
Heuristics for Designing Enjoyable User Interfaces"
Lessons from Computer Games

Thomas W. M a l o n e

Xerox Pale Alto Research Center
3333 Coyote Hill Road
Pale Alto, CA 94304

In this paper, I will discuss two questions: (1) Why
are computer games so captivating? and (2) How can the
features that make computer games captivating be used to
make other user interfaces interesting and enjoyable to
use?

After briefly summarizing several studies of what
makes computer games fun, I will discuss some guidelines
for designing enjoyable user interfaces. Even though I will
focus primarily on what makes systems enjoyable, I will
suggest how some of the same features that make systems
enjoyable can also make them easier to learn and to use.

STUDIES OF ENJOYABLE COMPUTER GAMES

To help determine what makes computer games so
captivating, I conducted three empirical studies of what
people like about the games. All of these studies are
described in more detail elsewhere ([8], [9], [10]) and are
only briefly summarized here. The primary purpose of
these studies was to help design highly motivating
instructional environments, but they also have important
implications for designing other user interfaces.

Darts. To illustrate the methodology used, I will
briefly describe one of the studies. This experiment
analyzed a game called Darts that was designed to teach
elementary students about fractions [4]. In the version of
the game used, three balloons appear at random places on
a number line on the screen and players try to guess the
positions of the balloons (see Figure 1). They guess by
typing in mixed numbers (whole numbers and/or
fractions), and after each guess an arrow shoots across the
screen to the position specified. If the guess is right, the
arrow pops the balloon. If wrong, the arrow remains on
the screen and the player gets to keep shooting until all the
balloons are popped. Circus music is played at the

01981 ASSOCIATION FOR COMPUTING MACHINERY
Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commerical advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

., l

1 I

1

SCORE 12
3 BALLS LEF

-4 ~(3 7/8

3

TYPE THE NUMBER: 3 112

Figure 1. Display format for the Darts game.

beginning of the game and if all three balloons in a round
are popped in four tries or fewer, a short song is played
after the round.

To find out what features contribute most to the
appeal of this game, I constructed 8 different versions of
the game by taking out, one at a time, features that were
presumably motivational. The features removed included:
the music, the scorekeeping, the fantasy of arrows popping
balloons, and different kinds of feedback (see Figure 2).

63

21 ,
1

TYPE THE NUMBER:

1. NON-INTERACTIVE DRILL

t

1 2/3 IS WRONG
TYPE THE NUMBER:

2. ADD PERFOR~IANCE FEEDBACK

21 ,
1

1 2/3 IS WRONG I 3 TRIES
TYPE THE NUMBER"]1

i RIGHT

3. ADD SCORE

21 I-

I

1 2/3 IS TOO HIGH r OUND2
TYPE THE NUMBER: [3 TRIES

5. ADD EXTRINSIC FANTASY

21
1

1 2/3 IS TOO HIGH I 3TRIES
TYPE THE NUMBER: [1 RIGHT

4. ADD CONSTRUCTIVE FEEDBACK

21
1

t 2/3 IS TOO H GH IROUND 2
TYPE THE NUMBER: I 3 TRIES

6. ADD MUSIC

3/24 ~.---- 1 3/4

I ,.J-~-I 1/4

I 2/3 IS "tOO HIGH IROUND 2
TYPE THE NUtVlBER: /

7. ADD GRAPHIC REPRESENTATION

3124 ~-- 1 3/4

• 1 2/'3

~'-" 1 1/4

2/31STOOHIGH1 ~
"YPE THE NUMBER

8. ADD INTRINSIC FANTASY

Figure 2. Different versions of the Darts game.

Eighty fifth grade students were each assigned to one
of the 8 versions and then allowed to play with either their
version of Darts or with a version of Hangman that was
the same for all students. The primary measure of appeal
of the different versions was how long students played
with their version of Darts in comparison to Hangman.
This measure was also highly correlated with how well
students said they liked the game at the end (r=.30,
p<.01).

Somewhat surprisingly, there was a significant
difference between boys and girls in what they liked about
the game. An analysis of variance of the time spent
playing Darts revealed significant effects of condition
(F(7,48)=2.21, p<.05) and of the sex by condition
interaction (F(7,48) =4.84, p<.001). A detailed
intelrpretation of the differences (shown in Table 1) is
given in [8] and [10]. Briefly, the girls' dislike of the
intrinsic fantasy of arrows and balloons (Condition 7 vs. 8)

appears to be because they dislike the arrows and balloons
fantasy in the first place and the fantasy is more salient in
the intrinsic than the extrinsic version. Furthermore, the
differences between Conditions 3 and 4 for boys and
between Conditions 5 and 6 for girls appear to be less
reliable than the others because they are not significant
when the time measures are scaled according to a plausible
model of choice behavior.

