J. EDUCATIONAL COMPUTING RESEARCH, Vol. 9(3) 41 3-443, 1893

THE DESIGN OF SOFTWARE TOOLS FOR
MEANINGFUL LEARNING BY EXPERIENCE:
FLEXIBILITY AND FEEDBACK*

DAVID F. JACKSON
University of Georgia

BILLIE JEAN EDWARDS
Detroit Public Schools

CARL F. BERGER
University of Michigan

ABSTRACT

Experience in using commercially available software to teach students about
principles of graphical data analysis suggests that several critical design
modifications are advisable. In a quasi-experimental study, three different
versions of an original graphing program were used by inner-city high school
students solving scientific data analysis problems. A version incorporating
“coaching” feedback into a highly flexible interface was found to be sig-
nificantly superior to either an “open” version giving no extrinsic feedback or
a “restrictive” one that disabled program options whose use was deemed
inappropriate based on the data analysis context. As an illustration of one of
the graph-based critical thinking skills developed by the students, results are
presented as contrasting pairs of graphs in which one is designed to empha-
size, and the other to downplay, the effectsoof interface design, gender, and
their interactions.

Discussions of educational uses of computers commonly distinguish between three
distinct roles for the computer [1]: first, as personal tutor; second, as a medium for
experiential learning, especially through programming (“tutee” [2]); and third, as a
multipurpose tool. The first two of these categories have frequently been the focus
of research, and existing software spans a great range of sophistication in both

* An eatlier version of this article was presented at the annual meeting of the National Association
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cases: from simple drill-and-practice exercises to “intelligent” tutoring systems
and from student-designed programs to expertly prepared simulations.

Recently, more attention has been paid to the “tool” software most commonly
used in science education, microcomputer-based laboratory (MBL) materials. In
particular, the results of research on teaching about line graphs representing
physical phenomena have been more consistently positive than in any other area
of computer use [3]. The software used in this study is more general in scope,
providing for the use of four different major types of graphs (column/bar, line, pie
chart, and scatterplot) with any data in the form of a standard cases-by-variables
matrix. An important distinction is that both the data and the graphic repre-
sentations are static, as opposed to the dynamic, real-time graphs typically
generated in MBL activities.

While the use of more general applications programs (word processors,
databases, spreadsheets, graphing utilities, etc.) in schools is increasing, the
effects of the charactgristics of these programs on subject matter learning have not
often been critically examined. What are the consequences of using such software
as a vehicle for experiential learning? This approach straddles the boundaries in
the above classification scheme, and places teachers and curriculum developers in
the position of adapting a technology to an unintended purpose [4, p. 7]:

In many cases, applications software was originally developed for business
rather than educational uses, and was aimed at adults, rather than children, as
users. . . Because applications software is, almost by definition, not intention-
ally educational in nature, it is in many ways fundamentally different from
other kinds of software used in the classroom.

One critical difference between applications software and other educational
software is that there are not specific learning objectives. That is, . . . applica-
tions software is not designed to teach anything.

This is not to say, however, that applications software cannot be used to
teach a large set of problems, concepts, and skills.

Discussions of the design of the interface of applications software in relation to
novice users are very common in the literature of computer science and industry
(e.g., [S])- Such research, however, is most often concerned with the process of
learning about the mechanics of the program itself, rather than the uses to which it
can best be put in teaching and learning in content domains.

In educational applications, user interface design has received little attention,
despite the fact that the interface is particularly important for educational software
because “it must provide an entry to the content domain of the program rather than
vice versa” [6, p. 93]. This issue is especially crucial when, as in the case of this
study, no previous experience with the topic at hand (graphing and data analysis)
is presumed. This concern goes much deeper than the nebulous concept most often
represented by the buzz phrase, “user friendliness.” The students in this study
had already worked with the Macintosh™ operating system (renowned for its
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favorable learning curve) for a minimum of five weeks when they first
encountered graphing software. Nevertheless, many had several serious diffi-
culties with the commercially-available software used in the early stages of
the project.

In this study we investigate what special considerations should enter into the
design of graphing software for educational purposes, rather than for use by
scientists, engineers, or businesspeople (cf. [7] for the special case of graphs as
representations of algebraic equations).

THEORETICAL BACKGROUND:
EXPERIENCE, EXPLORATION, AND
COMPUTER-BASED ACTIVITIES

Like anyone claiming to be concerned with “learning by experience,” we
should first return to our roots in Dewey’s technical definition of education: “the
reconstruction of experience which adds to the meaning of experience, and which
increases ability to direct the course of future experience” [8, p. 76]. Dewey is
known for his emphasis on the inherent (vs. instrumental) value of “meaningful”
experiences in the present, but the typical caricature of his work‘ignores the value
that he also placed on past “truly educative” experiences by virtue of their effect
on the future [9]. We have noted elsewhere [10] that the essence of instructional
design in this spirit lies in an effort to “facilitate and regulate the exploration of
alternatives on the part of the learner” [11, p. 43] (italics added). As Dewey later
wrote, in response to the rampant misinterpretation of his ideas [12, p. 75]:

It is a mistake to suppose that the principle of the leading on of experience to
something different is adequately satisfied simply by giving pupils some new
experiences any more than it is by secing to it that they have greater skill and
ease in dealing with things with which they are already familiar.

