
Revision 1.0

81

Chapter 4

4. RSP Coprocessor 0

This chapter describes the RSP Coprocessor 0, or system control coprocessor.

The RSP Coprocessor 0 does not perform the same functions or have the same

registers as the R4000-series Coprocessor 0. In the RSP, Coprocessor 0 is used to

control the DMA (Direct Memory Access) engine, RSP status, RDP status, and RDP

I/O.

82

RSP Coprocessor 0

Register Descriptions

RSP Point of View

RSP Coprocessor 0 registers are programmed using the mtc0 and mtf0

instructions which move data between the SU general purpose registers and the

coprocessor 0 registers.

Table 4-1 RSP Coprocessor 0 Registers

Register

Number

Name Defined in

rsp.h

Access

Mode
Description

$c0 DMA_CACHE RW I/DMEM address for DMA.

$c1 DMA_DRAM RW DRAM address for DMA.

$c2 DMA_READ_LENGTH RW DMA READ length (DRAM → I/DMEM).

$c3 DMA_WRITE_LENGTH RW DMA WRITE length (DRAM ← I/DMEM).

$c4 SP_STATUS RW RSP Status.

$c5 DMA_FULL R DMA full.

$c6 DMA_BUSY R DMA busy.

$c7 SP_RESERVED RW CPU-RSP Semaphore.

$c8 CMD_START RW RDP command buffer START.

$c9 CMD_END RW RDP command buffer END.

$c10 CMD_CURRENT R RDP command buffer CURRENT.

$c11 CMD_STATUS RW RDP Status.

$c12 CMD_CLOCK RW RDP clock counter.

$c13 CMD_BUSY R RDP command buffer BUSY.

$c14 CMD_PIPE_BUSY R RDP pipe BUSY.

$c15 CMD_TMEM_BUSY R RDP TMEM BUSY.

Revision 1.0 Register Descriptions

83

$c0

This register holds the RSP IMEM or DMEM address for a DMA transfer.

On power-up, this register is 0x0.

$c1

This register holds the DRAM address for a DMA transfer. This is a physical

memory address.

On power-up, this register is 0x0.

$c2, $c3

These registers hold the DMA transfer length; $c2 is used for a READ, $c3 is used

for a WRITE.

1112 0

1 12

IMEM or DMEM addressa
a=0: DMEM
a=1: IMEM

23 0

24

DRAM address

11 0

12

length

19 12

8

count

31 20

12

skip

84

RSP Coprocessor 0

The three fields of this register are used to encode arbitrary transfers of rectangular

areas of DRAM to/from contiguous I/DMEM. length is the number of bytes per line

to transfer, count is the number of lines, and skip is the line stride, or skip value

between lines. This is illustrated in Figure 4-1:

Figure 4-1 DMA Transfer Length Encoding

Note: DMA length and line count are encoded as (value - 1), that is a line count of

0 means 1 line, a byte length of 7 means 8 bytes, etc.

A straightforward linear transfer will have a count of 0 and skip of 0, transferring

(length+1) bytes.

The amount of data transferred must be a multiple of 8 bytes (64 bits), hence the

lower three bits of length are ignored and assumed to be all 1’s.

DMA transfer begins when the length register is written.

For more information about DMA transfers, see section “DMA” on page 96.

On power-up, these registers are 0x0.

count

skip

length

length = 7
skip = 8
count = 10

DRAM

DMEM

Revision 1.0 Register Descriptions

85

$c4

This register holds the RSP status.

Table 4-2 RSP Status Register

bit field
Access

Mode
Description

0 h RW RSP is halted.

1 b R RSP has encountered a break instruction.

2 db R DMA is busy.

3 df R DMA is full.

4 if R IO is full.

5 ss RW RSP is in single-step mode.

6 ib RW Interrupt on break.

7 s0 RW signal 0 is set.

8 s1 RW signal 1 is set.

9 s2 RW signal 2 is set.

10 s3 RW signal 3 is set.

11 s4 RW signal 4 is set.

12 s5 RW signal 5 is set.

13 s6 RW signal 6 is set.

14 s7 RW signal 7 is set.