In summary, the primary result of this experiment
was that boys liked the fantasy of arrows popping balloons,
and girls appeared to dislike this fantasy. The results also
showed that fantasy made more difference in the appeal of
the game than did simple feedback. In other words, even
though responsiveness is often mentioned as an important
reason why computers are captivating, the simple feedback
in the game was not as important as the fantasy in making
this game fun.

I think the most important implication of this
experiment is that fantasies can be very important in
creating intrinsically motivating environments but that,
unless the fantasies are carefully chosen to appeal to the
target audience, they may actually make the environment
less interesting rather than more.

Table 1
Interest in different versions of the Darts game

Condition Time playing Darts
(0- 40 minx)

Boys Girls

1. Non-interactive drill 20.5 15.5

2. Add performance feedback 18.8 20.2

3. Add scoring 24.2 19.8

4. Add constructive feedback 16.2 * 22.2

5. Add extrinsic fantasy 25.8 * 20.8

6. Add music 21.8 30.0 *

7. Add graphic representation 28.3 29.8

8. Add intrinsic fantasy 34.5 19.8 **

Average 23.4 22.0

* p < .05, for comparison with previous condition

** p < .01, for comparison with previous condition

64

Other studies. Another game, called Breakout, was
studied in a similar way. In this game, the player controls
a paddle and tries to hit a ball so that it knocks all the
bricks out of a wall. T~e visually compelling goal of
knocking bricks out of the wall was found to be the most
important of the features varied in this game. Finally, in a
survey of the computer game preferences of 65 elementary
school students, the features that were most strongly
correlated with game popularity were the presence of an
explicit goal, score-keeping, audio effects, and randomness.

IMPLICATIONS FOR DESIGNING
ENJOYABLE USER INTERFACES

In this section, I will outline a general framework for
analyzing the appeal of computer systems based on three
categories: challenge, fantasy, and curiosity (see Table 2).
The primary purpose of this framework is to serve as a
checklist of heuristics for designing enjoyable user
interfaces. One purpose of this paper is to show how this
framework, which was developed elsewhere [10] for
analyzing instructional environments, can be applied to
more general user interfaces.

The motivational processes discussed in this paper
are, in many ways, less well-understood and subject to
much larger individual differences than many of the
cognitive processes involved in human-computer
interactions. Accordingly, the heuristics in this section
should be viewed as suggestions, not as requirements.
Many of them are only appropriate for some people in
some situations and they must be applied with care.

Toys and tools It is important, in describing this
framework, to distinguish two different uses of computing
systems: toys--systems used for their own sake with no
external goal (e.g., games), and tools--systems used as a
means to acheive an external goal (e.g., text editors,
programming languages, etc.).

As discussed below, good toys and good tools are
similar in the ways they can use fantasy and curiosity, but
in an important way they are opposite with respect to their
requirements for challenge. Since most user interfaces are
for tools, not toys, much c f the motivation for using the
system depends on the user's motivation to achieve the
external goal. In cases where the external goal is not
highly motivating (e.g., is routine and boring), the toy-like
features discussed below can be especially useful in
making the activity enjoyable.

Challenge

Goal For an activity to be challenging, it needs to
have a goal whose outcome is uncertain. As described
above, computer games without explicit or easily generated

goals were less enjoyable than games with goals. In other
words, a challenging toy must either build in a goal or be
such that users can easily create their own goals for its use.
A good tool, on the other hand, is designed to achieve
goals that are already present in the external task.

For both toys and tools, however, users need some
kind of performance feedback to know how well they are
achieving their goals. In games, this performance feedback
is provided by things like the missing bricks in Breakout
and the position of the incorrect arrows on the number
line in Darts. There may be similar ways to incorporate

Table 2
Heuristics for Designing Enjoyable

User Interfaces

I. Challenge

A. Goal. Is there a clear goal in the activity? Does the
interface provide performance feedback about how
close the user is to achieving the goal?