Many of the participants in the past decade’s debate about the role of microcom-
puters in education could profit from reminding themselves of the oft-ignored
complexity of Dewey’s and Bruner’s thought. At one extreme are “visionaries”
(1] such as Papert [13], who place tremendous faith in the ability of the child-com-
puter dyad to achieve valuable learning from repeated, self-regulated experience
using flexible, powerful software. This idea has been summarized as “the oppor-
tunity does the teaching by itself” [14, p. 13]. To be fair, this seems to be one of
many instances in which Papert’s view has itself suffered the indignities of
oversimplification at the hands of its critics.

At the other extreme lie those, also hailed as visionaries during an age in which
the most modest computing resources were prohibitively expensive, who see the
educational potential of computers primarily in terms of more consistent and
efficient methods of didactic instruction (e.g., [15]). Translated into a world of
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relatively inexpensive and powerful microcomputers in classrooms, this view
rejects the “romanticism” of experiential learning in favor of sophisticated,
artificially intelligent tutoring systems that have the potential to fully replace a
human teacher in well-defined knowledge domains such as biology, chemistry,
or physics [16].

Regardless of one’s predilection for designing explicitly educational software
as either tutee or tutor, as outlined above, the development of a theoretical basis
for the design and use of tool software for education remains problematic. Is
complete flexibility in exploration of alternatives always a reasonable model?
Is it possible for a truly multi-purpose tool to provide any useful feedback or
guidance?

If students, not just teachers, are ever to regard computing power as a useful
means to a worthwhile end, rather than as a surrogate teacher or as an object of
study in itself, perhaps tool software should be designed to call as little attention
to itself as possible. The ideal would be to replace human-computer communica-
tion with “human-problem-domain communication” [17], allowing students to
forget that they are using a computer and concentrate on the subject-matter issues
at hand. At a more basic philosophical level, this recalls Polanyi’s vivid metaphor
concerning the “internalization” of familiar tools: a hammer, for instance, gradu-
ally comes to be viewed as a natural extension of one’s hand, and ceases to be
thought of as a separate technological artifact at all [18]. Winograd and Flores,
attributing this metaphor to the work of Heidegger, have specifically included it in
their high-level theorizing about the appropriate aims of software and computer
systems design [19].

This argues against an attempt to burden a tool program with so many ad hoc,
prescriptive functipns that it becomes more like a clumsy and thinly veiled tutorial
[20, p. 6, 9]:

What are we trying to get the computer to get the student to do, in designing a
teaching program? We need some model of the optimal learning situation to
emulate. The one-to-one tutorial is not appropriate for a medium where the
teacher is necessarily absent. The focus is not going to be student-teacher, but
student-subject.

. . . the way the student experiences the domain being learned [should
be] through direct manipulation of - - the objects in the domain, [with]
fecdback about the behaviour of the system in terms of the results of the
manipulations.

- - . The advantage of . .. goal-oriented manipulation is that it . . . allows the
student to “act like a scientist.”

These arguments were originally advanced in the context of open-ended simula-
tions of natural processes, many of which have been used in teaching physics
(¢.8. [21]). We believe that they can also fruitfully be applied to tool software in
a case (such as that of a graphing utility) in which the “system” involved is a set of
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general-purpose mathematical representations, rather than a mathematical model
of the operation of natural laws. Any such program gives intrinsic feedback, that
is, the substantive results of the student’s computer commands in terms of
the system’s behavior (including both modified graphs and messages such as
“that is not possible”). Extrinsic feedback, in contrast, is a nonspecific evaluative
comment on the match between the students’ input and some predefined goal state
(“correct,” “incorrect,” or “close, but . . .”), which is more characteristic of a
tutorial program [20]. One version of our original graphing software used in this
study is strictly limited to intrinsic feedback—Ilearning about graphs from the
samples it provides relies heavily on self-regulated critical thinking on the part
of students.

The available empirical evidence calls into question the notion that many
students will learn important lessons from relatively unsupervised exploration of
problems, whether or not they are aided by powerful and appropriate computer
software. Research in this area has not been limited to the specific, emotionally-
charged issue of evaluation of the educational use of LOGO programming (e.g.,
[22, 23]). Powerful, potentially helpful program features are rarely used by
students, no matter how much they might help, if they are clearly presented by
teachers as optional [24]. The educational value of time~and labor-saving
software can depend heavily on the context in which it is used, including the level
of student motivation: . . . it seems that the avoidance of cognitive load in the
absence of any real press to behave more elaborately leads to a failure to exercise
higher-level skills” [14, p. 13]. Extensive studies of problem solving in abstract
mathematics have shown that students also fail to recognize or internalize useful
ideas or skills that were practiced or explicitly modeled but not explicitly iden-
tified or explained [25].

Certainly, software designed to be used by students to gain experience in
graphical data analysis must be flexible enough to allow them to explore unknown
territory, and therefore to make some mistakes. The hope is that these will
ultimately contribute to learning. The implications of actions which are logically
possible but inadvisable, reflecting the application of erroneous concepts, can then
be confronted and evaluated.

Our early experience, however, clearly indicated that unrestricted freedom of
choice from among a large array of powerful software commands can be dis-
orienting. Taking a cue from many successful commercial programs, another
version of our graphing software selectively disables (“grays out,” in terms of the
Macintosh™ interface) many program options in certain contexts. We charac-
terize this as “preemptive” feedback—a tacit yet tyrannical form.

