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PREFACE

The increasing complexity of the problems to be solved in science,
engineering, business, etc., has led to the development of electronic
computers. At the beginning of the sixties, the number of computers
started to increase at a very high rate. The last census (Autom. Data
Process. Newsletter 9, 14, 1964) shows that more than 40,000 computers
are installed or are to be installed very soon on the American continent
and in Europe. It also indicates that the yearly rate of increase is 179,
for Europe.

With passing time, the computers have grown bigger and more
sophisticated and so has the task of programming these machines.
Since it is very tedious to use individual machine languages for pro-
gramming, highly efficient programming languages and appropriate
processors have been developed. This development has culminated in
the rigid definition of ALGOL 60* in 1963 and of FORTRAN t in 1964.
Although many different computer languages have been introduced,
clearly the two most important ones are ALGOL 60 and FORTRAN.
These languages are also taught at universities, and at engineering and
business schools. Extensive libraries of programs written in ALGOL or
FORTRAN have been founded, and the exchange of computer pro-
grams is growing rapidly. Unfortunately, the overwhelming majority
of computers allow only ALGOL or FORTRAN programs to be used,
i.e. if a useful FORTRAN program should be obtained and it is thus
desirable to run this on a machine with an ALGOL processor, it is
necessary to translate it. The aim of the dictionary presented here is not
only to assist the programmer during this translation but also to make it
possible to translate from ALGOL 60 into FORTRAN (or vice versa)
even with a very limited knowledge of computer language itself. To
perform this task, the dictionary is arranged in the following way.

Firstly are listed the properties of the different computer types which
accept ALGOL and/or FORTRAN programs. (These computers do
represent more than 509, of all existing digital machines.}) Secondly,

* ALGOL 60 is defined in Num. Math. 4, 420 (1963) and also in Communs Ass. comput.
Mach. 8, No. 1 (1963). If a reference is made to ALGOL instead of to ALGOL 60, this
means that it refers to an ALGOL 60 program or statement which includes input and/or
output statements.

1 FORTRAN is defined in Communs Ass. comput. Mach. 7, 590 (1964). Throughout
the dictionary the traditional notations FORTRAN II (instead of Basic FORTRAN)
and FORTRAN IV, abbreviated FIV (instead of FORTRAN) are used. If reference is
made to FORTRAN, this means FORTRAN II and FORTRAN IV.

1 As a rule, the other computers have no computer language at all, or use languages

which do not deviate much from either ALGOL 60 or FORTRAN.
v



vi PREFACE

the terminology used throughout the dictionary is explained and the
input/output statements for different computer processors are discussed.
The majority of the book is occupied by the actual dictionary, which is
divided into ALGOL 60 > FORTRAN and FORTRAN > ALGOL 60.
Short examples of program translation are given in Parts 4 and 5; in
Part 6 are given five computer programs and their translations. Four
of these programs are complete, including input data and computed
results. Part 6 deals also with the problem of how to translate a pro-
gram in the easiest way.

In Appendices I and II, the reader will find the definitions of ALGOL
60 and of FORTRAN, respectively.

Although it is certainly difficult to present all possible statements,
combinations of statements, and their translations in a book of finite
length, still the author hopes that he has selected the most useful ones
and that this dictionary is of considerable help to everyone who has to
work with computer languages.

It is a pleasure for the author to thank the Saskatchewan Branch of
IBM for their ready assistance and especially for the permission to use
their Selectric typewriter. The help of D. Hutcheon, D. E. Lobb, and H.
Theissen in the preparation of the manuscript is gratefully acknow-
ledged. The author is also indebted to the University of Saskatchewan,
Saskatoon, and its members for help and hospitality.

Saskatoon H. BREUER
March 1966
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COMPUTERS AND THEIR PROPERTIES

1.1 LIST OF COMPUTERS CONSIDERED

Manufacturer Computer Type

Burroughs Corp., B 5000, 5500
Detroit, Mich., U.S.A.

Compagnie BULL, CAB 500, GAMMA 30, 308, M40, 60
General Electric,

94 Avenue Gambetta,

Paris 20, France

Control Data Computer Systems, CDC 160G, 1900, 3100, 3200, 3300,
8100 34th Ave. S., Minneapolis 20, 3400, 3600, 3800, 6400, 6600, 6800,
Minn., U.S.A. 8090, 8092

Digital Equipment Corp., Maynard, PDP-1,4,5,6,7, 8
Mass., U.S.A.

Electro-Mechanical Research, Inec. ASI 2100, 6020, 6040, 6050, 6060, 6070,
Advanced Scientific Instruments 6080
Division,

Minneapolis, Min., U.S.A.

Elliott Brothers Ltd., Borehamwood, NE 503, 803, 803B
Hertfordshire, England

English Electric-Leo/Computers Ltd., KDF 9
Kidsgrove, Staffordshire, England

Ferranti Electronics, Toronto, FP 6000
Canada

General Electric Company Computer GE 205, 235, 415, 425, 4356, 600
Department, P.O. Box 270,
Phoenix, Arizona, U.S.A.

Honeywell Electronic Data Processing, H 21, 22, 200, 400, 800, 1400, 1800
60 Walnut Street,
Wellesley Hills 81, Mass., U.S.A.

International Business Machines IBM 360, 704, 709, 1401, 1410, 1620,
Company Inc., 1800, 7040, 7044, 7070, 7090, 7094

112 East Post Road, White Plains,

New York, U.S.A.

International Computers ICT 1902, 1903, 1904, 1905, 1906, 1907,
and Tabulators Ltd., 1909
London, S.W.15, England

Olivetti, Milano, Via Pirelli 32, Italy Elea 4001, 6001
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Manufacturer Computer type

Scientific Data Systems, SDS 910, 920, 925, 930, 9300
Santa Monica, Calif., U.S.A.

Telefunken AG, Konstanz, Germany TR 4, 10

Zuse KG, Bad Hersfeld, Germany Z 22, 23, 25

1.2 LIST OF SOME COMPUTER PROPERTIES

Core
storage Word Cycle FORTRAN FORTRAN
capacity length time ALGOL II v
Computer [words] [bits] [usec] proc. proc. proc.
ASI 2100 4K-8K 21 2 No Yes No
6020
ASI 6040 4K-32K 24 1.9 No Yes No
6050
6060
ASI 6070 4K-32K 24 1.9 No Yes No
6080
B 5000 4K-32K 48 6 Yes No No
B 5500 32K 48 0.125 Yes Yes Yes
CAB 500 16K 32 160 Yes Yes No
CDC 160G 8K-128K 13 1.35 No Yes No
CDS 1900 4K-32K 16 1.2 No No Yes
CDC 3100 4K-32K 24 1.75 No Yes Yes
CDC 3200 8K-32K 24 1.25 No Yes Yes
CDC 3300 8K-128K 24 0.8 No Yes Yes
CDC 3400 16K-32K 48 1.5 Yes No Yes
CDC 3600 16K-256K 48 1.4 Yes No Yes
CDC 3800 16K-256K 48 0.8 Yes No Yes

K = 1024



COMPUTERS AND THEIR PROPERTIES

sct?)l;ge Word Cycle FORTRAN FORTRAN

capacity length time ALGOL II Iv
Computer [words] [bits] [msec] proc. proc. proc.
CDC 6400 32K-128K 60 1.0 Yes No Yes
CDC 6600 64K-128K 60 0.5 Yes No Yes
CDC 6800 32K-128K 60 0.1 Yes No Yes
CDC 8090 4K-32K 12 6.4 No Yes No
CDC 8092 2K—-4K 8 4.0 No Yes No
Elea 4001 Yesq Yes No
Elea 6001 No Yes No
FP 6000 4K-32K 24 2 Yes No No
GAMMA 30 40K 6 4.8 Yes Yes No

308
GAMMA M40 32K 24 5 Yes No Yes
GAMMA 60 32K 24 10 Yes No No
GE 205 4K-16K 20 36.0 No Yes Yes
GE 235 4K-16K 20(40) 6.0 No Yes Yes
GE 415 4K-128K 24 9.2 No Yes No
GE 425 4K-128K 24 5.1 No Yes No
GE 435 4K-128K 24 2.7 No Yes No
GE 600 32K-256K 36 2.0 No Yes Yes
H 21 2K-16K 18 6 No No No
H 22 2K-16K 18 1.75 No No No
H 200 2K-32K* 2t No No Yes
H 400 1K—4K 48 18.5 No Yes No
H 800 8K 48 6 No Yes No
H 1400 4K 48 6.5 No Yes No
K = 1024 * Characters t Per character 91 A very limited processor.

5
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St?);:ge Word Cycle FORTRAN FORTRAN

capacity length time ALGOL II Iv
Computer [words] [bits] [usec] proc. proc. proc.
H 1800 16K 48 2 No No Yes
IBM 360-30 2K-16K 32 6 No No Yes
IBM 360-40 4K-64K 32 5 No No Yes
IBM 360-50 16K-65K} 32 2 No No Yes
IBM 360-60 32K-128K} 32 1 No No Yes
IBM 360-62 64K-128K} 32 0.5 No No Yes

360-70
IBM 704 4K-32K 36 12 No Yes No
709
IBM 1401 1.4K-16K* Var. 11.5f No Yes No
IBM 1410 10K-80K* Var. 4.5f No No Yes
IBM 1620; 20K-80K* Var. 20t No Yes No
IBM 16201 20K-80K* Var. 10t No Yes No
IBM 1800 4K-32K 16 2 No No Yes
IBM 7040 4K-32K 36 8 No No Yes
IBM 7044 4K-32K 36 2.5 No No Yes
IBM 7070 5K-30K 40 6 No Yes No
IBM 7074 5K-30K 40 4 No Yes No
IBM 7090 32K 36 2.18 No Yes Yes
IBM 7094 32K-64K 36 1.4 No Yes Yes
ICT 1902 4K-16K 48 6.0 Yes Yes No
ICT 1903 8K-32K 48 2.0 Yes Yes No
ICT 1904 8K-32K 48 2.0 Yes Yes No
ICT 1905 8K-32K 48 2.0 Yes Yes No
K = 1024 * Characters t Per character 1 Up to 64000K possible.

6
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St%:zge Word Cycle FORTRAN FORTRAN

capacity length time ALGOL II v
Computer [words] [bits] [wsec] proc. proc. proc.
ICT 1906 32K-256K 48 1.1 Yes Yes No
ICT 1907 32K-256K 48 1.1 Yes Yes No
ICT 1909 16K-32K 48 6.0 Yes Yes No
KDF 9 8K-32K 48 6 Yes Yes No
NE 503 8K-128K 38 3.5 Yes No No
NE 803 4K-8K 38 6 Yes No No

803B
PDP-1 4K-32K 18 5 Yes Yes No
PDP-4 4K-32K 18 8 No Yes No
PDP-5 4K-32K 12 6 No Yes No
5.2 ‘
PDP-6 8K-256K 36 or No Yes Yes
0.5
PDP-7 4K-32K 18 1.76 No Yes No
PDP-8 4K-32K 12 1.6 No Yes No
SDS 910 2K-16K 24 8 No§ Yes No
SDS 920 4K-16K 24 8 No§ Yes No
SDS 925 4K-16K 24 1.75 No§ Yes No
SDS 930 4K-32K 24 2 No§ Yes No
SDS 9300 4K-32K 24 1.75 No§ Yes Yes
TR 4 12K-28K 48 6 Yes No Yes
TR 10 10K-80K 6 8 Yes No No
Z 22 Yes No No
Z 23 4K-8K 38 18 Yes No No
Z 25 5K-20K 18 Yes No No
K=1024 § May be available in summer 1966.
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DEFINITION OF TERMS

2.1 LIST OF ABBREVIATIONS

a Maximum number of characters which can be used to identify a
variable identifier or a subprogram identifier.

