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This report presents a theoretical study of the transnission of infor-

mation in the case of discrete messages and noisel ess systems. The study
begins with the definition of a unit of information (a selection between

two choi ces equally likely to be selected), and this is then used to deter-
nine the amount of information conveyed by the selection of one of an
arbitrary nunber of choices equally likely to be selected. Next, the average
information per selection is computed in the case of messages con-

amount of
i ndependent sel ections froman arbitrary nunber of

sisting of sequences of
choices with arbitrary probabilities of their being selected. A recoding

procedure is also presented for inproving the efficiency of transmission by
reducing, on the average, the number of selections (digits or pulses) re-
quired to transmt a message of given length and given statistical character
The results obtained in the case of sequences of independent selections are
extended later to the general case of non-independent selections. Finally,
the optimum condition is deternined for the transmission of information by
means of quantized pul ses when the average power is fixed.



THE TRANSM SSI ON OF | NFRVATI ON
It roduct i on

It i's the opinion of many vorkers in the field of electrical commni-
cations that the communication art is today at a major turning point of its
devel opent. The obj ective of almost all electrical commnication systens
has been, up to now, to eliminate distance in some formof human activity or
relationships between men. Tel egraph, tel ephone and tel evision are typical
exanpl es of such communication systems. W may add to these tel etype, tele-
control and telemetering. It is interesting to note that the names of all
these communi cation systens involve the prefix tele, meaning “at a distance".

Although, for obvious reasons, forms of communication over distances
mich greater than the ranges of human senses and reach vere first to receive
attention, the magnitude of the distance involved is not of primary impor-
tance froma logical point of viewin the concept of communication. Com
munication is basically any formof transmission of information, regardiess
of the distance between the transmitter and the receiver. In a broader
sense, the field of communication includes any handling, conbining, comparing
or enploying of information, since such processes involve and are intimately
connected with the transm ssion of such information.

It is clear, then, that nost human activities involve communication in
a broad sense, and, in particular, those activities which are considered of
higher intellectual type because they depend to a high degree on the process
of "thinking*. Thinking itself, in fact, involves a natural commnication
systemof a conplexity far beyond that conceivable for any man-made system

The above consi derations point clearly to a very wide field of useful
appli cations of the commnication art which has hardly been touched as yet.
It is to be expected that each application should present problens of a
hi gher order of conplexity than those encountered in the past. Consequently,
it is alsoto be expected that the solution of these problens should neces-
sitate the use of more powerful analytical tools and, particularly, should
require a more fundanental study of the process of transmission of informa-
tion. As a matter of fact, the first and most significant step in the
direction of such a study was made by Norbert Wener (1) in connection with
the devel opment of predictors for antiaircraft fire control. The statistical
nature of this problemled himto the realization that all communication
problems are fundamentally of a statistical nature, and must be handl ed
accordingly. He argued that the signal to be transmitted in a communication
system can never be considered as a known function of time, because if it
were a priori known it could not convey any new information and therefore
woul d not need to be transnitted. On the other hand, what can be known



a priori about a signal to be transmitted is its statistical character -
that is, for instance, the probability distribution of its anplitude. In
addition, it is equally clear, that noise, which plays such an inportant
part in communication problens, can be described only in statistical terns.
It follows that all commnication problems are inherently statistical in
nature, and that disregarding this fact may |ead to unexpl ainabl e i nconsist-
encies in addition to precluding a deeper understanding of such probl ens.

The statistical theory of optimum prediction and filtering devel oped
by Wener led further to the realization of the need for a basic and general
criterion for judging the quality of communication systems. In fact, the
nmean-square error criterion used by Wener in this part of his work is dic-
tated by mathematical convenience rather than by physical considerations;
consequently it may not be useful in certain practical problems. The search
for a more appropriate criterion |eads naturally to the question of what is
the operation that a commnication systemnust perform If ve take as an
exanpl e a telegraph system it might seemat first obvious that such a system
must reproduce at the output each and every letter of the input message in
the proper order. W may observe, however, that if one letter is received

incorrectly, the word containing it is still perfectly understandable in
most cases, and so, of course, is the whol e message. Mbreover, the message
woul d still be conprehensible if, for instance, all the vovels vere elimi-

nated (which is what is done in witten Hebrew). On the other hand, the
incorrect transmission of a digit in a nuber would nmake the received mes-
sage incorrect

It appears therefore that the transnission of the information conveyed
by a witten message is what we wish to obtain and that this is not neces-
sarily equivalent to the transnission of all the letters contained in the
witten message. Mbre precisely, it appears that the different synbols,
letters or figures contained in a witten message do not contribute equally
to the transnission of information - so much so, that some of them may be
conpl etely unnecessary. Similar conclusions are reached by considering
other types of communication systems. In particular, the recent work on
the Vocoder (2) and the clipping of speech waves (3) has provided consider-
able evidence in the same general direction

The above considerations are relevant to another problemwith which
communi cati on engi neers are becoming more and more concerned, namely, that
of bandwidth reduction. As a matter of fact, the Vocoder vas devel oped
primarily for the purpose of reducing the bandwidth required for speech
transnission. It is clear that if different parts of a message are not
equal Iy inportant, some saving in bandwidth might be possible by providing
transmission facilities which are proportional to the inportance of these



different parts. The bandwidth problem in turn, is intimtely connected
with the noise-reduction problem In fact, all the different types of
modul ation devel oped for the purpose of noise and interference reduction
require a bandvidth wider than that required by anplitude nodulation. This
method of paying for an improved signal-to-noise ratio with an increased
bandwi dth appears to be the result of some fundamental |imitation which,
however, the conventional approach to commnication problems has failed to

The above di scussion of some of the problems confronting or likely to
confront the communication engineer indicates clearly the necessity of pro-
viding a measure for the “thing” which is to be transnitted and which has
been vaguely called "information". Such a measure will then pernit a quan-
titative and more fundanental study of the process involved in the trans-
mission of information which, in turn, will lead eventually to the design
of better and nore efficient communication devices. A considerable amount
of vork in this direction has already been done independently by Norbert
Wener (4) and O aude Shannon (5). The work of Wener is particularly out-
standing because of its philosophical profoundness and its inportance in
many branches of science other than communication engineering. Mention
shoul d be made al so of the pioneering vork of Hartley (6) and of the more
recent wark of Tuller (7)

Thi's paper presents the work done by the author in the past year on
the transmission of discrete signals through a noiseless channel. Although
most of the results obtained have already been published by Wener and
Shannon, it i's felt that the method of approach used here is sufficiently
different to justify this redundant presentation

I. Definition of the Unit of Information

In order to define, in an appropriate and useful manner, a unit of
information, we must first consider in some detail the nature of those
processes in our experience which are generally recognized as conveying
information. A very sinple exanple of such processes is a yes-or-no answer
to some specific question. A slightly more involved process is the indica-
tion of one object in a group of N objects, and, in general, the selection
of one choice froma group of N specific choices. The word “specific” is
underlined because such a qualification appears to be essential to these
i nf or mati on- conveyi ng processes. It means that the receiver is conscious
of all possible choices, as is, of course, the transmitter (that is, the
i ndivi dual or the machine which is supplying the information). For instance,
saying "yes" or “no" to a person who has not asked a question obviously does
not convey any information. Similarly, the reception of a code nunber which



i's supposed to represent a particular message does not convey any informa-
tion unless there is available a code book containing all the messages with
the correspondi ng code nunbers.