6

1

ib

7

1

s0

4

1

if

5

1

ss

2

1

db

3

1

df

0

1

h

1

1

b

14

1

s7

12

1

s5

13

1

s6

10

1

s3

11

1

s4

8

1

s1

9

1

s2

86

RSP Coprocessor 0

The ‘broke’, ‘single-step’, and ‘interrupt on break’ bits are used by the debugger.

The signal bits can be used for user-defined synchronization between the CPU and

the RSP.

On power-up, this register contains 0x0001.

When writing the RSP status register, the following bits are used.

Table 4-3 RSP Status Write Bits

bit Description

0

(0x00000001)

clear HALT.

1

(0x00000002)

set HALT.

2

(0x00000004)

clear BROKE.

3

(0x00000008)

clear RSP interrupt.

4

(0x00000010)

set RSP interrupt.

5

(0x00000020)

clear SINGLE STEP.

6

(0x00000040)

set SINGLE STEP.

7

(0x00000080)

clear INTERRUPT ON BREAK.

8

(0x00000100)

set INTERRUPT ON BREAK.

9

(0x00000200)

clear SIGNAL 0

Revision 1.0 Register Descriptions

87

10

(0x00000400)

set SIGNAL 0.

11

(0x00000800)

clear SIGNAL 1.

12

(0x00001000)

set SIGNAL 1.

13

(0x00002000)

clear SIGNAL 2.

14

(0x00004000)

set SIGNAL 2.

15

(0x00008000)

clear SIGNAL 3.

16

(0x00010000)

set SIGNAL 3.

17

(0x00020000)

clear SIGNAL 4.

18

(0x00040000)

set SIGNAL 4.

19

(0x00080000)

clear SIGNAL 5.

20

(0x00100000)

set SIGNAL 5.

21

(0x00200000)

clear SIGNAL 6.

22

(0x00400000)

set SIGNAL 6.

23

(0x00800000)

clear SIGNAL 7.

24

(0x01000000)

set SIGNAL 7.

bit Description

88

RSP Coprocessor 0

$c5

This register maps to bit 3 of the RSP status register, DMA_FULL. It is read only.

On power-up, this register is 0x0.

$c6

This register maps to bit 2 of the RSP status register, DMA_BUSY. It is read only.

On power-up, this register is 0x0.

$c7

This register is a hardware semaphore for synchronization with the CPU, typically

used to share the DMA activity. If this register is 0, the semaphore may be acquired.

This register is set on read, so the test and set is atomic. Writing 0 to this register

releases the semaphore.

GetSema:

mfc0 $1, $c7

bne $1, $0, GetSema

nop

do critical work

ReleaseSema:

mtc0 $0, $7

On power-up, this register is 0x0.

Revision 1.0 Register Descriptions

89

$c8

This register holds the RDP command buffer START address. Depending on the

state of the RDP STATUS register, this address is interpreted by the RDP as either

a 24 bit physical DRAM address, or a 12 bit DMEM address (see $c11).

On power-up, this register is undefined.

$c9

This register holds the RDP command buffer END address. Depending on the state

of the RDP STATUS register, this address is interpreted by the RDP as either a 24

bit physical DRAM address, or a 12 bit DMEM address (see $c11).

On power-up, this register is undefined.

$c10

This register holds the RDP command buffer CURRENT address. This register is

READ ONLY. Depending on the state of the RDP STATUS register, this address is

23 0

24

RDP Command Start

23 0

24

RDP Command End

90

RSP Coprocessor 0

interpreted by the RDP as either a 24 bit physical DRAM address, or a 12 bit DMEM

address (see $c11).

On power-up, this register is 0x0.

$c11

This register holds the RDP status.

Table 4-4 RDP Status Register

bit field
Access

Mode
Description

0 x RW Use XBUS DMEM DMA or DRAM DMA.

1 f RW RDP is frozen.

2 fl RW RDP is flushed.

3 g RW GCLK is alive.

4 tb R TMEM is busy.

5 pb R RDP PIPELINE is busy.

6 cb R RDP COMMAND unit is busy.