) Maximum value for a subscript.

y Number of continuation cards permitted.

8 Maximum number of significant digits for an integer number (or
range of integer numbers).

€ Maximum number of significant digits for a real number.

¢ Maximum number for a label (statement number).

1 Range of permissible numbers in exponents of real numbers.

w The width of field in a format statement. (This includes the
numbers, the signs, the decimal point, and the blank spaces to
provide spacing between numbers.)

d Number of decimal positions which appear to the right of the
decimal point.

b Number of blank fields (spaces) appearing before a value.

e, ¢  Positive integer numbers, used in connection with input/output
statements.

2.2 LIST OF DEFINITIONS

a,a,as, ...,a Arbitrary identifiers for (subscripted or
non-subscripted) variables and/or con-
stants and/or values. They must
consist of at least one but not more
than « characters, the first must be an
alphabetic character. Additional re-
striction in FORTRAN II: the last
character of an identifier must not be
the letter F.

Na, Naj, Nag, ..., Nay The preceding N emphasizes that the
variable or constant must be of integer
type.

Aa, Aay, Aas, . . ., Aay The preceding A emphasizes that the
variable or constant must be of real
type.

¢, €1,C2, ...,Ck Arbitrary constants.

Nc, Ncy, Ncg, . .., Nex The preceding N emphasizes that the
constant must be of integer type.

Ac, Acy, Acs, . . ., Ack The preceding 4 emphasizes that the

constant must be of real type.
11
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v, 0,02, ..., 0
Nv, Nvy, Nvg, . .., Nvg

A‘L‘, Avl, sz, ceey Av};

my, mg, mg, my

n, n, N2, ..., Nk

token, tokenl, token?2

Ntoken, Ntokenl, Ntoken?

Atoken, Atokenl, Atoken2

term, terml, term2
Nterm, Nterml, Nterm2

Aterm, Aterml1, Aterm2
Lterm

text, textl, text?2

matrix, matrizl, matrix2

Arbitrary variable identifiers.

The preceding N emphasizes that the
variable must be of integer type.

The preceding A emphasizes that the
variable must be of real type.
Nonsubscripted integer variables or
constants (if not otherwise indicated
they are positive).

Statement labels (numbers). Any num-
ber from 1 through ¢ can be used. In
FORTRAN the statement number
must appear in column (1) 2 through 5,
this is indicated by using a vertical
line after the number. (Examples: 21|
or 9945| or 5| or 99929|.)

Arbitrary identifiers for a subprogram.
The identifier must begin with an
alphabetic character. It must consist
of at least one, but not more than «
characters. In FORTRAN II the first
character of the identifier determines
the type of the subprogram. In
FORTRAN IV the first character can
determine the type of the subprogram.
The preceding N indicates that the
result of the subprogram is of integer
type.

The preceding A indicates that the
result of the subprogram is of real type.
Arbitrary expressions.

The preceding N indicates that the
expression is of integer type.

The preceding A indicates that the
expression is of real type.

The preceding L indicates that the
expression is of logical (Boolean) type.
Any sequence of characters to explain
a program or a part of it or to give a
comment. This could be one charac-
ter.

Arbitrary identifiers for an array.
Obeys the same rules as a variable
identifier.

12



DEFINITION OF TERMS

Nmairiz, Nmatrizl, Nmatriz2 The preceding N emphasizes that the

array identifier must be of integer type.

Amatriz, Amatrizl, Amatrix?2 The preceding A emphasizes that the

array identifier must be of real type.

Jump Arbitrary identifier for a switch. It
obeys the same rules as a variable
identifier.

{bL{1L{ 3} Symbolizes one of the FORTRAN
format settings Ew.d, Fw.d, Iw, cH or
Ac (or their translation).

Symbolizes arbitrary parts of a
program.

... term ... The periods indicate that term is a

or part of a statement. The periods do

oo lerm oLl not indicate whether term actually is
placed at the beginning, or at the end,
or in the middle of the statement.
This indicates input and/or output
values in examples.

2.3 LIST OF NOTES

N1 The type (real or integer) of the result is determined by the
type of the argument. The type of the argument must be as
indicated. If this is not the case a preceding statement must be
used to change the type in the proper way.

N2  The variables and/or constants must all be of the same type, the
type is indicated, i.e. real or integer. If this is not the case a
preceding statement must be used to change the type in the
proper way.

N3 Instead of N, the variable identifiers may begin also with I, J,
K,L,or M.

N4 Instead of 4, the variable identifiers may also begin with another
alphabetic character, except I, J, K, L, M, or N.

N5 The last 1 (in 1.0000001) should appear (e — 1) places to the
right of the decimal point.

N6 In this case m;, mz, and ms include the (negative or positive)
sign.

N7 end or : of a for statement in an ALGOL 60 program is always

translated with n| CONTINUE.
13



N8
N9

N1o0

N11
N12
N13
N14

N15

N16

N17

Nis

N19
N20
N21

DICTIONARY FOR COMPUTER LANGUAGES

For details on the format statement see under FORMAT.
The following combinations cannot be used as identifiers for
variables, switches, labels, or procedures:

abs, arctan, array, cos, begin, comment, cos, do, else, end,
entire, equal, exit, exp, for, go to, greater, if, integer, label, less,
In, not equal, not greater, not less, power, print, procedure, read,
real, sign, sin, sqrt, step, then, until, value.

The following combinations cannot be used as identifiers for
variables, functions or subroutines:

ABS, ACCEPT, ASSIGN, ATAN, CALL, COMMON, COS,
DATA, DO, END, ENDFILE, EXIT, EXP, FETCH,
FIND, FORMAT, GO TO, IF, INTEGER, LOG, OUT-
PUT, PAUSE, PRINT, PUNCH, READ, REAL,
RETURN, REWIND, SIN, SQRT, STOP, TAPE, TYPE,
WRITE, WRITEDR, XABS, XEXP, XLOG, XSQRT, and
identifiers with F as the last letter. (The last rule is not valid
for arithmetic statement functions.)

An arbitrary expression can replace a; and/or as.

These characters can be replaced by term.

Each of these characters can be negative or positive or zero.
These variable identifiers must be declared in the head of the
program under integer if they are of integer type or under real
if they are of real type.

If there is no special statement specifying in which form the values
should appear in the output data, the values appear as decimal
numbers with e significant digits times a power of ten. Integers
appear without decimal point.

The same as above, only replace FUNCTION Ntoken by IN-
TEGER FUNCTION Ntoken.

When an if statement follows directly an if . . . then statement
the following if statement must be placed between begin and
end.

When an if statement follows directly a for statement, then the
if statement must be placed between begin and end.

This is a dummy statement if jump [...] is not defined.

This is a dummy statement if the label is not defined.

The COMMON statement must contain all the variable identi-
fiers and/or array identifiers (v, . . . , v;) which are not mentioned
as arguments of the subprogram and which are not defined inside
the subprogram. A COMMON statement with arguments of the
same number, order, and type must also appear in the main
program preceding the first appearance of those arguments. An

14



N22

N23

N24

N25

N26

N27

N2s8

N29

N30

N31

N32

N33

N34

DEFINITION OF TERMS

array identifier appearing in a COMMON statement must be
preceded by the appropriate DIMENSION statement.

If during the translation more than one COMMON statement
becomes necessary it is recommended that all these different
statements be placed in one COMMON statement.

Instead of a comma the arguments can be separated by )text :(
This does not affect the translation.

The part of the subprogram : : : must be treated like a separate
program, i.e. it has to begin with a declaration (type, array,
switch, procedure) for all local identifiers. Local identifiers are
all identifiers which do not appear in the COMMON statement
or as arguments of the subprogram.

Those arguments of the subprogram which are variable identifiers
should follow the indicator value. (This is not always necessary,
but it simplifies the task of the processor.)

The real and/or integer arguments of the subprogram which are
variable identifiers should follow the indicators real and/or
integer respectively. (This is not always necessary, but it
simplifies the task of the processor.)

If the array identifier appears also as an argument of a sub-
program, then see, for example:

SUBROUTINE token (. ., .., Nmatriz, . ., ..)

There may, or may not be a COMMON statement.

The same as above, only replace FUNCTION Atoken by REAL
FUNCTION Atoken.

The part of the subprogram : : : must be treated like a separate
program.

This type declaration overrides only the normal mode indication,
it does not necessarily include all (integer and/or real) variable
identifiers.

In contrast to FORTRAN IV, the type declarations in an
ALGOL 60 program must contain all (integer and/or real)
variable identifiers.

The main program must contain the declaration INTEGER
token. This declaration must precede the first call for the
INTEGER FUNCTION.

The main program must contain the declaration REAL token.
This declaration must precede the first call for the REAL
FUNCTION.

Jump appeared in a preceding switeh jump: = v, ve, . . . , vg
declaration.

The statement on the right side of the logical if statement cannot
be a do statement or a logical if statement.

15



N35

N36

N37

N38

N39

N40

N41

N42

DICTIONARY FOR COMPUTER LANGUAGES

The main program must contain the declaration LOGICAL
token. This declaration must precede the first call for the
LOGICAL FUNCTION.

The real and/or integer and/or logical arguments of the sub-
program which are variable identifiers should follow the indi-
cators real and/or integer and/or Boolean respectively. (This is
not always necessary, but it simplifies the task of the processor.)
If...and/or : . : contain more than one statement, then translate

according to:

IF(....)GOTOm
IF(....) GO TO n,
GO TO n
nll N
GO TOn
n2| o o o

n| CONTINUE

If I17 and/or ::: contain more than one statement, then trans-
late according to:

IF(....)GOTOm

GO TO ne
n1| ..

GO TO n
nzl

n| CONTINUE

If . . . contains more than one statement, then translate accord-
ing to:

IF(...)GOTOn

GO TOn
n1|

n| CONTINUE

The range of a for . . . do statement goes up to the next semi-
colon or includes the constants of the immediately following
begin . . . end brackets.

The function is calculated with a precision equivalent to twice
as many significant digits as are obtained in ordinary operation.
Some FORTRAN II processors such as IBM 1620y require that
the letter F' be the last letter of the identifier of a standard
function.

16



N43

N44

R1

R2
R3

R4

R5

R6

R7

DEFINITION OF TERMS

The argument of ABS(...) must be of real type. If the argu-
ment is of integer type, then replace the right-hand side with:

IABS(...) + 1

Exception: IBM 1620y;:
In this case replace the right-hand side with:

ABSF(...) +1
Add the contents of the bracket and use this value.

2.4 LIST OF RESTRICTIONS

The argument must be of the type real. The result is of the
same type.

The variable identifier cannot begin with I, J, K, L, M, or N.
The length of the statement or text is limited to y continuation
cards.

A FORMAT statement cannot be the first statement in a DO
loop.

The identifier of a FORTRAN II subprogram cannot end with
the character F.

Not all processors for IBM 1620; and IBM 1401 allow SUB-
ROUTINE and FUNCTION statements.

In FORTRAN it is not possible to have a variable identifier (or
term) act as a bound in an array declaration. If this occursin an
ALGOL program, then one should replace the variable identifier
(or term) by an estimated integer number.