Considering next more conpl ex processes, such as writing or speaking,
we observe that these processes consist of orderly sequences of selections
froma number of specific choices, namely, the letters of the al phabet or
the corresponding sounds. Furthermore, there are indications that the sig-
nal's transmitted by the nervous systemare of a discrete rather than of a
continuous nature, and might also be considered as sequences of sel ections.
If this were the case, all information received through the senses could be
anal yzed in terms of selections. The above discussion indicates that the
operation of selection forms the basis of a nunber of processes recognised
as conveying information, and that it is likely to be of fundanental impor-
tance in all such processes. Vé may expect, therefore, that a unit of
information, defined in terms of a selection, will provide a useful basis
for a quantitative study of communication systens.

Considering more closely this operation of selection, we observe that
different informational value is naturally attached to the selection of the
same choi ce, depending on how likely the receiver considered the selection
of that particular choice to be. For exanple, we would say that little
information is given by the selection of a choice which the receiver was
alnost sure woul d be selected. It seemappropriate, therefore, in order to
avoid difficulty at this early stage, to use in our definition the particular
case of equally Iikely choices - that is, the case in which the receiver has
no reason to expect that one choice will be selected rather than any ot her.
In addition, our natural concept of information indicates that the informa-
tion conveyed by a selection increases with the number of choices from which
the selection is made, although the exact functional relation between these
two quantities i's not immediately clear.

On the basis of the above considerations, it seems reasonable to define
as the unit of information the sinplest possible selection, namely, the
sel ection between tvo equal ly likely choices, called, hereafter, the “ele-
mentary selection”. For conpleteness, ve nust add to this definition the
postul ate, consistent with our intuition, that N independent selections of
this type constitute N units of information. By independent selections we
nmean, of course, selections which do not affect one another. Vé shall adopt
for this unit the convenient name of "bit" (from"binary digit"), suggested
by Shannon. Ve shall also refer to a selection between two choices (not
necessarily equally likely) as a "binary selection”, and to a selection from
N choi ces, as an N-order selection. Vhen the choices are, a priori, equally
likely, we shall refer to the selection as an "equal Iy likely selection’




Ve can now proceed to devel op vays of measuring the information content of
discrete messages in terms of the unit just defined. Mbst of this paper
will be devoted to the solution of this problem

I1. Selection fromN Equally Likely Choices

Consi der now the sel ection of one anong a nunber, N, of equally likely
choices. In order to deternine the anount of information corresponding to
such a sel ection, we must reduce this more conplex operation to a series of
independent el enentary sel ections. The required number of these el ementary
selections will be, by definition, the neasure in bits of the information
given by such an N-order sel ection.

Let us assume for the moment that Nis a power of two. In addition
(just to make the operation of selection more physical), let us think of
the N choices as N objects arranged in a row, as indicated in Figure 1.

Fig. 1 Selection procedure for
equal ly likely choi ces.

These N objects are first divided in two equal groups, so that the object
to be selected is just as likely to be in one group as in the other. Then
the indication of the group containing the desired object is equivalent to
one el enentary sel ection, and, therefore, to one bit. The next step con-
sists of dividing each group into two equal subgroups, so that the object
to be selected is again just as |ikely to be in either subgroup. Then one
additional el ementary selection, that is a total of two el ementary sel ec-
tions, will suffice to indicate the desired subgroup (of the possible four
subgroups). This process of successive subdivisions and corresponding el e-
nmentary selections is carried out until the desired object is isolated from



the others. Two subdivisions are required for N =4, three for N = 8, and,
in general, a nunber of subdivisions equal to log2 N in the case of an
N order el ection

The same process can be carried out in a purely mathematical form by
assigning order nunbers from0 to N-1 to the N choices. The nunbers are
then expressed in the binary system as shown in Figure 1, the number of
binary digits (0 or 1) required being equal to log2 N. These digits represent
an equal nunber of elementary selections and, noreover, correspond in order
to the successive divisions mentioned above. In conclusion, an N-order,
equal |y likely selection conveys an amount of information

HN = log2 N. (1)

The above result is strictly correct only if Nis a power of two, in
which case HN is an integer. If Nis not a power of two, then the nunber of
el ementary sel ections required to specify the desired choice will be equal
to the logarithmof either the next |ower or the next higher power of two,
dependi ng on the particul ar choice selected. Consider, for instance, the
case of 1 - 3. The three choices, expressed as binary numbers, are then

00, 01,10 .

If the binary digits are read in order fromieft toright, it is clear
that the first two nunbers require two binary selections - that is, two
digits, while the third nunber requires only the first digit, 1, in order to
be distinguished fromthe other two. In other words, the number of el enen-
tary selections required when N is not a power of two is equal to either one
of the two integers closest to log2 Nl. It follows that the corresponding
amount of information nust |ie between these two linits, although the sig-
nificance of a non-integral value of His not clear at this point. It will
be shown in the next section that Eq.(1) is still correct when Nis not a

pover of two, provided HN is considered as an average value over a |arge
number of sl ecti ons.

11, Messages and Average Amount of Information

Ve have determined in the preceding section the amount of information
conveyed by a single sel ection from N equally likely choices. In general,
however, ve have to deal with not one but long series of such sel ections,
which we call messages. This is the case, for instance, in the transnission
of written intelligence. Another exanple is provided by the communication
system known as pul se-code modul ation, in which audio waves are sanpled at
equal time intervals and then each sanple is quantized, that is approximated
by the closest of a nunber N of anplitude Ievels



Let us consider, then, a message consisting of a sequence of n succes-
sive N-order selections. W shall assume, at first, that these sel ections
are independent and equally likely. In this sinpler case, all the different
sequences whi ch can be formed equal in nunber to

="N'n, (2)

are equally likely to occur. For instance, in the case of N =2 (the two
choi ces being represented by the nunbers 0 and 1) and n = 3, the possible
sequences woul d be 000, 001, 010, 100, 011, 101, 110, 111. The total number
of these sequences is S =8 and the probability of each sequence is 1/8

In general, therefore, the ensenble of the possible sequences may be con-
sidered as forning a set of S equally |ikely choices, with the result that
the selection of any particular sequence yields an amount of information

HS = 1092 S=nlog2 N. (3)