23 0

24

RDP Command Current

6

1

cb

7

1

cr

4

1

tb

5

1

pb

2

1

fl

3

1

g

0

1

x

1

1

f

10

1

sv

8

1

db

9

1

ev

Revision 1.0 Register Descriptions

91

When bit 0 (XBUS_DMEM_DMA) is set, the RDP command buffer will receive

data from DMEM (see $c8, $c9, $c10).

On power-up, the GCLK, PIPE_BUSY, and CMD_BUF_READY bits are set, the

DMA_BUSY bit is undefined, and all other bits are 0.

When writing the RDP status register, the following bits are used.

Table 4-5 RSP Status Write Bits (CPU VIEW)

7 cr R RDP COMMAND buffer is ready.

8 db R RDP DMA is busy.

9 ev R RDP COMMAND END register is valid.

10 sv R RDP COMMAND START register is

valid.

bit Description

0

(0x0001)

clear XBUS DMEM DMA.

1

(0x0002)

set XBUS DMEM DMA.

2

(0x0004)

clear FREEZE.

3

(0x0008)

set FREEZE.

4

(0x0010)

clear FLUSH.

5

(0x0020)

set FLUSH.

6

(0x0040)

clear TMEM COUNTER.

bit field
Access

Mode
Description

92

RSP Coprocessor 0

$c12

This register holds a clock counter, incremented on each cycle of the RDP clock.

This register is READ ONLY.

On power-up, this register is undefined.

$c13

This register holds a RDP command buffer busy counter, incremented on each cycle

of the RDP clock while the RDP command buffer is busy. This register is READ

ONLY.

On power-up, this register is undefined.

7

(0x0080)

clear PIPE COUNTER.

8

(0x0100)

clear COMMAND COUNTER.

9

(0x0200)

clear CLOCK COUNTER

bit Description

23 0

24

RDP Clock Counter

23 0

24

RDP Command Busy Counter

Revision 1.0 Register Descriptions

93

$c14

This register holds a RDP pipe busy counter, incremented on each cycle of the RDP

clock that the RDP pipeline is busy. This register is READ ONLY.

On power-up, this register is undefined.

$c15

This register holds a RDP TMEM load counter, incremented on each cycle of the

RDP clock while the TMEM is loading. This register is READ ONLY.

On power-up, this register is undefined.

CPU Point of View

The RSP Coprocessor 0 registers (and certain other RSP registers) are

memory-mapped into the host CPU address space.

23 0

24

RDP Pipe Busy Counter

23 0

24

RDP TMEM Load Counter

94

RSP Coprocessor 0

Bit patterns for READ and WRITE access are the same as described in the previous

section.

Table 4-6 RSP Coprocessor 0 Registers (CPU VIEW)

Register

Number
Address

Access

Mode
Description

$c0 0x04040000 RW I/DMEM address for DMA.

$c1 0x04040004 RW DRAM address for DMA.

$c2 0x04040008 RW DMA READ length (DRAM → I/DMEM).

$c3 0x0404000c RW DMA WRITE length (DRAM ← I/DMEM).

$c4 0x04040010 RW RSP Status.

$c5 0x04040014 R DMA full.

$c6 0x04040018 R DMA busy.

$c7 0x0404001c RW CPU-RSP Semaphore.

$c8 0x04100000 RW RDP command buffer START.

$c9 0x04100004 RW RDP command buffer END.

$c10 0x04100008 R RDP command buffer CURRENT.

$c11 0x0410000c RW RDP Status.

$c12 0x04100010 R RDP clock counter.

$c13 0x04100014 R RDP command buffer BUSY.

$c14 0x04100018 R RDP pipe BUSY.

$c15 0x0410001c R RDP TMEM BUSY.

Revision 1.0 Register Descriptions

95

Other RSP Addresses

These are also memory-mapped for the CPU.

Table 4-7 Other RSP Addresses (CPU VIEW)

Address
Access

Mode
Description

0x04000000 RW RSP DMEM (4096 bytes).

0x04001000 RW RSP IMEM (4096 bytes).

0x04080000 RW RSP Program Counter (PC), 12 bits.

96

RSP Coprocessor 0

DMA

All data operated on by the RSP must first be DMA’d into DMEM. RSP programs

can also use DMA to load microcode into IMEM.