17



DICTIONARY FOR COMPUTER LANGUAGES

2.5 LIST OF COMPUTER AND PROCESSOR PROPERTIES
WHICH ARE IMPORTANT WITH RESPECT TO THE

TRANSLATION OF PROGRAMS

Computer @ B y s € 4 n
2100
ASI 6020 6 32767 9 --8388608 11 99999 —176
6040 +4-8388608 +176
B 5000 10 11 8 —46
+69
B 5500 30 1023 0 16 16 —63
+63
CAB 500 10,5*% 32767 7 8 85
8090
CDC 160G 6 9 6 8 99999 —32
8092 432
3100
CDC 3200 8 4 6 10 32767 —308
3300 +308
3400 —308
CDC 3600 8 i 14 10 99999 +308
3800
6400 —308
CDC 6600 8 131071 § 17 14 99999 +- 308
6800
CDC 1900 9
Elea 4001 5 99999 t 5 8 9999 —49
6001 +4-50
FP 6000
GAMMA 30 6 8 8 —99
308 +99
GAMMA M40 6 32767 9 7 12 9999. —77
+77
* ALGOL proc.
t Tape.

1 A statement may have up to 598 operators, deliminators, and identifiers.

§ A statement may have up to 660 operators, deliminators, and identifiers.
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Computer « B y 3 € g |
GAMMA 60 8 10 10 —40
+40
H 21
H 22
H 200 6 28672 9 2-20 2-20 99999 —99
+99
H 400 [ 3072 3 13 10 99999 —64
+63
H 800 6 32767 9 13 12 32767 —76
+76
H 1400 6 6144 6 13 9 99999 —50
+49
H 1800 6 28672 19 13 18 32767 —176
+176
IBM 360 6 9999 9 17 15 99999 —178
+75
IBM 704 6 32767 9 —131071 8 32768 —38
709 +131071 +38
IBM 1401 6 9999 9 2-20 2-20 99999 —50
1410 2-40 2-40 -+-49
IBM 1620; b 9999 0 4 8 9999 —350
+49
IBM 162011 6 9999 4 4-20 2-28 907" 00
100
IBM 1800 5 9999 ] — 32767 10 9% —99
+ 32767 +99
IBM 7040 6 9999 9 11 9 99999 —38
7044 +38
IBM 7070 6 9999 9 10 8 99999 —50
7074 +49
IBM 7090 6 32767 19 —131071 8 32768 —38
7094 4131071 +38
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Computer a« ) y 38 € g 7)
KDF 9 8 1 13 13 1000 —128
+128
503
NE 803 6 1 11 8 —176
803B +76
PDP-1 6 256144 10 10 256144 —99
+99
PDP-4 6 256144 ¢ —131071 10 99999 —99
+131071 +99
PDP-5 4 4096 1 — 2047 7 2047 — 2047
+2047 +2047
PDP-6 6 256144 9 10 16 99999 —131071
+ 131071
PDP-7 6 256144 1 —131071 10 99999 —99
+131071 +99
PDP-8 4 4096 1 — 2047 7 2047 —2047
-+-2047 +2047
910
920
SDS 925 8 32767 9 —8388607 12 99999 —T77
930 + 8388607 +77
9300
TR 4 6 30000 13 20 99999 —150
10 +150
22
Z 23 6 255 T 1 9 —38
25 +39
1 Tape.
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2.6 THE DIFFERENT COMPUTER PROCESSORS AND THEIR
MAIN RESTRICTIONS OR ADVANTAGES WITH RESPECT
TO ALGOL 60 AND FORTRAN
2.6.1. ALCOR-Group

1. The separator while is not used.

2. The declarator own is not used.

3. A variable identifier may have an arbitrary number of characters,
but only the first 6 are used to identify it.

4. The arithmetic operator — is not used.

5. If the exponent in an exponential operation is a positive integer,
then the result is of the same type as the base.

6. Only simple Boolean expressions are used.

7. The controlled variable in a for statement cannot be a subscripted
variable.

8. All formal parameters of a subprogram must be specified.
9. go to an undefined switeh is not allowed.

2.6.2 Burroughs Corp
The ALGOL 60 language is fully implemented.

2.6.3 Compagnie BULL
ALGOL processor:
1. The declarator own is not used.
2. The specifier string is not used.

3. All formal parameters of a subprogram must be specified.
4. Labels must not be unsigned integers.

2.6.4 Control Data Computer Systems
FORTRAN II processor:

Besides the normal features, this processor includes magnetic tape
control statements.

FORTRAN 1V processor:

1. More than one statement may be written on one record by using
the statement separator § .
2. The last character of a standard library function is an F.

2.6.5 Digital Equipment Corporation
FORTRAN II processor:

The FORTRAN II processor for the machine types PDP-5 and
PDP-7 includes all FORTRAN IV features with the exception of the
logical expressions.
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2.6.6 Elliott Brothers

1. A variable identifier may have an arbitrary number of characters,
but only the first 6 are used to identify it.

2. The result of exponentiation is always real.

3. Labels must not be unsigned integers.

4. A go to statement inside a procedure body cannot lead to a
statement outside this body.

5. Any label used to label a statement must be declared at the head
of the innermost block and be included in the switch list of a switch
declaration.

6. All formal parameters of a subprogram must be specified.

7. A switch identifier or a subprogram identifier may not appear as
an actual parameter of a subprogram.

8. The logical operator a; > as must be replaced by az or not a;.

2.6.7 English Electric-Leo

1. All formal parameters of a subprogram must be specified.

2. Labels must not be unsigned integers.

3. go to an undefined switeh produces an error indication.

4. A real procedure or integer procedure must contain an assignment
to the real procedure or integer procedure identifier.

5. The declaration own array is not allowed.

2.6.8 Honeywell
FORTRAN II processor (called Automath 400):

In addition to the normal features, this processor includes:

1. FORTRAN 1V statements in connection with the use of magnetic
tape as input and output devices.

2. An ERASE statement clears to zero the locations corresponding
to the identifiers specified in a list.

FORTRAN IV processor (called Automath 800):

In addition to the normal features, this processor includes:

1. It is possible to interspace H800 instructions, written in the
ARGUS language, into the FORTRAN IV program.

2. A BUFFER statement makes it possible to overlap reading and/or
writing and/or computation.

3. An ERASE statement clears to zero the locations corresponding
to the identifiers specified in a list.
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2.6.9 Olivetti
ALGOL processor (called PALGO):

1. Expressions used as subscripts can be only linear combinations of
integer variable identifiers and integers.

2. The main program and the subprograms consist only of one block.

3. Compound statements are accepted only if controlled by for
statements.

4. Compound conditional statements are not allowed.

5. Non-local variables and parameters called by identifiers cannot
appear on the left side of an assignment statement.

FORTRAN II processor:

Besides the normal features this processor includes magnetic tape
control statements.

2.6.10 Scientific Data Systems
ALGOL processor: No information available (At present).
FORTRAN II processor:
In addition to the normal features, this processor includes:

1. Expressions of mixed type are allowed.

2. The index, initial value, limit value, and increment value of a
DO statement can be of real type.

3. The increment value of a DO statement can be negative and can be
changed inside the loop.

4. FORTRAN 1V statements in connection with the use of magnetic
tape as input and output devices.

5. Subscripts can be negative or zero.

6. An array may have more than three dimensions. Upper and
lower bounds can be introduced, they may be positive, zero, or negative.

Example: DIMENSION matrix(—10/10,0/5,12,7/45).

FORTRAN 1V processor:
In addition to the normal features, this processor includes:

1. Expressions of mixed type are allowed.

2. The index, initial value, limit value, and increment value of a
DO statement can be of real type.

3. The increment value of a DO statement can be negative and can
be changed inside the loop.

4. A subscript can be negative, zero, or a general expression.

5. An array may have more than three dimensions. Upper and lower
bounds can be introduced, they may be positive, zero, or negative.
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Example: DIMENSION matrix(—10:10,0: 5,12,7: 45).

6. Dynamic arrays:
Example: ALLOCATE matrix(K: I/J,SQRT(P)).
7. Subprograms may be compiled with each other and with the main

program. In this case a COMMON statement is not necessary.
8. Local statement labels, i.e. these labels are restricted to a given
program area. Program areas are limited by using the statement END

LABELS.
2.6.11 Telefunken

ALGOL processor:
The same restrictions as for the ALCOR group.

2.6.12 Zuse
The same restrictions as for the ALCOR group.
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2.7 ALGOL 60 REFERENCE LANGUAGE SYMBOLS AND
THE HARDWARE REPRESENTATION OF THE DIFFERENT

COMPUTER TYPES

BULL BULL

B 5000 ALCOR NE KDF9 CAB 500 GAMMA CDC
Arithmetic operators '
+ + -+ + + =+ + +
X X X * X * *
/ / / / / / / /
- DIV n.u. DIV *DIV ° % !/
? * POWER %%k %%k * A %k %
Relational operators
< < LESS LESS > < < ‘LS’
< < NOT LESSEQ *> < <= 'LQ’

GREATER
= = EQUAL EQUAL = = = 'EQ’
> > NOTLESS GREQ = = > = ‘GQ’
> > GREATER GR > > > ‘GR’
+ + NOT NOTEQ =+ * * 'NQ’
EQUAL

Logical operators
= EQV  EQUIV EQUIV *EQV EQUI EQUI '‘EQV’
) IMP IMPL n.u. *IMP IMPLI IMPL ‘IMP’
A% OR OR OR *OR OR (019) ‘OR’
A AND AND AND *AND AND ET ’AND’
7 NOT NOT NOT *NOT NOT NON ‘NOT’
Separators
10 10* 10 @ v 1T Torw '

: : : -> :
= < = = *— = = =
; ; ; ;or’ *, A <or; $§
Brackets
() () () () () () () ()
[] [1] [] () *(*) Il $C)8 ()
¢ 71 s ? *Q *U n.u. e 1 o
begin BEGIN BEGIN BEGIN *BEGIN DEBUT DEBUT ‘BEGIN’
end END END END *END FIN FIN '‘END’
Alphabetic characters
a-z A-Z A-Z A-Z A-Z A-Z A-Z A-Z
A-Z
Numeric characters
0-9 0-9 0-9 0-9 0-9 0-9 0-9 0-9

n.u. not used.
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Essential Input and Output
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Computer Processors



One of the major differences between the two languages FORTRAN
and ALGOL 60 is that FORTRAN includes input/output statements
and ALGOL 60 does not. Thus, for every ALGOL processor a decision
is necessary as to how the computer may communicate with the outside
world. Some computer manufacturers haveincorporated the FORTRAN
input/output statements into their ALGOL processors, while others
have developed their own input/output systems (which in most cases
are easier to handle than the FORTRAN input/output statements).

In the middle of 1964 the ALGOL committee published a proposal
for input/output conventions in ALGOL 60* (known as the Knuth
proposal) which in the near future will very likely be incorporated into
the existing ALGOL processors.

The following table shows the different computer manufacturers and
the input/output system used:

Advanced Scientific Instruments FORTRAN

Burroughs Corp. Own system

Compagnie BULL Own systemt

Honeywell FORTRAN

International Business Machines FORTRAN

English Electric-Leo Own system, very close to Knuth’s
proposalt

Elliott Brothers Ltd. Own system

Digital Equipment Corp. FORTRAN

Scientific Data Systems FORTRAN

Telefunken AG ALCOR group, to be changed into
Knuth’s proposalt

Zuse ALCOR group

Olivetti FORTRAN

Control Data Computer Systems Own systemt

International Computers and Tabu- Own system, to be changed into

lators Ltd. Knuth’s proposal.t

General Electric Company FORTRAN

Since it is impossible to present all the different input/output systems
in full detail, we restrict ourselves to the following points:

1. The FORTRAN input/output statements are explained in Section
5.0. Appropriate examples and the translation (if possible) into input/
output statements of the NE (NE 803) are given.

