computer Programming reads:
“The process of preparing programs for a digital computer is especially attractive, not only because
it can be economically and scientifically rewarding, but because it can be an aesthetic experience
much like composing poetry or music” (v; my emphasis). In the preface to his 1992 book Lirerate
Programming, Knuth discards the musical metaphor in favor of the analogy between programming
and literary production: “At first, I thought programming was primarily analogous to musical
composition—to the creation of intricate patterns, which are meant to be performed. But lately [
have come to realize that a far better analogy is available: Programming is best regarded as the
process of creating works of literature, which are meant to be read” (ix). Ina 1993 Open University
program on BBC Radio 5, Knuth solicited submissions for a computer program written in the form
of a sonnet; he has been quite frank about his hope that the Pulitzer Prize committee will one day
award a Pulitzer for the best-written program (Digital Typography 561). If Knuth has encouraged
people to envision computer code as poetry, his readers have returned the compliment: the jacket
cover of the third edition of The Art of Computer Programming reports that “A programmer in
China compared the experience [of reading The Art of Computer Programming] to reading a
poem.” One of the achievements of The Art of Computer Programming—and there are many—was
thus to specify the longstanding analogy between programming and artistic creation. For Knuth,
writing code is a specifically literary artistic endeavor, and if there is one genre that resembles
programming more than any other, that genre is poetry.

Following Knuth’s lead, historians of hacker culture have begun to emphasize how hackers
have come to experience code as a form of literature, and how they have thus come to regard
composing code as akin to writing poetry. For example, Neal Stephenson’s /n the Beginning
... Was the Command Line uses poetic imagery to explain why Unix users retain such reverence
for their abstract, bare-bones operating system when most computing users have adopted fancy
“user-friendly” operating systems like Macintosh and Windows. Arguing that one can come to
appreciate Unix as a poetic artifact, as opposed to a commercial product, Stephenson claims that

the development of the Unix operating system over the past thirty years is best understood as an
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ongoing, eternally unfolding epic poem: “Unix ...is not so much a product as it is a painstakingly
compiled oral history of the hacker subculture. It is our Gilgamesh epic. ... What made old
epics like Gilgamesh so powerful and so long-lived was that they were living bodies of narrative
that many people knew by heart, and told over and over again—making their own personal
embellishments whenever it struck their fancy. The bad embellishments were shouted down, the
good ones picked up by others, polished, improved and, over time, incorporated into the story”
(88). Like Gilgamesh, Unix has been written and rewritten over time. It is the collective result of
a history of collaborative creation, innovation, recording, and revision, one whose polished and
perfected lines contain within them an entire culture’s history.

One result of this epic poetic vision of programming is a pronounced and heated disagreement
between hackers and corporate software vendors about the legal status of code. The belief that
code is a form of artistic expression—one that in turn “encodes” the history of its creation—is, for
many programmers, also the belief that code should be open to all, that, like a poem, everyone
should be free to read it, admire it, criticize it, leam from it, and even rewrite it. The literary
aesthetics of code come into direct conflict, however, with the corporate practice of blackboxing, in
which the “literary” high-level source code is kept secret in order to give software companies a
competitive business edge. Glyn Moody expresses this conflict succinctly in his book Rebel Code:
“Hackers rebel against the idea that the underlying source code should be withheld. For them these
special texts are a new kind of literature that forms part of the common heritage of humanity: to
be published, read, studied and even added to, not chained to desks in inaccessible monastic
libraries for a few authorized adepts to handle reverently” (4). The conflict between corporate
blackboxing and programmers who believe source code should be freely available to all is more
than a mere philosophical quibble. As I will show in the next section, the debate about whether

code is literature grounds one of the most economically significant legal struggles of our time.
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2.2 Intellectual Property Law and the Ontology of Code

The founding principle of Knuth’s writing on programming—that code has an aesthetic and
literary appeal, that those who speak its languages might appreciate its merits as a lover of
literature might appreciate Paradise Lost or Hamlet—issues an unexpected challenge to literary
scholars, not to mention librarians. Knuth has joked about the confusion that the title of his major
work has generated, noting the existence of bibliographic referenccs to “The Act of Computer
Programming,” and pointing out that Cornell University librarians shelved his books in its Fine
Arts Library, where they “apparently sit neatly on the shelf, without being used” (Literate
Programming 2,7). One can take a certain delight in imagining a puzzled librarian shelving a
category-defying text like The Art of Computer Programming under “Art” rather than under
“Computer Programming.” But behind Knuth’s lighthearted quips lies a complex debate about the
ontological status of software and the nature of the work that programmers do.

This debate finds its most immediate articulation today in the application of intellectual
property law to computer programs. The central question driving the debate—whether software
should be protected by copyright law, by patent law, by both, or by neither—ultimately comes
down to one of ontology: what exactly is a computer program? Is it a machine, a process, an act
of creative expression, or a hitherto unimagined amalgam of all three? In his written conclusion
to Folsom v. Marsh (1941), Justice Story argued that intellectual property debates often hinge
around such fine ontological distinctions: “Patents and copyrights approach, nearer than any other
class belonging to forensic discussion to what many be called the metaphysics of the law, where
distinctions are, or at least may be, very subtle and refined, and, sometimes, almost evanescent™
(qtd. in Koepsell 43). Calling for detailed critical, philosophical, and legal attention to “subtle
and refined” distinctions, Story’s conclusion nonetheless assumes that intellectual property
law rests on a solid metaphysical ground and that its system of classification is sound. Some
forms of intellectual property may prove recalcitrant, Story allows, but a thorough philosophical
examination will reveal their true (and, implicitly, one true) ontology. However, no form of

intellectual property has troubled the “metaphysics of the law” and challenged the categorical
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foundations of intellectual property law more than computer software.

The primary legal mechanisms for defining, categorizing, and protecting intellectual
property—patent and copyright law—have long legal histories: scholars have traced the evolution
of patents to medieval Italy (Heckel 68) and modern copyright law dates to Britain’s 1710 Statute
of Anne (Koepsell 46). Drawing upon European precedent, the U.S. Constitution gave Congress
the power “To promote the Progress of Science and useful Arts, by securing for limited Times to
Authors and Inventors the exclusive Right to their respective Writings and Discoveries” (Article [,
Section 8, Clause 8). Although the Constitution here amalgamates *“Writings and Discoveries,” the
products of literary authorship and scientific invention have historically been handled by distinct
sets of laws: copyright and patent, respectively. Until relatively recently, the legal territories of
copyright and patent law have been fairly clear and self-evident. Section 101 of the U.S. Patent Act
defines statutory patent subject matter as follows: “Whoever invents or discovers any new or useful
process, machine, manufacture, or composition of matter, or any new and useful improvement
thereof, may obtain a patent therefore, subject to the conditions and requirements of this title”
(qtd. in Nalley 45). Aiming to foster innovation, to advance knowledge, and to discourage
enduring monopolies, patent law rewards the inventor of a useful, nonobvious, and novel invention
with a limited state-sanctioned monopoly on its use. In return for this limited period of patent
protection—currently twenty years—the inventor agrees to disclose the technical details of the
invention. Individuals or corporations who wish to make use of an invention during its term of
patent protection must in turn negotiate licensing arrangements with its inventor.

Copyright law, by contrast, protects original expression, its primary goal being to safeguard
writers, artists, musicians, publishers, or other copyright holders against unauthorized duplication
of their creative work. Copyrtight protection gives its holder exclusive rights to reproduce,
publish, distribute, and sell a creative work for a set period of time.” Although the Constitution

specifically stipulates that intellectual property law should protect “writings,” the U.S. Copynight

"This limit was originally 14 years, but has varied considerably since then: it once rose to 99
years, but was scaled back to 75 years. However, the Sonny Bono Copyright Term Extension Act
of 1998 extended all copyright expirations for a period of 20 years. At the time of writing, the
costitutionality of this Act is being challenged in the Supreme Court in Eldred v. Ashcroft.
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Act extends copyright protection to “original works of authorship fixed in any tangible medium of
expression, now known or later developed” (qtd. in Koepsell 50). Under this provision, courts have
successfully extended the scope of copyright law throughout the twentieth century to encompass
emergent media of creative expression such as sound recordings, radio broadcasts, and film.
Neither copyrights nor patents can be invoked to protect ideas in and of themselves: patent
law protects the instantiation of ideas in material inventions or processes; copyright law protects
the original expression of ideas in original creative work. An author or inventor may not, for
instance, copyright the “stream of consciousness” literary technique or patent the first law of
thermodynamics; however intellectual property law can protect specific works or inventions that
embody those techniques or laws: James Joyce’s Ulysses, for example, or the internal combustion
engine. The specific ontological distinctions that determine patent or copyright have historically
been reasonably clear: courts merely have to decide whether an entity is an invention that performs
a functional, utilitarian action, or a creative work that serves an expressive, artistic purpose.
Computer programs defy such easy categorization. As written texts, computer programs
are perfect examples of copyrightable expression, and yet they also have a distinct utilitarian
value in that they enable computers to perform work. The very aesthetics of programming
confound the distinctions between expression and functionality upon which intellectual property
law revolves—in his 1974 essay “Computer Programming as an Art,” for example, Donald
Knuth comments that code is most artistic when its formal and functional aspects are perfectly
harmonized: “The ideal situation occurs when the things we regard as beautiful are also regarded
by other people as useful” (Literate Programming 9). Elliot Turner Nalley summarizes the crux of
the debate thus: “Computer software looks like text. It is composed of words arranged in lines
written on a page (a literal page when printed out; a virtual page when viewed on a computer
monitor). It is the expression of an idea and, therefore, an appropriate subject matter for protection
by copyright.” However, “[c]Jomputer software works like a machine. It is most easily perceived as
such when it behaves as a literal machine, as part of a mechanical process that performs a visible,
physical act” (43). As I will show, the question of whether software is a “text” or a “machine”

has crucial implications for the aesthetics of computer programming described in the first section
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of this chapter. The programmer’s tendency to conceptualize his work as a literary art is not
merely metaphorical: there are powerful legal issues underwriting it. Those issues in turn have
far-reaching implications for the prevailing tendency within literary studies to ignore the textual
and aesthetic qualities of computer software. Simply put: by leaving the question of code’s
ontological status to lawyers and corporations, literary critics have thus far absented themselves
from what may well be the most politically and economically profound literary debate of our
times. [ will develop this point shortly, but first I want to provide some background about the
history of software’s legal status.

Originally, computer programs did not enjoy any legal protection at all—nor did they need it.
As I explained in the previous chapter, early computer companies did not draw clear distinctions
between hardware and software, distributing operating systems and other programs freely with
their computers on the premise that hardware was the valuable aspect of the system, while software
was merely a component that enabled the customer to make use of the system. In 1969, IBM
unbundled software from hardware, creating a large-scale corporate software economy; in the
1970s, the cost of computing hardware fell rapidly, to the point where “hobbyist” computers (the
forerunners of today’s personal computers) started making their way into the home. Software, once
freely shared among corporations and users, became intellectual property during this time, and
lawmakers and corporations alike began to seek ways to protect it. During the 1960s and early
1970s, some companies invoked trade secrecy law to protect their programs. Reasonably effective
in the days when software companies developed and sold custom-designed programs to a limited
number of corporate customers, trade secrecy law became less and less useful during the 1970s. As
a burgeoning software market emerged, software vendors abandoned the goal of tailoring programs
to the needs of individual clients, and with the invention of the personal computer, more and more
people began using computers outside the centralized control of a corporate structure. In such a
climate, trade secrecy laws could protect only the most specialized and restricted of programs.

In 1972, the Supreme Court heard and rejected its first software patent suit, Gottschalk v.
Benson. At issue was a computer program that implemented a new method of turning decimal

numbers into pure binary numbers. Robert Merges explains Justice Douglas’s rationale for denying
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the patent:

Justice Douglas understood algorithms implemented in computer software as pure
mathematical abstractions. This made his decision in Benson an easy one; because
algorithms are timeless abstractions plucked in their entirety from nature’s library, they
are unpatentable. This is, after all, the treatment that patent law gives to all abstract
truths, all “scientific principles,” all “products of nature.” Once algorithms are equated
with “pure mathematics,” they are assigned to a category of discovered universal
truths. (2229)

While Douglas’s rationale seems conceptually flawed—as Merges points out, it is difficult to equate
“a piece of software code, written in the ‘C’ programming language for some prosaic function such
as calculating grade point averages or checking a bank balance, with the discovery of Newton’s
laws of gravitation, or the Pythagorean Theorem” (2229)—it set a precedent for regarding software
as unpatentable material. And yet the government faced substantial corporate pressure during the
1970s to protect the product of the nascent software industry. In 1974, responding to the pressing
need to find a definitive way to include software in the intellectual property matrix, Congress
convened the National Commission on New Technological Uses of Copyrighted works (CONTU).
The primary purpose of this commission was to study and define the nature of software, and to
determine how legislature should handle this new form of property.

In 1978, after several years of hearings and discussions, CONTU published its final report.
Ultimately, the commission resolved the problems of software definition very simply. In a
section entitled “Foundations for the Recommendations,” the CONTU report argued that
computer programs, although a new form of textuality, were analogous to other forms of written
communication:

Computer programs are a form of writing virtually unknown twenty-five years ago.
... They are prepared by the careful fixation of words, phrases, numbers and other
symbols in various media. The instructions that make up a program can be read,
understood, and followed by a human being. (23)

Advising some necessary exceptions to standard copyright law—such as the consumer’s right to
“copy” a computer program by loading it into the computer’s memory, and the right to make a
backup duplicate version—the CONTU report recommended that Congress define computer

programs as “literary works” and protect them under copyright law. In turn, the CONTU report
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notes that these recommendations were in accord with decisions reached by similar commissions in
other countries—both the World Intellectual Property Organization and Great Britain’s Committee
to consider the Law on Copyright and Designs had drawn similar conclusions about the nature of
software and the use of copyright law to protect it (27-28).

The most remarkable section of CONTU's report, however, is the prescient dissent produced
by one of its commissioners, nonfiction author John Hersey. Strenuously disagreeing with the
Commission’s definitions and recommendations, he argued that “copyright is an inappropriate,
as well as unnecessary, way of protecting the usable forms of computer programs” (69). While
Hersey's rationale for his position occasionally degenerates into reactionary ranting about
the danger posed to humanity should governments start admitting computer programs into the
category of “literary works,"® his dissent, in stark contrast to Justice Douglas’s Benson decision,
displays a remarkable understanding of the software production process and of software’s complex
ontological status. Noting that “we are dealing here with an entirely new technology, one with
a highly intricate multiplicity of means of fixation, of transformation, of movement from one
medium (of communication) to another (of mechanical function) and back again” (81), Hersey sets
out to analyze these shifts, to understand the nature of scftware and the compositional process
behind its production, and to explain how software can best be accommodated within the matrix of
intellectual property law.

Hersey’s ultimate recommendation to Congress was that “[t]he Copyright Act of 1976 should
be amended to make it explicit that copyright protection does not extend to a computer program
in the form in which it is capable of being used to control computer operations” (92). However,
Hersey includes an important qualifying claim—software, in his view, should not be copyrightable

in “the form in which it is capable of being used to control computer operations.” Hersey thus

81n one such section, Hersey refers to the “‘subtle dehumanizing danger ... of the Commission’s
position on programs.” He continues: “To call a machine control element a copy of a literary work
flies in the face of common sense. Ask any citizen in the street whether a printed circuit in a
microprocessor in the emission control of his or her car is a copy of a literary work, and see what
answer you get. But if your government fells the citizens in the street that this is so, and makes it
law, what then happens to the citizen’s sense of distinction between works that speak to the minds
and senses of men and women and works that run machines—or, ultimately, the citizen’s sense of
the saving distinction between human beings themselves and machines themselves” (90).
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focuses his energy on the binary manifestation of computer software, which he understands as
more machinic than textual, more utilitarian than expressive. However, elsewhere he admits that
binary code can be understood as the utilitarian end product of expressive acts. He summarizes the

software development process as follows:

In the stages of the planning and preparation of software, its creators set down their
ideas in written forms, which quite obviously do communicate to human beings and

may be protected by copyright with no change in the present law.
But the program itself, in its mature and usable form, is a machine control element,

a mechanical device, having no purpose beyond being engaged in a computer to
perform mechanical work.

The stages of development of a program usually are: a definition, in eye-legible
form, of the program’s task or function; a description; a listing of the program’s
steps and/or their expression in flow charts; the translation of these steps into a
“source code,” often written in a high level programming language such as FORTRAN
or COBOL; the transformation of this source code within the computer, through
intervention of a so-called compiler or assembler program, into an “object code.” This
last is most often physically embodied, in the present state of technology, in punched
cards, magnetic disks, magnetic tape, or silicon chips - its mechanical phase. (70)

Object code, or what Hersey elsewhere calls the “mature program” (70), is the result of compiling
high-level language into binary format. While Hersey is willing to concede that the earlier, “written
forms” of software that “communicate to human beings” can be considered acts of expression, he
identifies an ontological shift at some point during the process of planning, writing, and compiling
software, a point where code loses its expressive power and becomes “a machine control element,
a mechanical device.” Explaining the alienation of expressive act from functional end-product,
Hersey comments that “the ‘writing’ of the author is spent in the labor of the machine” (73). What
is needed, however, is “an appropriate definition of the cutoff point, the point at which a program
ceases being a copyrightable writing and becomes an uncopyrightable mechanical device” (92).
Hersey leaves this crucial moment of transition undefined. Having argued that binary code cannot
constitute an expressive form, but that earlier, less “mature” forms of computer programs can
constitute “copyrightable writing,” Hersey’s dissent, for all its stridency, creates more ambiguity
and indeterminacy than it resolves. In amending the U.S. Copyright Act in 1980, Congress
followed CONTU'’s main guidelines rather than Hersey’s dissent; it was thus that CONTU’s central
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recommendation—that computer programs should be defined legally as “literary works”—became
law.

Despite Congress’s decision, the debate over software’s ontological status has continued
unabated for more than twenty years,? with the positions of Justice Douglas (that computer
programs are “‘laws of nature™), of John Hersey (that “‘mature’ computer programs are machines),
and of the remaining CONTU commissioners (that computer programs are copyrightable
expression) shaping a fierce and heated debate. Underpinning the debate, naturally, are economic
considerations about safeguarding revenue in what has become a multi-billion dollar industry.
Although the 1980 Copyright Act amendment made programmers into authors and guaranteed
that their work could not be copied without permission, the amendment did nothing to protect the
processes or functions contained within computer programs. Companies thus found themselves
vulnerable to predatory “reverse engineering”—another company could develop and market
a version of the same product as long as it wrote its own code for the job. It was thus that
corporations continued to press for software patents as a way to define and delimit software.

In Diamond v. Diehr (1981), the Supreme Court granted a patent on a new process for curing
synthetic rubber. As unlikely as it sounds, this was a landmark case in software patent history: a
software program was part of the rubber curing process, and it, too, was protected by the patent.
In its ruling, the Supreme Court distinguished between pure algorithms and industrial processes
employing those algorithms:

{T]he respondents here do not seek to patent a mathematical formula. Instead,
they seek patent protection for a process of curing synthetic rubber. Their process
admittedly employs a well-known mathematical equation, but they do not seek to
preempt the use of that equation. (Qtd. in Koepsell 64)

While this seems fairly innocuous, this decision had far-reaching consequences. In order to
enhance their chances of gaining software patents, lawyers after Diamond v. Diehr drafted patents

so as to emphasize the role of hardware and underlying processes (Merges 2230). In tum, both the

My discussion here centers on debates within the United States. In most countries in the world,
the confusions caused by software’s dual status as text and machine have not been made the basis
for legal debate. In Europe and in Australia, for example, software is afforded precisely the same
legal status as literary texts.
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Patent Office and the Federal Circuit Court have upheld software patents on the most tenuous of
arguments. The Patent Office has even approved patent claims on the basis that computer programs
can be stored on magnetic storage disks, the patentable material being the particular “composition
of [electronic] matter” on the disk. Without directly challenging the Supreme Court or the 1980
Copyright Act amendment, then, the Federal Circuit Court and the Patent Office have gradually
eroded legal precedent and turned computer programs into legitimate patentable material. The
trickle of patent applications received prior to 1980 turned into a flood in the wake of Diamond v.
Diehr: Lawrence Lessig notes that software-related patent applications rose from 250 in 1980 to
21,000 in 1999 (Future of Ideas 208).

In the last decade, the courts have extended patent protection to business practices involving
software—in a 1993 patent dispute over a financial data processing system, the U.S. Court of
Appeals declared that “as ‘machine’ or ‘process’ [software is] proper statutory subject matter”
(Nalley 45). As a result of the e-commerce boom, patent applications for software-related business
practices more than doubled between 1997 and 1999 (Lessig, Future of Ideas 208). Moreover,
the Patent Office has granted patents for innovations that, to the minds of many, do not fall into
the category of “nonobvious” innovation; Garfinkel ef. al. comment that “patents have been
granted for ideas so elementary that they could have been answers to problems in a first-year
programming course” (36). For example, Internet retailer Amazon.com secured a notorious patent
for its “1-Click” ordering function, which not only makes shopping at Amazon.com easier and
more pleasant, but ensures that shopping elsewhere online will never be so simple—unless other
Web sites are prepared to license the technology from Amazon.com. Other companies that wish to
use one-click ordering (such as Apple Computer in its on-line Apple Store) must first license it
from Amazon.com. What Amazon.com has patented is not the software, but the business process
underlying the software; therefore, any independently-developed competing one-click ordering
software package infringes upon Amazon.com’s legal rights.

For Lawrence Lessig, one aspect of software intellectual property law is particularly ironic:
“What was most striking about this explosion of law regulating innovation,” he writes, “was

that the putative beneficiaries of this regulation—coders—were fairly uniformly against it”
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(Future of Ideas 208). Indeed programmers have been so deeply concerned by the implications
of copyright and patent law that they have formed grassroots organizations—such as the Free
Software Foundation (described in Chapter One) and the League for Programming Freedom—to
oppose the very notion of software as proprietary intellectual property. So serious is Richard
Stallman on this point that in 1985 he employed legal experts to create a special license that
would help protect and perpetuate free software. Known as the General Public License, or GPL,
this new license embraced what Stallman calls the principle of “copyleft,” or “all rights reversed.”
When a programmer licenses code under the GPL, anyone can use, modify, and redistribute that
code—so long as the improved code is also licensed under the GPL. Any larger project that
incorporates GPL'd code must itself be re-released under the GPL. “Copyleft” is thus Stallman’s
way of ensuring a perpetual link between free software and the ideals of individual liberty that
underpin the Free Software Foundation’s work: “The idea of GNU is to make it possible for people
to do things with their computers without accepting [the] domination of somebody else, without
letting some owner of software say, ‘I won’t let you understand how this works; I'm going to keep
you helplessly dependent on me and if you share with your friends I'll call you a pirate and put
you in jail’” (qtd. in Moody 28). By licensing under “copyleft,” the programmer surrenders his
creation to the larger body, immersing it in a collaborative environment. Other programmers can
read the code and change it (as Raymond puts it, “anyone can hack anything” [87].) Copyleft thus
anticipates and even requires a norm of collective authorship. No piece of open source code is
ever single-authored: though something may begin as one person’s work—the original versions of
Stallman’s Emacs editor and Torvalds’s Linux kernel are classic examples—it is never meant to
remain one person’s work. Indeed, submitting one’s work to the open-source community ensures
that one’s work will become the work of many within short order. As bugs are found and fixes
are posted, the list of contributors to the project grows (this list is recorded as part of the code’s
“history™), and soon many authors are writing a work that began traditionally as the brainchild of

one.!?

10programmers have a clever way of retaining a sense of origin within this collaborative climate.
As Raymond notes, even though open source projects are collaboratively written, and even though
they are not owned in the way property, or even intellectual property, is owned, everyone still knows
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The cycles in software’s definition tell us a great deal about hew economic and political
considerations underpin ontological debates about the status of computing code. Those debates
have also had a crucial impact upon the concepts of software authorship described in the first
section of this chapter. If a piece of software is copyrighted, the actual texts of the source code
and object code are protected by copyright law. However, as we have seen, there is nothing in
copyright law to prevent another programmer or company from writing new source code to achieve
the same effect—just as tl;ere is nothing to prevent a literary author from imitating the stylistic
effects of Virginia Woolf or Toni Morrison. Patent law, by contrast, protects the utilitarian aspects
of software, meaning that any code that duplicates the operations of a patented program violates
the software patent. Although software activists like Stallman oppose copyright as a matter of
principle, they see patents as by far the more dangerous form of intellectual property protection
because they can strip away the programmer’s right to expression. For the last two decades,
American courts and the Patent Office have privileged large corporations’ vested interest in
securing software patents over programmers’ traditions of authorship and code sharing. As the
courts have struggled to comprehend the confused and difficult ontology of computing code,
programming traditions and attempts at authorial self-definition have been all but ignored.

Literary critics could conceivably have a vested interest in such debates—after all, who knows

more about what constitutes “the literary,” and who is better trained to argue for an expanded

who the owner really is. There are two kinds of owners. Founders of open source projects are
owners: Torvalds and Eric Allman own Linux and Sendmail, even though thousands of people have
helped author those programs. Inheritors and adopters of open source projects can become owners:
if a founder decides he can no longer devote the time and energy necessary to maintain a project,
he hands the project over to someone who can run things as well or better than he can. In The
Cathedral and the Bazaar, Raymond explains how he inherited a POP3 program called popclient
from Carl Hacker, and developed it into a much more sophisticated multi-protocol mail-retrieval
program called fetchmail. Ownership, in this model, is distinct from authorship, though closely
tied to it. It names a proprietary relationship, but that relationship is not oriented around concepts
of economic value or the primacy of the creator, so much as it is around an ideal of management.
The owner of an open source project is the person who coordinates its continual revision, the
editor-in-chief of hundreds, even thousands, of contributing editors. A founder is an owner only as
long as he facilitates the communal effort to perfect his creation. Torvalds is still considered to be
the owner of Linux because he has spent the last ten years vetting and implementing improvements
on the operating system he began in 1991.
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literary canon and a flexible concept of textuality? However, literary critics have largely absented
themselves from the legal furor over software. So far, indeed, are they from accepting it that

they have yet to conceive of it—despite the fact that software has been defined under the law as

a “literary” form for more than two decades.!! It is an irony of modem criticism that literary
scholars are now prepared to read just about any non-textual thing as a textual construct—bodies,
clothes, and even garbage have all fallen under the critic’s purview. An even greater trony is

that when the almost uniformly left-wing literary critical culture neglects to consider software

as a textual entity shaped by real material conditions and situated in actual political contexts, it
becomes complicit with a corporate agenda that would deprive software of textual status in order to
secure prohibitive patents. In the next three sections, [ want to look further at code through the lens
of a literary critical sensibility, examining three moments in computing culture when a literary,
literate idea of code has had powerful practical implications for computing: the tendency of
computer programmers to leam their craft by doing essentially New Critical analyses of code; the
move toward a “literate programming” methodology that expressly defines writing code as writing
literature; and the trend among Perl programmers to combine English and the Perl programming

language into hybrid texts that read as poems at the same time that they compile as programs.