Students cannot reasonably be expected to induce the major principles of the
appropriate use of graphs without some degree of appropriate feedback. Applica-
tions software that is too restrictive or prescriptive, however, is probably not
conducive to thoughtful experience and, therefore, to meaningful learning. If
an important goal of computer-based educational activities is to cultivate an
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appropriate balance between the exercise of raw computing power and of human
judgment (cf. [26]), how should software best be designed?

A theoretical perspective on tool software that we find most intriguing is
Salomon’s concept of “artificial intelligence in reverse” [27]. Rather than a
computer modeling human intelligence, might human students come to ¢émulate
certain aspects of the computer’s performance? In this view, the power embodied
in the responses of a computer program serves a role analogous to that of
Vygotsky’s “more capable peer,” in the spirit not of a tutor but more an assistant
or partner, with whom a student can accomplish things that she or he could not
handle alone [28].

The primary benefit of a computer tool is its “enabling funcnon, allowing the
user to test new possibilities and examine their consequences. But perhaps tool
software can (although programs aimed at professionals rarely do) perform some-
what intelligent “guidance” and “modeling” functions by subtly raising questions,
signaling possible errors, or providing externalized metacognitive guides [27].
One version of our’ graphing software allows great freedom in experimenting
with different graphic forms for displaying data, but periodically gives verbal
reminders and warnings (“coaching” notes) about the assumptions implicit in the
action that the user has taken. It provides, in other words, not artificially intelligent
tutoring but “heuristic guidance” in order to facilitate “semantically constrained
exploration” [29].

Salomon also raises the issue of evaluating the success of students in computer-
assisted activities [27]. Particularly well-designed software as an intellectual
partner can be expected to upgrade performance during the partnership, but is
there a useful “cognitive residue” that can eventually be used without the scaffold-
ing of the external, intelligent tool? Building on Vygotskian terminology, there
may be a zone of proximal performance, but not necessarily a zone of proximal
development. Improved performance is necessary but not sufficient to demon-
strate learning. In other words, besides the enabling function of the software,
which cannot (and need not) be internalized by the students, do the guidance and
modeling functions seem to stick with them? This concern is our reason for
evaluating the various software interfaces by the criterion of their effect on written
post-test scores, rather than on immediate success in answering the “research
questions” addressed in the computer-assisted problem sessions.

DESIGN AND PROCEDURES

This study was part of a curriculum development project, undertaken jointly by
University of Michigan researchers and teachers in the Detroit Public Schools
(DPS) whose classes were involved. In total, eighteen teachers and over 800
students from six high schools participated.

As a group, students from these schools typically fall far below state and
national means both in overall achievement and in exposure to science and
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mathematics courses. Detailed background data on individual students were not
available from the district for our research purposes. Most participating students
were in the ninth and tenth grades, and fewer than 15 percent reported having
taken bona fide algebra or laboratory science courses in the past.

The unit on graphical data analysis was part of the DPS Computer Applications
Program (CAP) curriculum, and comprised seven fifty-minute class sessions.
The computer lab classrooms were equipped with Apple Macintosh™ (512K,
unenhanced) hardware. The application program used most recently, CAPGraph,
was developed to incorporate several software design principles derived from our
experiences with students in the first stage of this study, in which the commercial
program Cricket Graph™ was used [30].

In the first three class sessions we used didactic, whole-class instruction aimed
at familiarizing the students with reading and using graphs and with the capa-
bilities of the software. Exposition of general principles was intertwined with
numerous examples of the use and misuse of graphs in various data analysis
contexts. Students were repeatedly given “hands-on” exercises in using the com-
puter commands and interpreting their results.

Three sessions were then devoted to loosely guided practice in graphical data
analysis in the context of problem sets. For each problem, students were given a
data set (in the form of a spreadsheet file) and a “research question” which could
be answered by creating and modifying an appropriate graph on the computer.
Students most often worked in pairs at each computer station throughout the unit,
an arrangement originating in necessity but which has several advantages both for
teaching and learning and from the perspective of cognitive process research [30].

The final class session comprised two tests, a hands-on evaluation of facility
with the mechanics of the software and a written test on graphing principles. The
latter was a paper-and-pencil, free-response test, designed to correspond as closely
as possible to the task environment familiar to the students from the computer
problem-solving sessions. Questions asked on the test probe not only the students’
basic competence in reading and drawing inferences from graphs, but their ability
to make evaluative judgments about the design and modification of graphs appro-
priate to various kinds of problems.

This study was conducted in three distinct phases, corresponding to an evolving
set of research questions and methodological approaches. First, in early trials with
a small number of classes at two schools, students used a commercial program,
Cricket Graph™, which is extremely popular in business and academia and
known for its especially “friendly” interface. It eventually became apparent that
this extremely powerful software had several serious flaws from the point of view
of experiential learning by high school students.

Second, we programmed an original application, CAPGraph, designed specifi-
cally to alleviate the most troublesome problems, from the students’ point of view,
of the commercial software. This software was pilot-tested by students at three
schools, whose critical comments and suggestions were actively encouraged and
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usually heeded. During this phase, significant aspects of the program’s interface
were often changed, literally, overnight. This mode of operation empowered
everyone involved, researchers, teachers, and students, rather than immediately
adopting a more circumspect mode of research in which existing computer arti-
facts are implicitly taken as the universe of possibilities. This is a reflection of
[31, p. 95]:

. . a “two-directional image”: not only do computers affect people, but
people affect computers . . . we affect computers when we study their use,
reflect on what we see happening, and then act to change it in ways we prefer
or see as necessary to get the effects we want. Such softwarc engineering
is fundamentally a dialectical process between humans and machines. We
define the educational goals (either tacitly or explicitly) and the create the
appropriate software. . . . Through experimentation, new goals and new ideas
for learning activities emerge.