In words, n independent equally Iikely selections give n times as mich
information as a single selection of the same type. This result is certainly
not surprising, since it is just a generalization of the postulate, stated
in Section I, which forms an integral part of the definition of information.
It is often more convenient, in dealing with |ong nessages, to use a
quantity representing the average amount of information per N-order selection,
rather than the total information corresponding to the whol e message. Ve
define this quantity in the most general case as the total information con-
veyed by a very |ong message divided by the number of selections in the
nmessage, and ve shal | indicate it with the symbol HN where N is the order
of each selection. It is clear that when all the selections in the message
are equal ly Iikely and independent and, in addition, Nis a power of two,

the quantity HN is just equal to the information actually given by each
selection, that is

HN = 1/n log2 S =10g2 N. (4)
e shal |l show now that this equation is correct also when Nis not a power
of two, in which case HN has to be actual |y an average val ue taken over a
sufficiently long sequence of sel ections.*

The nunber S of different and equally likely sequences which can be
formed with n independent and equally likely selections is still given by
Eq.(2), even when Nis not a power of two. On the contrary, the nunber of
el ementary sel ections required to specify any one particular sequence must

* The author is indebted to M. T. P. Cheatham Jr. (of this Laboratory) for the
original idea on which is based both this proof and the corresponding recoding
procedure (see Section 1V)



be weitten nowin the form
log2 S+ d, (5)

where d is a nunber, smaller in magnitude than unity, which makes BS an
integer and which depends on the particular sequence sel ected. The average
amount of information per N-order selection is then, by definition,

HN=lim1/n(log2 S + d) . (6)

Since Nis a constant and since the magnitude of d is smaller than unity
while n approaches infinity, this equation together with Eg.(2) yields
log2 N. (7)

Ve shal | consider now the nore conplex case in which the selections,
although still independent, are not equally likely. In this case, too, we
wish to compute the average anount of information per selection. For this
purpose, we consider again the ensenble of all the nessages consisting of
n independent sel ections and we | ook for a way of indicating any one partic-
ular message by nmeans of el enentary selections. If we were to proceed as
before, and divide the ensenbl e of messages in two equal groups, the sel ec-
tion of the group containing the desired message woul d no | onger be a
sel ection between equal |y likely choices, since the sequences thensel ves
are not equally likely. The proper procedure is now, of course, to make
equal for each group not the nunber of messages in it but the probability
of its containing the desired message. Then the selection of the desired
group will be a selection between equal ly likely choices. This procedure
of division and selection is repeated over and over again until the desired
message has been separated fromthe others. The successive sel ections of
groups and subgroups will then forma sequence of independent el ementary

One may observe, however, that it will not generally be possible to
formgroups equally likely to contain the desired nessage, because shifting
any one of the messages fromone group to the other will change, by finite
anounts, the probabilities corresponding to the two groups. On the ot her
hand, if the length of the messages is increased indefinitely, the accuracy
wi th which the probabilities of the two groups can be made equal becomes
better and better since the probability of each individual message approaches
zero. Even so, when the resulting subgroups include only a few messages
after a large nunber of divisions, it may become inpossible to keep the
probabilities of such subgroups as closely equal as desired unless we pro-
ceed fromthe beginning in an appropriate manner as indicated bel ow. The



nessages are first arranged in order of their probabilities, which can be
easily computed if the probabilities of the choices are known. e divisions
in groups and subgroups are then made successively without changing the order
of the messages, as illustrated in Figure 2. In this manner, the smaller
subgroups wi |l contain messages with equal or almost equal probabilities, so
that further subdivisions can be performed satisfactorily.

It is clear that when the above procedure is folloved, the number of
binary selections required to separate any message fromthe others varies

Probabilities of Goups Cbtained
by Successive bi visi ons

Fig. 2 Recoding of messages consisting of 2 third-order
solections. for choi o probabiities p(O) = 0.7, B(Y = 0.2

- [0.710g2 0.7 + 0.2 10g2 0.2 + 0.1 l0g2 0.1] = 1157

For original code

eta (af. 7 009



from message to message. Messages with a high probability of being selected
require less binary selections than those with |ower probabilities. This
fact is in agreement with the intuitive notion that the selection of a
little-probabl e message conveys more information than the selection of a

nor e- probabl e one. Certainly, the occurrence of an event which we know
apriori to have a 99 per cent probability is hardly surprising or, in our
terminol ogy, yields very little information, while the occurrence of an
event which has a probability of only 1 per cent yields considerably more
information. Mre precisely, as shown below if P(i) is the probability

of the ith message, the nunber of binary selections required to indicate
this message will be an integer B3(i).) close to -log2 P(i). In fact, P(i)
is just the probability of the last subgroup obtained by successively
halving (approximatel y) the probabi ity of the whol e ensemble of messages
(wnich’i s tni ty) ' a mes equal to B3(1), So that P(i) approx 2A Bsm
By naking the messages sulhu enny long - that is, the nunber n of N-o
selections sufficiently large - the integer BS(i) can be made to differ in
percentage from-log2 P(i) by less than any desired anount. Hence, in this
Timiting case, we can write

BS(i) = -log2 P(i) . (8)
Let us consider now a sequence of M selections of messages, each message
consisting of n N-order selections (forming a sequence of nM selections)
By making the nunber Msufficiently large, we can be practically sure that
the ith message will appear in the sequence with a frequency as close to
P(i) as desired. Therefore the number of binary selections required on the
average to select one message, that is, "the mathematical expectation of

BS' will be

E(BS) sum P(i) BS(i) . (9)

The average amount of information per N-order selection is then, from
Egs. (8) and (9)

that is, the limit of the ratio of the nunber of binary selection required,
on the average, to select one message to the nunber of N-order selections
in the mssage.

Now et p(k) be the probability of the KIN  cugice (of the Ny, and nk



be the number of times the kth choice is selected in the ith message
(sequence of n selections). The probability of the ith nessage is

The number of binary selections required to indicate this message can be

with any degree of accuracy desired. In the limit when n approaches infinity
these binary selections become el ementary sel ections, that is, binary selec-

tions betveen equal Iy |ikely choices. W must now compute E(BS) according
to Eq.(9). The nunber of sequences of selections, that is, messages, to

whi ch correspond the same values of P(i) and BS(i), is equal to the nunber
of different pernutations of the choices selected in the ith sequence; that

It follows that the average value of BS(i) is given by

vhere the nk and p(k) are always positive and subject to the conditions



The overal | summation in Eq.(13) is made over all possible conbinations of
integral positive values of the nk which satisfy Eg.(14).
In order to conpute the values of E(BS) we begin by expressing the
factorials in Eq.(13) by means of Stirling's fornula (8)(9).
n! = sqrt(2pi n) n*n e*n , (16)

valid for large values of n. W obtain then

The variables xk = nk/n are alvays positive, smaller than unity and subj ect
1o the constraint