B. Uncertain outcome. Is the outcome of reaching the
goal uncertain?

1. Does the activity have a variable difficulty leveP.
For example, does the interface have successive
layers of comple.dty?

2. Does the activity have multiple level goals? For
example, does the interface include score-
keeping?

II. Fantasy

A. Does the interface embody emotionally appealling
fantasies?

B. Does the interface embody metaphors with physical
or other systems that the user already understands?

III. Curiosity

A~ Does the activity provide an optimal level of
informational complexity?

1. Does the interface use audio and visual effects: (a)
as decoration, (b) to enhance fantasy, and (c) as
a representation system?

2, Does the interface use randomness in a way that
adds variety without making tools unreliable?

3. Does the interface use humor appropriately?

B. Does the interface capitalize on the users' desire to
have "well-formed" knowledge structures? Does it
introduce new information when users see that their
existing knowledge is: (1) incomplete, (2)
inconsistent, or (2) unparsimonious?

65

performance feedback for the external task into tools. For
example, the Writer's Workbench developed at Bell
Laboratories [7] measures various stylistic features of
manuscripts such as word length, sentence length,
percentage: of sentences using passive voice, and so forth.
These rudimentary kinds of performance feedback for the
external goal of producing a readable manuscript may
enhance the challenge of using the tool.

Uncertain outcome The most important difference
between toys and tools occurs with respect to the
uncertainty of outcome of reaching a goal. If a user is
either certain to achieve a goal or certain not to achieve it,
the activity will not be very challenging. For an activity to
be challenging, the outcome of achieving the goal must be
uncertain.

One way of making the outcome of a computer game
uncertain for a wide rauge of players, o~ for the same
player over time, is to have a variable difficulty level. For
example, in the Breakout game, after a player hits the ball
correctly five times in a row, the ball speeds up. As Nolan
Bushnell, the founder of Atari, Inc., has been quoted as
saying, "A good game should to easy to learn, but difficult
to master."

A good tool, on the other hand, should be both easy to
learn and easy to master. Since the outcome of the
external goal (writing a good letter, getting a program to
work) is already uncertain, the tool itself should be
reliable, efficient, and usually "invisible". In other words,
the tool users should be able to focus most of their
attention on the uncertain external goal, not on the use of
the tool itself. In a sense, a good game is intentionally
made difficult to play, but a tool should be made as easy
as possible to use. This distinction helps explain why some
users of complex systems may enjoy mastering tools that
are extremely difficult to use. To the extent that these
users are treating the systems as toys rather than tools, the
difficulty increases the challenge and therefore the
pleasure of using the systems.

In spite of the differences between toys and tools,
there is a way tools can use variable difficulty levels to
increase challenge and, at the same time, probably
improve learnability as well. I have heard many system
design arguments in which the fundamental conflict is
between, on the one hand, a desire to have the system be
simple and easy to learn for beginning users, and on the
other hand, the desire to have it be powerful and flexible
for experienced users. Many of these arguments could be
resolved by consciously building in a logical progression of
increasingly complex microworlds for users at different
levels of expertise [5].

For example, a multi-layered text editor could be
designed so that beginning users need only a few simple
commands and more advanced users can use more
complicated and more powerful features of the system.
Ideally, this system should be internally consistent at each
level so that the error messages for users of the first level
would never assume any knowledge of concepts used only
in more advanced levels. In fact, some commands that
might make sense if made by an advanced user should
probably be treated as errors if made by a beginning user.

The point here is that a multi-layered system could not
only help resolve the trade-off between simplicity and
power, it could also enhance the challenge of using the
system. Users could derive self-esteem and pleasure from
successively mastering more and more advanced layers of
the system, and this kind of pleasure might be more
frequent if the layers are made an explict part of the
system.

Another way of providing uncertain outcome in
computer games is to have multiple level goals all present
in the environment at the same time. For example, in the
Breakout game, long before there is any hope of a
beginning player breaking out all the bricks, the player can
still be challenged by lower level goals like breaking out
any brick in the third row or breaking out all the bricks in
the first row. Or in the Darts game, players who are
certain they can pop all the balloons can still be challenged
by trying to pop all the balloons in as few tries as possible.
In general, score-keeping and timed responses are two
common ways of enhancing multiple level goals in
computer games.