This process of progressive refinement characterized not only our instructional
and software design process, but also our theoretical perspective. For a reflective
participant observer, iterations of such “feedback loops” cannot help but also
modify the set of values and assumptions that color the very process of observa-
tion and measurement (“feedforth” [32]). In this intermediate phase, hypotheses
were generated for the quasi-experimental study that followed.

Third, we explicitly took stock of our educational goals, “froze” certain basic
aspects of the design of the software, and created three systematic variations of the
interface, which were then used by students in four schools. Entire classes were
assigned on a random basis within each school to work with a particular interface.
The differences among the three versions of the otherwise identical software were
very well defined, avoiding the thorny issue of satisfactorily “equivalencing”
qualitatively different experimental treatments [33], a common cause of con-
founding of variables in educational computing research [34].

Our three different versions of CAPGraph represent different combinations of
flexibility and feedback (Table 1): first, a maximally flexible interface, permitting
all logically possible command choices and showing their resulting effects on
the graph without comment; second, the flexible interface with “coaching” feed-
back presented in conjunction with the graphical results when a questionable
command is issued; and third, a relatively restrictive interface that disables several
program commands in contexts in which they are logically possible but not
advisable, according to widely-accepted principles of exemplary graphing prac-
tice (e.g., [35]).

The programmed functions generating the “coaching” messages are based only
on the data structure of the current graph and a general model of appropriate
graphing practices for each combination of data types. The modestly artificially
intelligent performance of the software did not depend on any information specific
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Table 1. Versions of CAPGraph Software,
Characterized by Degree of Flexibility and Feedback

Interface Design Flexibility Feedback
“Open” flexible implicit
“Coaching” flexible explicit
“Restrictive” less flexible “preemptive”

to the “research questions” in the problem sets with which the students were
working.

We then compared and contrasted the experiences of students using each style
of interface, using anecdotal observations to help interpret the results from the
written test of practical knowledge of graphing.

RESULTS .

Phases 1 and 2:
Experiences with Commercial Software; Development
and Refinement of the Original Prototype Software

Before this study began, the only alternative available to Detroit teachers
wishing to include computer-assisted graphing in their curriculum was to use the
graphing facilities of Microsoft® Works™. While this integrated software tool
includes a word processor and spreadsheet that are more than adequate for student
‘purposes, the user interface to its graphing functions leaves most students (and
many adults) overwhelmed and befuddled. -

When the basic “new chart” menu command is selected, this program immedi-
ately confronts the user with a large number of simultaneous choices (Figure 1).
This ability to specify all aspects of the appearance of a graph all at once, ina
single “batch” process, is a boon to efficiency if the user is an expert professional
who has already planned her or his graphic display in advance and had the
foresight to note down the appropriate column and row numbers on the (totally
obscured) spreadsheet that contains the data to be graphed. A student, in contrast,
is very likely to spend nearly as much time figuring out which numbers and letters
to type into which boxes as he or she would have spent plotting a graph by hand.
In either case, little class time is likely to remain for the students to consider the
important substantive issues involved in designing the graph display itself. This
program can save some time and labor by using the computer for drafting graphic
presentations, but is not conducive to thinking or learning about graphing and data
analysis while doing so.
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Figure 1. A relatively complicated, non-intuitive interface (Microsoft Works™):
all important design choices are concentrated in one dialog and must
be specified in terms of hidden spreadsheet coordinates.

Cricket Graph™, in contrast, is an outstanding example of highly sophisticated
scientific/business software which, because of its relatively convenient and intui-
tively satisfying interface, is easily learnable by inexperienced students. The user
can create a basic graph of any type by choosing from a menu that includes both
names and graphic depictions of choices, then merely clicking on the names of the
variables that should be plotted (Figure 2). The most basic and important options
are presented first, and one at a time, in a way that allows a student user to
concentrate on thinking about the substance of the decisions to be made about the
graph, rather than on how to communicate their ideas to the computer (cf. [6, 17]).
More subtle changes in the resulting graph can then be made individually through
separate pull-down menu commands or, in some cases, by simply pointing and
clicking the mouse to the part of the graph that needs work.

Almost all of the students involved in this study took immediately to the ease
with which graphs could be created, modified, and embellished using this basical-
ly well-designed interface. We became increasingly excited about the potential of
such computer power and intuitively appealing software to facilitate creative,
productive “messing about” on the part of students learning about graphs and
scientific data analysis [36]. Eventually, however, a list of serious problems with
using Cricket Graph™ for teaching grew long enough that we were inspired to
design and program a new application, CAPGraph, specifically for this project.
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Figure 2. A simpler, more intuitively satisfying interface (Cricket Graph™):
menu choices include graphics (left) and result in a dialog offering
limited choices in terms of meaningful names (right).
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Unfortunately, from the teacher’s point of view, the combination of a “user
friendly” operating system with a full-featured commercial program can rapidly
become an attractive nuisance. A sizable proportion of the students were seriously
distracted by the constantly available opportunity to play with the Macintosh™
fonts, styles, and sizes of text, or any of several superficially visually impressive,
“professional-looking” cosmetic additions to their graphs, such as the illusion of

depth (“chartjunk” [37]). These options were eliminated in our new prototype.
" For a vast majority of the students, the more advanced mathematical features of
the commercial program created a similar problem. Very few were ready to handle
the interpretation of such options as logarithmic scales, nth-order polynomial
curve fitting, inverse-square data transformations, or “smoothing” of data
(Figure 3). Such facilities were not included in CAPGraph.