Note: loading microcode on top of the currently executing code at the PC will result

in undefined behavior.

Alignment Restrictions

All data sources and destinations for DMA transfers must be aligned to 8 bytes (64

bits), in both DRAM and I/DMEM.

Transfer lengths must be multiples of 8 bytes (64 bits).

Timing

Peak transfer rate is 8 bytes (64 bits) per cycle. There is a DMA setup overhead of

6-12 clocks, so longer transfers are more efficient.

IMEM and DMEM are single-ported memories, so accesses during DMA transfers

will impact performance.

DMA Full

The DMA registers are double-buffered, having one pending request and one current

active request. The DMA FULL condition means that there is an active request and

a pending request, so no more requests can be serviced.

DMA Wait

Waiting for DMA completion is under complete programmer control. When

DMA_BUSY is cleared, the transaction is complete.

If there is a pending DMA transaction, this transaction will be serviced before

DMA_BUSY is cleared.

Revision 1.0 DMA

97

DMA Addressing Bits

Since all DMA accesses must be 64-bit aligned, the lower three bits of source and

destination addresses are ignored and assumed to be all 0’s.

Transfer lengths are encoded as (length - 1), so the lower three bits of the length are

ignored and assumed to be all 1’s.

The DMA LENGTH registers can be programmed with a line count and line stride,

to transfer arbitrary rectangular pieces of memory (such as a portion of an image).

See Figure 4-1, “DMA Transfer Length Encoding,” on page 84, for more

information.

CPU Semaphore

The CPU-RSP semaphore should be used to share DMA resources. Since the CPU

could possibly DMA data to/from the RSP while the RSP is running, this semaphore

is necessary to share the DMA engine.

Note: The current graphics and audio microcode assume the CPU will not be

DMA’ing data to/from the RSP while the RSP is running. This eliminates the

need to check the semaphore (on the RSP side), saving a few instructions.

DMA Examples

The following examples illustrate programming RSP DMA transactions:

98

RSP Coprocessor 0

Figure 4-2 DMA Read/Write Example

 ###

 # Procedure to do DMA reads/writes.

 # Registers:

 # $20 mem_addr

 # $19 dram_addr

 # $18 dma_len

 # $17 iswrite?

 # $11 used as tmp

.name mem_addr, $20

.name dram_addr, $19

.name dma_len, $18

.name iswrite, $17

.name tmp, $11

DMAproc: # request DMA access: (get semaphore)

 mfc0 tmp, SP_RESERVED

 bne tmp, zero, DMAproc

 # note delay slot

 DMAFull: # wait for not FULL:

 mfc0 tmp, DMA_FULL

 bne tmp, zero, DMAFull

 nop

 # set DMA registers:

 mtc0 mem_addr, DMA_CACHE

 # handle writes:

 bgtz iswrite, DMAWrite

 mtc0 dram_addr, DMA_DRAM

 j DMADone

 mtc0 dma_len, DMA_READ_LENGTH

 DMAWrite:

 mtc0 dma_len, DMA_WRITE_LENGTH

 DMADone:

 jr return

clear semaphore, delay slot

 mtc0 zero, SP_RESERVED

.unname mem_addr

.unname dram_addr

.unname dma_len

.unname iswrite

.unname tmp

 #

 ##

Revision 1.0 DMA

99

Figure 4-3 DMA Wait Example

 ##

 # Procedure to do DMA waits.

 #

 # Registers:

 #

 # $11 used as tmp

 #

.name tmp, $11

DMAwait:

 # request DMA access: (get semaphore)

 mfc0 tmp, SP_RESERVED

 bne tmp, zero, DMAwait

 # note delay slot

 WaitSpin:

 mfc0 tmp, DMA_BUSY

 bne tmp, zero, WaitSpin

 nop

 jr return

clear semaphore, delay slot

 mtc0 zero, SP_RESERVED

.unname tmp

 #

 #

 ###

100

RSP Coprocessor 0

Controlling the RDP

The RDP has an independent DMA engine which reads commands from DMEM or

DRAM into the command buffer. The RDP command buffer registers are

programmed to direct the RDP from where to read the command data.