2. In Section 3.1 essential FORTRAN output statements are trans-
lated as exactly as possible into the corresponding statements of
different ALGOL processors (including Knuth’s proposal).

3. In Section 3.2 essential input/output statements of different
ALGOL processors (including Knuth’s proposal) are translated as
exactly as possible into the corresponding FORTRAN statements.

* Communs Ass. comput. Mach. 7,273(1964) and 7,628(1964).
+ Of course, the FORTRAN processor uses the FORTRAN input/output system.
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3.1 FORTRAN OUTPUT STATEMENTS AND THE
APPROPRIATE OUTPUT STATEMENTS OF ALGOL
PROCESSORS

On the following pages some essential FORTRAN output statements
are translated as closely as possible into the appropriate statements of
Knuth’s proposal, the KDF9 processor, and the NE processor.

We restrict ourselves to output statements, because it is very simple
to read in a value with the standard input of an ALGOL processor.

For simplification the paper tape punch was chosen as output device
for all statements mentioned. Where necessary, examples are given
(in this case the device number of the paper tape punch is 12).

The following abbreviations are used exclusively in Section 3.1:

k=¢+c¢ y=w-—d—2 t—-—w—d—6
r=w—1 t=w—d—6

n| FORMAT(Iw)
PUNCH TAPE n,a

Knuth output I(device number,‘+rD’,a),

KDF9 WRITE (device number, The number of D's =r
FORMAT(‘ + D- -D’),a),

NE PRINT DIGITS(r),a;
example: printed result:

99| FORMAT(IS5)
PUNCH TAPE 99,4 7

output 1(12, +4D’, 4);
WRITE (12,FORMAT(‘ + DDDD'),A);
PRINT DIGITS(4),A;

1%
R
oJ|| 3| ~3]| 3
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n| FORMAT(Fw.d)
PUNCH TAPE nga

Knuth output I(device number,+yD.dD’,a);
KDF9 WRITE (device number, The first group of D’s
FORMAT(‘+D--D.D- -D’),a); contains y characters and
the second d characters.
NE PRINT ALIGNED(y,d).a;
example: printed result:
98| FORMAT(F12.4) | 938.2129
PUNCH TAPE 98,4
output 1(12,°+6D.4D’,A); [+000938.2129)|
WRITE (12,FORMAT [+000938.2129)|
(‘* DDDDDD.DDDD’),A);
PRINT ALIGNED(6,4),4; | 938.2129)|

Knuth
KDF9

NE

n| FORMAT(Ew.d)
PUNCH TAPE na

output I(device number,‘ +tD.dDyo+2D’,a);

WRITE (device number, The first group of D’s
FORMAT(‘+D--D.D--D contains t characters and
@ +DD’),a); the second d characters.

PRINT SCALED(w — 6),a;
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example: printed result:
97 FORMAT (E14.5) |  6.64359E — 24|
PUNCH TAPE 97,4
output 1(12,‘ +3D.5Dyy + 2D’,A),‘ l+006.6435910 — 24'
WRITE (12,FORMAT |+006.64359 @ — 24|
(‘*DDD.DDDDD@ + DD’),4);
PRINT SCALED(8),A; | 6.6435900@ — 24|

n| FORMAT(cHtext)
PUNCH TAPE n

Knuth  output I(device number,‘text”’),
KDF9 WRITE TEXT (device number, ‘text’);

NE PRINT S$text?;

example: printed result:

96| FORMAT(10HHERE WE GO) [HERE WE GO|
PUNCH TAPE 96

output 1(12,HERE WE GO”); [HERE WE GO|
WRITE TEXT (12,HERE WE GO’) ; [HERE WE GO|
PRINT $SHERE WE GO?; [HERE WE GO|




DIFFERENT INPUT AND OUTPUT STATEMENTS

n| FORMAT({ },cHtext)
PUNCH TAPE n,a

Knuth  output I(device number,{ }‘text”,a);

KDF9 WRITE (device number, FORMAT({ }'),a);
WRITE TEXT (device number,‘text’);

NE PRINT { },3SAMELINE a,$ text?;
example: printed result:
95| FORMAT(I2,6HIS ODD) [ 3IS ODD|
PUNCH TAPE 95,4
output 1(12,'4+D‘IS ODD’’,A); |+3IS ODD|
WRITE (12,FORMAT(‘ +D’),A); [+3IS ODD]

WRITE TEXT (12,18 ODD’);

PRINT DIGITS(1),SAMELINE A,$IS | 3IS ODD)|
ODD:?;

n| FORMAT({-},eX{})
PUNCH TAPE naa

Knuth output 2(device number, {-}eB.{--} ,a,a1);

KDF9 WRITE (device number, FORMAT(‘{-};e8’),a);
WRITE (device number, FORMAT(‘{--}),a1);

NE PRINT SAMELINE,{-},0,88¢?,{},a1;
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n| FORMA T(Fw.d//Ew.d)
PUNCH TAPE n,a,a

Knuth output 2(device number, ‘ +yD.dD//,+tD.dDy + 2D’,a,a1);

KDF9 WRITE (device number, FORMAT(‘+D--D.D--D;
CC),a);

WRITE (device number, The first group of D’s

FORMAT(‘+D--D.D--D contains y characters the

@ = DD’),a); second d characters the
third § and the fourth d
characters.

NE PRINT ALIGNED(y,d),a,$L22,SCALED(w — 6),a:;

example: printed result:
93| FORMAT(F7.2/|E15.5) 137.04'
PUNCH TAPE 93,4,B
2.42620F — 10|
output 2(12,°+3D.2D//,+4D.5Dyo + [+137.04]

2D, A,B);

+0002.42620,9 — 10|

WRITE (12,FORMAT(‘+ DDD.DD;CC"),A);[+137.04]
WRITE (12,FORMAT(‘+ DDDD.
DDDDD@ +DD’),B);

10002.42620@ — 10|

PRINT ALIGNED(3,2),A,8L2?, 137.04|
SCALED(9),B; |

2.42620000@ — 10|
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n| FORMAT (cHtext{ })
PUNCH TAPE n,a

Knuth output I(device number,‘‘text’{ }’,a);

KDF9 WRITE TEXT (device number,‘text’);
WRITE (device number, FORMAT(‘{ }),a);

NE PRINT PREFIX($text?),{ },a;

example: printed result:

92| FORMAT(5H ETA = 14) |ETA= —12]
PUNCH TAPE 92,4

output 1(12, “ETA="+3D’,A); | ETA= —012|
WRITE TEXT (12, ETA="); | ETA= —012]
WRITE (12,FORMAT(‘+ DDD’),A);
PRINT PREFIX($ ETA=7?), |ETA= —12|
DIGITS(3),4;

n| FORMAT(e{-},c{-})
PUNCH TAPE n,ay, ..., a¢0e+1,...,ak

Knuth output k(device number,‘e({-}),c({--})’,a, . . . , ax;
KDF9 OUTPUT (device number,ay, . . ., ax);

NE PRINT SAMELINE {-},a1, . . ., Qe{*},@e+1, - - - , Qk;
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example: printed result:

91| FORMAT(215,3F10.3)
PUNCH TAPE 91,A,B,C,D,.E

[ 22 1933 —7.532 0.010 22,222
output 5(12,2(+4D),3(+5D.3D),4,B,C,D,E);

[F0022 + 1933 — 00007.532 + 00000.010 + 00022.222|
OUTPUT (12,A,B,C,D,E);

+2.20000000000@ —+ 01
+1.93300000000 @ + 03
—17.53200000000 @ -+ 00
+1.00000000000 @ — 02
+2.22220000000 @ + 01

PRINT SAMELINE,DIGITS(4),A,B,ALIGNED(5,3),0,D,E;
[ 22 1933 —7.532 0.010 22.229)]

n| FORMAT( })
WRITE(Ncn)ay, . .., ak

Knuth  output k(Ne,'k({ }).a1, - . - , ax);
KDF9 OUTPUT (Ne,ay, . . ., ax);

3.2 ALGOL PROCESSOR INPUT AND OUTPUT STATEMENTS
AND THE APPROPRIATE FORTRAN INPUT AND OUTPUT
STATEMENTS

In this section, input/output statements of different ALGOL pro-
cessors are translated into FORTRAN II and FORTRAN IV. Only a
few essential examples are chosen out of a possible great variety.
Reference is made to sources of further details. As examples of the
input/output device, paper tape reader and paper tape punch were
chosen.
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3.2.1 Knuth’s Proposal*

The following statements are only a few examples of the great number
of statements to manipulate input and output of data. All these
statements are formulated as subprograms, only the call for these

subprograms is given here.

input I(device number,* ’,a);

This statement causes the next
number on the device mentioned
to be read in and to be assigned to
a. No format statement necessary
(standard input).

n| FORMAT( })
ACCEPT TAPE na

The format must be set according
to the data.

output I(device number,‘ ’,a);
(standard output)

n| FORMAT(Ew.c)
PUNCH TAPE na

w=c¢+6

output /(device number,
‘4+wD.dD’a);t

n| FORMAT(Fed)
PUNCH TAPE n,a

e=w-+d+ 2

output I(device number,
‘+rD’a);t

n| FORMAT(Iw)
PUNCH TAPE n,a

w=r+1

output I(device number,
‘+tD.dDy + 2D’,a),t

n| FORMAT(Ew.d)
PUNCH TAPE nga

w=t+d-+6

output I(device number,
“text”);

n| FORMAT(cHtext)
PUNCH TAPE n

* For more details see: A Proposal for Input/Output Convention in ALGOL 60, Com-

muns Ass. comput. Mach. 7,273,628(1964).

1 If there is no sign, then the data are assumed positive. If there is a negative sign,
the negative data will appear with a minus sign, the sign will be suppressed if the data are

positive.
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3.2.2 English Electric-Leo Processor*

The following statements are only a few examples of the great variety
of statements available to manipulate input and output of data. All
these statements are formulated as library subprograms with a code
number ANc. The necessary library subprograms for a particular pro-
gram are placed in the outmost block of the program (that is, immedi-
ately after the first begin).

Example:

BEGIN
LIBRARY A1,A4.412:

a: = REA D(device number); n| FORMAT( })
ACCEPT TAPE na

This statement causes the next

number on the device mentioned The format must be set according
to be read in and to be assigned to to the data.

a. No format statement necessary

(standard input).

OUTPUT (device number,a); n| FORMAT(E18.11)
(standard output) PUNCH TAPE n,a
WRITE (device number, n| FORMAT(Fed)
FORMAT(—D--D.D--D’);t PUNCH TAPE n,a

The first group of D’s may contain e =w +d + 2
w characters and the second d
characters.

* For more details see: KDF9 ALGOL Users Manual, English Electric-Leo Computer
Ltd. (December 1964).