"!In his essay “There Is No Software,” Friedrich Kittler comments on the nature of programming
languages; however, he does so in order to argue against a privileged concept of “literary” language:
“Programming languages have eroded the monopoly of ordinary language and grown into a new
hierarchy of their own. This postmodern Tower of Babel reaches from simple operation codes
whose linguistic extension is still a hardware configuration, passing through an assembler whose
extension is this very opcode, up to high-level programming languages whose extension is that
very assembler” (82). Although Kittler grasps the essential concept of abstraction that underpins
programming theory, his essay lacks any cultural or aesthetic understanding of programming
practice. By highlighting those factors, this chapter has attempted to argue against Kittler’s
repeated insistence that programming languages—along with other forms of new media—are
helping to erode language as a phonetic and graphic entity. Within programming culture itself,
the movement has been quite the opposite to the one Kittler emphasizes: programmers understand
programming not as a deconstruction of language but as a contribution to literary history.
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2.3 Long Close Readings: Literary Criticism and Code

The first section of this chapter argued that evolutions in computing architecture and programming
methodology during the 1950s and 1960s allowed programmers to conceptualize writing code as a
literary endeavor. During the 1970s, a new dimension was added to programmers’ sense of code as
a complex art: it was then that computer scientists began to think of code as something that could
be profitably read as one would read a work of literature, as something whose form and content are
best revealed and appreciated by way of detailed line-by-line exegesis. Formalist analysis of code
became a pedagogical norm during the 1970s: computer science professors began putting source
code on their course reading lists, students of computer science began studying source code on
their own and in reading groups, and computer science professionals began reading source code to
improve their programming skills.

Close reading code became central to computing culture during these years; it was both a
useful training technique and an aesthetically pleasing experience, a way of learning one’s craft
that centered—like so much artistic schooling—on the patient study and scrupulous imitation of
the masters. So central has close reading code become to the field—to its sense of artistry, of
history, of passionate commitment—that it has indeed become a cornerstone of contemporary
computing culture. This section discusses how the concept of close reading entered the field of
computing, focusing in particular on the code that made the concept possible: the Unix operating
system. Without Unix, there would be no concept of code as a literary text that can be profitably
read, explicated, and appreciated; without Unix, there would be no “art of code.”

Unix was the first operating system compact enough to be understood and mastered by a
single individual. Written in 1969 by Ken Thompson and Dennis Ritchie of Bell Labs, Unix
was surprisingly accessible. At just under 10,000 lines, it was short—earlier operating systems
consisted of millions of lines of code. Written in the high-level programming language C, it was
intelligible—earlier operating systems were written in the far less comprehensible assembly
language. As such, Unix definitively changed both the shape of programming (by raising it to
a higher standard of efficiency) and the shape of programming pedagogy (by lending itself to
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close reading). As Unix programmer Peter Reintjes recalls, “We had been taught previously that
an operating system was something only to be undertaken by an army of programmers. Once
written, it would not admit analysis, composed as it was of millions of lines of assembly language
instructions. Happily, Ken Thompson and Dennis Ritchie proved this wrong, producing the kernel
for the Sixth Edition of Unix in less than 10,000 lines of code that would not merely admit, but
invite, analysis” (qtd. in Lions).

Thompson and Ritchie made that invitation to analysis explicit in 1974, when they publicized
their creation in a now-classic article entitled “The Unix Time-Sharing System.” Presenting Unix
as a “general-purpose, multi-user, interactive operating system,” they demonstrate its applicability
to real-world situations such as “the preparation and formatting of patent applications and other
textual material, the collecting and processing of trouble data from various switching machines
within the Bell System, and recording and checking telephone orders.” However, in describing
Unix as “an essentially personal effort,” Thompson and Ritchie take pains to distance their creation
from operating systems written under corporate agendas. In fact, their paper contains a subtle
critique of the managerial technocracy that supposedly existed to give order and direction to the
programming enterprise. “Perhaps paradoxically,” Thompson and Ritchie write,"the success of
Unix is largely due to the fact that it was not designed to meet any predefined objectives™ (373).
Unlike impossibly complex and monolithic operating systems like [BM'’s disastrous 0S/360, Unix
was the product of programming experimentation, flexibility, and creativity: “Our goals throughout
the effort, when articulated at all, have always concerned themselves with building a comfortable
relationship with the machine and with exploring ideas and inventions in operating systems” (374).
Thompson and Ritchie hope that once users grasp the Unix design philosophy, they “will find that
the most important characteristics of the system are its simplicity, elegance, and ease of use” (365).

Ritchie and Thompson stress how important the collaborative development model was in
shaping Unix, noting that “Since all source programs were always available and easily modified
on-line, we were willing to revise and rewrite the system and its software when new ideas were
invented, discovered, or suggested by others” (374). Indeed, Unix’s openness was another key to

its success. Written in C, the system was not inextricably bound to one hardware architecture, and
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by 1974 it had been ported to several different types of computer, thus giving it a huge temporal
and lateral advantage over operating systems that had been custom designed to work on specific
machines. This not only meant that Unix could be used by all programmers in the present, but that
it would not become obsolete when current technology was displaced by more advanced hardware.
In short, Unix was built to be flexible, to work anywhere, anytime, on just about anything. Unix
was built to last—and it has.

The article inspired programmers around the world to write to the authors for a copy of the
operating system, which at the time included the source code. People flocked to Unix. They saw
its potential to become the dominant operating system of the future, and they saw that their own
professional futures would most likely depend on knowing Unix. And so programmers around
the world embarked on a careful, deep study of the Unix source code. It was the first time in
computing history that hackers could sit down and read an entire operating system to see how it
worked, and it was also the first time they could follow another programmer’s complete train of
thought. The activity was irresistible, educational and pleasurable at once. Unix quickly became
the new lingua franca of programming culture: within a year or two, an entire culture had grown
up around the Unix source code. That culture was a literary culture, and its principal activity was
close reading code.

The literary culture of reading code began at Berkeley when Ken Thompson spent a sabbatical
there in 1975. Thompson, who graduated from Berkeley in 1966 with a degree in electrical
engineering, found in the newly formed West Coast Unix User’s Group a number of programmers,
computer science students, and faculty who were eager to study the code he and Ritchie had
written. Thompson responded to that eagerness by forming an ad hoc UNIX reading group. Over
the course of a week, the group met to read Unix source code under Thompson’s guidance. Bob
Fabry, a Berkeley computer science professor who attended Thompson’s reading, remembers the
sessions as transformative: “We all sat around in Cory Hall and Ken Thompson read code with us.
We went through the kernel line by line in a series of evening meetings; he just explained what

everything did ... It was wonderful.”'2 Eric Allman, author of the Sendmail open-source mail

12 Andrew Leonard describes Thompson’s Berkeley readings in his online “Free Software
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transfer program (a program that handles the vast majority of e-mail sent across the Internet today),
was a Berkeley undergraduate at the time. He attended Thompson’s nightly code readings and still
treasures the old marked-up printouts of Unix code where he had scribbled notes from Thompson’s
reading.

The ad hoc reading-group-style approach to leaming Unix was formalized in 1976 by John
Lions, an Australian professor of computer science at the University of New South Wales. Like
so many other programmers around the world, Lions was thoroughly taken by Ritchie and
Thompson’s article. He urged his colleagues in the Computer Science Department to apply for
a Unix license, thinking that switching to Unix would give them better connectivity and overall
performance than they had with their current systems. When the copy of Unix arrived, Lions read
the code as a matter of course. Shortly afterward, an unlikely bond between Unix and literary
criticism was forged.

Lions had long felt that it was necessary to read good code if one was to learn to write good
code. Unix, whose own authors stressed the importance of collaboration and openness, offered
a perfect opportunity to implement his belief. As I have explained above, Unix was the first
operating system that one person could read all the way through with the aim of fully grasping
every component and of seeing how the whole was put together. It was also exceptionally
well-written, and contained a great deal of virtuoso programming as well as many masterful
solutions to common programming problems. Lions had sent away for Unix with the idea of
possibly converting the New South Wales system over to the newer, more powerful and more
flexible operating system. When Unix came, it served that need and more. Lions jumped at the
opportunity to have his students study the new and promisingly robust Unix operating system.

He began assigning sections of Unix source code to his students, and Unix quickly became the
centerpiece of his pedagogy.

What Lions was proposing with his Unix reading assignments was an essentially literary

approach to programming. Just as an aspiring writer benefits from reading prose that is far more

Project”—see http: //www.salon.com/tech/£fsp/2000/05/16/chapter_2_part_
one/indexl.html
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accomplished than anything he is capable of producing, so the student of programming, Lions
reasoned, would gain a sense of form and style from humble, attentive study of masters such as
Ritchie and Thompson. According to Greg Rose, one of Lions’s former students, his professor
“felt that all of the other courses making up the computer science degree program at the time, with
the exception of the hardware course, involved teaching the students to write and debug programs.
No other course required the students to be able to READ programs. . .. With biting sarcasm, John
expressed this by saying ‘the only other big programs they see were written by them; at least this
one is written well’” (Lions). Such was Lions’s belief in the pedagogical powers of good code that
he envisioned his students reading their way beyond mere appreciation to technical mastery. He
not only required them to study the Unix source code closely, but encouraged them to find—and
even fix—the few awkward routines and occasional bugs that marred an otherwise near-perfect
text (Lions’s hope was optimistic to say the least—another former student who is now a Unix
programmer confesses that she and her peers didn’t find nearly as many bugs as Lions thought they
should).

Lions was serious enough about his vision that he wrote a textbook to help it along, and in 1977
he made his Commentary on the Unix Operating System available to the world by publishing an ad
for it in Unix News. Programmers and computing science students around the world read the ad,
mailed Lions a check, and proceeded to have both their studying technique and their appreciation
of what it meant to write code revolutionized. Lions’s book consisted of extensive annotations
to the Unix source code, along with periodic assignments to the reader. The commentary was
explicitly cast as an exercise in reading comprehension, aesthetic appreciation, and authorial
training, and was sold along with a companion volume containing the code itself. A student of
Unix could thus open both brightly bound orange books at once, lay them side by side, and study
the code while absorbing Lions’s notes on it—a method familiar to anyone who has ever read,
for example, Joyce’s Ulysses alongside Gifford’s annotations. The literary quality of this style of
exegesis was noted from the outset: as the programmer Peter Reintjes put it, “We had acquired
what amounted to a literary criticism of computer software” (Lions).

Reintjes does not exaggerate. Lions explicitly casts programmers as writers, referring to
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Thompson and Ritchie as the “authors” of Unix, and he just as explicitly casts their code as an
aesthetic achievement worthy of imitation. Observing that Unix is written to a “‘standard of near
perfection,” he tells his reader that “Ken Thompson and Dennis Ritchie have created a program
of great strength, integrity and effectiveness, which you should admire and seek to emulate.”
And he frames the study of great code as an elite form of literary study that is itself a creative
act: “Reading other people’s programs is an art which should be learnt and practiced—because
it is useful!” Lions leaves no doubt that he envisions his commentary as an exegetical aid to the
essentially literary work of learning, and learning to appreciate, the art of code.

Most practically, Lions’s book allowed programming students to see how two top programmers
handled the technical aspects of writing complicated working code. As Bemy Goodheart of
Tandem Computers, Sydney, explains,

It is important to understand the significance of John's work at that time: for students

studying computer science in the 1970s, complex issues such as process scheduling,

security synchronization, file systems and other concepts were beyond normal

comprehension and were extremely difficult to teach—there simply wasn’t anything

available with enough accessibility for students to use as a case study. Instead, a

student’s discipline in computer science was eared by punching holes in cards,

collecting fan-fold paper printouts, and so on. Basically, a computer operating system

in that era was considered to be a huge chunk of inaccessible proprietary code. Unix

changed all this. (Lions)
Peter Reintjes echoes this sentiment, stressing how valuable it was to be able to study a real,
working program: Unix, he recalls, gave “students the chance to read production code written by
excellent practitioners. It {was] first and foremost an opportunity to peer over the shoulders of
Ken Thompson and Dennis Ritchie and see them at work. And it must be stressed that this was
production code; the Sixth Edition of Unix was used for many applications in addition to computer
science research. Textbook examples of code may be elegant, but they often ignore difficult aspects
of real world programming, such as error- and interrupt-handling.” In Unix, Reintjes continued,
“we had discovered the first piece of software that would inspire rather than annoy us ... we were
making the single most significant advancement of our education in computer science by actually

reading an entire operating system.” As these testimonials suggest, the practical benefits of Lions’s

commentary were always also aesthetic ones. The elegance of Unix was not the sterile elegance of
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perfectly crafted textbook examples, but was instead the elegance of a program that managed to be
both beautifully shaped and entirely pragmatic. The beauty of Unix’s ““10,000 lines of elegantly
written code” (the words are programmer Mike O’Dell’s) is the beauty of code that works as well
as it looks.

Hence the enormous pleasure programmers experienced upon reading Unix with the aid of
Lions’s commentary. Michael Tilson, president of UniForum Association and CIO of the Santa
Cruz Operation, Inc. remembers his first encounter with the Lions book vividly: “When this book
was first published, I was astonished by how much pleasure I got from reading what should have
been a dry piece of technical documentation. John Lions had created a truly brilliant technical
work. The Unix operating system kernel code was itself an elegant work, and even today it remains
worthy of study. John added a line-by-line analysis that was equally elegant. The source code
and the annotations were perfectly suited to each other, and I haven’t seen anything to equal this
achievement since” (ix). Mike O’Dell, Vice President and Chief Scientist at UUNET, recounts a
similarly breathtaking reading experience: “John Lions’s marvelous exegesis revealed the inner
beauty that Ken and Dennis set down. His commentary was spare but incisive, mirroring the
shape of the code, filling in the curiosity just as the questions formed in my mind.” For both
programmers, Lions’s ability to bring out the artistry of Unix was a work of art in and of itself.

Neither the power of Unix nor that of Lions’s commentary has diminished over time. Dennis
Ritchie, one of the original authors of Unix, explains in his introduction to the current edition of

the Lions commentary that

The material in this monograph is indeed dated. You will not find here anything about
graphics, about networks, about anything that’s happened since 1975. You will find
linear searches, primitive data structures, C code that wouldn’t compile in 1979 let
alone today, and an orientation towards a machine that’s little more than a memory.
You will see signs of sloppiness and naivete. But you will also see in the code an
underlying structure that has lasted for a long time and has managed to accommodate
vast changes in the computing environment. (Lions)

This underlying structure—what Mike O’Dell calls “the soul of the system” (Lions)—has been the

basis for the continuing popularity of Lions’s commentary on Unix version 6.
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Programmers agree that even as Unix has evolved, both its original expression and Lions’s
original exegesis of that expression are incomparable and timeless achievements. Peter H. Salus,
former executive director of Usenix and the Sun User Group, notes that the Lions book is as useful
today as it was when it was first written—despite the fact that Unix has changed a great deal since
then: “The code is now out of date. As much of the commentators note, the comments are not.

To learn about operating systems, one must read and understand code” (Lions). Moreover, as
Mike O’Dell observes, the commentary is useful for appreciating the beauty of coding language
itself, which to his nostalgic eye was more mellifluous back then, more capable of expressing the
programmer’s meaning with nuance, economy, and grace: “I looked back at my original copies not
long ago and marveled at how much things have changed, not all for the better. The C language
back then was a much more graceful language. It lay on the page with a grace and beauty later
bespoilt by the nattering legalisms of casts and politically-correct type definitions. The modern C
language, for all its improved utility and portability, seems to have become mostly points and sharp
edges, where the old language was flowing soft curves, molding itself around the concepts with a
marvelous economy” (Lions). O’Dell talks about programming language as if it were the language
of poetry. Both men discuss the commentary as a precious document in code’s literary history.

Among today’s literary theorists, explication and appreciation are considered to be the least
demanding, least useful, and least prestigious of critical methodologies. At best, they are
associated with the antiquated work of former critical giants; at worst, with the bad habits of
undergraduate English majors. Either way, it is understood among contemporary literary scholars
that “proper” literary criticism does more than explicate and appreciate a text. So strong is this
belief that in recent years, “the literary” has all but disappeared from literary criticism, which
either makes literature a means of doing social or political analysis or ignores it altogether in favor
of a variety of “cultural” or “material” texts. In computing culture, however, the unfashionable
methodologies of New Criticism have found a practical purpose and even a professional prestige
that they no longer enjoy—no longer can enjoy—in their discipline of origin. Among Unix
programmers, explication is a tough, difficult, precise art (for programmers, the challenge is to

compress as much meaning into a line of code as possible; explicating those lines is to decompress
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and translate at once). Likewise, among programmers, appreciation is a specialized, acquired skill
(to see a line of code as beautiful, one must be able to see why, of all the ways the line could have
been written, this way is the most compact, the most effective, and hence the most elegant).

It is for this reason that Unix’s own authors have come to see Lions’ commentary as a
foundational moment in the history of programming. A text that both brought out the beauty of
the Unix code and modeled the equally artful discipline of close reading, the commentary was,
according to Dennis Ritchie, “The document” that “educated a generation” (Lions). As Ken
Thompson puts it, Lions’s commentary is quite simply “the best exposition of the workings of a
‘real’ operating system” (Lions). Thompson and Ritchie’s language is telling; it acknowledges that
in writing an “exposition” of Unix—in writing a kind of extended, annotated plot summary of the
program—Lions’s made it possible for others to understand Unix, to use it, and, crucially, to keep
writing it.

Improving on existing code has always been a central component of hacker culture. A good
programmer writes good code; a great programmer makes already good code better. Lions’s
commentary explicitly sought to train its readers to locate places where a program could be
improved, and to take the time to write a tighter, more elegant alternative script. For example,
he tells the reader to rewrite the code for the procedures “malloc” and “mfree”: “The code for
these two procedures has been written very tightly. There is little, if any, ‘fat’ which could be
removed to improve runtime efficiency. However it would be possible to write these procedures
in a more transparent fashion,” he notes. “If you feel strongly on this point, then as an exercise,
you should rewrite ‘mfree’ to make its function more easily discernible.” A central lesson of
Lions’s annotations, something he performs in his own notes and prods his readers to apply on
their own, is that there is no end to either the reading or the writing of a good program. His
conclusion acknowledges the eternally unfolding character of the programming odyssey in a mock
epic tone that perfectly captures the hacker’s spirit of serious, unending play: “Now that you, oh
long-suffering, exhausted reader have reached this point, you will have no trouble in disposing of
the last remaining file, ‘mem.c’ (Sheet 90). And on this note, we end this discussion of the Unix

Operating System Source Code,” he writes. “Of course there are lots more device drivers for your
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patient examination, and in truth the whole Unix Time-Sharing System Source Code has hardly
been scratched. So this is not really THE END.”

Lions’s was the exposition that kept on giving, that not only made it possible to learn Unix
effectively and efficiently, but also provided an impetus for programmers to revise and improve the
operating system. In other words, Lions’s literary approach to Unix made it one of the earliest
open source movements, a collaboratively authored effort that over time built upon the original
work of Ritchie and Thompson. Greg Rose thus describes Lions’s book as an education not, finally
in imitation, but in moving beyond imitation to innovation. As more and more programmers read
Lions’s commentary and took to heart his encouragement to improve its already elegant code,
he observes, “Enhancements from institutions around the world began to be exchanged, and
contributed in no small way to the growth of Unix ... These two volumes made it far easier to get
started with this kind of experimentation, and contributed greatly to the success of Unix during the
late 1970s and early 1980s.”

The vitality of this collaborative critical practice, this culture of innovative and revisionary
close reading, became eminently clear when the law made it impossible to continue sharing the
Unix source code freely. In 1979, ten years after Unix was written, Unix Version 7 was released
with the proviso that henceforth the source code underlying the operating system could not be
released to anyone—not even to computing science students for teaching purposes. The effect on
computer science education was devastating and profound. As Andrew Tanenbaum, a professor
of computer science at the Free University of Amsterdam, recalls, “Between 1979 and 1984, |
stopped teaching practical Unix at all and went back to theory” (Moody 33). A terrible irony of
the situation was that it had been brought about by the Lions commentary itself. According to
Dennis Ritchie, the commentary was just too good: “The very value and vividness of the Lions
commentary compelled caution, and so the license for the 7th Edition of Unix 1977 forbade using
its source code as teaching material” (Lions). Western Electric, eager to protect its commercial
interests, effectively crippled computer science education; now that Lions’s commentary had
made the source code for Unix comprehensible, the company was no longer willing to continue

its tradition of releasing a copy of the code to each licensee. The “blackboxing” of Unix stalled
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computer science education rather the way a liberal arts education would be stalled if students had
to study literature and art history by reading theories about representation rather than by studying
works of art themselves.

Nonetheless, the culture of creative license that had grown up around Unix continued to thrive.
Although it was now technically illegal to circulate, to reproduce, or to teach from Lions’s book,
the commentary continued to make the rounds of the programming world in the form of second,
third, fourth, even fifth generation photocopies. Everyone had a copy, though few had bound copies
of the original, and people studied it just as they always had—except that now they did it on the sly.
Pirate photocopies circulated in the Unix community right up until 1996, when the book was finally
officially published with AT&T’s blessing (AT&T now owns what used to be Western Electric).
Bell Labs continued to use the commentary intemnally along with later Lions commentaries on later
versions of Unix (the people at Bell liked Lions’s work so much that they brought him in for a year,
during which time he did a lot of annotation-related work for them). It is no exaggeration to say
that nearly every aspiring Unix programmer since the late 1970s has studied Lions’s annotations
and learned from them, even long after the code itself was obsolete. Today the Lions commentary
is affectionately known as “the most famous suppressed manuscript in computer history.”

The blackboxing of Unix, and the accompanying suppression of Lions’s commentary, also
inspired a number of programmers to write Unix clones of their own. Richard Stallman’s GNU
project, founded in the mid-1980s, aimed to produce an entire Unix-like operaiing system from
scratch in order to release the source code and so recreate the vital collaborative culture that
had grown up around Unix (GNU stands for “GNU is Not Unix”). Meanwhile, in Amsterdam,
Andrew Tanenbaum, desperate to find a way to continue to employ a pedagogy centered on close
reading code, simply sat down and wrote his own miniature Unix—which he dubbed “Minix.”
Tanenbaum used Minix in his classroom the way he had formerly used Unix, and, following in
Lions’s footsteps, in 1987 he distributed it along with his textbook Operating Systems: Design
and Implementation. Tanenbaum’s gesture of pedagogical desperation in turn had spectacular—if
unexpected—recuperative effects: a young Linus Torvalds studied Tanenbaum’s book in university,

using it as what he termed the “scaffolding” for the operating system that would become the
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open-source GNU/Linux. This system in tum has enabled the continuation of pedagogical models
inspired by Lions. Consider, for example, Daniel Bovet and Marco Cesati, two professors of
computer science whose teaching practices make close textual analysis an integral aspect of
university courses on operating systems. In their recent book Understanding the Linux Kernel,
Bovet and Cesati write that “In the spring semester of 1997, we taught a course on operating
systems based on Linux 2.0. The idea was to encourage students to read the source code” (xi).
Bovet and Cesati wrote Understanding the Linux Kernel to encourage close textual engagement
with Linux kernel code itself—an engagement that gets its authority from a clear historical sense of
where the code came from and how it has evolved over time. “The book will give valuable insights
to people who want to know more about the critical design decisions in a modern operating
system,” they write. This background in tun makes the text of the code all the more meaningful.
The code is more accessible: “Our work might be considered a guided tour of the Linux kernel:
most of the significant data structures and many algorithms and programming tricks used in the
kernel are discussed; in many cases, the relevant fragments of code are discussed line by line”
(xi). The thought behind the code is more significant: “It is not specifically addressed to system
administrators or programmers; it is mostly for people who want to understand how things really
work inside the machine! Like any good guide, we try to go beyond superficial features. We offer
background, such as the history of major features and the reasons they were used” (xii). And the
training it offers is thus more profound, at once an education in programming and a socialization
into a culture: “All people curious about how Linux works and why it is so efficient will find
answers here. After reading this book, you will find your way through the many thousands of lines
of code, distinguishing between crucial data structures and secondary ones—in short, becoming a
true Linux hacker” (xi). Bovet and Cesati thus seek to make the workings of the kemel accessible
to the non-specialist, and to give a historical, contextualized interpretation of the kernel. Aiming
to impart a sense of programming culture and authorship through a close reading of the texts
computer programmers have produced, they essentially ask the reader to take a journey through
their book; to become immersed in what may seem an alien, foreign environment; l;ut, with the

help of careful exegesis, to come to understand the Linux kemel code as having a background, a
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history, authors, and a surrounding culture.

The story of Unix’s evolution into Linux is thus the story of how a literary ethic of coding
created and continues to create a great deal of continuity within programming culture across time,
space, and platform. Together, Ritchie, Thompson, and Lions created a distinctly literary, literate
computer science pedagogy in which programmers learn to code by becoming literary critics of
code. The art of code is explicitly framed by programmers in the terms that we associate with new
criticism: to read a program properly, one must not only be able to discern what the program does,
but must also be able to judge how well it does what it does. A program’s merit is assessed much

the way a poem’s would be, in terms of structure, elegance, and formal unity.

2.4 Literate Programming

Shortly after copyright restrictions forced the Lions commentary underground, Stanford computer
scientist Donald Knuth began to advocate a style of programming that had a great deal in common
with Lions’s annotative technique. Called “literate programming,” Knuth’s concept sought to
improve programming by promoting an expressly literary approach to writing code. In a 1984
essay Knuth defines literate programming as “an attempt to make further progress in the state of
the [programming] art” (Literate Programming 99), one that aims to increase what we might call
“code literacy” by having programmers incorporate into their code explanations of what they

are doing and why. For Knuth, the key to literate programming lies in a literary approach to
programming: “I believe that the time is ripe for significantly better documentation of programs,
and that we can best achieve this by considering programs to be works of literature” (Literate

Programming 99). Knuth is serious about his analogy, and develops it at length:

The practitioner of literate programming can be regarded as an essayist, whose main
concern is with exposition and excellence of style. Such an author, with thesaurus in
hand, chooses the names of variables carefully and explains what each variable means.
He or she strives for a program that is comprehensible because its concepts have been
introduced in an order that is best for human understanding, using a mixture of formal
and informal methods that nicely reinforce each other. (Literate Programming 99)

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For Knuth, the best code is written not from the pragmatic perspective of an engineer, but from the
artistic perspective of an author. Economy of style, clarity of expression, and formal elegance are
as essential to good programming as they are to good writing.