As the functions just mentioned would suggest, Cricket Graph™ is designed to
be a general data-manipulation utility as well as a graphing program. Presumably
because of this, the software is programmed to respond to some of the most
powerful and commonly used commands in a way that students found highly
counterintuitive. The “sort” command, for instance, has no effect on the current
graph, which fills most of the screen, but rather on the data set itself, as reflected
in a spreadsheet window that is typically barely visible beneath the graph window.
If any reorganization of the data is to be reflected in a graph, an entirely new graph
must be plotted, meaning that all of the design choices and modifications made up
to that point in the work session are lost and must be reiterated. Students found this
extremely frustrating. Many told us that they learned to avoid the sorting function

-
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altogether for this reason, rather than having to retrace their steps or to plan their
graphs in advance to avoid such an annoyance. The design of CAPGraph rectifies
this situation by making all data analysis functions apply to the current graph and
locating them all on a single menu (Figure 4, left).

“Sort now, or forever hold your data organization” is only one way in which this
powerful commercial program unreasonably limits the freedom of students to
explore the comparisons and contrasts between different graphs on the same data.

Sort..L. Simple l

Recode... Polynomial

Transform... Logarithmic
Simple Math... Exponential
Count Frequency... ’

Smooth... Interpolate

Figure 3. Educational drawbacks of an excellent scientific program
(Cricket Graph™): reorganization commands, counterintuitively, act only on
spreadsheet data, not on the existing graph (left). Some commands on both
menus shoyyln are unintelligible to mathematically unsophisticated students.

New Graph... %6 |

Sort... Column
Categories... vline '

Values... Pie

Add Best Fit Line Scatter

Figure 4. Flexibility provides for changing major organizational components
of the current graph at any time (CAPGraph): data reorganization (left)

or graph type (right).
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With Cricket Graph™, the crucial first choice made by the user (type of graph;
Figure 2, left) is irrevocable; if a student decides to consider an entirely different
graphic form, she or he must start from the computer-assisted equivalent of
“scratch.” Borrowing a term from the financial world, we refer to this interface
design as enforcing a “front-end loaded” decision structure. This places a
premium on foresight, while hobbling the students’ efforts to explore the effects
not only of relatively small refinements in their graphs, but also of large-scale
changes in format. For facilitating learning about graphs from experiences in
designing and using them, we feel that the single most important feature of
CAPGraph is its ability to instantly transform otherwise identical graphs from one
basic type to another (Figure 4, right).

Once a type of graph is selected, however, there are some inherent, logical
limitations on how data can be represented. Except in the case of a sidelong bar
graph, for instance, it is impossible to represent categorical information on the
vertical or polar scale of a graph—it provides no quantity to determine the height
of a column, the angle incorporated by a sector of a pie graph, or the vertical
coordinate of a point on a scatter or line graph. For this reason, selecting a
categorical variable under “vertical axis” (e.g., Figure 5, top) is a logically impos-
sible command to execute. In the case of Cricket Graph™, this-is communicated
to the user by an error message (Figure 5, bottom) which, while meaningful from
the software algorithm’s point of view, is not very meaningful to most people.
A very reasonable but erroneous student interpretation might be that data is
missing for a large number of the individual cases for the variable in question,
rather than the realization that the program had unsuccessfully searched for
numeric data in the selected column of the spreadsheet. We believe that a more
reasonable approach is to disable variables that are logical impossibilities (not
merely inadvisable choices) (Figure 6).

This relationship between the choice of an appropriate type of graph and the
nature of the information displayed is the single most important concept in
graphical data analysis. We therefore chose to include both of these critical
decision points in the same initial graph-specification function (Figure 6) in
CAPGraph, in an effort to encourage students to think about the mutual influence
that these two considerations should have on each other.

The design of this dialog box also illustrates several other principles that we
have abstracted from our experience with the students about how a graphing tool
designed for educational purposes should differ from the interface most typical of
commercial software.

Generally accepted interface design practice calls for the first item in a list, the
first “radio button” in a set, etc. to be automatically selected as a default unless
otherwise specified. The original prototype of CAPGraph conformed to this
expectation, and in our pilot testing of the program nearly every graph produced
in the problem sessions was a column graph. Interviews with students revealed
that they were not showing a preference, but merely not bothering to address the
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Figure 5. An interface with no preemptive feedback and uninformative
explicit feedback (Cricket Graph™): the student is free to specify a logical
impossibility—representing a categorical variable on the vertical scale
of a line graph (top)—and then must contend with a nonspecific,
cryptic error message (bottom).

issue. This phenomenon was confirmed by similar observations when the ordering
of graph types was changed for the next day’s class sessions. Since one of our
most basic goals was to get these students more actively involved in thinking in
the context of their computer-assisted school activities, the revised version of
CAPGraph does not use arbitrary program defaults, but rather compels the student
user explicitly to choose a type of graph and a combination of variables (Figure 6,
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Figure 6. An interface designed to appropriately shape students’ thinking
(CAPGraph): two decisions—graph type and choice of variables—are
juxtaposed because thinking about the two issues should be closely reiated.
Logically impossible choices are disabled (cf. Figure 5). No arbitrary default
values are preselected, helping to enforce consideration of the issues.
Commands cannot be confirmed—"OK" is disabled (top)—until enough
information has been explicitly specified (bottom). More informative,
context-sensitive labels and reasonable, customized default values—
*sequence,” “values,” and a generic titte—are added after the type of
graph is chosen (bottom).
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top). This is enforced by the fact that the “OK” button does not “light up,”
indicating that the graph specifications can be accepted and the commands exe-
cuted, until enough selections have been made.