1 If there is no sign, then the data are assumed positive. If there is a positive sign the
appropriate sign of the data are always given out, left-hand zeros are suppressed. If
there is a not equal (%) sign the appropriate sign of the data are always given in the
position specified by the + sign.
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WRITE (device number, n| FORMAT(Iw)
FORMAT(‘—D--D’);t PUNCH TAPE na
There may be r D’s. w=r+1

WRITE (device number, n| FORMAT(Ew.d)
FORMAT(—D--D.D--D PUNCH TAPE n,a
@ - D-D’)’a);T

The first group of D’s may contain w =t +d + 6
t characters and the second d

characters.
WRITE TEXT (device n| FORMAT (cHtext)
number,‘text’); PUNCH TAPE n

3.2.3 Elliott Brothers Ltd. (NE) Processor*

General rule: The format setting applies to all values to the right of this
setting up to the end of the output statement. If there are two con-
flicting format settings, the rightmost is valid.

READ ay, . . ., ax; n| FORMAT({ })
ACCEPT TAPE nay, ..., a

k values are read into memory and

are correlated with the identifiers The format must be set according
a,...,Qk. to the data.

No format statement necessary.

* For more details see: 803 Library Program A104 ALGOL, Elliott Brothers Ltd.
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PRINT ay, . .., ax;

The k values of the identifiers
a, . . ., ax are printed out with
significant digits times a power of
ten for real numbers and with 8
significant digits for integer num-

bers (standard output).

n| FORMATkEw.¢)

PUNCH TAPE n,a,, . ..

w=¢+6
or

n| FORMAT(kIw)

PUNCH TAPE n,a,, ...

w=23+1

y Qk

) Qg

PRINT DIGITS(r),a;

n| FORMAT(Iw)
PUNCH TAPE n,a

w=r-+1

PRINT ALIGNED(w,d),a,

n| FORMAT(Fe.d)
PUNCH TAPE n,a

e=w-+d+2

PRINT SCALED(e),a;

n| FORMAT(Ew.d)
PUNCH TAPE n,a

w=¢e-+6
d=w—17

PRINT $ text ?;

n| FORMAT(cHtext )
PUNCH TAPE n
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3.2.4 ALCOR Group*

RE‘AD(aI, v eey ak);

k values are read into memory and
are correlated with the identifiers
ay, ..., Qakg.

No format statement necessary.

n| FORMAT( })
ACCEPT TAPE n,ay, . ..

» Ak

The format must be set according
to the data.

PRINT(ay, ..., a);

The k values of the identifiers
ai, . . . , ax are printed out with e
significant digits times a power of
ten for real numbers and with §
significant digits for integer num-
bers.

n| FORMAT(kEw.e)

PUNCH TAPE n,ay, ..., a
w=c¢ -+ 6
or
n| FORMAT(klw)

PUNCH TAPE n,ay, ..., a

w=2084+1

WRITE(“text”);

n| FORMAT(cHtext)
PUNCH TAPE n

* For more details see: ALGOL-Manuel der ALCOR-Gruppe: Elektronische Rechenan-
lagen 5/6 (1961) and 2 (1962) and Appendix 5 of the manuals of the different ALCOR

processors.
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Part 4

ALGOL 60— FORTRAN Il and IV



Ox the following pages the left column contains ALGOL 60 statements
and the right column the appropriate FORTRAN statements.* First
the translation into FORTRAN 11 is given, this translation is also valid
for FORTRAN 1V, as long as no additional translation is given.t The
beginning of a translation into FORTRAN IV is indicated by FIV.
The sequence of statements is in alphabetical order, except where this
rule is broken to place together statements which belong together.
After the translation of closely related statements (as if . . . then or
if ...then...else or for ... do, etc.) a few examples of combinations
of these statements are given. Some parts of a computer program (such
as subprograms, go to, switch, etc.) are easier to translate when treated
as a group of statements; such statements are grouped together.
Groups with essential combinations of statements inside this group are
translated first. After this, a few examples show how these groups can
be combined together. Sometimes it is necessary to change the type of
an identifier (as indicated by an A or N as the first character of this
identifier), this change must be done in a preceding statement. The
meaning of the notes (abbreviated by N) and restrictions (abbreviated
by R) is given in Part 2.2 and 2.3. For explanation and example
card reader and card punch are assumed as input/output devices. A
reference to IBM 1620 includes both IBM 1620; and 1620y;.
Important remark: Occasionally, the length of a FORTRAN state-
ment exceeds the width of a line. To indicate that the next line should
appear as a continuation of the previous line, we use two arrows — «.
The following example makes this clear:
The statement

DIMENSION Amatrix(Nc,),—
«~Amatriz(Ncz)

should actually be written as:
DIMENSION Amatriz(Nc:),Amatriz(Ncs)

* Statement numbers (labels) are separated from the statement itself by some spaces,
indicating in this manner their actual appearance on a record.

t A translation into FORTRAN 1V is given only if it is simpler than the FORTRAN II
translation.



ALGOL — FORTRAN

ALGOL->FORTRAN abs

...abs(4a)...; ...ABS(Aa). ..

NI1,N42

Exception: IBM 1401, IBM 1620y,
in this case:

1 F(Aa)ny,na,ne
n| Aa = —Aa
’nzl ...4Aa...

...abs(Na)...; Aa = TABS(Na)
...Aa. ..

N1

Exception: IBM 1401, IBM 1620y,
in this case:

IF(Na)ny,ng,ne
n| da = —Na
GO TO ns3
ns| Aa = Na
ng| ...da...

Exception: IBM 16205

Aa = ABSF(Na)
... Aa ...

...abs(Aterm) . .. ; ... ABS(Aterm) . ..

N1,N2,N42

Exception: IBM 1401, IBM 16204,
in this case:

Av = Aterm

I F(Av)ny,na,ng
n| Av = —Av
nz| L Av L.
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abs

ALGOL->FORTRAN

...abs(Nterm) ... ;

Av = I ABS(Nterm)
L Av. .

N1,N2

Exception: IBM 1401, IBM 1620y,
in this case:

Nv = Nterm
IF(Nv)ny,ne,ne

m| Av = —Nv
QO TO n3

ns| Av = Nv

n3| G Av L.

Exception: IBM 162012
Av = ABSF(Nterm)

A
addition:
a1 + az ay + az
N2
...arctan(a) ... ; ...ATAN(Aa)...
R1,N42
...arctan(term) . .. ; ...ATAN(Aterm) . ..
R1,N2,N42
arithmetic operators:
+ +
x .
/ /
= not available (see under: division)
4 *ok
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ALGOL->FORTRAN

array declaration

array declaration:

see array matriz[ ] or real array
matriz[ ] or integer array
matrix| ].

array matrix ;
see also:

procedure foken(. ., ..,

This statement indicates that the
parameter matriz of the subpro-
gram is an array identifier.

Omit in translation.

Nmatriz, . ., ..);
array matrix[Nc,:Ncz]; DIMENSION Amatriz—
«~(Ncy)
R7
Nex < B
array matriz[ —Nc,:Nez]; DIMENSION Amatrix—
«~(Ner + Neg + 1)
R7, N44

Nc +N62+1SB

Whenever Amatriz appears in the
program, the subscript must be
increased by N; + 1.

example:

array J[ —12:38];

J[L]: =A X B;

DIMENSION ZJ(51)

ZJ(L + 13) = A*B
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array

ALGOL->FORTRAN

array matria[ —Nc;:—Ncz];

DIMENSION Amatriz(Necy)

R7

Ney < B

Whenever Amatriz appears in the
program, one has to multiply the
subscript by —1.

Since a negative subscript is not
permitted, an additional state-
ment must precede the appearance
of the subscripted variable identi-
fier.

example:
array KURT[—30:—10]; DIMENSION URT(30)
KURT[L]: — A/B; Ll =1L
URT(LI) = A/B
array matriz[1:Nc); DIMENSION Amatriz(Nc)
R7
Nec < B
array matriz[0:Nc]; DIMENSION Amatrix—
«~(Nc¢c + 1)
R7,N44
Ne+1<88

array DOOPF[0:28);

DOOF[L]: = BIC — D:;

Whenever Amatriz appears in the
program, the subscript must be
increased by +1.

example:

DIMENSION DOOF(29)

DOOF(L + 1) = B/C — D
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ALGOL>FORTRAN

array

array matriz[if a; < as then
Nc; else Ncs :Ncs);

DIMENSION Amatriz(Nc3)

R7
Nes < B

array matriz[Nc; : if a + a; then
Nec; else Ncs];

IF(a — a;)n,m,n
n| DIMENSION Amatriz(Ncs)
GO TO no
n1| DIMENSION Amatriz(Ncs)
ns) CONTINUE

R7
NCZ)NC3 < B
array matrixl,matriz2[1:Nc]; DIMENSION Amatrixl—
«(Nc),Amatriz2(Nc)
R7
Ne < B
array matrix[Nci:Nca,Nes:Neg); DIMENSION Amatriz—
«~(Ncg,Ncy)
R7
NCZ)NC4 < B
array matriz[1:Nci,1:Ncz]; DIMENSION Amatriz—
<—(N 61,N Cz)
R7
Nci,Ne: < B
array matriz[Nci:Nca,Nca:Ncy, DIMENSION Amatriz—
N05.'N66],’ <-—(N02,NC4,ZVC1;)
R7

NCz,NC4,NCs < ﬁ

49



array

ALGOL->FORTRAN

array matriz[1:Ncy,1:Ncg,1:Ncs];

DIMENSION Amatrix—
<~—(Ne¢1,Nez,Ncs)

R7
Nc¢y,Ncz,Nez < B

Exceptions: IBM 1401 and IBM
16201 permit a maximum of two
dimensions only for an array.

array matriz[Nci:Nca,Ncs:
NC4, ceey ch-—l.‘NCk];

For k > 6 no translation possible
for IBM processors.

array matrizl matriz2,matriz3
[1:Ne¢i],matrixd,matrizd
[1:Necg,1:Ncs);

DIMENSION Amatrizl—~
«~—(Ncy),Amatriz2(Nc,y),—
<~—Amatrizd(Nc,),Amatrizd—
<«(Ncg,Ncs), Amatrizh —
<«(Necz,Necs)

R7
Ncy,Neg,Nez < B

assignment statement:

ay;. = agz,
az:N12

ay = az

az :N2,R3

logical assignment statement:

No logical assignment statement
allowed in FORTRAN II.

a = a,
FIV:
a.EQ.ay
multiple assignment statement: a) = a4
ay; = Q. = az. = a4, az = a4
aq:N12 as = a4

All identifiers are of the same type.




ALGOL->FORTRAN

begin

begin

Acts as an opening bracket. Omit
in translation.

begin comment fext;

For the computation, this state-
ment is equivalent to begin.

C text

text must be written in columns 2
through 72, for a longer text
additional cards must be used.
These also must start with a C in
column 1. No limit on the number
of comment cards.

Boolean vy, . . ., v;

No logical variables allowed in
FORTRAN IIL

FIV:
LOGICAL v, ..., v

Boolean procedure foken;

end;

No logical subprogram allowed in
FORTRAN II.

FI1V:
SUBROUTINE token
COMMON w,, . . ., v,
RETURN
END

R5.N21 N29
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Boolean procedure

ALGOL->FORTRAN

Boolean procedure token(. . , .

cl,...,ct,..,..);

No logical subprogram allowed in
FORTRAN II.

FIV:
LOGICAL FUNCTION —
~token(..,..,c1, ...,
“«Cky « ¢y« )
RETURN
END

R5,N21,N29,N35

Boolean procedure token(. . . . .

vl,...,vk,..,..);

end;

N22

No logical subprogram allowed in
FORTRAN II.