Essentially advocating that all code be written the way Lions wrote about Unix, Knuth
transforms Lions’s model for comprehending code (supplementing a primary text—a
program—with a secondary guidebook) into the model for writing code in the first place. In literate
programming, the analysis, the annotation, and the exegesis of code are inextricable from its
composition. Generalizing to all programming the techniques of reading and commenting that had
become so central to Unix culture, Knuth thus raised a pedagogical strategy to the level of theory.
Knuth's essential concept was to focus not on the computer but on the human reader: instead of
writing source code and interspersing occasional secondary comments in the program listing,
literate programmers concentrate on explaining their programs and inserting code as part of that
description. In redefining the audience for computer programs, Knuth also redefined programming
philosophy. What Unix programmers saw as a useful technique for learning to program—sharing,
reading and annotating code—became, in Knuth’s hands, an entire programming methodology, one
whose operative rationale is that writing code ought always to be understood as a literary art.

Knuth followed this strategy when he wrote TEX and METRFONT, two programs that together
comprised his digital typesetting program. Publishing the TEX and METAFONT programs in two
volumes of his Computing & Typesetting series, TEX: The Program and METAFONT. The Program,
Knuth printed copies of the programs’ source code annotated in the manner of Lions’s book. The
result was a significant improvement over Lions’s own major innovation: where Lions annotated
the code of other authors, Knuth supplies his own annotations, a time-savvy move of consideration
that invited others to contribute to the program’s authorship (in explicating his own text, Knuth
reveals the intentions underlying his code and so enables other programmers to fix glitches and
improve the code’s syntax). Treating authorship as a type of accountability, Knuth stresses that
better, clearer programs result when the writer has to criticize his own code. “[I]t seems to me that
at last I’'m able to write programs as they should be written,” he writes. “My programs are not only

better explained than ever before; they are also better programs, because the new methodology

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



encourages me to do a good job” (Literate Programming 100).

TeX and METAFONT were not just examples of literate programming, however; they were
designed to aid literate programming. In writing them, Knuth developed what he called the WEB
system of programming. TgX and METAFONT also completed the original WEB project, forming
the digital typesetting component that allowed a programmer to transform “literate” code into
a beautifully formatted and printed text. In 1986, Knuth explained the symbiotic relationship

between TEX, METAFONT, and literate programming thus:

As [ wrote the programs for TEX and METAFONT, | wanted to produce programs that
would represent the state of the art in computer programming, and this goal led to the
so-called WEB system of structured documentation. [ think that WEB might turn out to
be the most important thing about all this research—more important in the long run
than TgX and METAFONT themselves—because WEB represents a new way to write
software that I think is really better than any other way. The use of WEB has made it
possible to write programs that are so readable, I think there are already more people
who understand the inner workings of TEX than now understand any other system
of comparable size. Furthermore, I think it’s fair to claim that WEB has made TgX
and METAFONT as portable, as maintainable, and as reliable as any other pieces of
software in existence. (Digital Typography S55)

Ingeniously integrating the processes of compilation and publication, Knuth’s WEB system provides
a way for programmers simultaneously to build working programs for computers and produce
typeset editions of their work for human readers.!* Knuth describes the workings of WEB as

follows:

A WEB user writes a program that serves as the source language for two different
system routines. One line of processing is called weaving the web; it produces a
document that describes the program clearly and that facilitates program maintenance.
The other line of processing is called tangling the web; it produces a machine-
executable program. The program and its documentation are both generated from the
same source, so they are consistent with each other. ... Suppose you have written a
WEB program and put it into a computer text file called COB . WEB (say). To generate
hardcopy documentation for your program, you can run the WEAVE processor; this

'3The combined potential of TgX and WEB allow for sophisticated textual manipulation of source
code. As Wayne Sewell explains, “TgX automatically handles details such as microjustification,
kerning, hyphenation, ligatures, and other sophisticated operations, even when the description part
of the source is simple ASCII text. WEB adds functions which are specific to computer programs,
such as boldface reserved words, italicized identifiers, substitution of true mathematical symbols,
and more standard pretty-printer functions such as reformatting and indentation” (42).
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is a system program that takes the file COB . WEB as input and produces another file
COB . TEX as output. Then you run the TgX processor, which takes COB . TEX as input
and produces COB . DVI as output. The latter file, COB . DVT, is a ‘device independent’
binary description of how to typeset the documentation, so you can get printed output
by applying one more system routine to this file. (“Literate Programming” 101-102)

Although Knuth’s original WEB program used Pascal, Knuth has since extended the concept to
CWEB, which combines TEX with the C programming language. Again, Knuth describes how the
digital typesetting language can work in harmony with a powerful coding language:

The typographic tools provided by TEX give us an opportunity to explain the local
structure of each part by making that structure visible, and the programming tools
provided by languages like C make it possible for us to specify the algorithms formally
and unambiguously. By combining the two, we can develop a style of programming
that maximizes our ability to perceive the structure of a complex piece of software,
and at the same time the documented programs can be mechanically translated into

a working software system that matches the documentation. (The CWEB System of
Structured Documentation 1)

As the WEB and CWEB systems of literate programming illustrate, Knuth’s commitment to the ideal
of structured, “readable” code was total. A devoted student of the history of bookmaking and print
technology, Knuth is as concerned with the typographical appearance of printed code as he is with
how the code itself is written. In Knuth’s vision, truly literate programming must be as attentive to
the print quality of a program as it is to the content of the program itself; only then will the true
beauty of code become available to the reader’s discerning eye, and only then will the programmer
take seriously his aesthetic obligations. The logic is that of the book: a great work deserves to be
printed in a manner that is worthy of it. Knuth draws no practical or aesthetic distinction between
literature and code; each deserves to be printed in the purest, most elegant type available. TgX and
METAFONT were Knuth's responses to the failure of the publishing industry to honor this simple,
indisputable truth.

In the 1960s, photo-optical technology started to replace hot-lead typesetting machines like
Monotype. Knuth considered photo-optical technology to be vastly inferior to hot-lead typesetting,
especially for complex mathematical texts such as his Art of Computer Programming. Appalled by
the poor print quality of modern mathematical typesetting, and the general deterioration of the

bookmaking art, Knuth set out to remedy the problem by writing his own digital typesetting system
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from scratch. The TgX typesetting program and the METRFONT font-design program were Knuth’s
answers to what he perceived as the book industry’s failure to meet its obligation to beautiful
books. Though TgX and METAFONT are pieces of software, they were designed as a condensation,
crystallization, and extension of the entire history of print and printmaking, and are built on a
massive amount of research into the print tradition. Furthermore, Knuth wrote his programs with
explicitly archival goals in mind: he wanted to “create systems that would be independent of
changes in printing technology” (Digital Typography 559).!* Designed to meet the special printing
needs of mathematics and built to last, TEX set a standard for publishing code as text: programs
printed in TEX looked like the sleek literary productions they are. At once an exemplary instance of
literate programming and a program designed to enhance literate programming, TEX thus realized
Knuth’s methodological vision twice over.

Critical responses to Knuth’s concept of literate programming speak eloquently to the power of
Knuth’s bookish vision. John Bentley, a programming critic known for his column “Programming

Pearls,” wrote about TgX as if it were a profoundly absorbing work of fiction:

When was the last time you spent a pleasant evening in a comfortable chair, reading
a good program? ...I’m talking about cuddling up with a classic, and starting to
read on page one. ... Until recently, my answer to that question was ‘Never.’ I'm
ashamed of that. I wouldn’t have much respect for an aeronautical engineer who had
never admired a superb airplane, nor for a structural engineer who had never studied
a beautiful bridge. Yet I, like most programmers, was in roughly that position with
respect to programs. That’s tragic, because good writing requires good reading—you
can't write a novel if you’ve never read one. (Literate Programming 137)

Hailing Knuth as the man who is almost singlehandedly making programmers aware that there
is a “canon” of code, a tradition of quality programming whose great works should be read and

appreciated by all serious members of the discipline, Bentley writes of the pleasure he got from

14K nuth believes that “these goals of top quality and machine independence seem to be
achieved” (Digital Typography 559). An important archival aspect of TgX is that its input files
may be saved as plain ASCII text, which should remain readable on any computer system for
hundreds of years to come. By contrast, the proprietary data formats used by many commercial
word processing and typesetting systems remain useful only as long as the specifications for those
programs remain constant. Because they change frequently, often without respect for “backward
compatibility,” proprietary formats cannot store data effectively for more than a few years at a time.
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studying Knuth’s code as if it were a work of art, the massive accomplishment of a master whose

every line leaves something to leam and much to admire:

I recently spent a couple of pleasant evenings reading the five-hundred-page

implementation of the TEX document compiler. I have no intention of modifying

the code, nor am I much more interested in document compilers than the average

programmer-on-the-street. I read the code, rather, for the same reason that a student

of architecture would spend an aftemoon admiring one of Frank Lioyd Wright’s

buildings. There was a lot to admire in Knuth’s work: the decomposition of the large

task into subroutines, elegant algorithms and data structures, and a coding style that

gives a robust, portable, and maintainable system. I’'m a better programmer for having

read the program, and | had a lot of fun doing it. (Literate Programming, 137-38)
The analogy with Frank Lloyd Wright is apt: in 1901, Wright delivered his famous lecture “The
Art and Craft of the Machine,” which welcomed the machine into American architecture and
countered the prevailing idea that machines contributed to a decline in architectural craftsmanship.
As did Wright, so does Knuth pay attention not only to the structured elegance of his programs but
to the craftsmanship inherent in their presentation.

When Bentley wrote to Knuth asking if he could have a sample of Knuth’s code for his
“Programming Pearls” column, Knuth challenged Bentley to challenge him: “Why should you
let me choose the program? My claim is that programming is an artistic endeavor and that the
WEB system gives me the best way to write beautiful programs. Therefore I should be able to
meet a stiffer test: I should be able to write a superliterate program that will be noticeably better
than an ordinary one, whatever the topic.” Bentley obliged, assigning Knuth to write a program
to determine the most frequently-used words in a technical paper. The result more than proved
Knuth’s methodological claim. M. D. Mcllroy, reviewing Knuth’s program for Bentley’s column,
called it “a sort of industrial-strength Fabergé egg—intricate, wonderfully worked, refined beyond
all ordinary desires, a museum piece from the start” (Literate Programming 174). The anecdote is
instructive: at once aesthetic artifact and operative code, Knuth’s literate programs have become
synonymous with the specific literary bent of contemporary computer programming. For many,

they exemplify not only how beautiful code can be, but also how effective aesthetics are as a means

of urging code toward ever more capable, comprehensive forms.
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2.5 Perl Poetry

This chapter revolves around a series of closely related questions: why is it important to see code
as text? What do programmers gain by doing so? And what do literary and cultural critics lose
when they neglect to consider code as text? I opened my investigation of these questions by
reading an English language poet writing about code; I will end by reading programmers who
write code that is also poetry. So far, we have seen how useful it has been to programmers to
metaphorize their work as literature: whether licensing it under the U.S. Copyright Act, teaching it
in the classroom, or promoting a literate approach to programming, programmers have used the
code-as-text equation to protect their work (by defining themselves as authors) and to perfect their
craft (by treating both the writing and the reading of code as an aesthetic literary act). Perl poetry
brings the conceptual fusion of code and text to life. Built on the analogy between programs and
poems, Perl poetry is a new genre whose most important achievement is to press that analogy into
an actual identity.

Over the past decade literary scholars have become fascinated with emergent forms of
electronic textuality. Spurred on by works such as Jay David Bolter’s Writing Space: The
Computer, Hypertext, and the History of Writing (1991), George Landow’s Hypertext: The
Convergence of Contemporary Critical Theory and Technology (1992), and Richard Lanham’s The
Electronic Word: Democracy. Technology, and the Arts, (1993), critical theorists began to assume
what the subtitle of Landow’s book promised: that technology and critical theory had undergone
a “convergence,” and that the advent of hypertext represented the fulfillment of poststructuralist
prophecies about the nature of language and authorship, and about the future of interpretation.

It’s not hard to see why literary scholars were so taken by the idea of electronic textuality
during the 1990s. As Landow and others argued, hypertext (by which they meant both the
experimental “hypertext fiction” of authors such as Michael Joyce and the hyperlinked, radically
interconnected structure of the World Wide Web itself) seemed to formally realize post-structuralist
ideals that were already powerfully entrenched within academic literary study and avant-garde

poetics. Specifically, it literalized the vision of continuous, unbounded, authorless textuality so
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polemically espoused by post-structuralist theorists such as Roland Barthes and Jacques Derrida.
As Barthes put it in a representative passage from S/Z, “in this ideal [readerly] text, the networks
are many and interact, without any one of them being able to surpass the rest; this text is a galaxy
of signifiers, not a structure of signifieds; it has no beginning; it is reversible; we gain access to
it by several entrances, none of which can be authoritatively declared to be the main one; the
codes it mobilizes extend as far as the eye can reach... (5-6). The World Wide Web realized the
infinite, infinitely expansive “network” that was, at the moment of Barthes’s writing in 1970,
largely prospective and metaphorical. As an actual “galaxy of signifiers,” the Web seemed to its
early postmodern analysts to exemplify the radically de-centered, wholly democratic form of
signification that had long been envisioned and attempted by post-structuralist writers.'?

The combination of literary experimentation and computing technology has a longer history

than many contemporary cybercritics tend to acknowledge, however. The “‘convergence” of

15The advent of hypertext has in tun given rise to an extraordinarily polarized debate within
literary studies about whether electronic textualities will replace the material book as the primary
means of gathering, organizing, and disseminating cultural value. Pitting technological visionary
(“The computer is going to replace the book as the principal means of assembling, storing, and
distributing information, ideas, stories, and knowledge’) against traditional bibliophile (“The
book must be saved, and the computer must be banished from the realm of publishing in order
to ensure that the book form survives™), the debate is one where feelings run high and reason
runs comparatively low. Neither pole is particularly defensible, and both ignore the existence of
historically nuanced forms of electronic textualities, such as Donald Knuth’s TEX and METAFONT
programs. With their productive melding of state-of-the-art technology and reverent regard for the
history of bookmaking and typesetting, TEX and METAFONT have contributed immeasurably to
the print tradition. Moreover, because Knuth gives TgX and METAFONT away for free, they give
anyone the power to create typographically beautiful documents at almost no cost. Knuth notes
how, using TEX and METAFONT, “a dedicated author now has the power to prepare books that
previously were prohibitively expensive”; he also reports receiving scholarly publications requiring
special typography (like Eskimo language folk tales or critical editions of Sanskrit texts) that
“probably would never have existed” if not for the availability of his typesetting system (Digital
Typography 17). For more on the book vs. electronic textuality debate within the humanities,
see the essays collected in Geoffrey Nunberg’s 1996 collection The Future of the Book. For a
representative collection of essays fetishizing the book as a “mythic and material object,” see
Jerome Rothenberg and Steven Clay’s 2000 collection 4 Book of the Book: Some Works and
Projections About the Book and Writing. Technophobic attacks on the very idea of electronic
textuality may be found in Barry Sanders’s A Is for Ox: Violence, Electronic Media, and the
Silencing of the Written Word and Sven Birkerts’s The Gutenberg Elegies: The Fate of Reading in
an Electronic Age.
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avant-garde art with the field of computing was not, as Landow indicates, wholly a phenomenon
of the 1990s; indeed, experimental writers were drawing on computing language as far back as
the 1960s, when French poets began exploring the potential of computing languages to open up
their ongoing investigations into the limits of meaning, the nature of signification, and the essence
of poetic form. In the early 1960s, Frangois Le Lionnais, a founding member of the French
experimental literary group Oulipo (Ouvroir de Littérature Potentielle), composed a poem using
the twenty-four-word lexicon of the Algol 60 programming language (Mathews and Brotchie 47).
Inspired by Le Lionnais, Noél Arnaud built on his fellow poet’s conception. Using the restricted
vocabulary of Algol 60 to literary ends, he produced an entire volume of code-poetry in 1968
entitled Poéms algol. With a foreword by Le Lionnais, the volume exemplified Amaud’s vision
of a supremely compact, minimalist verse. Here is one of Araud’s Algol poems (Mathews and

Brotchie 47):

Table

Begin: to make format,

go down to comment

while channel not false

(if not true). End.
As “Table” makes clear, Amaud and his fellow Qulipian poets were inspired less by the Algol
language itself (despite Alan Perlis’s remark that the language was “an object of stunning beauty™)
so much as by its potential for enforcing formal rigor and economy of expression. Amaud
employed similar constraints in other works—his poem “Adverbities of Eros,” for instance, is
composed entirely of adverbs and adverbial phrases—and other Oulipians sought similar formal
constraint, experimenting with limiting the numbers of words they could use to complete a poem,
or confining their poetic vocabularies to specific, narrow pools of words. For example, Harry
Matthews’s story Their Words, For You limits its vocabulary to 185 words; likewise, Jacques
Jouet’s poems in The Great-Ape Love-Song are composed entirely from the ape language of the

Tarzan books (Mathews and Brotchie 241). While Le Lionnais and Arnaud wrote poems in Algol,

then, they were principally concerned with Algol as a formal device for setting parameters on their
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art. Ultimately, they were less interested in the idea of programming as a literary artform than in
Algol as a ready-made restricted vocabulary with which to experiment.

Algol was something Oulipo poets used; while the language was materially interesting to them
as a signifying system, it did not appeal to them either as a language for commanding computers
or a means of expressing those commands in a formally rigorous, syntactically elegant way. By
contrast, the Perl programming language has inspired programmers themselves to explore the
formal and expressive properties of computing language. Invented in 1986 when programmer and
linguist Larry Wall set out to solve some limitations with the Unix text processing tool awk,

Perl (Practical Extraction and Report Language) quickly grew from a programmer’s tool into a
fully-fledged programming language. When Wall released Perl to the hacker community on
December 18, 1987, he summarized its underlying design philosophy in two maxims: “There’s
more than one way to do it,” and “Easy things should be easy, and hard things should be
possible” (Brate 259-60). The hacker community quickly found Wall’s creation to be a language
of unprecedented versatility and flexibility; consequently Perl has become one of the most
widely-used “glue languages” of the Internet. When Wall released Perl 3.0 in 1989, he licensed it
under the terms of Richard Stallman’s GNU Public License, thus ensuring that Perl would always
remain freely available to the programming community.

Larry Wall wrote the first Perl poem on a workday morning in March 1990. Sharon Hopkins,
having noticed the JAPH signature programs being written by Randal Schwartz,'® suggested that

Wall try to write a poem in Perl. By noon, Wall had written this simple Perl “haiku™:

Print STDOUT q
Just another Perl hacker
Unless $spring

Wall’s Perl poem is a classic haiku—three lines long, with a 5-7-5 syllable scheme, specifying the

16 JAPHs are short e-mail signature files written in Perl. When run through the Perl interpreter,
they print out the phrase “Just Another Perl Hacker.” Programmers often vie with one anct..er to
create especially ingenious or obfuscated JAPHs.
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season of its composition.!” Wall’s Perl poem is also a program. When you run it, it instructs the
local printer to print “Just another Perl hacker.” The rules of Perl poetry were established by Wall’s
doubly meaningful, doubly formal verse. All Perl poetry obeys the rules of poetic syntax, while at
the same time obeying the compositional rules of the Perl programming language. To qualify for
inclusion in the genre, a Perl program must be legible on two levels: to the trained aesthetic eye
that scans it, and to the Perl compiler that interprets it.

Wall touched off a trend with his haiku. There are now Web sites devoted to the genre, there
have been a number of Perl poetry contests, and some of the better known Perl poets have had their
work published in print. Fittingly, Sharon Hopkins, the woman who originally thought of Perl
poetry, has become the reigning laureate of the genre. Her Perl poem “listen” has been published
in both The Economist and The Guardian:'®

#!/usr/bin/perl
APPEAL:

listen (please, please);

open yourself, wide;
join (you, me),
connect (us,together),

tell me.
do something if distressed;
@dawn, dance;
(@evening, sing;
read (books,$poems,stories) until peaceful;
study if able;
write me if-you-please;

sort your feelings, reset goals, seek (friends, family, anyone);

do*not*die (like this)
if sin abounds; keys (hidden), open (locks, doors), tell secrets;

17In order for the metrical scheme to work, “STDOUT” must be pronounced “standard out,” and

“$” should be pronounced “dollar.”
181 am grateful to Sharon Hopkins for permission to reproduce “listen” in full here.
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do not, I-beg-you, close them, yet.

accept (yourself, changes).
bind (grief, despair);

require truth, goodness if-you-will, each moment;
select (always), length(of-days)

# Sharon Hopkins, Feb. 21, 1991

# listen (a perl poem)

# rev. June 19, 1995
Within the Perl programming language, parentheses work to create lists of elements which are
then acted upon by functions. “Listen(),” “join(),” “connect(),” “read(),” “seek(),” “die(),” “keys(),”
“open(),” “sort(),” “reset(),” “bind(),” “accept(),” and “length()” are all Perl function calls, so that
the line *seek (friends, family, anyone)” demonstrates the “seek()” function acting on the elements
“friends,” “family,” and “anyone.” Within poetic language, the parentheses create whispered
asides, moments that may or may not be part of the official “APPEAL" of the poem'’s opening,
they may be inward wishes or imaginings. When Hopkins merges the formalities of Perl with
traditional poetic convention, the effect is to play with the overlap between the rules of linguistic
and programming grammar. Using Perl’s imperative function calls to express heartfelt emotional
appeals, and modulating the expressive power of language with the formal syntax of programming,
Hopkins creates a poetic economy in which Perl controls and shapes the poet’s emotions. When
Hopkins writes “do*not*die (like this),” the instruction goes both to her lover and to the Peri
interpreter, telling neither to “exit” the poem’s “appeal.”

In addition to her poetic writings, Sharon Hopkins has written a much-circulated essay on
Perl poetry. Tracing the history of computer-generated writing to pangram generators and the
Oulipo poets’ experiments, she notes that Perl poetry is the first effort to “develop human-readable
creative writings in an existing computer language . .. that not only [have] meaning in [themselves]
but can also be successfully executed by a computer.” Noting that “the great advantage formal

poetry has over free verse is the balance provided between familiarity and strangeness, stasis and

innovation,” she remarks that part of the “surprise” of Perl poetry, at least for the programmer,
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is seeing language elements employed for poetic ends (1). With its 250-word vocabulary, Perl
provides the enterprising poet with plenty of scope for innovation. Subsequent Perl efforts have
involved adapting poetic forms such as sonnets and odes, reworking the poems of canonical poets
such as William Butler Yeats, and, more generally, writing free verse Perl code that addresses the
same sorts of themes mainstream poetry would: love, work, longing, and life.

Perl poems are what their creator Larry Wall meant for Perl itself to be when he wrote it:
pearls of perfectly-formed syntax that arise from an ideal compression of language into code,
poem into program, art into commanding expression. Perl poetry literalizes the aesthetic urge of
Perl programming: it symbolizes, within Perl programming culture, the potential beauty of all
Perl code, both its elegance and flexibility of expression and the clarity of its interpretation and
execution by the interpreter. Perl poetry translates the aesthetics of code in such a way as to stress
that all well-written Perl programs are already poetry. For this reason, it should not surprise us
that so many Perl poems translate well-known canonical poems into working code. For example,
Yeats's poem “The Coming of Wisdom with Time” is the subject of a Perl poem by Wayne Meyers.

Here is the poem as Yeats wrote it:

Though leaves are many, the root is one;
Through all the lying days of my youth

I swayed my leaves and flowers in the sun;
Now [ may wither into the truth

And here is the poem Perled, translated into operative code:

while ($leaves > 1) {

Sroot = 1;

}

foreach ($lyingdays{‘myyouth’}) {
sway ($leaves, $flowers);

}

while ($i > $truth) ({

$i--;

}

sub sway

my ($leaves, S$flowers) = @_;
die unless $°0 =~ /sun/i;

}
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When run through a Perl compiler, Meyers’s “programmatic™ interpretation of Yeats performs

the movement of “The Coming of Wisdom with Time” for the Perl interpreter. Picking up on
Yeats’s use of the verb *“sway,” Meyers defines a “sway()” subroutine to ensure that the poem will
“die()” if the operating system name variable shows the poem “in the sun”—i.e., running on a Sun
Microsystems operating system. Passing Yeats through the Perl interpreter yields a formally new
kind of poem, a work of art that literally works. As such, the work of Perl poetry may be said to be
that of marking up a new canonical language, one whose deeply functional aesthetics emerge from
and merge with older established modes of composition.

If the Perl poet’s willingness to break up other poems in order to rewrite them seems on some
level to be disrespectful, frivolous, or even blasphemous, we should bear in mind that all poetry
relies upon the manipulation of syntax to separate itself from other written forms. Yeats himself
made this point when he converted Walter Pater’s sentence-long description of the Mona Lisa into
a piece of free verse, thus:

She is older than the rocks among which she sits;

Like the Vampire,

She has been dead many times,

And learned the secrets of the grave;

And has been a diver in deep seas,

And keeps their fallen day about her;

And trafficked for strange webs with Eastern merchants;
And, as Leda,

Was the mother of Helen of Troy,

And, as St. Anne,

Was the mother of Mary;

And all this has been to her but as the sound of liars and flutes,
And lives

Only in the delicacy

With which it has molded the changing lineaments,
And tinged the eyelids and the hands.

Yeats’s point is that Pater’s prose is poetry—a point he makes, paradoxically, by reformatting it
as poetry. (The move is paradoxical because if the prose really “is” poetry, it would not nced to
be reframed “as” poetry.) Perl poetry can be read as an extension of this logic: by marking up

“real” poetry (some of it Yeats’s), Perl poets assert the poetic nature of code by making the Perl

programming language the framing, formal syntax of individual poems. In so doing, Perl poets
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both make reformatting into the form and content of poetry, and reformat poetic language itself by
making programming language into the language of a new kind of poetry, into that which “has
molded the changing lineaments” of modern verse, “ting[ing] the eyelids and the hands.” Yeats
may look at first to be the victim of the Perl poet’s invasive reworking. In reality, he is the architect
of the Perl poet’s codified gesture.

As the Yeats example indicates, Perl poets are as deeply embedded in literary history as they
are in Perl itself. Indeed, the Perl Poetry project archived on the Web site CPAST (Comprehensive

Perl Arcana Social Tapestry) opens with this quote from T. S. Eliot’s “The Dry Salvages™:

Here the impossible union

Of spheres of existence is actual,

Here the past and future

Are conquered, and reconciled,

Where action were otherwise movement
Of that which is only moved

And has in it no source of movement—
Driven by daemonic, chthonic

Powers. And right action is freedom
From past and future also.