It may be possible to incorporate similar kinds of
multiple level goals into tools, as well. For example, I
think some users of a text editing system would be
challenged by having the system automatically maintain
scores like typing speed or number of corrections made. I f
the text-editing task is boring or routine for the user, this
challenge might increase the pleasure of using the system.
(It would almost certainly not increase the pleasure of
using the system, however, if such scores were used for
surveillance by organizational superiors, however.)

Ano&er way of providing multiple level goals in a
system is by having a lot of user programming capabilities.
If users can write procedures to do subcomponents of their
routine on-line tasks, then they can continue to be
challenged by trying to make their system more efficient
for the tasks they do. For example, if a text-editing system
allows users to define their own macros, people who
prepare many similar documents can be challenged by
constructing macros to make this process more efficient.

66

Fantasy

Fantasy is probably the most important feature of
computer games that can be usefully included in other
user interfaces. By a system with fantasy, I mean a system
that evokes mental images of physical objects or social
situations that are not actually present. For example, the
Breakout and Darts games evoke images of physical
objects like balls, bricks, darts, and balloons; and the
omnipresent computer Adventure game evokes images of
caves, dwarves, birds, and so forth. I think fantasies have
two important aspects for designing user interfaces:
emotions and metaphors

Emotions

Fantasies in computer games almost certainly derive
some of their appeal from the emotional needs they help
to satisfy in the people who play them. It is very difficult
to know what emotional needs different people have and
how these needs might be partially met by computer
games. As the Darts experiment described above suggests,
there are large differences among people in what fantasies
they find appealing. Designers of computer systems that
embody fantasies should either be very careful to pick
fantasies that appeal to their target audience or they
should provide several fantasies for the same system so
that different people can select different fantasies.

One use of fantasy in computer systems might be to
give different "personalities" to different parts of a system.
For example, the operating system might have one
personality, different application programs might have
other personalities, and file servers on a network-might
have still other characteristics. But the personalities of the
different parts of the system could be different for
different users. Some users might like to work in a world
of wizards, dragons, and trolls, others might prefer a world
of dogs, cats, and rabbits, or even a world populated by
characters from Star Trek or Charlie's Angels. Not only
could these fantasies increase the emotional appeal of the
systems, they could also be useful metaphors to help users
learn the difference between different parts of a system--
something that is not at all trivial for beginning users.

Carroll and Thomas [3] suggest another use of fantasy
in "refraining" routine information processing tasks to
make them more interesting. For example, they suggest
that certain kinds of factory control operations (e.g.,
monitoring a steam engine) could be presented to the user
as more captivating "virtual tasks" such as flying an
airplane full of passengers onto a dangerous landing field.
Measurements in the factory control space could be
translated into the airplane metaphor, and actions taken in
the airplane fantasy could be translated into actions in the
factory.

This kind of refraining would presumably be
appropriate only if the original task was bofingly routine.
Fantasies could make such routine tasks more enjoyable.
But unless the outcome of reaching the goal is made
uncertain (e.g., with an adjustable difficulty level or
multiple level goals), the fantasy tasks could become
boring as well.

Metaphors

In addition to being emotionally appealing, fantasies
that are analogous to things with which the users are
already familiar, can help make the systems easier to learn
and use (see [3] and [6] for extended discussions of this
point). For example, I think one of the reasons for the
popularity of the VisiCalc system [2] is the fact that the
program is very analogous to the kind of paper "spread
sheet" that was already widely used by many of the
business analysts who purchased VisiCalc systems.

The user interface for the Xerox Star workstation is
another example of a system that makes extensive use of
metaphors. Much of the manipulation of information
takes place by moving icons around on a "desktop" that is
simulated on the screen. The icons are pictorial
representations of familiar objects like in-baskets, file
folders, and filing cabinets. To the extent that this fantasy
is analogous to real desktops, it presumably makes the
system easier to learn and use.

Curiosity

The final category of features that make computer
games appealing includes features that evoke the users'
curiosity. Environments can evoke curiosity by providing
an optimal level of informational complexity ([1] and [11]).
In other words, the environments should be neither too
complicated nor too simple with respect to the user's
existing knowledge. They should be novel and surprising,
but not completely incomprehensible. In general, an
optimally complex environment will be one where the
learner knows enough to have expectations about what will
happen, but where these expectations are sometimes
unreel

One important way computer games evoke what might
be called sensory curiosity is by using audio and visual
effects. Audio and visual effects can be used (1) as
decoration, (2) to enhance fantasy, and, perhaps most
importantly, (3) as a representation system. Examples of
using audio and visual effects as representation systems
include (1) using different tones for errors and for
successful entries (2) using graphs instead of numbers, and
(3) using icons to represent different parts of a system
(such as in-baskets and out-baskets) and different
commands.