FIV:
LOGICAL FUNCTION —
<~token(..,..,v1,...,—>
«Vky ooy )

COMMON v, ..., v

RETURN
END

R5,N21,N29,N35
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ALGOL—>FORTRAN

Boolean procedure

Boolean procedure token(. ., ..,

Amatriz, . ., ..);

array Amatriz;

end;

N22

No logical subprogram allowed in

FORTRAN I1.

FI1V.
LOGICAL FUNCTION —~
~token(. ., .., Amatrix,—~

COMMON v, ...,v
DIMENSION Amatrix(Nv)

RETURN
END

R5,N21,N29 N35
Nv is an arbitrary variable identi-

fier.

Boolean procedure token(. ., . .,
tokenl, . .,..);

procedure tokenl;

end;

N22

No logical subprogram allowed in

FORTRAN II.

FIV:
LOGICAL FUNCTION —~
<~token(. ., .., tokenl,—
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Boolean procedure ALGOL->FORTRAN

R5,N21,N29,N35
The call for the subprogram must
be preceded by EXTERNAL—

«tokenl
Boolean procedure token(v,v1,c) No logical subprograms allowed in
text:(ay,vs,a2); FORTRAN I1.
e FIV:
end; LOGICAL FUNCTION —~

<token(v,1,¢,a1,02,a2)
COMMON v, ...,v

N22
RETURN
END
R5N21,N29,N35
Boolean procedure token(. ., . . ., LOGICAL FUNCTION —~
Cotextl:(. ., ..., . Dtext?: «token(..,...,..,..,—>
(coyevnyd)s S |
OOMMONM,...,’D;
end; e
RETURN
END
N22
R5,N21,N29,N35
scomment fext; C text

text must be written in columns 2
through 72, for a longer text
additional cards must be used,
also starting with a C in column 1.
No limit on the number of com-
ment cards.
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ALGOL->FORTRAN cos
...co8(a)... ...COS(4a). ..
R1,N42
FIV:
...CO8(d4a)...
R1
...cos(term) ... ; ...COS(Aterm) . ..
R1,N2,N42
FIV:
...COS(Aterm) .
R1,N2
division:
a/az Aay/Aa;
a1,a2:N12 N2
The result is of real type.
Na, +~ Na, Nai/Na

The arithmetic operator - is ex-
clusively used to divide operands
of the integer type.
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ALGOL->FORTRAN

end;
end

CONTINUE
END

end must be translated by CON-
TINUE if it is not the last
(physical) statement of the AL-
GOL program. Exception: end
in a Boolean procedure or integer
procedure or real procedure or
procedure must be translated as
RETURN

END

If it is the last statement of the
program then it must be trans-
lated by END.

end text;

For the computation this state-
ment is equivalent to end;.

CONTINUE
C  text
or

END
C text

See also under end.

text must be written in columns 2
through 72, for a longer text
additional cards must be used,
also starting with a C in column 1.
No limit on the number of com-
ment cards.
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ALGOL->FORTRAN entier

. entier(a) ... ; | fv F(a)ny,ng,ns
"y v =a — 1.
GO TO ns
ne] Nv=a
ngl CONTINUE

...Nv...
Note that the result is of integer
type.
example:
A: = K + entier(C); 1F(C)ny,na,ng
n| NC =C — I
GO TO ns
ngl CONTINUE
A =K + NC
NC :N3
FIV:
. entier(Aa) . . . ; ... AINT(Aa) . ..
. entier(Na) . .. ;
. enlier(term) . . . ; 1 F(term)ny,me,ne
n| Nv =term — 1.
GO TO ng

ng| Nv =term
ng)l CONTINUE
...Nv...

term:N2




entrer

ALGOL->FORTRAN

. ..entter(abs(a)) ... ;

A: = K + entier(abs(C));

A: = L + entier(abs(C));

Nv = ABS(a)
...Nv...

Exception: IBM 1401, IBM 1620.
For IBM 1620y:

example:

Nv = ABSF(a)
...Nv...

NC = ABSF(C)
A =K + NC

For IBM 1401 and IBM 1620;:

n1|

n2|
nal

example:
n1|

n2|
n3|

1F(a)ny,nz,n,
Ny = —a
GO TO ng
Nv=a
CONTINUE
...Nv...

1F(C)ny,nz,me
NC = —C
GO TO ns
NC =C
CONTINUE
A =L + NC

. . . entier(abs(term)) . . . ;

Nv = ABS(term)
...Nv. ..

term :N2

Exception: IBM 1401, IBM 1620
For IBM 16201::

58

Nv = ABSF(term)
...Nv...



ALGOL->FORTRAN

entier
N2
For IBM 1401 and IBM 1620y:
1 F(term)ny,me,ne
m| Nv = —term

GO TO n3
ne| Nv =term
ns] CONTINUE

«..Nv...

term :N2

. . . entier(arctan(a)) . . . ;

Nv = ATAN(a)
...Nv...

N42

Exception: IBM 1401:
Arctangent is not a predefined
function, one has to evaluate the
value by using a series approxi-
mation.

. . . entier(arctan(term)) . . . ;

Nv = AT AN(term)
...Nv...

term :N2
N42

Exception: IBM 1401:
Arctangent is not a predefined
function, one has to evaluate the
value by using a series approxi-
mation.

... entter(exp(a)) ...

Nv = EXP(a)
...Nv...

N42
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entier ALGOL->FORTRAN
.. .entier(exp(term)) . .. ; Nv = EX P(term)
...Nv...
term :N2
N42
.. .entier(ln(a)) . .. ; Nv = ALOG(a)

Exception: IBM 1401, IBM 1620,
in this case:

Nv = LOGF(a)

...Nv...

... entier(In(term)) . . . ;

Nv = ALOG (term)
...Nv...

term :N2

Exception: IBM 1401, IBM 1620,
in this case:
Nv = LOGF (term)
...Nv...

term :N2

. ..entier(sqrt(a)) . .. ;

Nv = SQRT(a)
...Nv...

N42

Exception: IBM 1401:
Nv = Aa**0.5
.Nv...
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ALGOL->FORTRAN entier

. . . entier(sqrt(term)) . . . ; Nv = SQRT (term)
...Nv...

term :N2
N42

Exception: IBM 1401:
Nv = Aterm**0.5
..Nv...

Aterm :N2

...exp(a)... ...EXP(Aa)...

R1,N42
FIV:
...EXP(Aa)...

R1

...exp(term) ... : ... EXP(Aterm) ..
R1,N2,N42
FIV:

... EXP(Aterm) .

R1,N2
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exponentiation

ALGOL->FORTRAN

exponentiation:
ata a1 **a
Exception:
NatAa Aay = Nay
Aay**Aa
a,a; :N12
example:
T: =NCtAP; AC = NC
T = AC**AP
exponentiation :
artazta (a1**az)**a
aﬁ(azTa) al*"‘(ag**a)
a,a;,a: :N12
expression:

The type of an expression will be The type of an expression will be
integer if all the operands are integer if all the operands are
integer, otherwise the expression is integer.

of real type.

The type of an expression will be
real if all the operands are real.

If the operands of an expression
are both of the integer type and
of the real type, the expression is
invalid.

...false... ;

No logical value allowed in FOR-
TRAN II.

FIV:
... .FALSE. ...
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ALGOL->FORTRAN for
for v: =azae, ..., ardo DO n Nv, =1k

begin Qo TO(nl,nz, ey m),Nvl
. ml o v=a

end.

a az, ..., ak:Nl2
N40

ne vV = Qs

Nk vV = Qg

n| CONTINUE

N7
If ... is very long, it is useful to

define the contents of ... as a

SUBROUTINE. This SUB-
ROUTINE may then be called
instead of writing . . ..

R6
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for ... step ... until

ALGOL->FORTRAN

for v: = a; step a2 until a3 do
begin

end;

ay,az,a3:N12
N40

n|

Na = ABS((as — a1)/—
«az) + 1.0000001

DO n Na; = 1,Na

ag = Na7 — 1

v = ag*az + ax

CONTINUE

N5N7,N42,N43

Exception: IBM 1401, IBM 1620y,
in this case:

n1|

n2|
n3|

Na = (a3 — a1)/az
I F(Na)ni,ny,ne

Na = —Na + 1
GO TO ng

Na = Na + 1
DO n Na; = 1,Na
ag = Na7 — 1

v = ag*az + a1

n| CONTINUE

N5,N7




ALGOL->FORTRAN

for ... step . .. until

for Nv: = m, step mq until ms do

begin
end;

N4o0

DO n Nv = my,mz,me

n| CONTINUE

N7

for Nv: = 1 step I until m3 do
begin

end;

DO n Nv = 1,m3

n| CONTINUE

N7
N40
for Nv: = 0 step I until m3 do Na =mz + 1
begin DO n Na; = 1,Na

end;

N40

Nv = Na; — 1

n| CONTINUE

N7
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for .. .step ... untit ALGOL->FORTRAN
for v: = a;,az,as step a4 until as, v =a
agdo ... ; COMMON v, ...,v
CALL token(v)
v = a2
a,...,as:N12 CALL token(v)
N40 Na = ABS((as — as)/—~

«~ag) + 1.0000001
DO n Na; = 1,Na

ag = Na7 -1

v = ag*as + ag
CALL token(v)
CONTINUE

v =ae

CALL token(v)
CONTINUE
SUBROUTINE token(v)
COMMON Viy oo o 5 V4
RETURN

END

R6,N5,N7,N21,N42,N43
Exception: IBM 1401, IBM 1620s,

in this case:
v=m
vV = Qs

N7

Na = (a5 — a3)/as
IF(Na)ny,ni,ne
Na = —Na + 1
GO TO ng

Na = Na + 1
DO n Na; = 1,Na
ag = Na7 -1

v = ag*as + as

v =ag

CONTINUE
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ALGOL->FORTRAN

for

... while

for v: = ayterml while a: < as v =a
do...; ..
ne| v = terml
I1F(az — ag)ni,n,n
ay,az,a3-N12 ml ...
N40 GO TO n,
n| CONTINUE
N7
for v: = ayterml while az < a3 v =a
do...; ..
ne| v = terml
IF (az — aa)nl,nl,n
ay,az,03:-N12 ml ...
N40 GO TO ng
n| CONTINUE
N7
for a: = aterml while a; = a3 vV=a
do...; ..
ne| v = terml
IF(az — az)n,ni,m
al,az,as:N12 n1| [P
N40 QO TO n,
n| CONTINUE
N7
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for . . . while