For most of us, this is the aim

Never here to be realised;

Who are only undefeated

Because we have gone on trying;

We, content at the last

If our temporal reversion nourish

(Not too far from the yew-tree)

The life of significant soil.

The lines announce the Perl poem as the making “actual” of that “impossible union of spheres
of existence,” the marriage of poetry and programming. And in so doing they position Eliot as
the man who best defines the essence of Perl poetry, who captures most compactly the liberatory
energies underlying the genre’s attempt to remake not simply the disparate genres that compose it,
but in so doing to remake the idea of genre itself. If Yeats may be seen as the architect of Perl’s
creative markup, Eliot may be read as its enabling muse.

Together, Meyers’s transformation of Yeats’s verse into a programming “Perl” and CPAST’s

inspirational Eliot epigraph point to a complex and textured relationship between literary
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history—specifically the modernist poetic canon—and the history of computer programming. That
a programming culture centered on close reading source code should begin producing poetry that
is itself a dense amalgam of literary and computing languages raises a number of questions about
the notion of genre, the location of literature, and the parameters of art. How, most basically, are
we to understand the hybrid artifact that is the Perl poem? What kind of reader, and what sort
of reading practice, are required to think about Perl poetry? What happens to the concept of the
programming language when it doubles as poetic language? What happens to the concept of the
poem when its content consists of code? No literary critic has written about Perl poetry; the
genre’s critics have thus far been the Perl programmers who are its practitioners. Nonetheless, in
establishing code as both a practical and an aesthetic object, Perl poetry demands that the serious
poetry critic come to terms with computing software in the same way students of operating systems
have begun to come to terms with reading and writing practices more commonly associated with
literary production. How might Perl poetry shape or reshape our understanding of contemporary
experimental poetry? We won’t know until literary critics begin to grapple thoroughly with the
genre’s uniquely functional, thoroughly interdisciplinary aesthetics. However, poetry criticism
will not be able to grasp the Perl poem’s aesthetic until poetry critics begin to take code seriously
as a literary language. A fully cognizant poetry criticism—one capable of comprehending Perl
poetry and placing it within the context of postmodern poetic experiment—will necessarily also be
a technologically proficient criticism of the structure, form, and syntax of programming language.
There are many kinds of experimental poetry on the Internet, and there have been a number
of attempts to use the immediacy, the mobility, and the interactive potential of the electronic
environment to stretch poetry into new shapes. Most of them tend, however, to preserve a
simplistic and infinitely problematic distinction between the very categories the concept of the
electronic poem would seem to want to erase: poem and code, visible art and invisible mechanism,
aesthetic surface and functional hardware. Consider, for example, Kenneth Goldsmith’s poem,
“Soliloquy.” Structured around the idea that an electronic poem acquires its beauty from the
continuous interplay of the oppositions named above, “Soliloquy” is an interactive poem that gets

its syntax from the reader’s manipulation of the cursor within a Web browser: beginning as a flat,
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empty surface of white screen, the poem appears in fragments and bits as the reader moves the
cursor. The effect is one of poetic creation by peeling: each movement of the cursor “peels” back a
bit of the blank screen to reveal words or phrases. The poem is as long or short as the reader makes
it, but no matter what the length, or pattern of peeling, the point of the poem is always that poems
involve revelations, and that in an electronic environment, the revelation of meaning is something
that can be programmed to occur.

Even so, the poem limits the extent of the revelations it makes possible. Mark Poster describes
the genre of “cybertext” to which Goldsmith’s poem belongs: “Cybertexts ... highlight the
dynamic production of text, turning this production into a spectacle. Experiencing the text means
watching words and meaning emerge and evolve on the screen, animated by the invisible code of a
computer program” (9). Poster conceptualizes the “cybertext” as separate from, although animated
by, “invisible code” that underpins it; he conceives of this layered text in turn as a kind of poem.
As such, his metaphoric treatment of cybertexts as poems animated by invisible code perfectly
recapitulates the logic of Goldsmith’s poem, whose soliloquy may be said, finally, to announce the
solitude of the poem itself.

Perl poetry refuses such inevitably confused distinctions in favor of a thorough integration of
the things other Web poetry tries to keep separate. In this, Perl poetry has more in common with
the idea of “codework” developed by Alan Sondheim, Florian Cramer, et. al. in a recent series of
essays published by American Book Review.!? Drawing critical energy from “cybercultural” and
“f:yberpunk" discourse, Sondheim defines “codework™ as “a literary avant-garde concerned with
the intermingling of human and machine” (1). McKenzie Wark comes closest to the spirit of Perl
poetry when he comments that “codework . . . is a form of electronic literary work in which the
protocols and structural aspects of the supporting technology, from which/to which the work is
applied, are explored and exposed within the body of the text.” However, many of the “codework”
experiments described in these essays rely not on programming languages, but on hypertext

manipulation or sometimes the generation of pseudo-code—for instance, Beatrice Beaubien cites

19Contributors to the series include Alan Sondheim, McKenzie Wark, Talan Memmott, Beatrice
Beaubien, Belinda Barnet, and Florian Cramer.
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the “codework” poet Mez “defining herself” on a mailing list as follows: “if fle.sh!=sub.stance ov n
animal body// sur.face of the body, s-pecially>with respect 2 flesh col.awe; [pinkish white with a
tinge of yellow; > pinkish cream]” (3). Neither hypertextual experiment nor clever typographic
rearrangement should be confused with the syntax of actual programming languages.

In Perl poetry, the code does not underpin the poetry: the poetry is the code, and the code is the
poetry. The visible art is the visible mechanism, and the aesthetic surface is completely coextensive
with both the human reader and the Perl interpreter that reads it. Perl poetry thus amounts to
an aesthetic and programmatic disruption of the idea that art and programming should exist as
separate entities, and that computing hardware should merely provide the material underpinning
for poetic possibility. Far from poetry “animated by the invisible code of the computer program,”
Perl poetry is animated by the visible code of computer programming languages.

If we stop seeing literary aesthetics and programming aesthetics as two separate entities
that have been held apart by institutional and technological barriers, and begin to see them
as interpenetrating and complementary modes of thought—something Perl poetry demands
that we do—then we have to see their intertwining as having a history; we have to ask how
literary and programming aesthetics have come together historically, and we have to identify
the historical pressures and opportunities that have worked together over time to create such
simultaneously analogous and separate realms. In the next chapter I will begin to do some of
that necessary work by turning to one of the last century’s greatest literary aesthetes and most
programmatically aesthetic author, James Joyce. As we will see, the authorial practices at work in
Joyce’s composition of Finnegans Wake are also the authorial practices that animate programming

aesthetics.
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Chapter 3

“Harmonic Condenser Enginium”:
Object-Oriented Joyce
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Chapter One of this study argued that increasing degrees of abstraction from computing
hardware have defined computer programming practices for the last half-century, showing how
the effects of those abstractions have shaped programmers’ professional and cultural identity,
programming politics, and programming aesthetics. Concerned with the specifically aesthetic
implications of code’s abstraction into language, Chapter Two examined how some computer
programmers have grounded their coding practices so deeply in literary aesthetics that they can
talk about code as “beautiful,” “elegant,” “expressive,” and “poetic”’; write and read computer
programs as literary texts; and even, in the case of Perl poetry, produce hybrid artifacts that are
at once poems and programs. My concern thus far has been to show how identifiably literary
sensibilities have influenced programming theory and culture. This chapter develops and deepens
that aesthetic concern by reversing its focus: [ argue in this chapter that programming theory, as a
body of knowledge that thinks deeply about the semantics and organization of textual structures,
can coatribute to the project of literary study. Furthermore, in outlining a comparative genealogy
of Joycean literary experiment and programming theory [ argue that modern programming practice
and Joycean semantics not only share common philosophies but common origins.

My first goal in this chapter will be to illuminate formal commonalities between Joyce's late
aesthetic and authorial ideals, as exemplified in Finnegans Wake, and the theoretical principles
that underpin the modern “‘object-oriented” paradigm for software development. In analyzing the
complex structural patternings at play in Joyce’s late work, the chapter situates itself alongside the
criticism of Joyce scholars such as Clive Hart, A. Walton Litz, David Hayman, John Bishop, Vicki
Mahaffey, and Jean-Michel Rabaté; in showing how Joyce's later work shares with object-oriented
programming theory a set of similarly derived ideas about managing and structuring complex

systems, it contributes to the growing body of work on Joyce and complexity theory.! My

IT use “complexity theory” here to signify work that studies the emergence of order from
dynamic systems of interacting elements. A classic essay on the design of complex systems is
Simon’s 1962 essay The Architecture of Complexity (republished in his 1982 book The Sciences of
the Artificial). Courtois’s 1985 essay “On Time and Space Decomposition of Complex Structures”
applies Simon’s principles to software architecture, while Klaus Mainzer’s 1994 Thinking in
Complexity traces the role of complexity science through numerous disciplines, including computer
science, economics, and neuroscience. Mark C. Taylor’s 2001 study The Moment of Complexity
outlines the philosophical and aesthetic ramifications of complexity theory. In his 1997 book Joyce,
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second goal will be to historicize these commonalities by tracing a genealogy of object-oriented
design. Contending that both Joyce and pioneering object-oriented programmers grounded their
approaches to complexity in modernist theories about human cognition, particularly in theories

about how children think, learn, and play, [ propose that their respective approaches to structure
grow directly out of early twentieth-century ideas about how the mind organizes an increasingly
complex and multivalent world.

The chapter is divided into four main sections. The first section discusses the authonal
metaphors that Joyce applied to his late work and traces the critical heritage of those metaphors
through to present-day Joyce scholarskip. Relying heavily on engineering imagery to describe
Finnegans Wake's ongoing construction, Joyce gradually stopped thinking of himself as the book’s
“author” and began conceiving of himself as a “master builder,” or, as he wrote in a letter to Harriet
Shaw Weaver, as “the greatest engineer” the world had yet seen. Joyce’s own engineering imagery
subsequently wound its way into the critical literature to describe the evolving formal complexities
of Joyce’s textual strategies, particularly during the latter part of his writing career. As critics
have repeated and recycled Joyce’s engineering imagery, so, too, have they modernized it; as |
will show, writers such as Daniel Dennett, Jacques Derrida, and Donald Theall have reincarnated
Joyce’s mechanistic metaphors for the computing era by explicitly describing him as a software
engineer and calling his texts “Joycean software” (Dennett) or even *‘joyceware” (Derrida). In this
section I suggest that we should consider these characterizations as more than mere throwaway
analogies. Seeing them instead as logically connected to Joyce’s own authorial conceptions,

I suggest that a serious reconsideration of Finnegans Wake’s intricate structural patterning can
benefit greatly from the insights of computer programming theory.

The chapter’s second section introduces the formal conceptual principles that underlie
the object-oriented programming paradigm. Situating the evolution of object-oriented design
principles within the context of the “software crisis,” an epoch in computer programming history

that began in the 1960s and continues today, I describe how and why some programmers embraced

Chaos, and Complexity, Thomas Jackson Rice uses the principles of complexity science to read
Ulysses and Finnegans Wake.
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this development paradigm as a “silver bullet” solution to the problem of managing computer
programs’ exponentially increasing complexity. Confronted with ever-larger software projects
and frustrated with the organizational limitations of a “procedural programming” style largely
governed by linear conceptions of textuality, programmers and language designers from the 1970s
onward experimented with new, non-linear approaches to coding. Ultimately they gravitated
toward an “object-oriented” methodology ordered around the principles of abstraction, inheritance,
polymorphism, and encapsulation (I explain these principles in detail below). Object-oriented
design enabled programmers to manage increasingly complex software systems by making them
modular, by breaking code down into mobile, self-enclosed units known as *“objects.” Furthermore,
this new methodology turned the work of computer programming into a distinctly ontological and
mimetic enterprise: from its earliest uses in interactive graphics and simulation software, the
object-oriented paradigm gave programmers the potential to define computational objects that
simulated the behavior of real-world counterparts. Charged with producing a modular mimesis of
an increasingly complex and polyvalent reality, the object-oriented programmer’s work begins to
bear a remarkable similarity to that of the modemist artist.

The third section of the chapter suggests how the principles of object-oriented programming
can illuminate the formal endeavor of Joyce’s later writings. During Joyce’s lifetime,
emergent ideas in the physical and human sciences—particularly in physics, mathematics, and
psychology—exposed the extraordinary complexities underpinning physical reality, the nature
of human consciousness, and the relationship between the two. Although the critical literature
frequently characterizes Joyce’s later texts as self-enclosed and self-referential, I understand
Joyce’s experiments with revolutionary new ways of organizing, compressing, and embedding
multiple layers and kinds of meaning within his writing to indicate not that Joyce abandoned
the realist project, but that he committed his texts to representing both physical reality and the
human mind in all their newly-discovered physical and mental complexities. The argument
of this section, then, is that Joyce’s and object-oriented programming’s revolutions in textual
structure both originate in the need to model systems of ever-increasing complexity, and that the

semantic paradigms that result from these revolutions share striking formal commonalities. In
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turn, [ show how an understanding of object-oriented programming theory can illuminate the
formal architectural complexity of Joyce’s late texts. Paying particular attention to two of Joyce’s
late stylistic innovations—his adoption of the “portmanteau word” and his use of what Roland
McHugh calls “personality condensation™ in Finnegans Wake—! suggest that object-oriented
theory is an invaluable aid to understanding Joyce’s technique of making meaning modularly and
dynamically while retaining a high degree of formal coherence.

While the third section of the chapter proceeds in a strategically ahistorical, strictly
conceptual manner, the fourth and final section historicizes and contextualizes my application of
object-oriented methodology to Joyce’s later writing by drawing out the genealogical debt both
Joyce and object-oriented programmers owe to modernist theories of cognition and developmental
psychology. Joyce, whose interest in developmental psychology was fuelled by increasing concem
over his daughter’s schizophrenia, filled his literary writings with meditations on children’s
thought processes and with philosophical speculations on how children acquire knowledge. A
generation later, computing science researcher and experimental educator Alan Kay strove
to overcome hierarchical, authoritarian models of knowledge transmission in ways that are
deeply reminiscent of the Joycean project. Kay's response was to design Smalltalk, the first
fully-fledged object-oriented programming language, as a tool for expressive, creative learning.
As an interactive, responsive pedagogical tool, Smalltalk not only thinks about children’s minds
in ways that are deeply reminiscent of the educational paradigms elucidated in Joyce’s work,
but also extends a cognitive tradition in which Joyce himself was deeply invested. In bringing
child psychology to bear upon programming language design, Kay was deeply influenced by the
pioneering work of artificial intelligence theorist and cognitive psychologist Seymour Papert, with
whom he studied in the 1960s. In turn, Papert, a former student of Swiss child psychologist Jean
Piaget, derived much of his programming philosophy from modernist concepts of human cognition.
Showing how the object-oriented paradigm that rose to prominence in software development
circles during the 1980s actually has its roots in modernist debates about complexity, psychology,
pedagogy, and knowledge—debates in which Joyce himself was a committed participant—this

section will show how Joyce’s late texts and object-oriented design philosophy share common
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conceptions about how the mind develops and orders thought.

Though the chapter initially proceeds analogically, showing the parallels between Joyce’s
texts and programming theory at the level of conceptualization and at the level of execution, it
aims finally to operate genealogically, to explain why and how it is that Joyce’s most innovative
textual ideas, what many literary critics see as his most idiosyncratic, least accessible, even least
literary quirks, reappeared half a century later as the defining features of state-of-the-art computer
programming. Ultimately, the question animating this chapter is this: is it possible that late
twentieth-century programming theorists realize—however unconsciously—the authorial ideal
with which Joyce flirted during the later years of his career? In other words, is it possible to see
object-oriented programming as furthering and continuing some of the aesthetic ideals of late

modernism?

3.1 Engineering Joyce

Joyce’s vision of himself as a writer expressed itself most forcefully in his passionate, lifelong
desire for a language that could transcend the parochial and conceptual constraints of ordinary
language: “I'd like a language which is above all languages, a language to which all will do
service. I cannot express myself in English without enclosing myself in a tradition,” he said
(Ellmann 397). Although he called English “the most wonderful language in the world,” he was
nonetheless sorely afflicted by its inadequacy (Ellmann 382). When asked, “aren’t there enough
words for you in English?”, Joyce answered “yes” but added, “there are enough, but they aren’t
the right ones™ (Ellmann 397). Not surprisingly, Joyce thrilled to the suggestion that Ulysses was
actually a kind of code used to aid the Germans during the war (Ellmann 509-10).2 Joyce sought
to make words mean in ways they had never meant before: “I've put in so many enigmas and

puzzles that it will keep the professors busy for centuries arguing over what I meant, and that’s

Though not among those who thought Joyce was a spy, Katherine Mansfield nonetheless fully
participated in the feeling that Ulysses was more like code than communication: “It’s absolutely
impossible that other people should understand Ulysses as Joyce understands it. It’s almost
revolting to hear him discuss its difficulties. It contains code words that must be picked up in each
paragraph and so on™ (Ellmann 532).
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the only way of insuring one’s immortality,” he crowed (Ellmann 521). Looked at in light of his
desire for an alternative to the traditions and limitations of predefined English, Joyce’s legendary
“inaccessibility” is perhaps more properly understood as the result of his desire to formulate “a
language to which all will do service.” Such a language must be superficially inaccessible in order
to move readers to “serve” it by reading it more closely, more inquisitively, and with greater
attention to nuance than they otherwise would. Examined in this way, Joyce’s inaccessibility
becomes a means rather than an end. The end is the “language beyond language”—the language
that is not fully written, or even fully known, by the author, but is instead provisionally organized
by him into a “code” consisting of “puzzles” and “enigmas,” and then put back out into the world
for further, even endless, emendation, interpretation, vision, and revision.

Joyce’s new language was a strategic assemblage of the old. As Ulysses progressed, the
familiar, if deftly handled, stream of consciousness approach morphed into an exploration of
how words themselves stream, and how that streaming—over time, across space, within and
among minds—may become available to one’s consciousness as an object of wonder, interest,
appreciation, experimentation, frustration, silliness, and so on. As many critics have noted, Joyce
came increasingly to think of writing as a choral event, something far more about associations,
sounds, and layered repetitions than about plot or character per se. He became obsessed with
allowing words to take on lives of their own: “A catchword is enough to set me off” he remarked
(Ellmann 496). As Joyce explained to Budgen, “A man might eat kidneys in one chapter, suffer
from a kidney disease in another, and one of his friends could be kicked in the kidney in another
chapter” (436). The movement in Joyce’s work is one of increasing abstraction, of language as
systematic, beautiful design. In fact, Joyce liked to think of Ulysses as a prose version of his
beloved Book of Kells: “you can compare much of my work to the intricate illuminations. [ would
like it to be possible to pick up any page of my book and know at once what book it is” (Ellmann
545).

One of the interesting effects of Joyce’s transformation is that as he ceased to write things that
were recognizable as “literature,” he lost the ability to read novels, poems, and plays. These

in turn became increasingly for him just another source of the “bits” that were becoming his
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primary material. By the time Joyce was writing the Wake, he had his reader’s block down to a
science. Joyce's use of Twain’s Huckleberry Finn in the Wake is a classic example: uninterested in
actually reading the novel (or in having it read to him, when his eyes were too painful to read),

he sent a copy off to David Fleischman with instructions to mark the book up according to his
needs (Ellmann 699). Treating “literature” as so much junk to be sifted through, as a trash heap
whose treasures lie not in the whole but in the reusability of its miscellaneous parts, Joyce
signals the advent of a new literary language by wilfully and, some would argue, disrespectfully
commandeering the odd parts of existing literary wholes. Whether Huckleberry Finn is a good,
bad, or indifferent novel was utterly immaterial to Joyce; what mattered was what Twain’s novel
could do for the Wake, a book whose first word is “riverrun” and whose central symbol is the river.
What Joyce does with Huckleberry Finn is akin to what Huck Finn does with the “p’simmons”

he and Jim “borrow” as they float down the Mississippi. Because Huck wants and needs the
p’simmons, he feels free to help himself to them, even though they don’t belong to him. Likewise,
Joyce plucks the aura and style of Twain’s river symbolism whole from Huck Finn and drops it into
his own prose wherever and whenever he feels like doing so. But because river references from
Huckleberry Finn are doubly perfect for this book (Finnegan is Finn Again), it is as if Joyce is
simply incorporating into his work a text that was somehow already his. Just as Joyce’s head is full
of “pebbles and rubbish,” so literary history is full of polymorphic scraps just waiting for him to
piece them together into new combinations.

Joyce’s writing technique shifts to accommodate this shift in material, and one can watch him,
during the course of Ulysses, stop writing as an “author” and begin writing as a sort of project
manager. In a letter to Harriet Shaw Weaver, he wrote “1 have not read a work of literature for
several years. My head is full of pebbles and rubbish and broken matches and bits of glass picked
up 'most everywhere” (Ellmann 512). Everyone Joyce knew became—whether they liked it or
not—a collaborator in his project. “Since the material of Ulysses was all human life, every man
[Joyce] met was an authority, and Joyce carried dozens of small slips of paper in his wallet and
loose in his pockets to make small notes,” Ellmann notes (412). Jolas recalls speaking with Joyce

in a cafe: “‘Really, it is not I who am writing this crazy book,” [Joyce] said in his whimsical way
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97

one evening. ‘It is you, and you, and you, and that man over there, and that girl at the next table
(13). “The sculptor August Suter was rather irritated to see how Joyce seemed to stage-manage
conversations as if to use his friends as subjects for experimentation” (Ellmann 438-39). The
writing itself proceeded along similarly opportunistic lines: “His method was to write a series
of phrases down, then, as the episode took form, to cross off each one in a different colored
pencil to indicate where it might go. Surprisingly little was omitted, but no one looking at the
notesheets could have predicted how the fragments would coalesce,” Ellmann explains (416). The
Joyce who wrote Ulysses was a Joyce intent on breaking free of the linear, character-centered
constraints of narrative, and determined to break into a style that would center more on fusion than
plot, more on coalescing fragments into wholes than on chronological coverage of evolving lives.
This was a Joyce who could welcome editorial accidents as happy emendations: when Joyce’s
friend McAlmon garbled the order of Molly’s soliloquy, Joyce liked the errors so much that he
incorporated them into the book (Elimann 514). This was also a Joyce who was completely
unfazed by the difficulty his complex systems of internal references posed for translators (“There is
nothing that cannot be translated,” he once commented).

Enormous, complex systems held an intrinsic appeal for Joyce. Recalling how Joyce became
“deeply absorbed by the colossal conception” of Yeats’s A FVision, Eugene Jolas remembers that
Joyce’s only regret about Yeats’s great system of abstractions was that “Yeats did not put all this
into a creative work” (15). In turn, Jolas recalls Joyce describing the structural complexities of
Finnegans Watke:

“There really is no coincidence in this book,” [Joyce] said during one of our walks. “I

might easily have written this story in the traditional manner . .. Every novelist knows

the recipe . .. It is not very difficult to follow a simple, chronological scheme which the
critics will understand . . . But I, after all, am trying to tell the story of this Chapelizod

family in a new way ... Time and the river and the mountain are the real heroes of my
book . .. Yet the elements are exactly what every novelist might use: man and woman,
birth, childhood, night, sleep, marriage, prayer, death ... There is nothing paradoxical

about this . .. Only I am trying to build many planes of narrative with a single esthetic

purpose ... Did you ever read Lawrence Sterne ... ?” (11-12)

Joyce provides additional explanation for his radical new working method in a letter to Max

Eastman:
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In writing of the night, I really could not, I felt I could not, use words in their ordinary
connections. Used that way they do not express how things are in the night, in the
different stages—conscious, then semi-conscious, then unconscious. I found that it
could not be done with words in their ordinary relations and connections. (Ellmann

546)

Taking words out of their “ordinary relations” and dispensing with “a simple, chronological
scheme,” Joyce brings complex abstractions together with immense literary creativity. Synthesizing
and consummating his earlier experiments along those lines, Finnegans Wake realizes Joyce’s
lifelong fascination with structuring compiex realities by weaving language into intricate patterns.
Echoing his comment to Jolas that he was “trying to build many planes of narrative with a single
esthetic purpose,” Joyce called his new technique “working in layers” (Ellmann 546).

Joyce naturally expected his readers to be surprised and puzzled by his new literary technique,
but also expected that readers would discover the book’s intricacies as they came to understand his
working method. Joyce was notoriously offended when this did not happen. When Harriet Shaw
Weaver wrote to him in 1927 that “I am made in such a way that [ do not care much for the output
from your Wholesale Safety Pun Factory nor for the darknesses and unintelligibilities of your
deliberately tangled language system” (Ellmann 590), Joyce grew distraught and felt obligated to
defend not only his work but his new working method. Joyce complained to William Bird about
the confusion and disappointment Work in Progress generated in its earliest readers:

[ confess I can’t understand some of my critics, like Pound and Miss Weaver, for
instance. They say it’s obscure. They compare it, of course, with Ulysses. But the
action of Ulysses was chiefly in the daytime and the action of my new work takes place
at night. It’s natural things should not be so clear at night, isn’t it now? (Elimann 590)

On one level, Joyce's remark to Bird feigns incomprehension: no one was more aware than Joyce
himself of the extraordinary hermeneutic challenge his new work posed to its readers. However,
Joyce also persistently believed that if only his readers could grasp the system underpinning the
book’s “darkness and unintelligibilities,” his efforts in writing it would be vindicated. Another
telling anecdote from 1931 shows Joyce’s conviction that his work would some day win him
recognition and approval:

[Joyce] read from Work in Progress to a smali group which included [Mary] Colum,
and at the end asked her, “What did you think of it?” She replied with her accustomed
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forthrightness, “Joyce, I think it is outside literature.” He did not make any comment

then, but later he took Padraic Colum aside to remark, “Your wife said that what I read

was outside literature. Tell her it may be outside literature now, but its future is inside

literature.” (Ellmann 635)
Joyce’s odyssey with Finnegans Wake was twofold: first, struggling to finish the book itself amid
the inhospitable circumstances of ill health, diminishing eyesight, uncertain financial conditions,
and a mentally ill daughter; second, struggling to ensure the book’s reception as “literature,”
despite its radical avant-garde experimentalism.

While writing the Wake, Joyce established not only a set of governing conceptual frameworks

and structural devices, as he had with Ulysses, but a new set of governing metaphors to describe
his compositional process. One of his favorites was that of the mechanic or engineer. Actively

seeking out engineering metaphors for his authorial practices, Joyce famously wrote to Harriet

Shaw Weaver that:

I am glad you liked my punctuality as an engine driver. I have taken this up because I

am really one of the greatest engineers, if not the greatest, in the world besides being a

musicmaker, philosophist and heaps of other things. All the engines I know are wrong.