67

Randomness and humor, if used carefully, can also help
make art environment optimally complex. As a simple
example, one computer system at Stanfcrd ends each
terminal session with a randomly chosen saying, often
resembling a fortune from a Chinese fortune: cookie. Such
features seem likely to increase the enjoyment of using a
system, but great care must also be exercised--especially
when introducing humor--to avoid inappropriate (or
unhumorous) additions. For example, if randomness is
used in a way that makes tools unreliable it will almost
certainly be frustrating rather than enjoyable.

Curiosity can also be thought of as a drive to bring
"good form" to knowledge structures. In particular,
people try to make their knowledge structures complete,
consistent, and parsimonious, and one can evoke curiosity
by making people think their current knowledge is
incomplete, inconsistent, or unparsimonious. Computer
system designers can take advantage of this principle by,
for example, introducing new features of a system only
when users see a need to do something they don't know
how to do (i.e., see an incompleteness in their knowledge)
or where they can do something with fewer steps (e.g.,
more parsimoniously) than they have previously done it.

CONCLUSION

Table 2 lists the major features of computer games I
have discussed that can be incorporated into other user
interfaces. This table should be viewed as a checklist of
ideas to be considered in designing new interfaces.
Certainly not all the features will be useful in all interfaces.
But I think that many user interfaces could be improved
by systematically considering the inclusion of features such
as multiple layers of complexity, productive and involving
metaphors, and useful sound and graphics.

It is, of course, easy to use these features badly. It
would be very easy, for example, to build user interfaces
that include garish graphics, inappropriate fantasies, and
sick humor. But with creativity and strong aesthetic and
psychological sensitivity, I think the pervasive computer
systems of tomorrow can be made not only easier and
more productive to use, but also more interesting, more
enjoyable, and more satisfying.

ACKNOWLEDGMENTS

I would like to thank Tom Moran, Kurt VanLehn, Bert
Sutherland, and Austin Henderson for helpful comments
that are included in this paper.

REFERENCES

[1] Berlyne, D. E., (1965) Structure and direction in
thinking. New York: John Wiley & Sons.

[2] Bricklin, D., & Frankston, B. (1979). VisiCalc
Computer Software Program. Sunnyvale, Calif.:
Personal Software, Inc.

[3] Carroll, J. M., & Thomas, J. C. (1980). Metaphor and
the cognitive representation of computing systems.
Yorktown Heights, N.Y.: IBM Watson Research
Center technical report no. RC 8302.

[4] Dugdale, S. & Kibbey, D. (1975). Fractions curriculum
of the PLATO elementary school mathematics project.
Computer-based Education Research Laboratory
Technical report. University of Illinois, Urbana, Ill.

[5] Fischer, G., Burton, R R., & Brown, J. S. (1978).
Aspects of a theory of simplification, debugging, and
coaching. Proceedings of the Second Annual
Conference of the Canadian Society for Computational
Studies of Intelligence Also available as Bolt Beranek
and Newman, Inc. Technical report no. 3912 (ICAI
Report No. 10), Cambridge, Mass.

[6] Halasz, F., & Moran, T. P. (1982). Analogy considered
harmful. Proceedings of the conference on Human
Factors in Computer Systems, Gaithersburg,
Maryland, March 15-17, 1982.

[7] Macdonald, N. H., Frase, L. T., Gingrich, P. S.,
Keenan, S. A. (1982) The Writer's Workbench:
Computer Aids for Text Analysis. IEEE Transactions
on Communications, in press (January 1982).

[8] Malone, T. W. (1980). What makes things fun to learn?
A study of intrinsically motivating computer games.
Ph.D. dissertation, Department of Psychology,
Stanford University. Also available as technical
report no. CIS-7 (SSL-80-11), Xerox Palo Alto
Research Center, Palo Alto, Calif.

[9] Malone, T. W. (1981a). What makes computer games
fun? Byte, 6, 258-277.

[10] Malone, T. W. (1981b). Toward a theory of
intrinsically motivating instruction. Cognitive Science
5, in press.

[11] Piaget, J. (1951). Play, dreams, and imitation in
childhood New York: Norton.

68