ALGOL->FORTRAN

for v: = ajterml while az > as v=a
do...; ..
ne| v = terml
IF(az — aa)n,nl,m
al,ag,aa:Nl2 n1| R
N40 GO TO nq
n| CONTINUE
N7
for v: = ayterml while az > a3 v=a
do...; ..
ng| v = terml
IF(az — as)n,n,nl
al,ag,aa:Nl2 n1| e o
N40 GO TO ns
n| CONTINUE
N7
for v: = ay,terml while az + a3 v=a
do...; .
ng| v = terml
IF(az — ag)ni,n,n
al,ag,aa:Nl2 n1| [N
N40 GO TO ne
n| CONTINUE
N7
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ALGOL—>FORTRAN

for

. .. while

for v: = a,terml while a; = a; = v=a
ag >asdo ... ; .
na| v =terml
IF(a; — ag)ng,n1,ne
aa,...,asN12 no| IF(az — as)ns,na,n
N40 n1| IF(a3 — a4)n,n,n3
n3| R
GO TO ng
n| CONTINUE
for v: = a,terml while a1 = as V v=a
a3 >asdo ... ; ..
ng| v = terml
IF(a; — az)n,m,mn
aa,...,as N12 n| IF(as — as)ne,ng,n
N40 n1| ..
GO TO n3
no] CONTINUE
for v: = a,terml while a; = as A v=a
ag >asdo ... ; ..
ng| v = terml
IF(a; — az)n,ny,n
aa,...,a:N12 n| IF(az — as)n,n,ne
N4O ’nzl R
GO TO n3
n| CONTINUE
for v: = a,term1 while a; = a2 o v=a
azg >asdo ... ; .
ng| v = terml
IF(ay — az)ng,my,no
aa,...,a63:N12 no| IF(as — as)ns,na,n
N40 n| IF(as — ag)n,n,ns
n3| P
GO TO n4
n| CONTINUE
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for . . . while ALGOL->FORTRAN
for v: = a,terml while 7 a; > a2 v =a
do...;

ng| v = terml
I1F(ay — az)ni,m,n

a,a;,a2:N12 m| ...
N40 GO TO ny

n| CONTINUE
for a: = ay,terml while a; < az,aq v =a
do...;, COMMON v, ...,

CALL token(v)

ng| v =terml
a,...,as:N12 IF(a; — ag)ny,my,m
N4o0 ny| CALL token(v)

GO TO n2

n v=a
CALL token(v)
CONTINUE
SUBROUTINE token(v)
COMMON v, .. .,v;
RETURN
END

R6,N7,N21
Exception: IBM 1401, IBM 1620y,

in this case:
v =

ne| v = terml

IF(az — ag)ny,ni,n
n1| co e
GO TO ny
n v =a4

CONTINUE

N7
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ALGOL->FORTRAN

for...step...until... while

for v: = ay,a2 Stﬁp a3z until a4,as,
terml while ag + as,asdo ... ;

ayg, ..., as.‘Nl2
N4o0

nal
n1|

n2|

V=

COMMON v, ...,v
CALL token(v)

Na = ABS((as — az)/—
«ag) + 1.0000001
DO n Nau = I,Na
aje = N al] — 1

v = aip*az + az
CALL token(v)
CONTINUE

vV = Qs

CALL token(v)

v = terml

I1F(ag — az)ni,ne,m
CALL token(v)

GO TO n3

vV = ag

CALL token(v)
CONTINUE
SUBROUTINE token(v)
COMMON v;,...,v

RETURN
END

R6,N5N7,N21,N42,N43

Exception: IBM 1401, IBM 1620y,
in this case:

v =@

Na = (as — az)/as



for ... while...step...until ALGOL->FORTRAN

IF(Na)ny,ni,ne

m| Na = —Na + 1
GO TO ng

ngl Na = Na + 1

nal DO n Nan = 1,Na
a2 = Nayy — 1
v = aiz¥az + az

n| CONTINUE
V =4das

ne| v = terml

IF(ag — az)ng,ms,ng
n4| .« e
GO TO ns
ns| v =asg

CONTINUE

N7

for v. = aj,term1 while az > as, v =wm
aq,as step ag until az; do . . . ; COMMON v, ..., v

CALL token(v)

v = terml
ay,...,a:N12 ng| IF(az — az)n,n,m
N4o0 n1| CALL token(v)

GO TO ng

n| v =as

CALL token(v)

Na = ABS((a7 — as)/—

«~ag) + 1.0000001

DO ng Nan = I,Na

a2 = Nay; — 1

v = ajg*ar + ag

CALL token(v)

ne] CONTINUE
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ALGOL—>FORTRAN

for ...step...until...step...until

SUBROUTINE token(v)
COMMON o, . .., v,
RETURN
END

R6,N5N7,N21

Exception: IBM 1401, IBM 1620y,
in this case:

V=
ng| v = terml
1 F(az — asz)n,n,n
nli .« e
GO TO e
n| v=oa
Na = (a; — as)/as
IF(Na)nz,nz,ns
nel Na = —Na + 1
GO TO ny
ngl Na = Na + 1
n4| DO ns Nau = I,Na
a1z = Nap — 1
v = aig*ag + as
ns|] CONTINUE
N7
for v: = a;,a: step as until a4,as,a6 v =m

step a; until agap do . .. ;

ai,...,a9:N12
N40
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COMMON v, ...,
CALL token(v)

Na = ABS((as — as)/—
«ag) + 1.0000001

DO n Nay; = 1,Na



for...

step...until ... step...until

ALGOL->FORTRAN

n1|

ay2 = Nay, — 1

v = are*as + az

CALL token(v)
CONTINUE

vV = das

CALL token(v)

Naz = ABS((as — ag)/—~
«a7) + 1.0000001

DO ny Nag; = 1,Nagg

azz = Nag — 1

v = axn*a; 4 as

CALL token(v)
CONTINUE

vV =ag

CALL token(v)
CONTINUE
SUBROUTINE token(v)
COMMON Viy o o0, U5
RETURN

END

R6,N5,N7,N21,N42,N43

Exception: IBM 1401, IBM 1620y,
in this case:

74

nzl

nal
n4|

n5|

vV =aq

Na = (a4 — az)/ws
IF(Na)nz,nz,na

Na = —Na — 1
GO TO ny

Na = Na + 1

DO ns Nan = 1,Na
a2 = Nay, — 1

v = arg*az + ag

CONTINUE

Vv =as

}\;a;zo = (as — ag)/az



ALGOL->FORTRAN for ... step... until... input/output

I F(Nago)ne,ne,nz

ng| Nago = —Nagy — 1
GO TO ng

n7| Nagy = Nagy + 1

’nsl DO ng Na21 = I,Nazo
az = Nag — 1
v = agz*ar 4 ag

ng| CONTINUE
v =ay

CONTINUE

N7

for Nv: = m, step mz until ms do n| FORMAT({ })

input/output statement for: READ n.(matriz(Nv),—

matriz[ Nv]; PUNCH ™ ’
<~Nv = my,mg,mz)

R4,N8

Exception: IBM 16201, in this

case:

n| FORMAT({ })
DO ni Ny = my,ma,me
READ AT,
PUNCH ™ matriz(Nv)

n| CONTINUE

R4,N8
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for...step ... until. .. input/output

ALGOL->FORTRAN

for Nv: = m, step —mz until ms
do input/output statement for:
matriz[Nv];

FORMAT{ })

Na = (my — mg)/mg + 1
DO n; Naz = 1,Na

Nv = my + mg — me*Nas
ﬁg‘?ng n,matriz(Nv)
CONTINUE

n|

n1|

R4,N8

for Nv: = —m, step mz until ms
do input/output statement for:
matriz[Nv];

FORMAT({ })
mg =my + 1
READ
PUNCH
~(Nv 4 mq),Nv = 1,m3,mo)

|

n,(matrix—

R4,N8
See also: array matriz[ —Nci:Ncs]

example:

NE 803:
ARRAY Z(—2:10);

FORK: — —2 STEP 2 UNTIL
10 DO READ Z(K):

THETA: = D*Z(K);

DIMENSION Z(13)

n| FORMAT(})
READ n,(Z(K + 3),~
<K — 1,102

THETA = D*Z(K + 3)
Exception: IBM 1620;, in this
case:

n| FORMAT({})
myg =my + 1
DO ny Nv = 1,m3,mz
READ .
PUNCH n,matriz(Nv + my)
m| CONTINUE

R4,N8
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ALGOL->FORTRAN for . ..step...until... inputfoutput

for Nv: = —m; step —me untit n| FORMAT({ })

—mg do input/output statement READ .

for :matriz[Nv); pUNcH ™(matriz(Nv),~
~Nv = my,m3,ms)

R4,N8

See also: array matriz[—Nc; :
—N Cz]

Exception: IBM 16201, in this
case:

n| FORMAT{})
DO ny Nv = my,mg,me
ﬁg‘;\’gH n,matriz(Nv)
m| CONTINUE

R4,N8

for Nv: = m; step I until me do n| FORMAT( })
input/output statement for: READ n
matriz[ Nv]; PUNCH

«~Nv = my,ms)

,(matriz(Nv),—

R4,N8

Exception: IBM 16205, in this
case:
n| FORMAT({ })
DO ny Nv = my,me
ﬁllgf?\TgH n,matriz(Nv)
m| CONTINUE

R4,N8
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for ...step...until. .. input/output ALGOL->FORTRAN

for Nv: =1 step 1 until ms do n| FORMAT({})

input/output statement for READ .

matriz[Nv); PUNCH n,(matriz(Nv), >
«<Nv = 1,mg3)

R4,N8

Exception: IBM 16207, in this
case:
n| FORMAT({ })
DO ny Nv =1 ,ms
ﬁ?]‘;\]gﬂ n,matriz(Nv)
m| CONTINUE

R4,N8

for Nv: = 0 step m; until ms do 7| FORMAT({ })

input/output statement for: READ .

matriz[ No); puNcy ™marisv +~
«1),Nv = 1,mg,ms)

R4,N8

See also: array matriz[0 :Nc]
Exception: IBM 1620;: in this
case:
n| FORMAT®{})
DO ny Nv = 1,mg,me
ﬁ?ff\fgﬂ n,matriz(Nv + 1)
m| CONTINUE

R4,N8
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ALGOL->FORTRAN for ... step ... until

for Nv: =1 step 1 until mg do n| FORMAT({ }.{})

input/output statement for: READ

matria[ Nv),matrizI[Nv]; PUNCH™
<«matrizl(Nv),Nv = 1,mg3)

,(matriz(Nv),—

R4,N8

Exception: IBM 16201, in this
case:
n| FORMAT({ }.{})
DO ni Nv = 1,7n3
READ
PUNCH
<~matrizl(Nv)
nm| CONTINUE

n,matriz(Nv), -

R4,N8

goton; GO TO n

N20

Leading zeros do not affect the =
meaning of the label, i.e.:

go to 0015, is equivalent to go to
15;

N
e

79



go to ALGOL->FORTRAN
go to v, ASSIGN n TO v
. GO TO v,(n)
v:
n
N20
n <

Exception: IBM 1401, IBM 1620,
in this case:

v must be replaced by an integer

number z.
GO TO n

n|
go to jump[Nv]; GO TO(m,ne, . .., ng),Nv
N19.N33 Nv €10
go to jump[term]; Nv = term
GO TO(nl,nz, ey nk),Nv

N19,N33

Nv <10

term :N2
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ALGOL->FORTRAN

go to

go to jumplif v < a then Nc, else

N02],’

a:N12

N19,N33

IF(v — a)np,nm,nm

n,.l Nv1 = N01
GO TO n
nm| Nvy = Necg

n| GO TO(nmy,ne, . .., ng),Nv

N'Ul < 10
nn,nm * nl,'nZ, « . ey nk

go to jump[if v < a then Nc, else

NCz],’

a:N12

N19,N33

IF(v — a)np,nm,nm

n,.| N’Ul = Ncl
GO TO n
nm| Nvy = Necg

n| GO TO (ny,ne, . .., nk),Nv;

Nv; €10
Np,Nm + N1,N9, . .., Nk

go to jump[if v = a then Nc, else

N Cz] 5

a:N12

N19,N33

IF(v — a)np,nm,nm

nnl Nvl = NCz
GO TOn
'nml Nv; = N¢y

n| GO TO(mng, ..., ng),Nv,

Nv; €10
Np,Nm + N1,N2, ..., Nk

go to jumplif v > a then Nc, else

N19,N33

IF(v — a)np,om,m
na| Nvy = Nece
GO TOn
nm| Nvi =Nea
n| GO TO(ny,ns, . . ., ng),Nv