It i's convenient, at this point, to consider the function f(x) as a
continuous, rather than a discontinuous, function of the xk and to transform
the summation of Eq.(13) into an integral. V& observe, in this regard, that
when nk varies fromzero to n, xk varies fromzero to one. It follows that
to aunit increment of nk (nk takes only integral values) corresponds an
increment of xk equal to 1/n. Therefore, when n approaches infinity, to the
unit increments of the nk correspond the differentials dxk = 1/n. In con-
clusion, the summation of Eq.(13) can be transformed (10) into an integral
and Eq.(10) then becones

The integration is extended over the region of the hyperplane defined by



Eq.(19), in which all the xk are positive and smaller than one. It will be
noted that in Eq.(20) X0 is considered as a function of all the other xk.

soas tolinit the integration to the above-mentioned hyperpl ane

To conpute the integral appearing in Eq.(20), we observe first that the
integral of f(x) alone over the same region represents the summtion of the
probabilities of all possible messages consisting of n selections, provided,
of course, that nis sufficiently large. Therefore, the integral of f(x)
nust be equal to unity for all large values of n. On the other hand, as
shown in Appendix I, f(x) has a peak at a point which approaches xk = p(k)
when n approaches infinity. The height of this peak is proportional to
(N-1)/n"2. It follovs that when n approaches infinity, f(x) becomes a delta-
function, or unit impulse, located at xk = p(k). The integral of Eq.(20)
i's, therefore, equal to the value for xk = p(k) of the rest of the integrand,
that is, of the sunmation. Eq.(20) yields finally

HN=: sum p(k) log2 p(k) , (22)

which is then the average amount of information per N-order selection.
The concl usi ons which can be reached from the evaluation of the integral
in Eq.(20) extend far beyond Eq.(22). It is easy to see that if the function

sum xk 10g2 p(k)

were any other finite function of the xk, the limiting value of the integral
woul d still be equal to the value of the function for xk = p(k). In other
vords, the expectation (or average value) of any function of the xk is equal
to the value of the function itself for xk = p(k). Froma physical point of
view ve can say that the ensenble of possible sequences of selections can
be divided in two groups. The first group consists of sequences for which
the frequencies xk of occurrence of the different choices differ fromthe
probabilities p(k) of the choices by less than anounts which approach zero
as 1/sqrt n when n approaches infinity. The total probability of the sequences
in this group approaches unity when n increases indefinitely, and therefore
the number of sequences in this group approaches



- - np(k) nHN
product [p(k)] 2. (23)

The second group consists of all other sequences, and its total probability
approaches zero when n approaches infinity.

The sequences of the first group are all equally probable and, there-
fore, the selection of one of themout of the group requires a nunber of
binary sel ections equal to

| 0g2M = nHN . (24)

In other vords, the sequences of the first group can be represented by means
of sequences of n HN binary digits, that is HN digits per N-order selection,
Al the other sequences together, regardiess of the way in which they are
represented, cannot increase by any finite amount, beyond HN, the number of
binary digits required on the average per N-order selection.

The expression for HN obtained above indicates that HN can be consi dered
as the expectation of log2 [1/p(k)]. In other words, we may say that the
selection of a particular choice k conveys an amount of information equal to
the I ogarithmbase-two of the reciprocal of its probability. This inter-
pretation is fundamental. It will be shown later to apply also to the
general case of non-independent selections, in which case p(k) will be
substituted by the conditional probability that the kth choice will be selec-
ted, based on the knowl edge of all preceding sel ections.

i's easy to see fromEq.(22) that HN vanishes only when all but one
of the p(k) are equal to zero, in which case the one different from zero
nust be equal to unity. In other words, HN vanishes only when the choice
which will be selected is known a priori with unity probability. In this
instance, it is intuitively clear that no information is being transmtted.
On the other hand, HNis a maximm (as shown in Appendix 1), when all the
p(k) are equal, that is, when there is no a priori knowl edge at all about
the selections. Under these circunstances, Eq.(22) reduces to Eq.(7). since

p(k) = 1/n. The manner in which HN varies with the probabilities ul the
choices is illustrated in Figure 3, for the particular case of N =

The ambunt of information conveyed by a message of given \eng!h vas
defined above as the number of independent el ementary (binary, equally Iikely)
selections required, on the average, to specify such a message. The notion
of a minimum nunber of binary selections required did not enter the defini-
tion. It should be intuitively clear, however, that the minimum nunber of
binary sel ections required, on the average, to specify a message is equal
to the average information conveyed, or, in other words, the nunber of



Fig. 5 The amount of information per
{p(0) 1092 p(0) JDILBAT Y, S§! 86hi 0n,ag @ function of the
+ 11-p(0)] Tog2 [1-p(0)]}
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binary sel ections becomes a mini mim when the selections are equally Iikely
and independent. To prove this identity, we observe that the amount of
information conveyed by a sequence of independent binary selections is a
maxi mim when the sel ections are equally likely. Conversely, therefore, it
i's always possible to represent any sequence of mbinary, not equally likely
selections with a nunber of el ementary selections smaller, on the average,
than m It follows that no binary representation of a message can be ob-
tained with a nunber of selections smaller than the amount of information
conveyed. It is clear, of course, that all message representations, which
enpl oy i ndependent equal Iy likely selections, require, on the average,the same
nunber of selections. It will be shown later that a larger nunber of
selections is required whenever non-independent sel ections are used.

It i's appropriate to point out here that the mathematical form of
Eq.(22) suggests a very interesting anal ogy between information and entropy,
as expressed in statistical mechanics. In fact, HN appears formally as the
entropy of a system whose possible states have probabilities p(k). For a
physical interpretation of this analogy, the reader is referred to the work
of Norbert Wener (Ref. 1)

IV. Codes and Code Efficiency

The preceding sections have been devoted to the definition of the unit
of information and to the computation of the average amount of information
per selection in the case of messages consisting of sequences of independent
N-order selections. It was pointed out in Section Il that HN represents
the mini num nunber of binary selections required, on the average, to perform
an N-order selection with given choice probabilities. Therefore, if we take



the number of binary selections enployed as a basis for conparing different
nmethods of conveying the same information, HN represents a theoretical |imit
corresponding to maxi mum ef i ci ency