Simplicity. [ am making an engine with only one wheel. No spokes of course. The

wheel is a perfect square. (qtd. in Rabaté 113)
One of Joyce’s favorite engineering analogies was that of tunneling. When sculptor August Suter
inquired in 1923 about the nature of Joyce’s new work, Joyce told him that “[i]t is like a mountain
that I tunnel into from every direction, but I don’t know what I will find” (Elimann 578). He used
the analogy frequently in letters to Harriet Shaw Weaver, telling her “I feel like an engineer boring
into a mountain from two sides. If my calculations are correct, we shall meet in the middle”
(Ellmann 580); “I want to get as many sketches done or get as many boring parties at work as
possible” (Letters 205); “I think that at last | have solved one—the first—of the problems presented
by my book. In other words one of the partitions between two of the tunnelling parties seems to
have given way” (Letters 222); and “{l1 am] pulling down more earthwork. The gangs are now
hammering on all sides. It is a bewildering business” (Letters 222). On occasion, Joyce even

adopts the guise of aircraft engineer: “I am also trying to conclude section I of Part II but such

an amount of reading seems to be necessary before my old flying machine grumbles up into the
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air” (Ellmann 564). Whether designing a perfect one-wheeled engine, boring into a mountain,
supervising gangs of workers, or launching his grumbling old flying machine into flight, Joyce
repeatedly figures his authorship within the framework of engineering design and execution.

It is not surprising to see Joyce deploy such engineering imagery to explain his aesthetic
goals in Finnegans Wake: many of Joyce’s contemporaries were also very taken either with the
idea of art as a form of engineering or with the idea of texts themselves as mechanical forms.

In the experimental sculpture of Marcel Duchamp, the art photography of Alfred Stieglitz, the
experimental symbolist poetry of Mallarmé, the geometric creations of the cubists, and the
prophetic technophilia of the Italian Futurists, we can see the sheer range of modernist imaginative
engagement with mechanism. Perhaps most poignantly, Joyce’s friend Paul Valéry calls the poem
“3 kind of machine for producing the poetic state of mind by means of words” (qtd. in Sypher
27). Valéry’s notion of the poem as a means of engineering a state of mind, and of words as the
aesthetic engineer’s building blocks, speaks powerfully to Joyce’s own conception of language as
the mechanism of modermnist thought experiment. In keeping with this conception, Joyce carefully
and explicitly built his engineering imagery into the text of Finnegans Wake itself. Its opening
pages invoke the engineering marvel of the skyscraper, citing among others the Woolworth
Building and the Eiffel Tower; they chart an evolutionary architectural progression from the
“rushlit toofarback” of the ancestral Bygmester Finnegan through “a waalworth of a skyerscape of
most eyeful hoyth entowerly, erigenating from next to nothing” (4). Finnegan, Joyce’s “master

builder” (or “mysterbolder” [309.13]) in tumn evolves into a vast electrical engine, “eclectrically

filtered for allirish earths and ohmes™ (309.24-310.1):

This harmonic condenser enginium (the Mole) they caused to be worked

from a magazine battery (called the Mimmim Bimbim patent number 1132,
Thorpetersen and Synds, Jomsborg, Selverbergen) which was tuned up by twintriodic
singulvalvulous pipelines (lackslipping along as if their liffing deepunded on it) with
a howdrocephalous enlargement, a gain control of circumcentric megacycles, ranging
from the antidulibnium onto the serostaatarean. (310.1-8)

Broadcasting in “circumcentric megacycles” from antidulibnium (Dublin) across the entire

serostaatarean (Free State of Ireland), the newly supercharged Finnegan/HCE becomes the
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electro-mechanical successor to Roderick O’Conor, the “last pre-electric King of Ireland”; his
“harmonic condenser enginium” produces the text of Finnegans Wake itself.

Most importantly, however, Finnegans Wake’s running meta-commentary on its own
composition frequently employs mechanical, electrical, geometrical, and mathematical metaphors
to describe its complex, non-linear, system of assemblages. For example, the following passage
describes the work of textual production as a perpetual motion machine made from Viconian

cycles:

Our wholemole millwheeling vicociclometer, a tetradomational gazebocroticon (the
“Mama Lujah” known to every schoolboy scandaller, be he Matty, Marky, Lukey or
John-a-Donk), autokinatonetically preprovided with a clappercoupling smeltingworks
exprogressive process, (for the farmer, his son, and their homely codes, known as
eggburst, eggblend, eggburial and hatch-as-hatch can) receives through a portal vein
the dialytically separated elements of precendent decomposition for the verypetpurpose
of subsequent recombination so that the heroticisms, catastrophes and eccentricities
transmitted by the ancient legacy of the past, type by tope, letter from litter, word at
ward, with sendence of sundance, since the days of Plooney and Collumcellas when
Giacinta, Pervenche and Margaret swayed over the all-too-ghoulish and illyrical and
innumantic in our mutter nation, all, anastomosically assimilated and preteridentified
paraidiotically, in fact, the sameold gamebold adomic structure of our Finnius the old
One, as highly charged with electrons as hophazards can effective it, may be there for
you, Cockalooralooraloomenos, when cup, platter and pot come piping hot, as sure as
herself pits hen to paper and there’s scribings scrawled on eggs. (614.27-615.10)

The “autokinatonetic” Finnegans Wake is a “wholemole millwheeling vicociclometer.” an
enormous processing and transmitting machine that receives “dialytically separated elements of
precendent decomposition for the verypetpurpose of subsequent recombination.” In other words, it
is a machine that decomposes and recombines its constituent elements: just like the Wake itself. As
these examples show, the idea of discussing Joyce’s semantic architecture by way of comparison to
other creative forms is as old as Joyce’s work itself.

So particularly compelling is the engineering imagery that Joyce built around and into
Finnegans Wake that critics have subsequently adopted it wholesale, importing it into their own
analyses of Joyce’s work. Most notably, A. Walton Litz, in his seminal Art of James Joyce, stresses
the machinic quality of Joyce’s prose. Referring to Joyce’s “growing interest in formal—almost

mechanical—designs” (37), he notes that “Joyce had a desperate and rather untidy passion for
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order of any kind. All sorts of mechanical systems are used on the note-sheets to organize

the diverse elements” (39). Litz subsequently searches for a more precise analogy, alternately
referencing Valery Larbaud’s statement that Finnegans Wake is “a genuine example of the art of
mosaic” and invoking the “critical commonplace” that Joyce’s writing techniques are analogous
to those of musical composition. Although Litz elaborates extensively on the musical analogy,
going so far as to declare that Finnegans Wake is “not ‘like’ music, it is a kind of music” (71), it
is important to remember that Litz arrives at this claim by way of an unshakable conviction that
Joyce’s prose is a highly engineered structure built around a “mechanical frame” (123).

Not only have critics translated Joyce’s engineering imagery into a critical lexicon for
understanding Finnegans Wake, they have also allowed that imagery to evolve over time. Echoing
Litz, Donald Theall elaborates on the mechanical quality of Joyce’s primary unit of meaning,
the “bit”: “The words of Ulysses and the Wake are poetic machines that are assemblages of
bits—fragments, cliches, typifications, words, syllables, letters, and etymological roots” (James
Joyce s Techno-Poetics xviii). Theall notes, too, that “building, burrowing, constructing, surveying,
planning—*machinic’ activities appropriate for an engineer—are just as primary components of
the Wake as language, legend, and myth” (11). As if metaphors participated in technological
progress, engineering images in Joyce criticism have morphed over the years into computing
images. For instance, Harry Burrell argues that Joyce “used [Finnegans Wake] as a storage disc for
all the bytes of information he accumulated over a lifetime” (6). Extending the computing analogy
to the reader, Burrell mixes metaphors from computing and Artificial Intelligence theory to argue
that the complex code of the Wake cannot be comprehended without a comparable recoding
of the brain: “the difficulty you experience in attempting to understand Finnegans Wake arises
from the conventional programming of your brain. It is necessary to reprogram it with Joycean
software” (3). Such invocations of Joyce have even found their way outside literary criticism:
neurophilosopher Daniel Dennett, who invokes the computer as a model of consciousness, refers to
his concept of mind as “a virtual machine—the Joycean machine” (220).

Poststructuralist critics have absorbed a modemist, even specifically Joycean, notion of the

machine underpinning the very possibility of writing. In Allegories of Reading, for instance, Paul
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de Man asserts that the “machine is like the grammar of the text when it is isolated from its
rhetoric, the merely formal element without which no text can be generated” (294).} Jacques
Derrida, too, has described his “grammatology” as a process of uncovering the machine within the
text: “The originary and pre- or meta-phonetic writing that [ am attempting to conceive here leads
to nothing less than an ‘overtaking’ of speech by the machine” he writes in Of Grammatology
(79). Therefore, it is not surprising that an extended account of Joyce as a programmer appears in
Jacques Derrida’s 1984 essay “Two Words for Joyce.” In this piece, Derrida develops an extended
analogy between Joyce’s prose and computer programming, calling Joyce “a sadistic demiurge”
and describing him as a sort of maniacal superprogrammer. For Derrida, Joyce sets up

a hypermnesiac machine, there in advance, decades in advance, to compute you,
control you, forbid you the slightest inaugural syllable because you can say
nothing that is not programmed on this 1000th generational computer— Ulysses,
Finnegans Wake—beside which the current technology of our computers and our
micro-computerified archives and our translating machines remains a bricolage

of a prehistoric child’s toys. And above all its mechanisms are of a slowness
incommensurable with the quasi-infinite speed of the movements on Joyce's cables.
How could you calculate the speed with which a mark, a marked piece of information,
is placed in contact with another in the same word or from one end of the book to
the other? For example, at what speed is the Babelian theme or the word ‘Babel’,

in each of their components (how could you count them?), co-ordinated with all the
phonemes, semes, mythemes, etc. of Finnegans Wake? Counting these connections,
calculating the speed of these communications, would be impossible, at least de facto,
so long as we have not constructed the machine capable of integrating all the variables,
all the quantitative or qualitative factors. This won’t happen tomorrow, and in any case
this machine would only be the double or the simulation of the event ‘Joyce’, the name
of Joyce, the signed work, the Joyce software today, joyceware. (147-48)

Derrida’s idea here is that Ulysses and Finnegans Wake deliberately close off the possibility
of newness or invention. Because Joyce’s projects are so encyclopedic, so all-consuming, so
totalizing, the “sadistic™ author has always already pre-empted any possibility of linguistic or
interpretive originality. Although Finnegans Wake has historically stood as one of the ur-texts
of deconstuction, and Joyce’s linguistic experiments have enabled much of deconstruction’s

critical energy, Derrida seems to find at the extreme limits of Joyce's deconstructive textuality

3Geoffrey Bennington’s essay “Abemations: De Man (and) the Machine” deals at length with
metaphors of machinery in de Man’s criticism, particularly in de Man’s essay on Pascal.
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a tendency toward the kinds of systematization and totalization that constitute the antithesis of
the deconstructive ideal. One might say that for Derrida, “joyceware” represents an all-pervasive
system that controls those unknowingly entrapped within it.

The image of a futuristic, almost impossibly fast “1000th generation computer,” beside
which 1984’s computing technology is “a prehistoric child’s toy,” anchors this picture of Joyce’s
pre-emptive prose. In Derrida’s analogy, computing technology functions as that which is at
once entirely determined, and entirely determining; as a computer, Joyce’s texts are closed
systems whose sheer computational power automatically usurps future utterances. The “sadistic”
author becomes the impossibly dictatorial programmer, and the programmatic text becomes the
all-embracing machine. In order to make his analogy, Derrida relies heavily on the bivalence of the
word “program,” using it as a synonym for “control” and “appropriate” at the same time that he
uses it to refer to the software (“joyceware”) that runs on his hypothetical hardware. For Derrida,
the connotations of the word “program” are all negative; every layer of meaning it acquires in his
textured usage simply consecrates the picture of Joyce’s prose, and the computer that is compared
to it, as a hostile machine.

Two things are noteworthy about Derrida’s application of computing metaphors to Joyce’s
prose. First we see how Derrida imports the engineering imagery that for Joyce was profoundly
productive and positive, then warps that imagery, by way of the computer, to turn Joyce into
an authoritarian sadist. Secondly, Derrida’s analogy rests less on any substantive knowledge
about programming or computing history than an assumption that programming is necessarily a
dictatorial, authoritarian act, one designed to limit, contain, and close off the play of meaning. The
assumption is a false one, and as such the analogy is, too. An informed analogy between Joyce and
programming theory yields a very different reading of the “programmatic” nature of Joyce’s prose,
suggesting less that it is a means of controlling the play of meaning than of organizing words so
as to maximize their semiotic potential. That analogy, which I will develop here, takes as its
starting point the fundamental similarity between Joyce’s writing methods and the methodology of

object-oriented programming.
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3.2 Object-Oriented Programming

Before developing further the relationship between Joyce and the principles of object-oriented
programming, it is necessary to cover some of the history of object-oriented programming and to
explain how it gained popularity within programming circles as a methodological solution to the
growing complexity of computer programs. This will involve describing the software crisis that
emerged in the programming industry during the 1960s and 1970s, a crisis that was intimately
related to the linear “procedural” or “functional” programming model’s inability to accommodate
large structures of code without programs becoming untenably convoluted and labyrinthine. This
section then explains the conceptual principles upon which object-oriented design rests, laying the
groundwork for a reading of Joyce within those same principles.

“Of all the monsters who fill the nightmares of our folklore,” writes Fred Brooks in The
Mpythical Man-Month, “none terrify more than werewolves, because they transform unexpectedly
from the familiar into horrors. For these, we seek bullets of silver that can magically lay them to
rest.” In this classic 1974 work of software management theory, Brooks’s characteristically vivid
werewolf metaphor describes the software development project that can morph all too readily into
“a monster of missed schedules, blown budgets, and flawed products” (180-81). A hardened battler
of such werewolves, Brooks honed his celebrated software management theories while working on
one of computer programming history’s most celebrated disaster stories: [BM’s OS/360 software
project. Between 1963 and 1966, IBM spent half a billion dollars and some 5,000 man-years
completing the operating system component of the System/360 unified computing architecture
described in Chapter One.* Although IBM poured an unprecedented amount of money and human
effort into the project, the software remained chronically behind schedule and the resulting product
was mediocre in comparison to the accomplished System/360 hardware architecture. Altogether,
0S/360 became an organizational, technical, financial, and public-relations embarrassment to IBM,

which found its seemingly unassailable technical expertise humbled by the operating system’s

4Bob Evans, former vice-president of IBM’s Data Systems Division, which developed
0S/360, gives his account of the development project and its many problems in “System/360: A
Retrospective View.”
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complexities. Users found the labyrinthine software unreliable and error-ridden; programmers
charged with maintaining OS/360 found it difficult to repair outstanding bugs without generating
new ones.

As Brooks takes pains to point out, the problem was not IBM or the 0S/360 concept itself
so much as it was the prevailing managerial and methodological conditions under which 0S/360
was written. As such, the OS/360 project has less to tell us about incompetence at IBM than it
does about the crisis that came to permeate the field of computer programming in the mid-1960s, a
crisis that came about, ironically, because of phenomenally successtul advances in other sectors
of the computing industry. Rapid advances in core technologies during the 1960s compounded
to generate exponential advances in computing hardware’s power and speed; in the five years
between 1960 and 1965 alone, computer memory and computer processing speed both increased
tenfold, resulting in a hundredfold increase in overall computational performance (Cambeli-Kelly
and Aspray 196). These tremendous improvements in processing and storage capability meant that
computers could run much more complex, elaborate, and sophisticated software programs than
ever before; in turn, hardware manufacturers realized that the availability of such programs would
greatly enhance the utility of their computers and so encourage more firms to switch from manual
to electronic data processing.

Enticing as this logic was, these complex and elaborate programs were not readily
forthcoming—as IBM so painfully discovered. Two factors combined to create this software
vacuum. First, programmers’ productivity had not increased at the same exponential rate as
had computational capability; furthermore, as Fred Brooks famously demonstrated in The
Mythical Man Month, trying to compensate for individual productivity limitations by adding more
programmers to a project (the “brute force” approach favored by IBM in the 1960s) both slowed
projects down and yielded markedly inferior final products. Second, the dominant programming
paradigms of the mid-1960s were themselves limiting: designed to handle software projects
containing 10,000 lines of code or less, they did not readily “scale up” to meet the needs of larger
systems (Cambell-Kelly and Aspray 196). At a million lines of code, 0S/360’s unparalleled size

and complexity was literally unmanageable, and the project’s failure highlighted the organizational,
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technical, and methodological deficits that had congealed to create the “software crisis,” a term that
began to appear with distressing regularity in computing journals and managerial literature of the
period.’

Responding to the reality of this crisis, 2 1968 NATO conference purported to lay a new
theoretical groundwork for managing large programming projects. Coining the now-ubiquitous
term “software engineering” as the conference’s title, the organizers implied that programmers and
corporations could resolve the software crisis by importing established engineering practices into
the software development process. The conference announcement made no attempt to conceal the
overarching rationale behind the name change, noting that “[t]he phrase ‘software engineering’
was deliberately chosen as being provocative, in implying the need for software manufacture to be
based on the types of theoretical foundations and practical disciplines that are traditional in the
established branches of engineering” (qtd. in Cambell-Kelly and Aspray 201).The semantic shift is
telling: “computer programming,” dogged with notions of failure, expense, flawed products, and
public-relations disasters would become “software engineering”—theoretical, conceptually sound,
and economically reassuring. Despite the shift in rhetoric, however, this attempt to “engineer”

a managerial and/or methodological solution largely failed to resolve the software crisis.
Programmers’ productivity has certainly improved since the 1960s, thanks to important advances
in programming languages, diagnostic technologies, symbolic debuggers, and so on; and yet
hardware capability has relentlessly outstripped these improvements in the programming process.
Furthermore, the conceptual and managerial difficulties that began to plague the programming
enterprise during the 1960s have still not been overcome. In a contentious 1986 paper, “No Silver
Bullet—Essence and Accident in Software Engineering,” Fred Brooks gave his pessimistic outlook
for the future of programming: “Not only are there no silver bullets now in view, the very nature
of software makes it unlikely that there will be any—no inventions that will do for software
productivity, reliability, and simplicity what electronics, transistors, and large-scale integration did

for computer hardware. We cannot expect ever to see twofold gains every two years” (181). For

3In From “Black Art” to Industrial Discipline: The Software Crisis and the Management of
Programmers, Nathan Ensmenger documents how the software crisis was conceptualized as a
problem of programmer management. In particular, see 93—~106 and 249-256.
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Brooks, who understands computer programming as an art, something “creat{ed] by exertion of the
imagination,” no silver bullet can magically transform the process into a mechanical acr that would
allow programmers’ productivity to keep pace with hardware advances.

Other programming theorists have challenged Brooks’s pessimism. In a 1990 response to
Brooks, defiantly titled “There Is a Silver Bullet,” Brad Cox argued that a software development
revolution only required a cultural shift away from the idiosyncratic craft-based approach
employed in many development contexts. Noting that “computer software . ..is becoming the
limiting strategic resource of the Age of Information much as petroleum is a strategic resource
today,” Cox contended that the software crisis was ultimately a cultural problem rather than
a technological one, and that “[t]he silver bullet is a cultural change rather than a technological
change. It is a paradigm shift; a software industrial revolution that will change the software
universe as the industrial revolution changed manufacturing” (10). What is needed, in Cox’s view,
is a new paradigm, a new way of writing software that revolutionizes programming. Not to rethink
entrenched ideas about what programming is and how it works is, for Cox, to fall into the same

trap astronomers once fell into when their thought outgrew their models:

The Aristotelian cosmological model as extended by Ptolemy was once as entrenched
and ‘obvious’ as today’s process-centered model of software development. Given any
particular discrepancy, astronomers were invariably able to eliminate it by making
some adjustment in Ptolemy’s system of epicycles, just as programmers can usually
overcome specific difficulties within the software development paradigm of today.

But the astronomers could never quite make Ptolemy’s system conform to the best
observations of planetary position and precession of the equinoxes. As increasingly
precise observations poured in, it became apparent that astronomy’s complexity was
increasing more rapidly than its accuracy and that a discrepancy corrected in one place
was likely to show up in another. (215)

Cox’s parallel between tinkering with the Ptolemaic model of the universe and manipulating

a woefully inadequate software development paradigm clearly announces what he believes
programming needs: a conceptual reorientation analogous in scale to the Copernican revolution.
The technology to enable that revolutionary reorientation, Cox assures us, already exists. Known
as “object-oriented programming,” it is the elusive silver bullet solution to the software crisis.

What was it about object-oriented technology that led Cox to see it as a paradigm shift in the way
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we think about design methodology? A brief explanatory foray into the history and theory of
object-oriented design illuminates the impulse at the heart of Cox’s vision.

It is a mistake, albeit a common one, to regard object-oriented programming as an innovation
of the 1980s and 1990s. Although object-oriented programming did not truly come into vogue
until those decades—we see Cox arguing for its widespread adoption in 1990—some of its
underlying principles may be found in the early Artificial Intelligence work of the 1940s and early
1950s (Berard 3). These ideas began to solidify into new programming approaches, somewhat
ironically, at the very moment that the software crisis was first beginning to show itself. As
programmers began to flounder under the weight of their impossibly complicated, exponentially
lengthening projects, an MIT Ph.D. student named Ivan Sutherland was experimenting with a
modular approach to software design. The result of Sutherland’s research was the first interactive
computer graphics program, SketchPad, introduced in 1962. Although the program was innovative
in many respects—allowing its users to create images on-screen with a lightpen, for instance—its
major design innovation from a programming standpoint was the way it employed the concept
of master drawings and instance drawings. Once a programmer established constraints in the
master drawing, SketchPad could define a multiplicity of instance drawings that followed these
constraints—in other words, the instance drawings would inherit predefined attributes from
the master drawing. Later programming theorists would recognize Sutherland’s deceptively
simple concept of defining new “instances” from preexisting, predefined “master classes” as a
foundational breakthrough in the field of object-oriented design.

Experiments similar to Sutherland’s took place elsewhere. At the Norwegian Computing
Center between 1961 and 1967, Kristen Nygaard and Ole-Johan Dahl developed a discrete
event simulation language named Simula I and a general programming language called Simula
67. Implementing many of the principles that would come to define modern object-oriented
programming, Simula 67 would prove foundational for the creation of future object-oriented

languages.® A pivotal figure in advancing object-oriented technology was Alan Kay. While

The computing industry has formally recognized Dahl and Nygaard’s pioneering work in
the field of object-oriented design: the Norwegian programmers received the Association for
Computing Machinery’s Turing Award in 2001, and the John von Neumann Medal in 2002.
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studying at the University of Utah in the late 1960s, Kay became familiar with Sutherland’s
SketchPad program and began programming in Nygaard and Dahl’s Simula. In the early 1970s,
Kay, who coined the term “object-oriented,” synthesized the ideas of Sutherland, Nygaard, and
Dahl to create Smalltalk, the first fully-fledged object-oriented programming language.’

Although Sutherland, Nygaard, and Dahl heavily influenced Kay’s work, biology supplied the
flash of insight that led Kay fully to realize the object-oriented method. Looking for a simple,
adaptable building block that would integrate his predecessors’ insights, Kay, who had pursued
a double undergraduate major in mathematics in molecular biology, hit upon the cell. Shasha
and Lazere explain the significance of Kay’s insight: “[tjhe biological analogy suggested three
principles to Kay. First, every cell ‘instance’ conforms to certain basic ‘master’ behaviors. Second,
cells are autonomous and communicate with one another using chemical messages that leave one
protective membrane and enter through another one. Third, cells can differentiate—the same cell
can, depending on context, become a nose, eye, or toenail cell” (43). Crystallizing the essential
structural potential of Sutherland’s “master” and “instance” drawings, and the organizational
principles of Nygaard and Dahl’s Simula, computational objects modeled on cells exhibited traits
that would later be named polymorphism, inheritance, abstraction, and encapsulation, each of
which would become a core structural principle of object-oriented design theory.

These principles were very different from those that governed mainstream programming theory
during the 1970s. The main precursor to object-oriented design, procedural (or “structured”)
programming, encouraged developers to build programs as sets of procedures or functions.
Although this methodology, championed by computer scientists such as C.AR. Hoare and Edsger
Djistra, represented a major theoretical advance for computer science, it had significant limitations
as a pragmatic programming methodology. Because data and functions existed in separate
structures, and because data were often global, access to those data were often unregulated, and

they could be modified in ways the programmer did not anticipate. Procedural programming,

7Kay describes the design of Smalltalk in his article “The Early History of Smalltalk.” The
language Smalltalk is still actively developed today: Contemporary implementations include
Cincom Smalltalk, IBM’s VisualAge Smalltalk, Dolphin Smalltalk, Smalltalk/X, and GNU
Smalltalk.
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seemingly elegant when used for short examples in computer science textbooks, quickly became
messy when used for large development projects: as programs grew larger and more complex,
bugs proliferated exponentially, and debugging became an arduous and time-consuming

chore. By conceptualizing the object as the ontological starting point for a new programming
methodology, object-oriented design theorists attempted to overcome many of the shortcomings
and idiosyncrasies inherent in the procedural method. I mentioned above that the central attributes
of object-oriented methodology are abstraction, encapsulation, inheritance, and polymorphism.
will now give a more detailed description of these principles, showing how they work together to
shape the object-oriented design philosophy.

Rather than allowing data to exist globally in separate structures, object-oriented design
methodology encapsulates data and functions (generally called methods in object-oriented
terminology) together to form objects. Consider a simple object named Sum whose purpose is to
add four numbers and report the total. The Sum object could contain four integers, Intl, Int2,
Int3 and Int4, a method for establishing the values of the integers, another method—perhaps
a function called Add () —for summing the integers, and yet another method for retrieving the
results. Because object-oriented design encapsulates data with its methods, the data cannot be
modified by other unconnected functions. For instance, suppose we have another object called
DisplayTotal, whose job it is to access the total calculated by Sum and display it on the
screen. In order for DisplayTotal to access the data in Sum, the objects must be defined to
allow that access; then DisplayTotal could send a message to Sum requesting the total of the
summed integers and Sum could send the relevant data back to DisplayTotal. The principle of
encapsulation thus allows the programmer to protect data from accidental modification—objects
will only pass data to external functions when the programmer specifically defines those transfers.