In some cases, reasonable default settings for graph parameters can be deter-
mined by the input already given, as in the case of an initial title (Figure 6,
bottom). Sensitivity to context can also provide subtle but useful hints to the
students in constructing graphs appropriate for a given combination of informa-
tion. Once a graph type has been chosen, for instance, the headings for the lists of
variables can be customized to reflect the kinds of information most typically
represented by such a graph (Figure 6, bottom). 1

An important subset of graph modification commands are those commands
controlling the scale of the axes and their extensions (maximum, minimum,
increment, grid lines, etc.). In Cricket Graph™, these functions can be efficiently
and conveniently summoned en masse by double-clicking the mouse on one of the
axes (Figure 7). We found that there are two major problems with this design from
the point of view of student learning. First, since the functions are only available
through a “hidden” command (rather than a pull-down menu which can be
scanned), it was common for students simply to forget that these options exist.
Second, in accordance with one of the basic tenets of scientific reasoning, we

Vertical (V) Axis Format

— ARis — Ticks
* Mark 6rid
Minimum: II Major: [X O
Maximum: [70.000 | Minor: [X O
Increment:|10.000 || {tesige: O
@® Linear QOlog Axis on: @ Left O Right

Figure 7. Convenience, efficiency, and clarity, but perhaps too much for
students to consider at once {Cricket Graph™): several important and
related options are offered in the same dialog box, implicitly discouraging
systematic experimentation with one of these graph variables at a time.
These commands are available only through a “hidden option,”
not a menu selection.
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wanted to encourage experimentation with only one structural parameter ata time,
so that its unique effect on the resulting modified graph could be judged (cf. [7]).
CAPGraph deals with these considerations by presenting these features of the
program as separate items on a single menu, each calling up a separate dialog box
(Figure 8, top) while also allowing more experienced and confident users to use
the more subtle, inclusive, and efficient command structure (Figure 8, bottom;
cf. Figure 7) instead. This design caters to multiple modalities both in terms of
the mechanics of software control (pull-down menus versus double-clicking on
graphic elements) and in terms of the grouping of graph design concepts (a single
characteristic of both axes versus all characteristics of one axis).

Phase 3: Quasi-Experimental Study of Different
Versions of Software

Once the basic design of our educational graphing program had evolved to the
satisfaction of the participating teachers and students, we created three systematic
variations of CAPGraph representing different approaches to the issues of flexi-
bility and feedback. Some sample screens can serve to illustrate the operation of
each of these versions. "

fAxis Scale Increment

~Scale Aals: increment:
Mt
A horizontal (x)
Increment... vertical {y) A

Grid Lines..!

Vertical (y) Axis Scale

Magimum:
Minimum:
Increment: [0 show grid lines

Figure 8. Multiple-mode interface design (CAPGraph): individual menu
commands and separate dialogs (top) suggest isolated changes in scale
parameters, with the resulting effects on the graph display available for
avaluation between commands. An alternative (hidden, more efficient)
format is also available (bottom; cf. Figure 7).
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The “restrictive” version (Figures 9 and 10) precludes many common mistakes.
The more flexible versions allow students to experiment freely with all graphing
options, including those that would clearly be inadvisable according to conven-
tional wisdom. One of these operates in a completely “open” manner with the
software providing no explicit feedback (Figure 11), and another uses “coaching”
messages to gently remind students of the assumptions and implications of their
actions in constructing and modifying graphs (Figure 12).

The overall effects of each interface on student learning were evaluated based
upon scores on a test of graph-reading and graph-design skills which we

New Graph RILI:HEIScatter Graph of Weather

Horizontal firis Ualues: Uertical firis Ualues: Graph Type
Hate O |Date > O Celumn
Afr Pressure (in Hg) fir Pressure (in Hg) O Line
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Pradip. Type Pracip. Type O Pie

High Temp. (°C) High Temp. (°C)

Low Temp. (°C) Low Temp, (°C) @ Scatter

(frequencies)

| o [ Cancel |

T —

New Graph M {:-HBIColumn Graph of Weather

Column Categories: Column Height Dalues: Graph Type
Date K3 [Bate 3} @ Column
b Prassura tan Hg) || |nir Pressure (in Hg) ot
Pracip. Amount (im Precip. Amount (in) ne
Precip. Type Pracip. Type O Pie
Bigh Yemp, () High Temp. (°C)
Lowus Temp, (*C) Low Temp. (°C) O Scatter
{frequencies) —
5 5] (Cancel )

—

Figure 9. The “restrictive” version of the CAPGraph interface: only numeric
variables can be included in scatter graphs (top). Only categorical
variables may designate column names (bottom).
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New Graph... #G6 New Graph... 3#G

Column fidd Legend vColumn Sort...

Line Add Dalue Labels || Line Categories...