The know edge of such a theoretical limit is extremely inportant, but
perhaps even more inportant is the ability to approach this limit in practice.
In our case, fortunately, the procedure followed in conputing HN (that is,
the theoretical limt) indicates a convenient method for approaching this
limit in practice. Let us consider again all the sequences of n N-order
selections (in which, hovever, n may be a small integer), and arrange them
in order of increasing probability. If we wish to separate any one partic-
ular sequence fromthe others by means of successive division in al most
equal Iy probable groups, as discussed in the preceding section, the number
of divisions required, on the average, that is, E(BS), will be larger
than nH\. Hovever, if we increase n, that is, the length of the sequences,
ve find that E(BS)/n keeps decreasing and approaches HN when n approaches
infinity. It nust be kept in mnd, in this regard,that E(BS)/n does not
decrease necessarily in a monotonic manner, but may have an oscillatory
behavior as a function of n.* It follows that an increase of n may actually
produce an increase of E(BS)/n. For instance (as shown in Figure 4), in the
case of N=2, p(0)= 0.7, p(1) = 0.3, the value of E(BS)/n is 0.905 for
n=2 0.909 for n=3, and 0.895 for n =4, the Iiniting value being
e - 06
The above di scussion indicates that, in transmitting a message consisting
of a large nunber of selections, e should transmit the selections not indi-
vidually, but in sequences of n as units, the nunber n being as |arge as
permitted by practical considerations. The transnission of each of these
units is then performed by means of sequences of binary selections corres-
ponding in order to the successive divisions of the ensenble of all possible
sequences of n N-order selections, as indicated in Figures 2, 4, and 5. It
will be noted that, although the sequences of binary selections are not equal
inlength, it is always possible to identify the end of any of themin a Iong
message. In fact, the first mselections of any sequence of |ength Iarger
than mare alvays different fromany of the sequences consisting of exactly
msel ections.

If it is desired to performthe transmission by means of N -order selec-
tions (N being any integer), we can proceed in the same manner as in the
case of binary selections, the only difference being that we must divide
successi vel y the ensenbl e of all possible sequences in N groups instead of
just two. After each division, the groups containing the desired sequence

* This fact was first pointed out to me by L. G Kraft of this Iaboratory






will then be indicated by means of an N -order selection.

The operation described above is, effectively, a change of code, that
is, we may say, of the conventional |anguage in which the message is witten.
Therefore this operation will be referred to as "message recoding’. The
advantage resul ting fromthis recoding is conveniently expressed in terms
of the code efficiency

eta = HVlog2 N, (25)

that is, the ratio of the information transmitted on the average per selec-
tion, to the information which could be transmitted with an equally Iikely
selection of the same order. The efficiency of a binary code resulting from
the recoding of sequences of N-order selections can be computed most con-
veniently in the form

eta = nHV E(BS) , (26)
where n is the nunber of N-order selections used in the recoding operation.
Note that nHN is the average amount of information per sequence of n N-order
selections and H(BS) represents the amount of information which could be
transnitted, on the average, by one of the sequences of binary selections
in which the original sequences are recoded, if these binary selections were
equal ly likely. If the new code is of N order, we nust substitute for
E(BS) the product of log2 N by the number of N -order selections required,
on the average, to specify a sequence of n N-order selections.

A final remark nust be made regarding the recoding operation. Since
the process of successive divisions of an ensenble of sequences into equally
probabl e groups cannot be carried out exactly, it is not clear at times
whet her one sequence shoul d be included in one group or in another. Of
course, we wish to performall divisions in such a way as to obtain at the
end the nost efficient code. Unfortunately, no general rule could be found
for determining at once how the divisions should be made in doubtful cases
in order to obtain maxinum code efficiency. However, so long as the divi-
sions are made in a reasonabl e manner the resulting code efficiency will not
differ appreciably fromits maximm val ue.

W have inplicitly assumed in the foregoing discussion that we know
a priori the probabilities p(k) of the choices for a message still to be
transnitted. |t seens appropriate at this point to discuss in some detail
this assunption, since the practical value of the results obtained above
depends entirely on its validity. Wien we state that the probability of a
particul ar choice has a value p(k) we mean that the frequency of occurrence
of that choice in a message originating froma given source i s expected to
be close to p(k). The longer is the nessage, the closer we expect the



frequency to approach p(k). It nmust be clear, hovever, that we have no
assurance that the frequency of occurrence will not differ considerably from
the probability even in the case of a very |ong message, although such a
situation is very unlikely to arise.

In practice, p(k) nust be estimated experimentally fol lowing the reverse
process, that is, by inference fromthe measurement of the frequency in a
nunber of sanple messages. If the frequencies in the sanple messages are
reasonably alike, or, more precisely, if their values are scattered in the
manner whi ch might be expected on the basis of the length of the messages
used, ve may feel relatively safe in taking their average value as a good
estimate of the probability. In other vords, e may expect that the fre-
quency in any other message originating fromthe same source will be reason-
ably close to the average value obtained. If this is the case, the source
of such messages is said to have a stationary statistical character. W can
conceive the case, hovever, in which the frequencies in the sanple messages
available are so widely scattered that hardly any significance can be attrib-
uted to their average value. Such a result may mean that the source has not
a stationary statistical character, at least for practical purposes, in which
case the concept of probability loses any physical significance. Fortunately,
however, the sources of interest appear to have a stationary character for
any practical purpose. In addition, the estimates of the probabilities of
the choices do not need to be too close. It should be clear, in this respect,
that the fact that a code has been designed for a particular set of choice
probabilities does not mean that only messages with the same statistical
character can be transmitted. It means only that such a code will transmit
most efficiently, that is, with the smallest nunber of selections - messages
with the choice frequencies equal to the assumed probabilities. Moreover,
ve can expect that the efficiency of transmission will not depend in a criti-
cal manner on the actual frequencies of the messages to be transmitted. A
proof that this is actually the case is given bel ow

Suppose that a code which is optimumfor a set of choice probabilities
p'(K) is used to transmit messages with choice probabilities p(k). If we
consi der again all possible sequences of n selections, the expression for
the nunber of binary selections required, on the average, to indicate one
particular sequence, E(B'S), is still given by Eq.(13), where, hovever, the
p(k) which appear in the formlog2 p(k) should be changed into p' (k). It
follows that, in the Iimit when n approaches infinity, the number of binary
selections per N-order selection vill approach, according to Eq.(22), the

- sump(k) log2 p' (k) . (27)




It is clear fromthis equation that H N varies rather slowy with any one of
the p; (k) unless the corresponding p(k) is close to zero or unity. HNis,

of course, a minimmuhen p' (k) = p(k). The case of N=2is illustrated in
Figure 6 for p(0) = 0.5 and p(0) = 0.7. W may conclude, therefore, that

the statistical characteristics assumed a priori can be rather different from
those of the messages actually transmitted, without the efficiency being

lovered too much.

Fig. 6 Behavior of HN as a function of

p' (0) for binary nessages.
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V. The Case of Non-Independent Selections

Thus far ve have been considering only messages of a particularly
sinple type, namely, messages consisting of sequences of independent selec-
tions. Cbviously, the statistical character of nost practical messages is
mich nore conplex. Any particular selection depends generally on a nunber
of preceding selections. For instance, in a written message the probability
that a certain letter will be an “h" i's highest when the preceding Ietter
isa“t". Inatelevision signal the light intensity of a certain el ement
of a scanning Iine depends very strongly on the light intensities of the
corresponding el ements in the preceding lines and in the preceding frames
Infact, the light intensity is very likely to be almost uniform over wide
regions of the picture and to remain unchanged for several successive frames.