Encapsulation allows an object to exist as an autonomous, self-contained entity. The
independence of encapsulated objects in turn facilitates a high degree of abstraction. In Chapter
One, [ described how abstraction has worked historically to reduce programming complexity by
hiding nonessential functions; object-oriented design frther extends and advances this principle of

abstraction. In the simple example above, the DisplayTotal object does not need to understand
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how the Sum object calculated its output, and Sum does not know what DisplayTotal will

do with the results. These principles can scale up to model complex real-world situations and
transactions. If I order a book from Amazon.com, for instance, neither Amazon.com nor I need to
know how or where the book was written, edited, manufactured, distributed and so on—such details
are the responsibility of the book’s author and publisher. To complete the transaction, I need to
pass only select, specific data to the online retailer (my name, address, and credit card information)
and need to know only a limited amount of data about Amazon.com (that it is an online bookseller
I can reasonably trust to deliver merchandize in return for payment). Neither Amazon.com nor |
need to allow the other party access to global data about ourselves—Amazon.com does not need to
know my marital status, my favorite foods, or whether [ vote liberal or conservative; [ don’t need
to know details of Amazon.com’s upcoming promotional campaigns, earnings announcements,
etc. In addition, neither Amazon.com nor [ need to know the exact details of how the book will
travel from the retailer’s warehouse to my home; we employ a third party, the postal service, to
take responsibility for that particular set of decisions. Ultimately, neither Amazon.com nor the
postal service needs to know why I want the book or how I will use it; indeed, the postal service
does not even need to know what the package contains. The object-oriented paradigm thus models
to a large degree the information hiding that occurs in the real world, where “objects” (authors,
publishers, booksellers, postal workers, and readers) can interact and interrelate without needing to
understand or even reveal all the animating methods and data that underpin those interactions.

The third core object-oriented trait is inkeritance. When objects are created—or instantiated
in object-oriented terminology—they may inherit many of their attributes from abstract classes,
just as Sutherland’s instance drawings inherited attributes from master drawings. Instantiating
two “car” objects Carl and Car2, a programmer may choose to inherit characteristics from an
abstract Car class, then add unique data and methods to those objects. Carl and Car2 may be
different models, different colors, and so on, but they share essential commonalities: each car will
have wheels, a steering mechanism, brakes, and so on. The ideal of inheritance, and the reason
Cox and others promote object-oriented design as a “silver bullet” design solution, is that of

code-reusability—rather than reinventing the wheel each time he wants to instantiate an object, a
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programmer can simply draw on abstract classes and sub-classes for general templates that he then
refines according to his specific needs. Given a large enough library of predefined classes and
objects, a programmer, at least in theory, can assemble a large program from what are essentially
reusable parts.

The final general core trait of object-oriented design, “polymorphism,” relates closely to
inheritance in that polymorphism also aims to reduce the amount of code programmers must write
from scratch. Polymorphism accompliskes this by allowing programmers easily to adapt inherited
code to the requirements of specific environments, contexts, and commands. Kay’s analogy
with the biological cell comes in useful here: all cells share the same DNA, but different genes
are turned on in different cells to allow them to perform the many functions the body requires to
sustain life—a skin cell, a red blood cell, and a brain cell may be understood as polymorphous
variants of the same basic cellular object. As we will see, the same principles come into play with
language; indeed, Edward Berard uses an epigraph from Alice s Adventures in Wonderland to

illustrate the principle of polymorphism of within object-oriented design:

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means
just what I choose it to mean—neither more nor less.”

“The question is,” said Alice, “whether you can make words mean so many
different things.”

As the procedurally-oriented Humpty Dumpty confronts the object-oriented Alice, we get a sense
of the paradigm shifts that the new methodology necessitates.

The encapsulated, abstracted, polymorphous, inheriting object is thus designed to move code
well beyond simple teleology and endow it with the power to break free of the constraints imposed
by more linear programming techniques. The move toward modularity means that pre-written
objects can be collected into software libraries—programmers can then draw on and adapt code for
their purposes without having to start anew every time they need to accomplish an everyday task
such as drawing an icon on a screen, or creating a drop-down menu. Thus advocates of object
orientation argue that the object-oriented methodology is best suited for use in developing today’s

increasingly complex systems.
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What does all this have to do with Joyce? “Je suis au bout de I’anglais [I am at the end of
English],” Joyce declared in a fit of frustration in 1922 (Ellman 546), just as he was shifting focus
from Ulysses to Finnegans Wake. “What the language will look like when I have finished I don't
know,” he declared four years later, having established the Wake’s working method. “But having
declared war [ shall go on ‘jusqu’au bout’” (Ellmann 581). It will be the contention of the third
section of this chapter that structurally speaking, the modular, omnidirectional structure of Joyce’s
writing “jusqu’au bout d’anglais” has much in common with the structure of an object-oriented
program. What object-oriented design essentially did was to move code beyond a simple narrative
structure—beyond the assumption that a program, like a plot, contains a distinct beginning, middle,
and end—and into a realm of expression far more complicated, far more powerful, and far more
aesthetically sophisticated than the forms from which it was derived. So, too, with Joyce. Like the
object-oriented programmer, Joyce’s technique consists of implicating the whole in the part, of
making each scene, character, and sentence point to and even contain the entire work—in short, of
building words, characters, and scenes into encapsulated, polymorphous units that inherit their
attributes from predefined classes. In what follows, I turn to programming philosophy as a means
of approaching Finnegans Wake’s structural problems. Reading the Wake as an elaborately woven
piece of prose-code, I will demonstrate how object-oriented programming philosophy makes newly
visible aspects of Joyce’s text that have not hitherto been productively synthesized or properly

understood.

3.3 “Joyceware”: The Object-Oriented Wake

An attempt to read Joyce's later fiction through the lens of programming theory does have
precedent in the critical literature. In her 1989 book Writing Joyce: A Semiotics of the Joyce
System, Lorraine Weir suggests that “the operations of John McCarthy’s system, ‘LISP,” provide
another way of configuring that fugal arborescence of textual paradigms [that is] a principal
structuring mode in Ulysses and Finnegans Wake” (94). Recognizing the potential of computer

language design theory to illuminate the complexities of Joyce’s texts, Weir selects LISP for its
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“hierarchical (rather than linear) structure,” for its capacity to define “new functions in terms

of other functions that are already defined,” and for the “nodal structure of a LISP tree” (95).
Importing McCarthy’s LISP onto the scene of Joycean criticism allows Weir to identify and begin
to define an overlap between programming theory and Joycean method; in particular, she notes
how LISP is “bound by the multiplicative drive of its sets and subsets to reenact the operations

of the system” and how, in LISP, “form is act in all senses, and act a recombinant sequence of
recursive definitions” (96). Weir explained the specific connections between the nodal structures of
LISP and those of Finnegans Wake as follows:

LISP memory ...operates in terms of a sequencing of lists built as trees whose
structures develop as programmed and according to required configuration, storing
not only the final term or result of the sequence but also all of the connections among
the nodes in the tree or list. The mnemonic hierarchy works by moving back from
results to prerequisites or requirements and thus fixes a hierarchy of goals much as the
“verbivocovisual” or eye/ear code does in Finnegans Wake. (95)

Weir’s experimental interpretive strategy never fully rises to the level of method; her treatment of
the conjunction between programming language and Joycean language is too brief; moreover, her
unexamined assumption that LISP’s hierarchical data structures may be mapped onto Finnegans
Wake makes it impossible for her to account for the associative semantics of Joyce’s novel. Her
analysis is thus truncated at precisely the point where its potential to open up Joyce scholarship
is most intense: as I will go on to show, the modular structure of object-oriented programming
provides a much more compatible and critically illuminating paradigm for reading Joyce’s late
work. This section seeks to mine the untapped potential that Weir passed over by developing
an extended analysis of how Joyce’s modular compositional practice operated according to the
structural principles that are recognizable today as those of object-oriented programming.

The principle features of object-oriented theory (encapsulation, abstraction, inheritance,
and polymorphism) combine to allow programmers an unprecedented amount of control over
enormously complicated systems. They are techniques for managing complexity, ways of
ordering layered, interconnected systems that, far from simplifying the whole, harness the whole’s
complexity. Like an object-oriented program, Joyce’s work is at once extraordinarily complex

and highly organized. Like an object-oriented programmer, Joyce was always concerned to
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give the reader sets of conceptual tools that the reader could use to navigate his work. More to
the point, Joyce develops a hermeneutic scheme whose organizational principles parallel those

of object-oriented programming. Long before object-oriented programming languages were
created, Joyce independently devised similar techniques as a compositional and methodological
alternative to traditional narrative structure. Working in a highly modular manner whose dense
conceptual nesting has yet to be fully apprehended by critics, Joyce used what would today be
defined as “classes” and “objects™ to structure the Wake, relying on strategies very like those of
encapsulation, polymorphism, and inheritance to structure the flow of words as a flow of data. I use
the term “data” deliberately here to describe the coded, informatic quality of Joyce’s language,
which is often more interested in words as markers of patterns than as referents, and which allows
this impulse toward pattern to become a guiding one, such that the “meaning” of the Wake lies not
in the thematic or symbolic significance of individual words, but in the accumulation and repetition
of word patterns.

Structural and genetic readings of late Joyce have unconsciously begun just such an “object
oriented” reading of the Wake. Clive Hart’s definitive 1962 study, Structure and Motif in Finnegans
Wake, is one of the earliest examples of this strand of Joyce criticism. In that work, Hart’s
description of how the Wake makes meaning strongly evokes two of the defining principles of

object-oriented design theory:

The primary energy which maintains the highly charged polarities of Finnegans Wake
is generated by cycles of constantly varied repetition—*The seim anew’, as Joyce puts
it. The stronger the pre-established expectancy, the wider can be the variations played
on a word or motif. A pun is effective only when its first term is vividly prepared for
by the context. By using a vocabulary and style packed with well-worn units Joyce

is able to play on what the psychologists call the reader’s ‘readiness.” As with the
basic style, so with the more specialized motifs: if Joyce builds them up from familiar
phrases he is absolved from the need to establish familiarity with their shape in the
early parts of the book (which would be out of keeping in a really cyclical work) and
is immediately able to make the widest punning excursions while remaining sure of
his readers’ powers of recognition. (31-32)

In Hart’s paradigm, which describes the dynamic interaction between reader and Joyce’s text,
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words derive much of their local meaning from the book’s wider structural patterning.® In

this, they operate less as signs than as objects, they inherit significance from past usages and
related word plays, while at the same time morphing to suit their specific syntactical context. An
object-oriented paraphrase of Hart’s work would say that Joyce’s portmanteau word-units display
the object-properties of inheritance and polymorphism.

As Hart’s work suggests, there is a striking convergence between critical characterizations of
the Wake’s structure and object-oriented programming theory. For example, in his analysis of the
Wake’s genetic evolution, David Hayman proposes that the series of preliminary sketches Joyce
drafted in 1923 constitute the book’s “nodal macrosystem™ (9). Much of Joyce’s work thereafter
involved elaborating, deepening, and interlinking the primary nodes that he generated early on.
Similarly, Shari Benstock notes that “there are stories within stories, each telling embedded in
another frame of receding concentric rings,” arguing that we need a “multiple ‘frame of reference’
allowing for a maximum number of correspondences between dreams and letters” (165). Joseph
Valente adopts a different sort of metaphor for the cyclical process Benstock posits, referring to
Joyce’s technique of dropping words into different contexts and watching how they behave as
“contextual polyphony” (59). These are all precise, if unselfconscious, descriptions of a textual
system centered around the principles that govern object-oriented design.

Vicki Mahaffey’s States of Desire describes an experimental reading approach that builds on
this emergent understanding of the Wake as a built system of artifacts that both convey meaning
associatively and acquire it dynamically as the context shifts, or as the “program” of Finnegans
Wake runs. Drawing on the “machinic” textual analyses of Deleuze and Guattari, Mahaffey
proposes a reading strategy that “sees words as temporary ‘assemblages’ capable of being taken
apart and assembled differently, plugged in elsewhere, recontextualized; such assemblages
are sites of multiple interconnections and potential recombination” (8). Like Hart, Hayman,
Benstock, Valente, and Mahaffey are all describing Joyce’s patterning as a system of dynamic

objects that inherit their characteristics and rules from a wider library of languages, designs,

8Margot Norris, too, notes that “we find in Finnegans Wake that intellectual shift which locates
meaning in relationships and structure rather than in content” (3).
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formulae, histories, myths, games, and so on. As Jean-Michel Rabaté puts it, “The echonomy of
Finnegans Wake, its amalgamative alchemy” depends on “a few important notions, such as those
of codes, series, and performative language games ... A single element is enough to trigger off a
chain-reaction, and to magnetise the other elements of a latent group” (112-18).

Robert Scholes, Joseph Kestner, and others have invoked Jean Piaget’s structuralist theories
to read Joyce’s work. In Structuralism (1971), Piaget proposed that “the notion of structure is
comprised of three key ideas: the idea of wholeness, the idea of transformation, and the idea of
self-regulation” (5). Adopting this Piagetian triad, both Kestner and Scholes derive an aesthetic
that they believe describe Joyce’s writing (Scholes 185). Although their Piagetian structuralism
focuses more on Joyce’s earlier fiction, Kestner’s concern with the “structured layer of the
[Joycean] palimpsest” (32) shows how this structural model is perhaps most relevant to Finnegans
Wake. In the final section of this chapter I discuss the genealogical relationships between Piagetian
notions of structure and the design philosophy of object-oriented programming; for now [ simply
note that the Piagetian ideas of wholeness, transformation, and self-regulation bear strong formai
similarities to the object-oriented notions of encapsulation and polymorphism.

Together, these critical formulations express a shared sense that Joyce’s late prose is founded
upon a peculiarly dynamic infrastructure, one composed of mobile, highly defined objects that
both move freely throughout the text and are bound by strict rules about how they interact with one
another. At the same time, none of these formulations develops a definitively precise architectural
vocabulary for characterizing the signifying activity that it describes. The commonalities between
these descriptions and the model of meaning generated by object-oriented design theory suggests
how much structural readings of Joycean prose have to gain from a conscious, thoroughgoing
incorporation of object-oriented methodology into Joyce criticism. Object-oriented theory not only
provides a conceptual framework for reading Joyce’s spatial approach to prose, but also supplies a
conceptual framework for grouping some of the metaphors critics have used to describe Joyce's
compositional methods.

The sigla that simultaneously denote character and symbol, myth and archetype, are the

most “object-oriented” aspect of Joyce’s compositional methodology. Joyce devised the sigla in

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the early months of 1923 (the period when David Hayman says that he developed his “nodal
macrosystem”). Initially Joyce’s shorthand for the Wake’s various characters, the sigla gradually
became, in the words of Jean-Michel Rabaté, “the underground logic controlling the balance of
individual chapters and books” (80). Joyce’s sigla are his “objects”; the principal building blocks
of the Wake's structural system, they orient and define his prose.

The sigla are elaborate condensations, a sort of structural shorthand that begins as a system for
denoting character and evolves over time into a mechanism of compressing entire historical and
epistemological systems. The sigla structure vast arrays of eccentric references into concentrated
units; those units in turn contain the potential for an infinite opening outward of its accumulated
allusive force. In turn, the sigla interact with one another as a means of mutual definition—Margot
Norris notes that “[w]e find in the Wake not characters as such but ciphers, in formal relation to
each other” (4). Deleuze and Guattari perfectly capture the compressed movement of sigla in their
description of “assemblages” in A Thousand Plateaux: “[T]he material or machinic aspect of an
assemblage relates not to the production of goods but rather to a precise state of intermingling
of bodies in a society, including all the attractions and repulsions, sympathies and antipathies,
alterations, amalgamations, penetrations and expansions that affect bodies of all kinds in their
relation to one another” (90). If one were to substitute the word “sigla” for the phrase “bodies of
all kinds,” one would have a precise description of how Finnegans Wake condenses a multitude of
intersecting historical, mythic, and fictional patterns.

Joyce’s revolutionary condensations originate in a dissatisfaction with traditional
characterization, a fact that is crucial for our understanding of how the Wake’s sigla operate
as objects. That dissatisfaction culminated during the writing of Ulysses, when Joyce became
frustrated with the static quality of his most completely “formed” character, Stephen Dedalus.
When Ezra Pound suggested that Joyce could improve Sirens by relegating Bloom to the
background and bringing Stephen forward, Joyce rejected the idea, commenting to Frank Budgen
that “Stephen no longer interests me. He has a shape that can’t be changed” (Ellmann 459). A
largely autobiographical character formed according to the conventions of nineteenth-century

realism in Joyce’s earlier Portrait of the Artist as a Young Man, Stephen could not evolve along
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with Joyce’s changing ideas about narrative. As Joyce began to experiment more freely with the
formal potential of prose, Stephen Dedalus ceased to fit into the narrative schema that originally
were designed with him at the center. In his late work, Joyce sought to create characters whose
shape could be changed according to a pre-defined, consistently applied, yet enormously flexible
set of rules and contraints. The concept of the sigla—at once character and far more than character,
possessing definite traits and yet infinitely mutable—answered Joyce’s need.

A primary trait of sigla is what Roland McHugh has helpfully described as “personality
condensation.” For McHugh, the sigla are “personages,” which are in turn *“fluid composites,
involving an unconfined blur of historical, mythical, and fictitious characters, as well as nonhuman
elements.” Moreover, these personages are also semiotic systems: “Joyce’s technique of
personality condensation is ultimately inseparable from his linguistic condensation. Coincidences
of orthography and pronunciation are enforced with indifference to the ostensible logic of their
past. That which is not coincidence is pared away, and the greater the similarity of two persons’
names, the more usefully their personalities conjugate” (10). Through the creation of sigla, then,
Joyce was able to create characters that were not bound by time, place, or even their own bodies; in
the Wake, characters morph and mutate, moving and shifting as Joyce’s narrative needs dictated.
Instead of limiting his stylistic experiment as Stephen had, they became its centerpiece.

As the anchoring structural elements of the Wake’s architectural system, the sigla contain
within them the key to Joyce’s vision of the impact he wanted the Wake to have on its readers. The
overall effect managed by the sigla, McHugh notes, is not one of order or clarity, but of associative
overload. The sigla are not intended to condense discrete ideas, or even defined patterns, so
much as they are designed to manage Joyce’s attempt to produce in the reader a state of mind
McHugh labels “psychic saturation” in which “the mind fails to retain and reconcile a superfluity
of levels” (10-11). The notion that producing a saturation-effect in the reader would resolve
Joyce’s difficulties with traditional notions of character may seem counterintuitive at first glance: a
character is not a character if it does not have firm boundaries and a coherent presentation. Joyce
was approaching the problem of characterization, and the related issue of narrative innovation,

from the viewpoint of the night, however. He was adamant that Finnegans Wake was not a work
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that proceeded according to the rules of everyday life, but that instead observed the strange internal
logic of dreams. In this, Freud was his inspiration and his guide; Joyce’s conversion of character to
compressed sigla, and his use of personality condensation to release vast amounts of submerged
textual energy, grows out of his reading of Freud’s Interpretation of Dreams. There, Freud explains
the logic of dreams in terms that Joyce adapts for his own expressive purposes in Finnegans Wake.
In writing Finnegans Wake, Joyce was particularly influenced by Freud’s model of
condensation.’ For Freud, “condensation” described the process by which far-ranging significance
and multiple layers of meaning (what Freud calls “dream-thoughts”) are compressed into individual
elements that are recalled after waking as the dream (or, in Freud’s terms, *“‘dream-content”). In
The Interpretation of Dreams, Freud focuses on two principles of condensation: personality
condensation and linguistic condensation. These are at once distinct and interpenetrating; both are
mutually constitutive. For Freud, in dreams “new unities are formed—in the shape of collective
figures and composite structures—and intermediate common entities are constructed™ (330). Freud

gives an example from his own dreams:

On one occasion a medical colleague had sent me a paper he had written, in which the
importance of a recent physiological discovery was, in my opinion, overestimated, and
in which, above all, the subject was treated in too emotional a manner. The next night
I dreamt a sentence which clearly referred to this paper: ‘It’s written in a positively
norekdal style.” The analysis of the word caused me some difficuity at first. There
could be no doubt that it was a parody of the [German] superlatives ‘kolossal’ and
‘pyramidal’; but its origin was not so easy to guess. At last I saw the monstrosity
was composed of the two names ‘Nora’ and ‘Ekdal’—characters in two well-known
plays of Ibsen’s (4 Doll's House and The Wild Duck). Sometime before, I had read a
newspaper article on Ibsen, by the same author, whose latest work I was criticizing in
the dream. (331)

As this example elegantly shows, a dream’s compressed words may also compress personality;
likewise, personality compression may take place via linguistic condensation. Ibsen’s characters
merge to characterize the overwrought tone of Freud’s colleague’s argument; moreover, they merge

both into a composite figure and into a portmanteau word—within the logic of the dream, Freud’s

9For a genetic study relating Joyce's use of Freud to the process of sigla-formation, see Daniel
Ferrer’s “The Freudful Couchmare of Ad: Joyce’s Notes on Freud and the Composition of Chapter
XV1 of Finnegans Wake.” For Joyce’s reliance on Freud to integrate elements of the Wake see
Margot Norris, especially 15-22.
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objections to his colleague’s argument are thus objectified as a single enormously telling adjective,
one that in turn contains within it the combined force of Ibsen’s own psychological drama.

In the Wake, Freudian principles of personality condensation and linguistic condensation
form the structural rules for the sigla that govern the architecture of the whole. McHugh tacitly
acknowledges Joyce’s conceptual debt to Freud when he defines the sigla in a vocabulary that is
openly—if not explicitly—drawn from The Interpretation of Dreams: “Joyce’s technique of
personality condensation is uitimately inseparable from his linguistic condensation.” “Personality
condensation” and “linguistic condensation” are not, we have seen, McHugh’s terms, but Freud’s.
Likewise, the notions that the one type of condensation begets and even necessitates the other, and
that together they work to produce something akin to psychic overload, or “saturation,” belong to
Freud. One might say that Freud’s /nterpretation of Dreams forms the structural unconscious of
the sigla.

According to Freud, the remembered elements of dreams are the manifest signs of a meaning
that is always by definition latent, even repressed: “When we reflect that only a small minority
of all the dream-thoughts revealed are represented in the dream by one of their ideational
elements, we might conclude that condensation is brought about by omission: that is, that the
dream is not a faithful translation or a point-for-point projection of the dream-thoughts, but a
highly incomplete and fragmentary version of them” (315). The formulation describes perfectly
Joyce’s compositional process, which formally registered sigla as a notational means of pointing
toward a mass of unrecordable association. In his notebooks, the sigla might be said to mark
the dream-content of the streaming, unending dream-thoughts that would ultimately form the
text of the Wake; beginning with the compositional analogue of dream-content, Joyce moved
backward—or inward—according to a recognizably Freudian hermeneutic. As Freud works
backward from “ideational element” (315) to dream-thought, so Joyce works from sigla to the vast,
inchoate series of associations that each crystallizes, embroidering, deepening, and complicating
Finnegans Wake as a means of approximating the continuous turbid current of dream-thought.

Joyce thus translated Freud’s portrait of the psychic process of dream-building into a theory

“e

of narrative structure. Thomas Jackson Rice calls Joyce’s sigla ““activity rules’ for [characters’]
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interaction”; Donald Theall has noted Joyce's interest in the mathematical definition of types and
their relation to the sigla: “Joyce read Russell’s Introduction to Mathematical Philosophy with a
particular interest in the chapter on the theory of types. ... [H]e used the formality of mathematical
logic in the construction of relationships between sigla. . .. He apparently sensed the problems of
‘strange loops’ and the infinite regression of classes, hence also the concept of ‘meta-'levels.” In his
use of sigla, Joyce seemed to be looking for mathematical formulae that would allow him to define
the attractions, repulsions, amalgamations, and metamorphoses of his characters” (James Joyce s
Techno-Politics 167). Combining the concepts of personality and linguistic condensation with his
own mechanical and mathematical rules for building sigla, Joyce adapted Freud’s hermeneutics
of the dream into a new technique for engineering a form of textuality that contained but did not
precisely tell a story; that developed character through accretion and pattern rather than through
description and event; and that thereby bypassed the linear model of development associated

with the nineteenth-century realist novel in favor of a more fluid, undefined, ultimately more
mimetic style. In this way, Joyce derives a central component of his “object-oriented” narrative
technique from his reading of Freud’s understanding of dream-content as a condensation of much
more amorphous, inaccessible, associative, and submerged dream-thoughts. If Joyce's sigla are
his objects; Freudian condensation is the means by which they achieve what object-oriented
programming theory describes as “compression.”

Both Freudian theories of condensation and programming theories of objects share a notion of
textual concentration: just as condensation is the operative feature of dreams, so “compression” is
a primary trait of objects. The object-oriented programming theorist Richard Gabriel describes
“compression” as “the characteristic of a piece of text that the meaning of any part of it is ‘larger’
than that piece has by itself. This is accomplished by the context being rich and each part of
the text drawing on that context—each word draws part of its meaning from its surroundings”

(5). Gabriel’s description of a compressed object could as easily describe Joyce’s sigla, which
compress or condense meaning in precisely the same way. The profoundly literary quality
of compression was not lost on Gabriel, who expressly noted that insofar as objects could be

designed as compressions of larger, unreferenced libraries of code, those objects were also literary
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artifacts, written according to time-honored aesthetic technique: “A familiar example from outside
programming,” he notes, “is poetry, whose heavily layered meanings can seem dense because of
the multiple images it generates and the way each new image or phrase draws from several of the
others” (5). For Gabriel, the better the program’s compression, the more literary the program.

Gabriel emphasizes, however, that the cost of compression can be quite high; indeed, that the
costs increase as the quality and extent of the compression do: the more compressed an author’s
program is—the richer its refesenced context—the less “habitable” it is, the less able other
programmers are to insert themselves into the code and continue to write it. Compression is
signature, a form of shorthand. The tension Gabriel traces between the quality of a program’s
compression and “code habitability” is a defining tension within Joyce’s work. Indeed, one of the
most bizarre episodes in Joyce's career—Joyce’s near-decision to have another writer finish the
Wake—may be explained in those terms: Joyce'’s belief that a little-known novelist named James
Stephens could complete the Hake is perhaps best understood as a sign of his faith in the structural
“habitability” of his book’s design.