Ple Add Case Labels Ple Uslues...
vScatter Titles... Scatter fidd Bast Fit Line

Figure 10. The “restrictive” version of the CAPGraph interface:
examples of disabled menu choices in the context of different
graph types and the nature of different variables used.

developed to reflect the priorities implied by our teaching methods. Students were
presented with examples of graphs intended to convey the answer to a given
research question. Their tasks for each of sixteen test items were, first, to answer
the question as best they could (or indicate that it was not possible) and, second, to
describe how the graph could best be improved (Figure 13). Graphs included in
the test items were designed to range from highly appropriate to seriously flawed.
Face validity of the test was established through review and editing by at least one
teacher from each school. The sixteen items used were chosen from among thirty
candidate items written by the authors.

Reliability of the test was estimated as .78 by Cronbach’s alpha applied to tests
from all students and .72 based on test-retest correlation (identical tests, 10 days’
delay) for students at one school.

Although participating whole classes were randomly assigned to use one of the
three interfaces, several factors complicated the interpretation of this quantitative
data. We did not have access to confidential background information such as
grade-point averages or standardized test scores for individual students. The grade
level and gender of each student was included on the teachers’ daily attendance
sheets, and we were given copies.

Students in the sample represented a wider than anticipated range of ages and
grade levels. Normally, most students in the Detroit CAP classes are in the ninth
and tenth grades. For most of the classes at one of the schools, a2 majority of the
students were in the eleventh and twelfth grades. Statistical control for these
differences was considered inadvisable for two reasons: first, the effect of grade
level on test scores was not linear—tenth-graders performed marginally better
than ninth-graders, while participating eleventh- and twelfth-graders had substan-
tially lower scores; second, and perhaps explaining the first problem, participating
teachers informed us that official grade-level information for many of these
students is often highly misleading due to “social promotion” practices.

Absenteeism was also a serious concern at the participating schools, and its
effect on test scores was also not linear. The greatest discrepancy was found
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Figure 11. Examples of graphs possible with “open” version of the CAPGraph
interface: column graph with numeric categorie's, useless legend, and
implicitly ordinal best fit line (top). Scatter graph including categorical

data, with meaningless apparent “trend” (bottom).
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Figure 12. Samples from the “coaching” version of the CAPGraph interface:
a view of the Macintosh screen showing the placement of the data
spreadsheet, graph, and coaching windows on screen (top).

Further examples of coaching messages (bottom).
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Instructions:
You may use the reference sheet (listing the functions of the application) during this test.
For each problem,

1. If it is possible to answer the question(s) from the graph shown, answer them as best you
can. If it is not possible, just say so.

2. Remembering what you can do with CAPGraph, describe any changes you would make to
each graph in order to make it better for answering the question(s) given in the problem.
These could be either major changes (like "use a column graph instead") or minor change§
(like "add a legend” or "remove the best fit line"). If the graph needs no changes, just say so.

r Al
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Problem 3.
What amount of precipitation would you expect on a day when the air pressure measures 30?

Figure 13. Instructions and sample item from test of graph-reading
and graph-design skills.

between students who were present for at Jeast five of the six instructional days
and those who were not.

In an effort to maintain a systematic sample of comparable students who
received sufficient exposure to the software, we decided to eliminate from the
following statistical analyses the eleventh- and twelfth-grade students and those
who were absent more than once. This reduced our sample size by 41 percent to
219 students. Their distribution across the different treatment groups remained
tolerably even.
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The quasi-experimental design, large sample size, and tolerably normal fre-
quency distributions of the test scores justify using simple and traditional statis-
tical methods for these data. In addition to compiling descriptive statistics, we
used a two-way ANOVA to investigate the main effects of the instructional
treatments and of the gender of the students, and any interactions between these
two factors. Detailed results of these analyses are shown in Tables 2 and 3.

Students using the “coaching” interface for the problem-solving sessions scored
significantly higher on the graphing test than those using either the “open” or
«restrictive” interfaces. Female students scored significantly higher than their
imale classmates. There was, however, a significant interaction between these two
variables. Although students using the “coaching” interface scored higher than
those using the other interfaces regardless of gender, the apparent effect is much
more pronounced for male students. Although the young women performed better
on the test regardless of which version of the program their class used, this
difference was heavily concentrated in the group who used the flexible interface
with no explicit feedback.

DISCUSSION AND FUTURE DIRECTIONS
*

These effects are statistically significant, but how much do they really mean for
software design? In the same spirit in which the Detroit high school students were
taught about graphs, we present a short object lesson in how decisions about graph
design and modification can affect the substantive message of a given set of data.

For instance, the mean test score for students in classes that used the coaching
interface was 30 percent higher than for those that used the restrictive interface
(Figure 14, top)—probably enough of a difference to get some teachers or
software designers to sit up and take notice. Many of those students could tell us
that a column graph is most appropriate for this information. It gives a fair,
intuitive idea of the magnitude of the differences among three qualitatively

Table 2. Descriptive Statistics

Test Scores n Mean S.D.
Treatment:
open 75 7.57 3.83
coaching 78 9.37 3.35
restrictive 66 7.23 4.06
Gender:
female 105 8.70 3.98
male 114 7.57 3.64

Total 219 8.1 3.84
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Table 3. Comparative Statistics

Test Scores n Mean

Two-way breakdowns:

Open, female 36 9.08
Open, male 39 6.17
Coaching, female 35 9.49
Coaching, male 43 9.28
Restrictive, female 34 7.47
Restrictive, male 32 6.97
Total 219 8.11
Sum of Mean
Source DF Squares  Square F p
Two-way analysis of
variance table:
Interface 2 19479 97.39 7.27 <.001
Gender 1 79.21 79.21 5.91 <.05
Interaction 2 8220 41.10 3.09 <.05
Error 213 2853.25 13.40
Comparison Mean Difference  Scheffé F P
Post hoc pairwise comparisons: -
Open vs. coaching -1.81 4.46 <.05
Open vs. restrictive 0.34 0.15 NS
Coaching vs. '{estriaive 2.15 5.89 <.05

different categories, corresponding to three different groups of people using the
software at one time.