The si npl i fying assunption that any one selection is independent of the
preceding sel ections, although quite unrealistic, does not invalidate com
pletely the results obtained in the preceding sections, but nerely reduces
their significance to that of first approximations. Intuitively, the average



amount of information conveyed by a sequence of given length is decreased
by the a priori knowl edge of any correlation existing between successive
selections. Therefore, the value given by Eq.(22) will always be |arger
than the correct value for the average amount of information per selection,
and the sane is true of the code efficiency given by Eq.(25). Similarly,
any recoding operation performed in the manner discussed in Section IV will
result in a higher efficiency of transmission, but not so high as could be
obtained by taking into account the correlation betveen successive sel ections

The procedure for computing the average amount of information per selec-
tion and for recoding messages is still essentially the sane as that used in
Sections 111 and 1V, even when the dependence of any selection on the pre-
ceding sel ections is taken into account. The only difference is that the
probability of a particular sequence will not be equal sinply to the product
of the probabilities of the choices in it, since these are no longer inde-
pendent. We must still arrange all the possible sequences of given |ength
nin order of probability, and separate the desired sequence by successive
divisions of the ensenble of sequences in groups as equally probable as
possi bl e. The nunber of divisions required, on the average, divided by the
nunber n of selections will approach HN when n approaches infinity.

Let Pn(i) be the probability of the ith sequence of n selections, and
HS(n) the average amount of information per sequence of n selections when
successi ve sequences are assumed to be independent. W have then

HS(n) = -sumPn(i) log2 Pn(i) . (28)

Let us consider next a sequence of n+l selections and let Pn+i(i;k) be the
conditional probability that the ith sequence (of the S = N°n sequences of n
selections) is followed by the kth choice (of the N). W have then

HS(n+1) = -sumsum Pn(i) Pn+1(i;k) log2 Pn(i) Pn+i(iik) , (29)

sumPn+l (i;k) =1, (30)

HS(n+1) = HS(n) - sum sum Pn(i) Pn+1(i;k) log2 Pn+1(i;k) . (31)



The increment of information resulting fromthe (n+1)th selection is then,
on the average,

H\(n+1) = -sum sum Pn(i) Pn+l(iik) 1og2 Pn+i(i k) . (32)
Expressing now HS(n) in terms of the successive increments, we obtain
HS(n) = sum HN(m) . (33)

The final correct value of the average amount of information per selection
can then be witten in the form

HN = lim (1/n) sunHN(m) . (34)

To proceed further in our analysis, we nust distinguish betveen two
types of statistical character of practical inportance. W shall say that
the output of a certain source is statistically uniformif each and any
sel ection depends in the same menner on the mth preceding selection, as seens
to be the case in a witten nessage. W shall say that the output is peri-
odical ly discontinuous if it is possible to divide any output sequence in
sub-sequences of fixed and equal Iength, so that each and any selection
depends in the same manner on the nth preceding selection of the same sub-
sequence but is independent of all selections of the preceding sub-sequences.
This is the case when messages transnitted in succession are similar in
character and equal in length but entirely unrelated to one another, as, for
exanple, in facsinile transmission. The above differentiation of statistical
character is not an exhaustive classification but only a characterization of
two special cases of practical interest in which different results are ob-
Considering now in more detail the increments of information H\(n+1)
our intuition indicates that the average amount of information conveyed by
any addi tional selection can be, at most, equal to the value obtained when
the selection is independent of all preceding selections. Mthematically,
i st be

- sump(k) 1og2 p(k) . (35)

HN(n+1) < H\(1)

Aproof of this inequality is given in Appendix Il. In addition, it is



intuitively clear also that, in the case of uniformstatistical character,
the average amount of information conveyed by the (n+1)th selection of a
sequence can be, at most, equal to the amount of information conveyed by the
nth selection, since the latter has Iess preceding selections on which to
depend. Mathenatically, we expect that, for statistically uniform sequences,
HN(n+l) < HN(n) . (36)
A proof of this inequality is given also in Appendix Il1. Eq.(36) is satis-
fied with the equal sign when the (n+1)th selection, and therefore any fol-
I'owi ng sel ection, depends only on the n-1 preceding sel ections.

Eq. (36) shows that the linit in Eq.(34) is approached in a nonotonic
manner. In addition, we expect HN(m) to approach monotonically a limt with
increasing m since the dependence of any selection on the preceding sel ec-
tions cannot extend, in practice, over an indefinitely large number of selec-
tions. Suppose, for instance, that this dependence extends only over the
no-1 preceding sel ection. Then HN(n) becomes constant and equal to HN(nO)
when mis larger than n0, and Eq.(34) yields

HN = HN(nO) . (37)
This result is correct, of course, only in the case of statistically uniform
soquences.

In the case of a periodically discontinuous statistical character,
Eq.(36) is valid only when the nth and the (n+1)th selections belong to the
same sub-sequence. If this is not the case, the (n+l1)th selection must be
the first selection of a sub-sequence, and therefore is independent of all
preceding sel ections. It follows that HYm is a periodic function of mwith
period equal to the length n' of the sub-sequences, and that the limit of
Eq.(34) is approached in an oscillatory manner. If we compute this limit by

increasing n in steps equal to n'o, it is easily seen that Eq.(34) yields

a value larger than that given by Eq.(37), as was expected.

The recoding procedure in the case of messages consisting of non-inde-
pendent selections is still the same as in the case of independent sel ections.
The efficiency of transmission, still given by Eq.(25), increases (although not
necessarily monotonically), with the number of selections used as units in the
recoding process, and approaches unity when the nunber increases indefinitely.
It i's worth enphasizing that in the recoding process any sequence, even if
statistically uniform is considered as periodically discontinuous. In fact,



the groups of selections recoded as units are effectively sub-sequences
which are treated as though they vere totally unrelated. It follovs that,
if the recoding operation of a statistically uniformsequence is performed

on groups of nO selections, the efficiency of transmission after recoding
can be at mst equal to

In the case of statistically discontinuous sequences, it would seem
reasonabl e to make the number of selections in the recoding groups an
integral fraction or multiple of the length of the sub-sequences.