Joyce was very far from seeing himself as a singularly original, self-contained artist. He felt for
example that his mind was written over by the writing he had read. And indeed it was. 4 Portrait
of the Artist as a Young Man was very clearly a rewriting of Meredith’s The Egoist. The Dead
drew heavily on the work of George Moore (Ellmann 250-51). And Ulysses combined a borrowed
mythical structure with the recorded words and lives of just about everyone who had ever made an
impression on its author. “They are all there [in Ulysses]), the great talkers, they and the things they
forgot,” he said (Ellmann 524). (All, that is, except his brother Stanislaus, whose insistent claims to
certain ideas in the book met with the special contempt Joyce reserved especially for him [Ellmann
531].) Joyce made a virtue of necessity, however, and what began as worry about whether he was
original quickly became pride at his ability to do more with ideas than their originators could. The
Dead was a case in point: though Joyce had taken the idea for the ending from Moore, Moore
could only regard what Joyce had done with awe, remarking without irony in a letter to Yeats that
he wished he had written a work that was in fact a rewriting of his own work. In 1918, Joyce

remarked to his friend Frank Budgen that he was more of a developer than an originator of ideas:
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“Have you ever noticed, when you get an idea, how much / can make of it?” (Ellmann 439).

Joyce preferred to represent his work as a collaborative elaboration of ideas rather than the
singular effort of one. Ellmann says of Joyce composing Ulysses, “He was never a creator ex
nihilo; he recomposed what he remembered, and he remembered most of what he had seen or had
heard other people remember” (364-65). Joyce's refusal to own his originality as anything other
than a type of sophisticated book-keeping is a telling gesture, one that points counterintuitively but
unmistakably to a notion of authorship as something separate from an individual author, something
only provisionally owned, something never authentic.

In 1927, frustrated with the frustration of his readers, suffering from serious health problems,
and plagued by family disturbances, Joyce came quite close to bequeathing the unfinished
Finnegans Wake to James Stephens, who he imagined could continue the project once he
understood the principle (or code) of its creation. Joyce explained his rationale in a letter to Harriet
Shaw Weaver:

As regards that book itself and its future completion I have asked Miss Beach to get
into closer relations with James Stephens. [ started reading one of his last books
yesterday Deirdre. 1 thought he wrote The Return of the Hero, which I liked. His
Charwoman 's Daughter is now out in French. He is a poet and Dublin born. Of course
he would never take a fraction of the time or pains I take but so much the better for
him and me and possibly for the book itself. If he consented to maintain three or four
points which I consider essential and I showed him the threads he could finish the
design. JJ and S (the colloquial Irish for John Jameson and Son’s Dublin whiskey)
would be a nice lettering under the title. It would be a great load off my mind. I shall
think this over first and wait until the opposition becomes more general and pointed.
(Ellmann 591-92)

Joyce liked the coincidence that the name “James Stephens” combined his own name with that of
Stephen Daedalus, and delighted in the discovery that Stephens was born in Dublin at 6 A.M. on
February 2, 1882—just as Joyce himself was. At the time, Joyce was fixated on the possibility
of handing his project over to someone else. He turned the idea over in his mind for over seven
months and even discussed it with Stephens (Ellmann 592-93).

Finnegans Wake has come to be wholly identified with Joyce, so much so that it is seen as
something no one else could have imagined, let alone produced; so much so that it seems virtually

impossible to comprehend how Joyce could envision delegating the Wake to someone else. How
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could Joyce see himself as inessential to such an idiosyncratic, complex, and even inaccessible
project? How could the author of one of the most “original” works of literature ever imagined even
consider passing it on to someone else to finish? What must Joyce'’s idea of authorship have been,
and what must have been his understanding of what the Wake was, that he could seriously envision
leaving his masterpiece to be finished by another, far lesser writer?

Richard Ellmann calls Joyce’s idea “one of the strangest ideas in literary history” (591),
but the notion of handing original work off to others to complete is not a strange idea at all in
programming history. As Eric Raymond points out, in open source programming culture is not
only common for programmers to “pass the baton” when they can no longer maintain a project, but
it is their duty to do so. Such transfers are, in turn, possible because software is written according
to a set series of coding rules, and each new creation takes shape as a singular design within
those rules. So too with Joyce, who was so convinced of the structural precision of Finnegans
Wake—which he called “mathematical” (Ellmann 614)—that he believed handing his work over to
Stephens was a simple matter of “showing him the threads” so he “could finish the design.”

What is inexplicable by the standards of literary history—Joyce’s strangely detached relation to
the product of his creative genius—becomes perfectly understandable, even sensible, when viewed
as part of another history, that of object-oriented design. As we have seen, Joyce’s attitudes toward
writing—toward creating original text, toward using the work of others, toward compiling discrete
units into elaborately designed wholes, and toward designing those wholes in regular, orderly,
reproducible ways—have much in common with the attitudes of object oriented programmers;
indeed, computing history has much to tell us about those aspects of Joyce’s creative process that
have seemed, to literary historians, to make least sense. When Joyce suggested bequeathing the
Wake to James Stephens in 1927, we can see more than just frustration with the work, with his
family, with his eyes, or with his readers. This moment in Joyce’s career represents an evolving
understanding Finnegans Wake as a future-oriented project whose eternal construction could
continue dynamically if its readers, and potential authors, could only grasp the threads. When seen
as the act not of one who sees his work as the unique expression of his singular artistry but of one

who sees his work as part of a larger, collective design, Joyce’s impulse to hand the Hake over the

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



James Stephens no longer seems one of the strangest ideas in literary history. That decision, rather,
is the product of a complex and evolving understanding of what it meant to be an author, a writer,
and an artist.

Did Joyce want Finnegans Wake to be a “habitable” text? Yes and no. Joyce proclaimed
himself dismayed when people pronounced Finnegans Wake unreadable—yet his boast that it
would take academics hundreds of years to unravel the text belies his claim to feel distress at
puzzling even the most sophisticated readers. The paradox of Joyce’s simultaneous desire to be
understood and his contempt for readers’ failed efforts to understand is easily resolved, however.
Joyce’s contempt for those readerly “failures” was primarily a contempt for the simplistic notions
of mastery such readers inevitably brought with them to the reading of the Wake. The Wake is
thus not only uninhabitable, but deliberately so, to an educated adult audience bent on locating the
“key” or the “truth” of the text (academics in particular tend to get caught in the trap of trying
to master Joyce’s encyclopedic metaclasses, an enterprise that only creates an experience of
frustration and insufficiency, in part because one cannot absorb all that Joyce did, in part because
doing deep history on the Wake’s references is not the way to get at how or why Joyce was using
them). By contrast, however, the Wake was designed to be entirely habitable to readers who were
not obsessed with controlling their reading experience or definitively isolating Joyce’s meaning.
More specifically, the Wake was envisioned as a text that would ideally be read from the playful,
open-minded vantage point of a child.

In the next section, I will explore Joyce’s fascination with the child as a model reader. For
Joyce, children possess a linguistic fluidness that the fixated adult reader does not. They have the
ability to laugh at patterns or puns that they not necessarily grasp, and they are willing to keep
going when they are not in full command. These qualities of imaginative acceptance, at once
creative and equable in the face of confusion, were, for Joyce, the signally redeeming features of a
childlike approach to reading. The concluding section of this chapter develops this idea, charting
the origins of the object-oriented programming paradigm in modernist theories of child psychology
in order to show how closely tied Joyce’s stylistic innovations were to an equally innovative

concept of how human beings best leam, comprehend, and imagine. My aim will be to demonstrate
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both the deep conceptual kinship Joyce’s prose shares with complex programming languages, as

well as the benefits to be had from importing the logic of those languages into Joyce criticism.

3.4 A Modernist Genealogy of Object-Oriented Design

Joyce’s early work is permeated with contempt for formal education. In its intellectual pretensions,
its systemic inefficacy, and its almost certain failure, Joyce saw a self-defeating system that did
more to impair the development of the mind than to encourage it. For Joyce, the problem was not
so much that the educational system did not teach, but that it taught children how nor to think,
learn, and question. The habits of mind inculcated by schools, Joyce believed, were anathema

to the independence he valued so deeply: in schooling children to memorize received ideas, to
regurgitate rote formulae and facts, and to accept passively what they are told rather then to quest
actively for truth, teachers actively worked to beat (sometimes literally) individuality and intellect
out of children. For this reason, Joyce associated formal education with violence and prejudice,
noting repeatedly in his work that the worst traits of human nature—those things that education
was supposed to temper or even eliminate—were actually enshrined within it. In 4 Portrait of the
Artist as a Young Man, Joyce conveys these ideas by representing Jesuit teachers as ultimately
more interested in terrorizing children than educating them; Stephen’s alienation from the rigidly
hierarchical narrowness of his teachers accounts in large part for his decision not to join their order
and instead to strike out on his own, to “create,” in Joyce’s epiphanic phrasing, “the uncreated
conscience of fhis] race.” In Ulysses, Joyce returns to the theme of education, deepening what
was in Portrait a largely local critique of how the Jesuits failed one boy into a thoroughgoing
condemnation of the very idea of formal education.

Taken as a whole, the “Nestor” chapter of Ulysses exemplifies—even crystallizes—Joyce’s
critique of formal education. The story of Stephen’s failed day as a teacher is also the story of
what is wrong with the project of formal schooling; indeed, the chapter may be read as a damning
indictment of what happens to the minds of both teacher and student when they are compelled to

perform their respective roles in the classroom. For the Joyce who writes Ulysses, the project of
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the educational system is an impossible one in which rote repetition replaces the vitality of genuine
intellectual discovery. In Stephen’s classroom, students either demonstrate “comprehension” by
responding correctly to the queries in a pedagogical catechism, or they admit ignorance (“The
boy’s blank face asked the blank window™ [28]). Stephen, for his part, “conveys” information by
drilling his students. Right and wrong substitute for give and take; rehearsal and recitation stand in
for thought.

The one break in this stylized, sterilized procedure is Armstrong’s joke—when asked if he
knows anything about Pyrrhus, Armstrong responds, “Pyrrhus, sir? Pyrrhus, a pier” (29). The joke
draws “mirthless high malicious laughter,” a “silly glee” that at once appeals to Stephen’s own
propensity for word play (he goes on to describe a pier as a “disappointed bridge™”) and makes him
fear that he is losing control of his class (**In a moment they will laugh more loudly, aware of my
lack of rule and of the fees their papas pay” [29]). There can be no true play in the classroom; the
power imbalance between teacher and student makes joint exploration impossible while the class
difference between the impoverished teacher and the wealthy boys makes every deviation from
routine on the part of a student an automatic mockery of the instructor.

The irony of “Nestor” is that Stephen is now expected to enforce the very things that he ran
from. Joyce captures Stephen’s painful awareness of this irony in the scene with Sargent, who
has, at the behest of Mr. Deasy, haplessly copied and re-copied out the correct solutions to math
problems in lieu of leamning how to solve them. “Futility,” Stephen thinks. Stephen both hates
Sargent for being a passive rube (“Ugly and futile: lean neck and tangled hair and a stain of
ink, a snail’s bed. ...a squashed boneless snail” [33]), and sees himself in Sargent (“like him
was I, these sloping shoulders, this gracelessness. My childhood bends beside me” [34]). He
shows Sargent how to solve the problem, but he cannot show Sargent how not to be the tentative,
credulous creature he has been conditioned to be (*“Waiting always for a word of help his hand
moved faithfully the unsteady symbols, a faint hue of shame flickering behind his dull skin™
[34]). Stephen’s own classroom is a condensation of the parochial values that he finds so stifling
in Portrait. Even in the moment of helping a student understand a concept that had previously

mystified him, he cannot impart either a sense of independence or of pride.
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The problem, Joyce seems finally to be saying, is the concept of the classroom itself. Within
its confining space, neither teacher nor student occupies a role that is truly conducive to inquiry
or leamning. Whether a teacher is “good” or “bad” is beside the point; the failure is built into the
system itself. Joyce gestures toward this fact when Mr. Deasy tells Stephen that “I foresee . .. that
you will not remain here very long at this work. You were not born to be a teacher, [ think. Perhaps
I am wrong.” Stephen, who disagrees with Mr. Deasy about everything else, does concur in this.
“A learner rather,” he replies. For Mr. Deasy, Stephen’s unorthodox ideas about God, nation,
money, and history announce that he is not suited to his job. For Stephen, it is the desire to have
ideas that makes him unsuited for his job. “Teaching” and “learning” are opposed in his world
view; one cannot be a teacher and a learner, too.

Joyce was not alone in this opinion of formal education: Stephen’s belief that teaching and
learning cannot take place in the same context was also the belief of Jean Piaget, the Swiss
psychologist whose progressive theories of child development set the tone for twentieth-century
educational theory. Piaget began to articulate his theories of how children learn during the period
when Joyce was writing the Wake; in such works as Judgment and Reasoning in the Child (1924),
The Child’s Conception of the World (1929), The Child s Conception of Physical Causality (1932),
and Origins of Intelligence in the Child (1936), Piaget expressed his conviction that children are
“builders of their own intellectual structures” (Papert 7).'° For Piaget, as for Joyce, the classroom
setting is antithetical to learning; formal education is an oxymoron, more a means of truncating
the dynamic, intensely personal experience of discovery than of enhancing it. Devoting himself
completely to the study of child psychology, Piaget concluded that children learn best when they
own their own learning process. As Piaget’s student Seymour Papert explained it, “Piagetian
learning” is the same as “learning without being taught” (7).

Papert notes that this aspect of Piaget’s work is at once his most radical and least acknowledged
insight. The notion that children leam best in the absence of teachers simply has no place within

educational theory; to the extent that twentieth-century educationists took up Piaget’s work, they

'0For a Piagetian reading of Ulysses, see Joseph Bentley’s “The Stylistics of Regression in
Ulysses.”
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focused on his ideas about developmental phases, using them to devise curricula and pedagogy
even as their attempts in this direction went against the grain of Piaget’s anti-curricular thought.
Joyce, however, had no such constraints, and in his depiction of Stephen Dedalus’s sense of the
“futility” of school he not only damns the system of formal education but initiates a thoroughgoing
exploration of alternatives to that system. As such, the “Nestor” episode both tells us a great deal
about how Joyce regarded education, and allows us to gain particular insight into how Joyce
understood his own narrative experiments. If Ulysses articulates a devastating critique of formal
schooling, finally suggesting that one who wishes to learn may neither teach nor be taught,
Finnegans Wake develops a narrative style that is itself a concrete manifestation of an alternative
approach to learning.

In “Night Lessons,” the chapter of Finnegans Wake that is most devoted to the question of
education, Shem, Shaun, and Issy do their lessons alone in a room above a pub. Joyce models
their interaction on the pages of the chapter themselves, which are laid out spatially so as to
indicate the dialogic quality of their engagement with their textbooks. As Joyce put it in a letter
to Frank Budgen, the chapter is “a reproduction of a schoolgirl’s old classbook complete with
marginalia by the twins, who change sides at half time, footnotes by the girl (who doesn’t), a
Euclid diagram, funny drawings, etc.” (Letters 405). The lessons themselves form a column of text
running down the center of the page; these stream into one another in the signature manner of
Wakean prose. The lessons-column is surrounded by the marginal and footnotes commentary of
Shem, Shaun, and Issy. The overall effect is one of movement and dynamic instability. The text
of the lessons is neither static nor set; the lessons themselves morph from subject to subject (an
analysis of a geometric diagram is not simply a lesson in Euclid, but also in human sexuality, and,
by extension, in competing theories of the origin of life). Likewise, each child engages with the
lessons differently, deriving different truths, quest:ons, and observations from them.

In typically Wakean terms, the story of the children doing their lessons unfolds into a

“genetic epistemology” (the term is Piaget’s), an investigation into the origins of knowledge
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and into the specific question of how children think, learn, and know.!! In “Night Lessons”
there is no authoritarian teacher or adult moderating and instructing; the children interact freely,
independent and unsupervised. As such, “Night Lessons” forms Joyce’s analytical and creative
sequel to “Nestor.” This chapter is the Wake’s answer to the problems posed by its precursor

in Ulysses; in it Joyce moves beyond the highly formalized, arid environment of Stephen’s
classroom toward a vision of the ideal learning environment. That environment is tumultuous,
spontaneous, dynamic, playful, skeptical, and often scatalogical; crucially, too, it is unsupervised,
self-directed, and wholly experimental. Shaun captures the revisionary character of his learning
process in the margins by noting the kind of progression it represents: “FROM CENOGENETIC
DICHOTOMY THROUGH DIAGONISTIC CONCILIANCE TO DYNASTIC CONTINUITY™ (275).
Drawing an explicit contrast with “Nestor,” “Night Lessons™ contrasts its “dynastic continuity”
with the “cenogenetic dichotomy” of traditional conceptions of mastery. In “Nestor,” Mr. Deasy
proudly gloats about his editorial on foot and mouth disease, crowing that he has *put the matter
into a nutshell” (40). In “Night Lessons,” Shem glosses a passage with the phrase “Omnitudes in a
knutshedell” (276). In the one, Mr. Deasy aims to boil complex issues down so that “there can
be no two opinions on the matter” (40). In the other, Shem sees that even compressed concepts
contain worlds. In these opposing views of understanding lies the kemel of Joyce’s critique of
education; through an allusion to Deasy’s narrow-minded nutshell, “Night Lessons” expresses
the sheer largeness of aptitude: every child the chapter seems to say, contains “omnitudes.” Smali
things—children, words—contain everything.

“Nestor” aimed to critique a particular model of education. “Night Lessons” responds to that
critique, not by articulating a more desirable, alternative philosophy of learning but rather by
attempting to mimic the process of learning itself. Samuel Beckett famously said that the Wake’s
meaning lay in its structure: “Here form is content, content is form. You complain that this stuff is
not written in English. It is not written at all. It is not to be read—or rather it is not only to be read.

It is to be be looked at and listened to. His writing is not about something; it is that something

"In this respect, Grace Eckley’s conclusion that “the children’s study session is primarily a
lesson in sex” (198) seems reductive and overdetermined.
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itself” (14). One could specify Beckett’s claim even further: the content that is the form, the form
that is the content, the something that the text of Finnegans Wake is is Joyce’s conception of how
the mind makes sense of the world. “Night Lessons,” placed at the center of Finnegans Wake, is the
focal point of the whole, the point of convergence that unifies the entire design. It is theory and
practice; form and content; model and mimesis. Joyce’s concept of learning without being taught
lies at the heart of Finnegans Wake, embodied in the style that is ultimately its own subject matter.

To say that form is content and content is form is a literary way of saying that the concrete
has been merged with the abstract. Individual words in the Wake mean more than themselves
because they concretize Joyce’s structural pattern; they are design elements as well as signifiers,
libraries as well as referents. As such, they perform a type of synthesis that embodies Joyce’s
vision of how thought takes shape. The Wake’s words, phrases, puns, and sentences add up to an
elaborate materialization of Joyce’s theory of mental process. That theory in turn both derives
from an understanding of learning that parallels Piaget’s and moves beyond what Piaget himself
thought was possible. Piaget believed that children were natural epistemologists, capable of, in
Papert’s words, being the “active builders of their own intellectual structures” by “appropriat{ing]
to their own use materials they find about them” (19). But he also believed there were strict limits
on how children of different ages could reason. By age six, Piaget believed, children are capable
of “concrete” thinking but cannot make the move from the concrete to the abstract. “Formal,” or
abstract, thought does not become available until late childhood—around age twelve, children
move from the concrete to the formal phase of development, which in turn signals their passage
into adulthood. Joyce’s understanding of children is neither so rigid nor so strict; in “Night
Lessons,” the children combine the concrete and the formal, reasoning both ways simultaneously
to think on several levels at once.

The concrete epistemology of the Wake’s children is most clearly visible in their approach
to the geometry problem: “Problem ye ferst, construct ann aquilittoral dryankle Probe loom!” or
“Concoct an equoangular trillitter” (286.19-22). The children solve the problem in a roundabout
way, collaboratively, through trial and error. Playing with their compasses (“a daintical pair

of accomplasses!™ [295.27), they draw two overlapping circles of the same size (a “twain of
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doubling bicirculars, mating approxemetely in their suite poi and poi, dunloop into eath the ocher”
(295.31-33), connecting the centers of the “doubleviewed seeds” (296.1) to form the base of the
triangle and drawing lines from each center to the point of intersection to form the sides. But the
solution is also a new problem in its own right: the drawing that satisfies the requirements of the
geometry lesson raises the question of what the female genitals look like. To the associative

eyes of Shem, Shaun, and Issy, the equilateral triangle resembles the pubic triangle of a woman.

A mathematical problem thus becomes the “mythametical” (286.23) problem of the body: the
drawing enables the children to render the abstract problem of Euclid concrete; the concrete
representation of the Euclidean figure in turn facilitates a different, more grounded—earthier—set
of imaginative flights. As an abstract picture of the female genitals, the drawing is a formal impetus
to concrete speculations about sex. In their most specific instantiations, these speculations center
on the children’s mother, whose sexual parts now seem to be a secret whose truth her children must
know: “Outer serpumstances beiug ekewilled, we carefully, if she pleats, lift by her seam hem and
jabote at the spidsiest of her trickkikant (like thousands done before since fillies calpered. Ocone!
Ocone!) the maidsapron of our A.L.P., fearfully! till its nether nadir is vortically where (allow me
aright to two cute winkles) its naval’s napex will have to beandbe” (279.7-14). The movement here
is one of compression: a “dryankle” is also the “naval’s napex,” parallax—an angle—is also a pair
of legs (“parilegs” [284.2]). Joyce’s name for the logic embodied in the lesson captures the playful
precision, as well as the scatological geometry, of its incessant synthetic movement: “joyclid”
(302.12).

Joyce’s literary portrayal of the ease with which the children move from formal to concrete and
back again finds its computational counterpart in the work of Seymour Papert, who has devoted his
career to the problem of making complex concepts—particularly mathematical ones—available
to children. A devoted student of Piaget, Papert departs from Piaget’s rigid conception of
developmental phases; his belief is not that children cannot reason formally before a certain
age, but rather that their environment deprives them of the opportunity to develop the concrete
attachments that facilitate abstract thought: “I see the classroom as an artificial and inefficient

learning environment that society has been forced to invent because its informal environments fail
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in certain essential learning domains, such as writing or grammar or school math” (8). For Papert,
as for Piaget, children are their own best teachers. Unlike Piaget, Papert believes that when given
the opportunity, children can readily work from the concrete to the abstract, combining them in
much the way Joyce depicts in “Night Lessons.”

Like Joyce, Papert sees a combination of mathematics and writing as the medium that is
most likely to enable complex combinatorial thought in the young. Specifically, he imagines that
computers can help children bridge conceptual domains: “My conjecture is that the computer
can concretize (and personalize) the formal. Seen in this light, it is not just another powerful
educational tool. It is unique in providing us with the means for addressing what Piaget and many
others see as the obstacle which is overcome in the passage from child to adult thinking. [ believe
that it can allow us to shift the boundary separating concrete and formal. Knowledge that was
accessible only through formal processes can now be approached concretely” (21). Papert’s thesis
is that working with computers helps children develop the two kinds of thinking that Piaget most
firmly associates with the formal stage of intellectual development: “combinatorial thinking, where
one has to reason in terms of the set of all possible states of a system, and self-referential thinking
about thinking itself” (21). As such, Papert contends, the computer can help revolutionize our
understanding of how children think, of what leaming is, and ultimately of what human beings
can accomplish: “The Piaget of the stage theory is essentially conservative, almost reactionary, in
emphasizing what children cannot do. I strive to uncover a more revolutionary Piaget, one whose
epistemological ideas might expand known bounds of the human mind” (157).

Papert’s thesis is that teaching children to program computers allows them to teach themseives
science, mathematics, and language skills all at once: “I do not wish to reduce mathematics to
literature or literature to mathematics. But I do want to argue that their respective ways of thinking
are not as separate as is usually supposed” (39). He has tested—and proven—this thesis hundreds
of times over during the past several decades, working with children as they teach themselves to
teach computers to perform specific tasks (usually to make geometric drawings). Programming,
Papert believes, is at once profoundly scientific and deeply humanistic, a form of mathematical

reasoning that is also a type of communication: “Programming a computer means nothing more

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or less than communicating to it in a language that it and the human user can both ‘understand.’
And learning languages is one of the things children do best. Every normal child learns to talk.
Why then should a child not learn to ‘talk’ to a computer?” (5-6). It’s not just that children can
learn to program, but that they are better suited to it, in ways, than adults because they are in their
years of language acquisition. The linguistic facility of the child thus becomes, in Papert’s view, a
mandate for bringing children “into a more humanistic as well as a more humane relationship with
mathematics” (39); in so doing, Papert argues, programming can make children into the long-term
beneficiaries of “a less dissociated cultural epistemology.” While programming, children must
think on several levels at once; the computer’s drawings make concrete the abstract operations the
children teach it to perform.

Papert does not refer to Joyce in his writing, and there is no evidence that Joyce was a
significant influence on him. And yet his work with children and computers performs the
imaginative work of “Night Lessons.” As “Night Lessons” is ultimately a meditation on how
children think, so programming, for Papert, ultimately compels children to meditate on how
thought works. Because programming is an activity that melds formal concepts and concrete tasks,
children who program must necessarily become philosophers of cognition. When children have
to think about how to teach the computer how to think, they are “embark[ing] on an exploration
of how they themselves think. The experience can be heady: thinking about thinking turns
the child into an epistemologist, an experience not even shared by most adults” (19). Such a
vision of creatively engaged children contrasts sharply with Joyce’s portrait of disengaged,
unthinking schoolchildren in “Nestor.” As one boy jerkily recites “Lycidas” from memory,
glancing periodically at his book to prompt his memory and clearly giving no thought at all to
either Milton’s meter or his sense, Stephen meditates on absorption, concentration, and inspiration.
His thoughts travel to his time in Paris, and as he presides over the rocky recitation, he recalls
the library of Saint Genevieve, where he had read each night, surrounded by others equally rapt
before their books: “Fed and feeding brains about me: under glowlamps, impaled, with faintly
beating feelers” (30). For Stephen, the fed and feeding brain of the larval studious adult is closely

connected to the regurgitating brain of the dutiful but thoughtless boy; that the one is an image
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of the other becomes clear when Stephen thinks contemptuously of Sargent as a “boneless
snail.” The despair of “Nestor” is that of the brain intelligent enough to know that it has never
properly developed, but not capable of seeing its way to a realistic or satisfying alternative; it is
the depression bomn of knowing that the life of the mind is sterile and self-serving, while at the
same time not knowing any other way to live: “Thought is the thought of thought” thinks Stephen
(30-31). The joy of the Wake’s “joyclid” lessons, by contrast, is that of thought that is fully
integrated into being, that can live and play and breathe as part of the body it inhabits.