How to Control the RDP Command FIFO

RDP commands are transferred from memory to the command buffer by the RDP’s

DMA engine.

The RDP command buffer logic examines the CMD_CURRENT and CMD_END

registers and will transfer data, 8 bytes (64 bits) at a time, advancing

CMD_CURRENT, until CMD_CURRENT = CMD_END.

CMD_START and CMD_END registers are double buffered, so they can be

updated asynchronously by the RSP or CPU while the RDP is transferring data.

Writing to these registers will set the START_VALID and/or END_VALID bits in

the RDP status register, signaling the RDP to use the new pointers once the current

transfer is complete.

When a new CMD_START pointer is used, CMD_CURRENT is reset to

CMD_START.

Algorithm to program the RDP Command FIFO:

• start with CMD_START and CMD_END set to the same initial value.

• write RDP commands to memory, beginning at CMD_START.

• when an integral number of RDP commands have been stored to memory,

advance CMD_END (CMD_END should point to the next byte after the

RDP command).

• keep advancing CMD_END as subsequent RDP commands are stored to

memory.

Revision 1.0 Controlling the RDP

101

Examples

The XBUS is a direct memory path between the RSP (and DMEM) and the RDP.

This example uses a portion of DMEM as a circular FIFO to send data to the RDP.

This example uses an “open” and “close” interface; the “open” reserves space in the

circular buffer, then the data is written, the “close” advances the RDP command

buffer registers.

The first code fragment illustrates the initial conditions for the RDP command buffer

registers.

Figure 4-4 RDP Initialization Using the XBUS

The OutputOpen function contains the most complicated part of the algorithm,

handling the “wrapping” condition of the circular FIFO. The wrapping condition

waits for CMD_CURRENT to advance before re-programming new

CMD_START and CMD_END registers.

 # XBUS initialization

 addi $4, zero, DPC_SET_XBUS_DMEM_DMA

 addi outp, zero, 0x1000 # DP init conditions

 mtc0 $4, CMD_STATUS

 mtc0 outp, CMD_START

 mtc0 outp, CMD_END

102

RSP Coprocessor 0

Figure 4-5 OutputOpen Function Using the XBUS

.name dmemp, $20

.name dramp, $19

.name outsz, $18 # caller sets to max size of write

 # open(size) - wait for size avail in

 # ring buffer.

 # - possibly handle wrap

 # - wait for ‘current’ to get

 # out of the way

 .ent OutputOpen

OutputOpen: # check if the packet will fit in the buffer

 addi dramp, zero, (RSP_OUTPUT_OFFSET

+ RSP_OUTPUT_SIZE8)

 add dmemp, outp, outsz

 sub dramp, dramp, dmemp

 bgez dramp, CurrentFit

 nop

WrapBuffer: # packet won’t fit, wait for current to wrap

 mfc0 dramp, CMD_STATUS

 andi dramp, dramp, 0x0400

 bne dramp, zero, WrapBuffer

AdvanceCurrent: # wait for current to advance

 mfc0 dramp, CMD_CURRENT

 addi outp, zero, RSP_OUTPUT_OFFSET

 beq dramp, outp, AdvanceCurrent

 nop

 mtc0 outp, CMD_START # reset START

CurrentFit: # done if current_address <= outp

 mfc0 dramp, CMD_CURRENT

 sub dmemp, outp, dramp

 bgez dmemp, OpenDone

 # loop if current_address <= (outp + outsz)

 add dmemp, outp, outsz

 sub dramp, dmemp, dramp

 bgez dramp, CurrentFit

 nop

OpenDone:

 jr return

 nop

 .end OutputOpen

Revision 1.0 Controlling the RDP

103

After calling OutputOpen, the program writes the RDP commands to DMEM,

advancing outp. Once the complete RDP command is written to DMEM,

OutputClose is called.

Figure 4-6 OutputClose Function Using the XBUS

##

OutputClose

##

 .ent OutputClose

OutputClose:

 #

 # XBUS RDP output

 #

 jr return

 mtc0 outp, CMD_END

 .end OutputClose

.unname outsz

.unname dramp

.unname dmemp

104

RSP Coprocessor 0