Afinal remark is in order regarding the fitting of the recoding pro-
cedure to the statistical character of the messages to be transmitted. It
may happen, as it does in the case of television signals, that the depend-
ence of any one sel ection on the mh preceding selection does not decrease
monot oni cal |y when mincreases, but behaves in an oscillatory manner. In
this case, one should first reorder the selections before recoding, in such
a manner that selections which are closely related take positions close to
one another in the sequence. This idea of reordering the selections in the
sequence can be generalized as follows. Any type of transmission of informa-
tion can be considered as the transmission, in succession, of patterns in
a tvo-dimensional or mul ti-dinensional space, time being one of the dinen-
sions. Then the probl em of ordering selections in an appropriate manner
can be generalized to the problemof how best to scan these patterns. It
is clear, on the other hand, that such a scanning problemis also at the
root of the problem of reducing the bandwi dth required by television signals
The general i zed scanning probl em seems to be, therefore, of fundamental
practical, as well as theoretical, inportance. Hovever, no work can yet be
reported on this subject
VI. Practical Considerations

The main purpose of this paper vas to provide a logical basis for the
measurenent of the rate of transmission of information. It has been shown
that an appropriate measure for the rate of transmission in the case of
sequences of sel ections can be provided by the mini mum nunber of binary
selections required, on the average, to indicate one of the original selec-
tions. Ve vere then led naturally to consider the problem of actually per-
fonming the transmission of the original sequences by means of as few binary
or higher-order selections as possible. W did not consider, however, the
physical process corresponding to such selections - that is, their trans-
mssion by electrical nmeans,



A convenient way of transmtting binary selections in a practical
conmuni cation systemis by means of pulses with two possible levels, one and
zero. This is just the technique enployed in pul se-code modulation. The
maxi mum rate at which information can be transmitted in this case is sinply
equal to the number of pulses per second which can be handl ed by the el ec-
trical system- which ve know to be proportional to the frequency band
available. Hovever, as soon as we start dealing with electrical pulses
rather than |ogical operations like selections, an additional itemmist be
considered in the problem namely, the power required for the transm ssion.
In the case of two-level pulses, the average pover corresponding to the maxi-
mumrate of transmission of information is equal to one-half the pulse power,
since the zero and one level's are equal |y probable.

If pulses with Nrather than two |evels equally spaced in vol tage are
used, the maximumrate of transmission is equal to log2 n tines the nunber of
pul'ses per second which can be handled by the system The average pover
required becomes, in this case,

where v i s the poer corresponding to the I owest (non-zero) vol tage | evel.
The Lheoret | cal | m { Srated Sbove for the rate of iransm ssion

information certainly has practical significance when the Iimiting factors
in the physical problemare the frequency band available and the number of
pulse levels pernitted by technical and economical considerations. It is

to be noted, in this regard, that the effect of noise is here taken into
account, to a first approximation, by setting a lower limit to the vol tage
difference between pulse levels, and therefore to W. For a detailed dis-
cussion of the effect of noise, the reader is referred to the work of

Srannon (5)

Eq.(40) shows, on the other hand, that the average power increases
approximately as N2, while the rate of transmission is proportional only to
log2 N It follows that, if no linitation is placed on the frequency band
enpl oyed, the smallest value of N should be used - that is, two. This value
has, in addition, the very important practical advantage that the receiver
is not required to measure a pulse, but only to detect the existence or the
lack of a pulse. It mght happen, on the other hand, that the frequency
band and the average power are the limiting factors, while any reasonable
nunber of pulse levels can be alloved. This case represents quite a dif-
ferent problem from those considered above, and the maximumrate of trans-
mission of information is no longer obtained by making the pulse |evels



(that is, the choices) equally probable, as one might think at first. For
exanple, more than one unit of information per pulse can be transmitted with
an average power W= W/2, by using pulses with three levels not equally
probable. It seens vorth while, therefore, to determne the maximum anount
of information which can be transmitted per pulse, for a given average pover
W a mininumievel pover W, and an unlimited nunber of pulse levels equally
spaced in vol 1age.

Let, therefore, p(O) be the probability of occurrence of the zero |evel
(no pulse), and p(k) the probability of the kth level. The amount of infor-
mation per pulse is given by

and the average power by m

Ve wish to maximize Hwith respect to the p(k), subject to the condition
expressed by Eq.(42) and, of course, the usual condition

The maxi mi zation procedure is carried out in Appendix |11, and yields

The val ues of p(1)/p(0) and p(0) are plotted in Figure 7 as functions

of WW. The value of Hwax is plotted as a function of the sane variable
in Figure 8. The latter curve shows, for instance, that the maximm amount
of information per pulse for W-W/2 is 1.14, that is, 14 per cent higher
than the value obtained by using two equally probable |evels.

The procedure for approaching in practice the theoretical limit obtained
above by appropriate recoding of the messages is very similar to that dis-
cussed in Section IV. It differs only in that the ensenble of all sequences
of given length mist now be divided in groups with probabilities p(0), p(1)...
p(k).... instead of in equally probable groups. The number of pulse |evels
to be used in practice (it should be infinite in theory) mist be selected



Fig. 7 Behavior of p(1)/p(0) and Fig. 8 Maximuminformation per
p(0) as functions of W\VO. pul se, Hmx, as a function of WVD

on a compronise basis, and the values of the p(k) must then be readj usted,

accordingly to make

In addition to the effect of limtations on the average power, another
inportant practical consideration has been neglected in the preceding sec-
tions. All the types of recoding procedures suggested, for approaching in
practice the theoretical linits derived above, require the use of devices
capable of storing the information for a certain length of time in both the
transmitter and the receiver. Such storage devices are needed to stretch
or compress the time scale according to the probability of the group of
original selections being recoded for transnission

satisfactory storage units are not yet available. In addition, even
vere they available, their use would undoubtedly add considerably to the
conpl exity of conmunication systems. On the other hand, any substantial
increase of transmission efficiency is fundanentally based on time stretch-
ing. In fact, since the logarithmof the probability of the choice or
sequence of choices selected is a neasure of the information conveyed by
the selection (see p. 14), the time rate at which information is conveyed
in actual signals my vary considerably with time. Even so, a communication



system nust be able to handle at any time the peak rate which may be present
in the signal. It follows that any system not enploying storage devices to
stretch or compress the time scale is bound to have an efficiency |ower than
the ratio of the average rate to the peak rate at which information is fed
toit. It is worth mentioning in this connection that in certain types of
communi cations, such as tel egraph and television, the input and output sig-
nal's do not have inherently fixed time scales. This is the same as saying
that such forms of communication inherently incorporate storage devices
In the case of the telegraph, the written messages at the input and at the
output are effectively storage devices. In the case of television, the
image to be televised and the cathode-ray tube performthe same function.