Papert conceived of a similarly integrated kind of learning, one that would engage the emotions
as much as the mind (vii) and that would consequently contain within it the potential for cultural
revolution: “Computers can be carriers of powerful ideas and of the seeds of cultural change
... they can help people form new relationships with knowledge that cut across the traditional lines
separating humanities from sciences and knowledge of the self from both of these,” he writes;
the transformative potential of technology is about “using computers to challenge current beliefs
about who can understand what and at what age. It is about using computers to question standard
assumptions in developmental psychology and in the psychology of aptitudes and attitudes. It is
about whether personal computers and the cultures in which they are used will continue to be the
creatures of ‘engineers’ alone or whether we can construct intellectual environments in which
people who today think of themselves as ‘humanists’ will feel part of, not alienated from, the
process of constructing computational cultures” (4-5). And so Papert pursues via computers the
same sort of redemptive vision embodied in the Wake’s joyclid prose: that of a world where
children are not only free to think, but where adults have not forgotten how to think like children.
The central lesson of “Night Lessons,” after all, is that the entire Wake is a “night lesson”; what we
encounter among school children is a style of thought that is identical to the style of the entire
work, and what we learn from Shem, Shaun, and Issy’s studies is that in order to read the Hake we
must leam—or recover the memory—of how to think like we did when we were children.

Papert’s idea is that the computer can facilitate in children the kind of profoundly affective
connection with a “transitional object” that enables self-directed learning to occur: “The computer

is the Proteus of machines. Its essence is its universality, its power to simulate. Because it can
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take on a thousand forms and can serve a thousand functions, it can appeal to a thousand tastes”
(viii). His own transitional object was the mechanical gear, which so fascinated him as a child
that he taught himself many of the principles of physics simply by studying them. Papert’s 1980
book Mindstorms chronicles his decade-long attempt to develop an all-purpose transitional object
to facilitate the learning of all kinds of children, “to tum computers into instruments flexible
enough so that many children can each create for themselves something like what the gears were
for me” (viii). One might say that what Papert does with the computer, Joyce attempted to do
with language. The style of Finnegans Wake is designed to be the reader’s “transitional object,”

at once a representation of an ideal melding of formal and concrete thought and a catalyst to

help the reader teach herself how to engage the type of synthetic thought process Joyce’s prose
represents. Joyce’s style is not only form and content, as Beckett noted, but a formal concretization
of thought that merges the formal with the concrete. The “sophistication” of the Wake is thus
actually something of a misnomer; the ultimate aim of Joyce’s style is simplicity itself. “People
have lived with children for a long time,” Papert observes. “The fact that we had to wait for Piaget
to tell us how children think and what we all forget about our thinking as children is so remarkable
that it suggests a Freudian model of ‘cognitive repression’ (41). Joyce understood this. Finnegans
Wake marks his effort to stage a return of the child’s repressed cognition.

In this chapter, I have argued that the mechanical metaphors Joyce used to describe his
compositional process while writing Finnegans Wake morphed during the 1980s into computing
metaphors. Taking seriously the notion that Joyce’s methodological techniques can be described in
computing terms, [ have argued both that the central principles of object-oriented programming can
serve to ground a modern structuralist approach to Joyce’s text and that the structure of Finnegans
Wake is itself that of an object-oriented program. Tracing the continuities between Joyce’s late
stylistic experiments and late twentieth-century advancements in programming theory, I have
shown how both scenes of innovation take the creative potential of the child as their inspiration,
devising techniques for accessing that creativity that combine the engineering impulse with the
communicative power of linguistic expertise.

It is not that Joyce anticipates object-oriented programming, or even that object-oriented
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programming fulfills the vision of Joyce, but rather that both Joyce and object-oriented
programmers solved the problem of complexity in the same way for the same reasons: both
Joyce and the creators of object-oriented programs objected to reductive approaches to complex
systems, preferring instead to honor complexity by organizing it; both devised simple means of
hamessing the energy complexity generates; both, too, used those means to amplify complexity’s
power. These creative structural solutions to text-based communication systems were in turn
progressive—even radical—critiques of traditional epistemologies and ontologies. Joyce saw that
nineteenth-century realist narrative could not accommodate the growing complexity of the modern
world; hence the mechanical, object-oriented architecture of Finnegans Wake. Programmers saw
that linear, or procedural, programming could neither produce not sustain the growing size and
complexity of modemn programs; hence their creation of a modular programming method centered
on objects.

The continued conceptual convergence of these very separate strands of history is registered
in both the language programmers use to describe the transformative power of the object and in
the role children have played in refining the theory and practice of object-oriented programming.
Programmer and theorist Bruce Eckel describes the modern computer in much the way Joyce
thought of the Wake’s prose, as a means of both enhancing the operation of the mind and a
mechanism for extending the mind beyond itself: “[Clomputers are not so much machines as
they are mind amplification tools (‘bicycles for the mind,’ as Steve Jobs is fond of saying) and a
different kind of expressive medium. As a result, the tools are beginning to look less like machines
and more like parts of our minds, and also like other expressive mediums such as writing, painting,
sculpture, animation, and filmmaking. Object-oriented programming is part of this movement
toward using the computer as an expressive medium” (22). As Joyce moved narrative toward
program via the sigla, so programmers use the object to increase the expressive and aesthetic
dimensions of code. And as Joyce envisioned children as the prime movers of the Wake, at once
main characters and conceptual modelers, concrete epistemologists and stylistic bricoleurs, so
programmers created object-oriented technology with children in mind: inspired by Papert’s work

with children and computers, Alan Kay wrote Smalltalk, the programming language designed for
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children that was also the first object-oriented programming language.

Kay helped program the innovative FLEX computer at the University of Utah while a doctoral
candidate there in the late 1960s, and in 1968 he spent time with Seymour Papert at MIT’s
Antificial Intelligence Laboratory. When he started work at Xerox PARC two years later, he
designed a small computer for children called the “KiddiKomp” and began work on a children’s
programming language called Smalltalk. Kay’s effort was as much to revolutionize education as to
challenge the dominant modes of thinking about programming languages. Kay himself learned
to read at the age of three, devoured books, and as a five-year-old child already embodied the
voracious intelligence, anti-authoritarian mindset, and quest for new perspectives that would
characterize his career in computing research. He recalls that “By the time I got to school, [ had
already read a couple of hundred books. I knew in first grade that they were lying to me because |
had already been exposed to other points of view. School is basically about one point of view—the
one the teacher has or the textbooks have. They don’t like the idea of having different points of
view so it was a battle. Of course, I would pipe up with my five-year-old voice” (qtd. in Shasha
and Lazere 39-40). Eager to equip children with tools that would allow them to overcome the
limitations of his own formal education, Kay followed Papert in designing a programming method
that would allow children to teach themselves. Kay’s early experiments with the object-oriented
Smalltalk were strikingly successful—using it, a 12-year-old designed a sophisticated drawing
program, and a 15-year-old created a program that would design circuits (Shasha and Lazere 48).

Kay’s way of thinking about education—that children teach themselves better than they can be
taught; that children are capable of complex, synthetic thought normally classified as “adult™; that
children’s capacity for experimentation and their relative freedom from inflexible mindsets makes
them ideal learners and strikingly creative thinkers—would not appear at all unfamiliar to Joyce,
who thinks about education throughout his fiction. Nor should we be surprised at the unusual
confluence of Kay’s and Joyce's ideas about education—both owe their progressive philosophies
of learning, as well as their own innovative approach to writing, to the radically experimental
psychiatric climate of early twentieth-century Europe, which studied the formative process of

children’s thought and which, in the figure of Piaget, first forwarded the notion that children are
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their own best teachers. In Smalltalk, the object functions as the concrete building block that
enables children to piece together elaborate abstract structures. As such, it is both a practical tool
and an epistemological entity, an engineering aid and a philosophical engine. Kay describes it

in the following mechanico-philosophical terms: “Smalltalk’s design—and existence—is due to
the insight that everything we can describe can be represented by the recursive composition of

a single kind of behavioral building block that hides its combination of state and process inside
itself and can be dealt with only through the exchange of messages. Philosophically, Smalltalk’s
objects have much in common with the monads of Leibniz and the notions of 20th century physics
and biology. Its way of making objects is quite Platonic in that some of them act as idealizations
of concepts—/deas—from which manifestations can be created. That the Ideas are themselves
manifestations (of the Idea-Idea) and that the Idea-Idea is a-kind-of-Manifestation-Idea—which is
a-kind-of itself, so that the system is completely self-describing—would have been appreciated
by Plato as an extremely practical joke” (512-13). It does not seem farfetched to imagine Joyce
appreciating the object’s practical jokery as well; his own objects work precisely that same way,
and his masterwork is likewise as endlessly recursive as the most finely honed object-oriented
program, its chapters, paragraphs, sentences, phrases, words, and even parts of words each

containing within it the genetic code of the whole.
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Conclusion: The Poetics of Techné
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No study of the interrelationships between the aesthetic, political, and cultural forces shaping
the relationship between literature and code would be complete without taking into account Martin
Heidegger’s enormously influential writings on technology. While philosophers and critics as
diverse as Adorno, Marcuse, Foucault, Deleuze, Benjamin, and Habermas have all made important
contributions to modern debates about the nature, meaning, and impact of modern technology,
none have been as influential as Martin Heidegger, whose sustained and far-ranging critiques have
definitively shaped the modemn philosophical relationship between technology and aesthetics. In
his later writings, notably in “The Question Concerning Technology,” Heidegger develops a set of
theses about technology that—difficult, ambiguous, and self-contradictery as they often are—have
provided the foundation for debates about the relationship between aesthetics and technology since
the 1950s. Furthermore, critics and philosophers have often invoked Heidegger’s seemingly
anti-technological bias and apparent Romantic nostalgia for a pre-technological age to authorize
their impulse to divide the literary from the scientific and the technological from the aesthetic.

This dissertation concludes by suggesting that Heidegger’s philosophical authority has been
improperly invoked in support of these divisions. I will argue that Heidegger himself was far from
espousing either a strongly reactionary, anti-technological stance or an understanding of technology
as something essentially separate from, and hostile to, art. Indeed, commentators who enthrone
Heidegger as an exemplary ancestral technophobe, or who use Heidegger’s writings to justify their
own exemplary technophobia, visit a reductive hermeneutic violence on Heidegger’s writing that
ultimately fails to account for the complexity of his technological speculations. I would like to
argue instead that Heidegger’s work may be read as an endorsement of responsible and creative
technological practice, rather than as a backward-looking nostalgia for a lost pre-industrial past. |
will suggest that the “art of code,” which inextricably combines the technological and the aesthetic,
exemplifies a pragmatic approach to technology that Heidegger strove philosophically to imagine.

Heidegger’s late writings attempt to diagnose a technological malaise that he saw as
symptomatic of the modern human condition. In his 1954 essay “The Question Concerning
Technology,” Heidegger claims that modemity opens a philosophical chasm between the

technological and aesthetic modalities of “revealing,” and argues that the overwhelming
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twentieth-century dominance of technology represents both mankind’s uitimate forgetting of Being
and the historical end of metaphysics. The apocalyptic tones of Heidegger’s essay is undoubtedly a
sign of the times: if the machine guns and barbed wire of the First World War put an end to the
nineteenth-century’s largely unquestioning faith in technological advances, the warplanes, tanks,
and atom bombs of the Second World War created inevitable associations between technological
“progress” and inevitable Armageddon. With millions dead and much of Europe destroyed,
Heidegger’s pessimistic speculations about the ethical consequences of heedless technological
innovation take on an undeniable poignance. Even so, “The Question Concerning Technology”
should also be understood as part of a more sweeping historical, philosophical, and social critique,
one that originates in Heidegger’s earlier analyses of modern metaphysics in Being and Time.

In order to argue for the particularly modern nature of the aesthetic/technological split that
concems him, Heidegger turns in this essay to a strategically romanticized picture of Ancient
Greece, whose putatively utopian manufacturing practices represent the ideal from which modemn
technological processes have deviated so dramatically. For Heidegger, the Ancient Greek craftsman
is the direct ancestor, at least in terms of sensibility, of the peasant he observes working in the
Rhine Valley: both are perfectly integrated into their environments; both labor unalienated from
authentic earthly realities. However, while drawing this parallel, Heidegger was painfully aware
that the analogy was rapidly dissolving into anachronism: the Rhine Valley peasants, vulnerable to
the sociopolitical changes ushered in by the twentieth-century technological revolution, were also
the last vestiges of earthly authenticity.'? Terry Eagleton comments on the socioeconomic status of

the German peasantry by the second decade of the twentieth century:

Heidegger’s sturdily independent small farmer was an untypical, increasingly
marginalized phenomenon: peasants with paltry smallholdings often had little
opportunity to eke out their meagre livings through work for big landowners,
and imported farm labour seriously jeopardized the position of the German farm

12German industrialization, and the consequent loss of rural, agricultural lifestyles, engendered
intense political and philosophical debate, particularly during the 1920s and 1930s. Heidegger
followed these discussions avidly; see discussions in Hans Sluga’s Heidegger s Crisis: Philosophy
and Politics in Nazi Germany, Michael Zimmerman'’s Heidegger's Confrontation with Modernity:
Technology, Politics, and Art, and Jeffrey Herf’s Reactionary Modernism: Technology, Culture,
and Politics in Weimar and the Third Reich.
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workers. They migrated, often enough, to the cities, to swell the ranks of the
industrial proletariat. Conditions there were frequently dire: long hours, low wages,
unemployment and poor housing were the price the German working class paid for the
industrial capitalist boom. (308)
On the contrary, Heidegger can safely envision Ancient Greek craftsmen existing in a pristine,
preindustrial state, untouched by industrialism and able to experience technological and aesthetic
pursuits as intimately conjoined, even, at times, as identical.

Heidegger bolsters the crumbling analogy between Greek craftsman and modern peasant with
etymology, noting that the word “technology” derives from the Greek word techné, and that
“techné is the name not only for the activities and skills of the craftsman, but also for the arts of the
mind and the fine arts: Techné belongs to bringing-forth, to poiésis; it is something poietic™ (13).
Given the ontological significance that Heidegger so often accords the Greek language, it is hardly
an exaggeration to suggest that he saw the history of the word fechné as a metonymic history of
metaphysics itself. In recovering a lost Greek etymology, Heidegger gestures toward a lost history.
In highlighting the precarious condition of the modern-day peasant, Heidegger attempts to tell us
why that history mattered, and what its loss will signify.

Combining sociological and etymological arguments, Heidegger demonstrates the interaction
between technological and poetic modalities of revealing by asking his reader to consider the
process by which a Greek silversmith would have manufactured a sacrificial chalice. As Heidegger
imagines it, the silversmith would first have considered the relationship between the material at
hand (silver) and the ideal (eidos) of “chaliceness.” Then he would have acknowledged his pivotal
role as “that from whence the sacrificial vessel’s bringing forth and resting-in-self take and retain
their first departure™ (8). Presenting the act of manufacture as a moment of productive mediation
between nature, mankind, and the gods, Heidegger imagines that the Greek craftsman must have
conceptualized his work as an act of “bringing-forth” in which techné and poiésis necessarily
existed as one. Contending that such an aesthetic relationship to technology was foundational to
Ancient Greek thought and culture, Heidegger argues that the Greeks ultimately understood
technology as a mode of revealing: “technology comes to presence in the realm where revealing

and unconcealment take place, where alétheia, truth, happens” (13). As such, Heidegger envisions
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Ancient Greek craftsmanship as a passive activity; the job of the craftsman is not to impose his
will on the material but to “unconceal” aesthetic artifacts, to let them become what they most
clearly are: “It is as revealing, and not as manufacturing, that techné is a bringing-forth” (13).
In Heidegger’s formulation, the craftsman is both crucially present and curiously absent in the
moment of manufacture: although he is the active agent by which the silver (or wood, or stone)
takes shape, he is also merely a conduit through which the chalice (or ship, or house) reveals itself.

The contrast with mid-twentieth century Germany is profound. Although technology in
our modem era still functions as a mode of revealing, the nature of that revealing has changed
drastically: “The revealing that rules in modern technology is a challenging,'’ which puts to nature
the unreasonable demand that it supply energy that can be stored as such” (14). Rather than
“unconcealing” the natural world, modern technology violently converts it into what Heidegger
calls “standing-reserve,” or resources to be stored and used up: “The coal that has been hauled out
in some mining district has not been supplied in order that it may simply be present somewhere or
other. It is stockpiled; that is, it is on call, ready to deliver the sun’s warmth that is stored in it. The
sun’s warmth is challenged forth for heat, which in turn is ordered to deliver steam whose pressure
turns the wheels that keep a factory running” (15). Heidegger gives the term Gestell (Enframing) to
the animating principle behind the desire to transform everything into an easily manipulable form.
Rather than living in harmony with nature as the Ancient Greeks did, and letting natural materials
“reveal themselves” as useful or beautiful objects through acts of craftsmanship, humans now
attempt to impose their will upon the natural world and “reveal” everything as standing-reserve.
For Heidegger, the culmination of Enframing is that “[man] himself will have to be taken as
standing-reserve.” At its most extreme, then, Heidegger’s vision of modernity evokes something
very like the technological nightmare of The Matrix, where humans have literally been converted
into a source of energy, a giant battery that powers the very force that dominates them.

For Heidegger, modernity is characterized by an ontological tension between the techné

and poiésis he saw as harmoniously conjoined in the Greek worldview. No longer working

3Heidegger’s word is Herausfordern, which the translator notes has various possible
interpretations in English, including o challenge, to call forth, to summon to action, to demand, or
to provoke.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in harmony with poiésis as part of a respectful alétheuein, techné has become the agent of
domination and power. In fact, the very modality of revealing embodied by poiésis is threatened
by an all-consuming technological Enframing: “As a destining, [Enframing] banishes man into
that kind of revealing which is an ordering. Where this ordering holds sway, it drives out every
other possibility of revealing. Above all, Enframing conceals that revealing which, in the sense of
poiésis, lets what presences come forth into appearance” (27). As far as Heidegger is concerned,
modern humankind has lost the Greek silversmith’s attentiveness to poiésis. Instead, he wams, we
have avidly embraced the techné that threatens to engulf us. It is here that we can see the nature of
the paradox that drives Heidegger’s technological critique. On one hand, Heidegger associates
poiésis with passivity, letting-be, and giving; while Enframing signals domination, exploitation,
and the will-to-power. On the other hand, poiésis is Heidegger’s solution to the dangers of
Enframing. Heidegger freely admits that the openness to poiésis exemplified by the Ancient Greek
silversmith has all but disappeared in our modem era. But he also believes that a sufficiently aware
and attentive philosophy can allow poiésis to presence-forth from within techné and temper its
dangerous excesses. Unimpressed by what looks like weak reasoning and weaker wishful thinking,
critics—many of them Marxists critics—have charged Heidegger with advocating little more than a
retreat into passive aestheticism. Moreover, they have expressed concern whether—and how—such
seemingly irresponsible philosophy may have been complicit with Heidegger’s endorsement of the
Nazi movement during the 1930s. In The Philosophical Discourse of Modernity, for example,
Jiirgen Habermas proposes that the philosophical positions adduced in Being and Time foreshadow
Heidegger’s involvement with National Socialism in the 1930s; in Heidegger's Confrontation with
Modernity, Michael Zimmerman wonders aloud “whether Heidegger’s thought is intrinsically
fascist” (37); and in La fiction du politique, Philippe Lacoue-Labarthe declares that Heidegger’s
support of Nazism was “absolutely coherent with his thought” (38). Terry Eagleton writes that
Heidegger’s aesthetic “leaves the human subject rapt in paralytic reverence before a numinous
presence” (313), and suggests that this “numinous presence” could as easily be Adolf Hitler

as anything else: “Heidegger swings with a minimum of mediation between the nebulously

ontological and the sinisterly specific” (310). This reading of poiésis as passive, and the insistent
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condemnation of that passivity as fascist, has meant that Heidegger has essentially been excluded
from the bulk of late twentieth century thinking about art’s relation to technology. But the
eagemness to discount and discredit Heidegger has rested on a series of misreadings of his ideas.

Heideggerian poiésis is not limited to what we conventionally recognize as the aesthetic realm.
It does not signal a retreat from the world or from technology, nor does it entail either political or
aesthetic passivity. Rather it is part of Heidegger's critique of a passive aestheticism that sees art as
a privileged realm of avoidance and escape. In fact, Heidegger proposes that our contemporary
notion of “the aesthetic” is itself a product of the very split between poiésis and techné that his
philosophy tries to reconcile. He even argues that aesthetic objects do not necessarily embody
poiésis in any significant way. Commenting on the place occupied by the aesthetic in contemporary
life, Heidegger writes “When there is still room left in today’s dwelling for the poetic, and time is
still set aside, what comes to pass is at best a preoccupation with aestheticizing, whether in writing
or on the air. Poetry is either rejected as a frivolous mooning or vaporizing into the unknown, and a
flight into dreamland, or is counted as a part of literature. . .. In such a setting, poetry cannot appear
otherwise than literature” (Poetry, Language, Thought 214). Emphasizing this point through a
further contrast with Ancient Greece, he writes, “Once there was a time when the bringing-forth
of the true into the beautiful was called fechné. And the poiésis of the fine arts also was called
techné. . . The arts were not derived from the artistic. Art works were not enjoyed aesthetically.
Art was not a sector of cultural activity” (“Question Concerning Technology,” 34). Our modern
designation of specifically “aesthetic” genres and zones would seem—at least for Heidegger—to
be a form of false consciousness, to offer a deceptively simplistic reassurance about the vitality of
POiésis.

So it is that in “The Origin of the Work of Art,” Heidegger distinguishes between poesie, or
poetry in the narrow, literary sense, and dichtung, a broader concept that would allow poiésis to
expand beyond the narrow categorical and institutional confines of literature. Heidegger makes
this distinction not in order to project a poetic “mentality” onto extra-poetic objects and thus to
aestheticize away sociopolitical realities (as his Marxist detractors would have it); but rather to

re-create the possibility for a presencing-forth of poiésis, to make that presencing-forth a vital
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element in modern existential experience, and to allow for a potential reunion of poiésis and rechné
that would also re-establish an authentic relation to Being. Heidegger thus suggests that our
modem malaise can only be resolved through philosophical resistance to the pervasive dominance

of Enframing and to the forgetting of Being.

I'have devoted considerable space to explicating Heidegger’s position on technology because it
is my contention that computer programmers, who refuse to recognize conventional disciplinary
boundaries between poetry and technology, demonstrate a curiously Heideggerian appreciation
for the “presencing forth” of poiésis within techné. As I have demonstrated above, a careful
reading of Heidegger shows that his writings emphatically resist the institutionalization and
compartmentalization of the poetic, that indeed they point frequently to the fact that poiésis
and techné share common etymological and historical origins. As I have shown throughout this
dissertation, the aesthetic culture of computer programming poses a similarly compelling challenge
to narrow institutional definitions of the “literary.”

That the literary culture of programming has gone almost entirely unnoticed by literary
theorists should not, then, surprise us. During the half-century of that culture’s genesis,
Heideggerian critics typically espoused stances that first embedded poiésis within a predefined
set of institutionalized aesthetic artifacts, and then protected those aesthetic artifacts from alien
technological intrusion. For instance, in Poetry at Stake: Lyric Aesthetics and the Challenge
of Technology, Carrie Noland shows how twentieth-century poetry criticism first enshrined an
antagonistic relationship between the lyric poem and technology, and then consistently deprecated
technology for mechanizing and mediating the supposedly self-present lyric voice. Noland
argues that poetry critics’ entrenched hostility to technology draws much of its philosophical
reinforcement from a recognizably Heideggerian ontology of poetic language (4). In Heidegger's
Confrontation with Modernity, Michael Zimmerman succinctly summarizes this ontology when
he argues that for Heidegger “the gift of language poses at once the greatest gift and the greatest
danger for humanity, for the loss of a proper relation to language leads to spiritual and social

catastrophe” (114). As we have seen, Heidegger often uses language as a kind of index to
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philosophical well-being. He also undeniably valorizes poets—notably Rimbaud—who hold more
“authentic” relationships to language. And yet Heidegger also argues against an inflexible division
of language into “poetic” and “unpoetic” discourses.

Although Heidegger’s influence on modern concepts of both poetry and technology has
been profound and far-reaching, his philosophy has generally enabled a separatist standoff
between the two realms. Heideggerian poetic theorists have inevitably argued for poetic punty;
Heideggerian technologists wamn that technology will drain us of our humanity and creativity. This
dissertation has resisted such assumptions about both the nature of the poetic and the nature of the
technological, and yet it has tried to do so not by following deconstructive and post-deconstructive
theoretical debates, but by following what I understand as the true spirit of Heideggerian thought.
As Heidegger understood poiésis and techné to be inseparable aspects of a larger creative whole, so
I have understood computing history as a deep intertwining of the poetic and technological.

More broadly, this dissertation has aimed to show that aesthetics, understood in the traditional
sense, is inherently political, in other words, how traditional, supposedly debunked, values—values
having to do with sincere faith in artistic effort and a belief in beauty—may emerge in putatively
“non-artistic” spheres as powerful political forces. The political struggle in which Richard
Stallman, Eric Raymond, and others are engaged is fundamentally inseparable from an idea of code
as an aesthetic object: there is a one-to-one correlation between the beauty of code and its political
efficacy. My purpose in doing this study has thus been to illuminate and analyze an aspect of
hacker culture that has not previously been studied: its insistence on the interpenetration of rechné
and poiésis. Hacker culture has been explored historically by Stephen Levy, anthropologically by
Eric Raymond, philosophically by Pekka Himanen, but it has never been studied aesthetically,
as an artistic culture in and of itself. As the first attempt to develop a sustained, serious analysis
of computing culture as a literary culture, The Art of Code seeks to lay the foundation for an
aesthetics of technology that would not accept the Heideggerian split of techné from poiésis.

A related goal of this dissertation has been to break through some of the categorical and
conceptual gridlock that presently defines the humanites’ relation to beauty, to literary value,

to politics, and, of course, to all non-literary “texts” such as computers. Ideals espoused in
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programming cultures—of innovative understandings of authorship and creative approaches

to beauty—are being lost in the field that ostensibly has a greater claim to them. The rise of
politicized literary theory during the 1970s and the emergence of cuitural studies in the 1980s
coincides with the emergence of the new critical approach to code: as literary studies ceased to
center on the close reading of discrete literary texts, computer science began to center increasingly
on close reading code with an eye to appreciating the structural links between form and content.
By contrast, hackers concentrate on the form and content of code. To the extent that hackers
interest themselves in the “politics” of code (to the extent that they have found themselves to be, in
Raymond’s word, “accidental revolutionaries™), they focus on making what has become known as
“rebel code™: better, more robust, more efficient, more reliable code than the proprietary software
with which it competes. In short, their way of politicizing their code is to strive for its aesthetic
perfection. So it is that while literary criticism moves ever closer toward a dismantling of the
aesthetic (as a ruse that obscures the material “reality” within and beneath a text), hackers realize

that to make code useful politically they must never cease to make it more beautiful.
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