If we had clicked on just one different button when commanding the computer
to graph the data for this article, we would have ended up with a different type of
graph (Figure 14, bottom) which, based on our experience, almost certainly would
be preferred according to the style guidelines of many professional journals, but
which also has the potential to be extremely misleading. Here is a very reasonable,
at-a-glance interpretation of this line graph: students didn’t learn very well, at first,
with the open-ended interface, but jumped way up to the top of the scale when
exposed to the coaching feedback, then showed a precipitous drop in performance
when new restrictions were placed on them. In all fairness, the mere removal
of the lines connecting the data points might change this interpretation. A cryptic
but authoritative-sounding title using theoretical jargon is thrown in for good
measure.
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Figure 14. Effect on test scores of working with different versions of
CAPGraph: an honest graphic representation of the data (top).
Use of a line graph for such a display, as many research
reports are wont to do (bottom).
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The very basic graph showing that the females scored somewhat higher than the
males (Figure 15, top) seems to be lacking in precision and is not very visually
striking. Using the computer and CAPGraph, about five seconds later it can
effectively, but incorrectly, be “shown” that the girls performed more than twelve
times better than the boys (Figure 15, bottom).

There were barely any gender differences, in fact, except in the case of the
open-ended interface. This interaction clearly stands out when presented graphi-
cally (Figure 16, top). Again, a single computer-use choice, perhaps made in the
name of using a consistent form for the graphs, could make it look as if the most
impressive result is that the young men “improved” because they responded
especially well to the computer coaching.

Are these examples unreasonable caricatures? Perhaps, but there is more than a
grain of truth in their message, for educational researchers as well as for high
school science students. Our anecdotal observations and unstructured interviews
with students can provide some insight into what generated these differences in
learning. Not surprisingly, some students reacted negatively to being provided
with neither stepwise written guidelines nor explicit feedback from the software.
A substantial number, especially among the relatively few who worked alone at
the computer, were never able to develop an ability to evaluate whether the
graphs-under-construction on their screen needed wholesale reorganization or
merely small improvements. The open-ended interface overwhelmed them with
too many powerful choices and too little assistance in dealing with them.

The coaching messages seem to have helped, but there were relatively few cases
in which we observed students taking the time to read them carefully. Most often,
the immediate response to the appearance or reappearance of the coaching win-
dow was to get ¥id of it or move it into the background. Most students indicated
that they took the messages as general indicators that their most recent action
might be questionable, thus serving the important purpose of suggesting that they
critically examine their work.

The restricted interface was the only one that generated a significant number of
vocal complaints. Many students were extremely frustrated with being unable to
change a particular graph parameter to evaluate its effect for themselves, Teachers
were also at a loss to give illustrative explanations to these students, because
instructive examples of inadvisable actions were rendered impossible. It makes
intuitive sense to us that these students, who were not allowed to make many
major categories of mistakes, could not be expected to learn from them.

From our wealth of classroom experience with this teaching approach and this
software, we can offer no explanation whatsoever for the observed gender dif-
ferences and gender-treatment interaction. Neither we nor the participating
teachers ever noticed any prominent cases in which the young men or women as
groups might have been reacting differently to either the teacher presentations or
to the problem-solving experience with the graphing software. Initially, we had a
few misgivings about using a sports-oriented data file (professional basketball
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Figure 15. Effect of gender on test scores: an honest graphic representation
of the data (top). Using the power of the computer to easily manipulate
the scale, visually distorting the relative magnitudes of the numeric
data and emphasizing unnecessary precision (bottom).
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Figure 16. Interaction effect: an honest graphic representation of
the data (top). A line graph intuitively implying at least an
ordinal scale for the treatment variable (bottom).
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statistics) for many of the whole-class demonstrations and models, but all of the
teachers assured us that its motivational value outweighed any tendency for the
males to be more knowledgeable basketball fans than the females. These results
cannot refute that opinion.

An obvious issue for future study is that of aptitude-treatment interactions. Will
the general consensus in education that more flexibility and less direct feedback is
better suited to higher-achieving students hold up in the case of the use of tool
softwar¢? Although relevant individual data were not available, achievement
levels in this urban school district are comparatively low. Most of the teachers
involved in this study were very pleasantly surprised by their students’ ability to
work productively with relatively sophisticated software in a less-structured task
environment than is customary in these inner-city classrooms.

Another fruitful follow-up study might be to investigate the sequential use of
more than one of these interface modes, perhaps beginning with the restrictive
interface, then removing the restrictions and adding the coaching functions, and
finally using the computer and software in the context of a performance-based
test, using the flexible interface with the coaching functions no longer available.
Returning to the notion of “artificial intelligence in reverse” and the descriptive
terminology that Salomon applies to the capabilities of tool software [27], the
extent to which a student has internalized the knowledge of graphing embodied
in the computer program could only be determined when the tool’s guidance
(coaching) and modeling (restrictive interface), but not its enabling features (the
substantive functions of the program itself), have been taken away (as in the
open-ended interface).
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