Al'though no reduction of frequency band for a given noise level can
be obtained without storage devices, appropriate coding may lead to some
reduction of average power. This reduction can be obtained by assigning
sequences of pulses requiring the smallest energy to the most probabl e
messages, and vice versa. In the particular case of pul se-code modul ation,
for instance, this can be done as follows. V& arrange all digit conbinations
in order of increasing anount of energy required and the sanpling levels in
order of decreasing probability. W assign then the digit combinations to
the sanpling levels in the resulting order. Such a coding method requires,
however, more flexible coding and decoding units than those used in present-
day systens

Before concluding this section, it should be made clear that the
inprovenent of transnission efficiency discussed above and the resul ting
possible reduction of bandwidth requirements for a given signal power have
little to do with the bandwi dth reduction obtained by means of the Vocoder
or other sinilar schemes. The Vocoder (2), for instance, does not inprove
the efficiency of transmission, but achieves a reduction in bandwidth by
eliminating that part of the speech signal which is not strictly necessary
for the mere understanding of the vords spoken. Cbviously, the recoding
of messages according to their statistical character and the elimination
of unnecessary information represent fundamentally different but equally
important contributions to the solution of the bandwi dth-reduction probl em

Aopendix 1

Mexi m zati on of f(x)

In deternining the values of the xk for which f(x), as given in Eq.(18),
is amximum it is nore convenient to operate on the function



whose maxima and rinima at non-singul ar points coincide with those of f(x).

The xk are the variables in the maximization process, but are subject to the

Using Lagrange' s method, we equate to zero the partial derivatives, with

respect to the xk of the function

where \ is a constant to be deternined later. Ve obtain then N equations

It i's clear that when n approaches infinity these equations can be satis-

fied similtaneously only when xk = pk, in which case Eq.(1-2) is also satis-
fied."In addi tion the function () is et ther (di sconti nusts nor & m ni mum

at the point xk = pk, so that the existence of a maxinumat this point does
not require any further mathematical proof
Mo zaton of HN

The function HN given by Eq.(22) must be maximized with respect to the
p(k) which are, of course, subject to the constraint

Fol lowing the same method as above, ve obtain N equations of the form

This set of equations can be satisfied only if all the p(k) are equal

Again it is clear that HNis neither discontinuous nor a minimmwhen all
the p(k) are equal, and therefore it must be a maximum



Aopendix 11

Proof That HN(n+1) \< HN(1)
Ve wish to show first, that the increment of the amount of informa-

i's a maxi numwhen Pn+1(i:k) = p(k), the probability of the kth choice, that
i's, when the additional selection is independent of all preceding selections.

Mt hematical |y, we must maximize the function HN(n+1) with respect to the
N'n+l variables Pn+l(i;k), subject to the conditions

Fol lowing Lagrange' s method, e equate to zero the derivates with

respect to the Pn+i(i;k) of the function

where the \1 and uk are constants to be determined later. Ve obtain then,
for each pair of values of i and k, an equation of the form

The sol ution of the N'n+1 equations of this type, together with Egs.(I1-2)
and (11-3), is clearly

Therefore, the increment of information HN is a maximmfor Pn+l(iik) = p(k),
since this is the only point at which a maximm can exist and a maxi mum must
exist at some point. This result can also be stated in the form



HN(n+1) \< HN(1) , (11-8)
wher e

i's the average amount of information per selection, that is, the average
increment of information, when each selection is independent of all preced-

ing sel ecti ons.

Proof That H\(n+l) < H(n)
Let us consider a sequence of n selections as consisting of a first
sel ection fol loved by a sequence of n-1 selections. Let Pn(h;j) be the
conditional probability that the selection of the hth choice is folloved by
the selection of the jth sequence fromthe N'n-1 possible sequences of n-1
sel ections. Let also Pn+i(h,j;k) be the conditional probability that the
kth choice is selected after the hth choice and the jth sequence. W shall
still indicate with p(k) the probability of the kth choice and, similarly,
with p(h) the probability of the hth choice. Using these new symbols,

Eq.(11-1) becares

Ve vish to show that, for a statistically uniformsequence, H{n+l) is a
maxi num when Pn+1(h,jik) is independent of h. Mathematically, we must again
maxi mi ze the function H\(n+1) with respect to the N'n+1 variables Pn+1(h,j;k),
subject to the conditions

where Pn-1(j) i's the probability of the jth sequence of n-1 selections, and
P(j;k) is the conditional probability that the kth choice will be selected
after the jth sequence. These two probabilities must, in turn, satisfy the



whi ch, however, does not concern us, since it does not involve directly the
Pn+i(h,j; k). It nust be clear, on the other hand, that the Pn(j;k) are kept
constant 'in the naximization process. In other words, the dependence of the
(n+1)th selection on the n-1 preceding selection is fixed in this case, while
in the case discussed previously it vas allowed to vary. In addition, since
ve are dealing with a statistically uniformsequence, the (n+1)th selection
depends on the n-1 preceding selections in the same manner as the nth sel ec-
tion depends on its n-1 preceding, that is, on all the preceding selections.
Proceeding in the same manner as in the proof that HN(n#) \< H\(1),
ve find that, for given Pn(j:k), the Pn+i(h,j;k) make HNM(n+1) a maximum
when they are independent of h, that is, of the first selection of the
sequence. Mathematically speaking, the maximum occurs when Pn+l(h,j;k) -
P(jik). It follows that Eq.(11-10) yields, with the help of Eq.(11-11),

(1) max =

This result can also be stated in the form
HN(n+1) \< HN(n) . (11-15)

It must be clear that, in the case of non-statistically uniform sequences,
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since, for instance, the (n+1)th selection can be entirely independent of
the preceding sel ections while the nth selection is not. It follows, in this
latter case, that Eq.(11-14) is not valid, and H\(n+1) can be as large as
sopendix 111

Ve vish to maximze the average amount of information per pulse, H for
a given average pover and an unlinited nunber of pulse levels equally spaced
in voltage. Mathematically, this anounts to maximizing the function given
by Eq.(41), subject to the conditions inposed by Eqs.(42) and (43). Follow
ing Lagrange's method, as in Appendices | and I1, we obtain an infinite set
of equations of the form



1+ 1Inp(k) =\ +k*2u, (I1I-1)
where \ and u are indeterninate constants. The first of these constants, \,
can be elininated by subtracting the equation with k=0 fromall the ot her
equations of the set, which take then the form

In p(k) - Inp(0) - k"2 u . (111-2)
The remaining constant, u, is then elimnated by subtracting k2 tines
Eq.(111-2) - with k=O - fromthe other equations of the same set. W& obtain
in this manner a set of equations of the form

[In p(k) - 1n p(0)] - k*2 [In p(1) - Inp(0)] =0 (I11-3)

Tt Tollows that

Eqs. (42) and (43) can now be written in the forns

The val ues of p(1)/p(0) are plotted in Figure 7 as functions of WW0. From
these values, the p(k) are imrediately obtained by means of Eq.(111-4)

The maxi mum val ue of the average amount of information Hcan now be
obtained without difficulty by substituting for the p(k) in Eq.(41) the
val ues determined above. W have then, after appropriate manipulation of

the equati on,



Using now Eq. (111-5), Ve obtain finally

The value of Hmx is plotted in Figure 8 as a function of WVO, using the
values of p(1)/p(0) and p(0) given in Figure 7.
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