N’v]_ <10
Np,Nm + N1,N2, . . ., N
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go to

ALGOL->FORTRAN

g0 to jump[if v > a then Nc; else

IF('U —_ a)nn,nn,nm

NCz],’ n,.l Nvl = NCz
GO TO n
nm| Nvl = Nq
a:N12 n| GO TO (m,ne, ..., n),Nv
N19,N33 Nv; <10
Np,Nm + N1,N2, ..., Nk
go to jump[if v + a then Nc, else IF(v — a)ng,m,nn
NCz]; nnl N’IJl = N61
GO TO n
nm| Nvl = NCz
a:N12 n| GO TXnyms, . . ., ng),Nv
N19,N33 Nv; €10
nn,nm * n]_,'nz, e oy nk
go to if v < a then N, else Ncq; IF(v — a)m,me,me
n1| GO TO Nc¢,
'nzl GO TO N62
a:N12 CONTINUE
N20
N01,N02 < C
go to if v < a then N, else Ncs; IF(v — a)ny,m,ne
n1| GO TO N¢y
n2| GO TO N62
a:N12 CONTINUE
N20 Ncj,Nee < ¢
go to if v = a then Nc; else Nc; IF(v — a)ny,ne,m
n1| GO TO N62
ne] GO TO Nc,
a:N12 CONTINUE
N2O NCl,NCz < :
2o to if » > a then Nc; else Ncs; IF(v — a)ny,na,ne
n| GO TO Nc,
ne] GO TO Ne¢y
a:N12 CONTINUE
N20 Ney,Nea < ¢
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ALGOL->FORTRAN

go to if » > a then Nc; else Nc;;

a:N12

N2o0

go to if
IF(” - a’)nl’nl,nz
n1| GO TO NCZ
ns| GO TO Ne,
CONTINUE
Ney,Nex < ¢

go to if v + a then Nc; else Ncs;

a:N12

N20

IF(v — a)ny,ng,m
n1| GO TO Ncl
ng| GO TO Ncg
CONTINUE

Ney,Nee < ¢

go to if v < a then Nc; else jump
[N vl];

IF(v — a)np,nm,nm
nn| GO TO Ncy
nm| GO TO(nyns, . .., ng),Nv;

CONTINUE
a:N12 Nv; €10
N19,N20,N33 N, om + N1,N2, . . . , Nk
ifa; <athen...; IF(a; — a)ni,m,n

n1| P
n| CONTINUE
a,a1:N12 FIV:

IF(a;.LT.a). ..

N34,N39
ifa; <athen...; IF(a; — a)ni,mi,n
n1| N
n| CONTINUE
a,a1:N12 FIV:
IF(a;.LE.a). ..
N34,N39

83



if ... then

ALGOL—>FORTRAN

ifai =athen...

IF(a; — a)n,n,n
n1|

n| CONTINUE
a,a;-N12 FIV:
IF(al.EQ.a) . e
N34,N39
ifa; > athen... ; IF(a; — a)n,n1,m
n1| o e
n| CONTINUE
a,a;-N12 FIV:
IF(a1.GE.a) ...
N34,N39
ifa; >athen... IF(ay — a)n,n,m
n1| ..
n| CONTINUE
a,a;:N12 FIV:
I1F(a;.GT.a) ...
N34,N39
ifa; + athen... ; IF(ay — a)ni,n,m
n1| PP
n| CONTINUE
a,a;:N12 FIV:
IF(a;.NE.a). ..
N34,N39
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ALGOL->FORTRAN it ... then

ifa; >athenv:...; IF(ay — a)n,n,n
m| CONTINUE

a,a;:N12 el ...
n| CONTINUE

The label » must be replaced by
the integer number #y.

FIV:
IF(a,.GT.a) GO TO n
GO TO m;
n| CONTINUE

nk|

n| CONTINUE

N34
v: =a + (if a1 + as then a3); 1F(a; — az)ni,m,m
n1| v=a 4+ a3
GO TO ne
a,a;,02,03:N12 n| v=a
no| CONTINUE
FIV:
IF(a;.NE.as)v =a + a3
IF(.NOT.(a;.NE.az3))v = a
N34




if ... then

ALGOL>FORTRAN

v:=a+ (ffa +

az then ag) + a4,

IF(a; — asz)ni,nz,m

nm| v=a+as+as
GO TOn
aa,...,as:N12 n| v=a+a4
n| CONTINUE
FIV:
IF(@a1.NE.az)v =a + a3z +as
IF(NOT(alNEaz))—->
v =a + aq
N34
iffaj<athen...else... IF(a; — a)n,ng,ng
n1|
a,a;:N12 GO TO n
el
n| CONTINUE
FIV:
IF(a;.LT.a) ...
N34,N38




ALGOL->FORTRAN

it...then...

else

if a, < athen...else ... :

a,al:Nl2

IF(ay — a)ny,my,ne
'n1,| .

GO TOn
n| CONTINUE

FIV:

IF(a;.LE.a) ...

N34,N38

ifa; =athen...else...;

a,a1:N12

I1F(a; — a)n1,ne,ni
n2|

GO TOn
n1|
n| CONTINUE
FIV:

TF(a:.£Q.a)

N34,N38

87



if...then... else ALGOL->FORTRAN
ifta; >athen...else... ; IF(a1 — a)ny,ne,ne
n2| .
GO TO n
a,al:Nl2 n1|

n| CONTINUE
FIV:

IF(a,.GE.a) ...

N34,N38

ita; >athen...else... ; IF(ay — a)ny,ny,ne
nzl

a,a;:N12 GO TOn
n1|

n| CONTINUE
FIV:

IF(a1.GT.a) . . .

N34,N38
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ALGOL—>FORTRAN

if...then...

if i+ a then . .. else . .. :

a,a;:N12

I1F(ay — a)ni,me,m
n1|

GO TO n
’nzl
n| CONTINUE
F1V:

IF(@.NE.a) . ..

N34,N38

ifa; <athen v: ...

a,a::N12

else ... ; IF(ay — a)ng,na,my
ne] CONTINUE )
nkl

G0 TOn

n1|

n| CONTINUE

The label v must be replaced by

the integer number n;.

FIV:
IF(al.LE.a) GO TO n

GO TO n
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ift...wen...else ALGOL->¥ORTRAN

n| CONTINUE
ngl

n| CONTINUE

N34
if a, = a> then begin if as > a4 IF (a1 — ag)n,ni,n
- . n| IF(as — as)ns,ns,ng
then .. .else ... end; 4|
GO TO n
n3|
ai, ...,a:N12
n| CONTINUE
FIV:
1F(a1.EQ.a5) GO TO my
GO TOn
n1| [F(aa.GT.(M) R
n| CONTINUE
N34,N38
it a1 > a2 then begin if a3 < as IF(ay — ag)ny,na,ne

... ne| IF(az — as)ns,ns,ng
then...else...endelseifas —as n3| ...
GO TO n

then ... ; n4|
GO TOn
n| IF(as — as)n,ns,n
2,...,a6:N12 n5| “e

n| CONTINUE



ALGOL->FORTRAN if...then... else

FIV:
IF(al.GE'.az) GO TO n
GO TO ne

ni| IF(as.LT.ay) ...
GO TO n

ne| IF(as.EQ.ag) . . .

n| CONTINUE

N34,N38,N39
v: =a + (if a1 < az then a3 else I1F(a1 — az)ni,ne,ne
as); m| v=a+as
GOTOn
n| v=a+a
a,a,...,a:N12 n| CONTINUE
FIV:

IF(a:.LT.az) v = a + as
IF(.NOT.(a,.LT .as))—~
<~V =a + a4

N34

v: =a + (if a1 < az then a3 else IF(ay — az)ny,me,ne
as) + as; m| v=a+a3 +as
GOTOn
ng| v=a-+as+as
aai, . ..,as:N12 n| CONTINUE

IF(@a,.LT.as)v =a + az—
<~ as
IF(.NOT.(a,.LT.az))—~
«~v=a+ a4 +as

N34
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it...A...then

ALGOL->FORTRAN

iffa <a A az <agthen..

a,a;,as,a3:N12

IF(a — a1)m,n,n
m| IF(az — ag)ng,n,n
nzl .« e
n| CONTINUE
FIV:
IF(a.LT.ay. AN D.as.—
<—LT.as) PPN

N34,N39

ifa <a1 Aas < asthen...

a,a;,az,a3-N12

IF(a — ay)n1,m,m
n| IF(az — az)na,ne,n
n2| . e
n| CONTINUE
FIV:

IF(a.LT.a;. AN D.ay.—~

<—LE.a3) . e

N34,N39

ifea <a; Aaz =azthen...

a,a;,az,03:N12

IF(a — ay)ni,n,n
n| IF(as — az)n,na,m
nzl “ e
n| CONTINUE
FIV:

IF(a.LT.ay.AN D.a;.—~

«<EQ.a3) . ..

N34,N39

ifa <ai Aa > asthen .

a,a;,az2,a3:-N12

.
A

IF(@ — a1)my,m,m
m| IF(az — as)n,ne,ne
’nzl

n| CONTINUE



ALGOL->FORTRAN if...A...then
FIV:
IF(a.LT.a;. AN D.a;.—~
N34,N39
ifa <ai Aaz +asthen... ; IF(a — ay)m,m,m
nm| IF(az — as)ng,n,ns
nzl P
a,ay,a2,a3:N12 n| CONTINUE
FIV:
IF(a.LT.ay. AND.az.—~
N34,N39

if a <a1 A az <as then ... else IF(a — a1)m,n,n
n| IF(az — ag)nz,n,n
; na| ...
GO TO ns
a,a1,a2,03:N12 ..
ng] CONTINUE
FIV:
IF(a.LT.ay.AND.a;.—~
<—LT.0,3) . e
IF(.NOT.(a.LT.a;.,AND.—~
«a2.LT.a3)) . ..
N34,N37
ifa <a; Vas <agthen... IF(a - al)nl,nz,ng
ne| IF(az — ag)ni,n,n
nll .o
a,a1,a2,03:-N12 nl CONTINUE
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...V ...then ALGOL->FORTRAN
FIV:
IF(a.LT.a,.0R.a5.LT.—~
N34,N39

ifa <a; Vas <agthen... ;

a,a;,az2,a3:N12

b

I1F(a — a1)n,ne,ne
ng| IF(az — agyni,m,n
n1| “ e
n| CONTINUE
FIV:

IF(a.LT.a).OR.a2. LE.—~

N34,N39

ifta <a; Va; =azthen...

a,a;,a2,a3:-N12

IF(a — a1)n,m2,ne
no| IF(ag — ag)n,n1,m
n1| P
n| CONTINUE
FIV:

IF(a.LT.a;.0R.a:.EQ.—

N34,N39

ifa <ayVa; >azthen...

a,ay,as,a3:N12

IF (@ — a1)m,m,m
n| IF(az — ag)n,n,ne
n| CONTINUE
FIV:
IF(a.LT.a1. AN D.ay.—
~GT.a3) ...

N34,N39
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ALGOL->FORTRAN

ff...V...then

ita <a; Vas > az then .

a9a1’a2’a'3-'N12

IF(a — al)nl,nz,nz
nzl I1F(az — ag)n,n1,ny
n1| [P
n| CONTINUE
FIV:

IF(a.LT.a1.0R.a2.GE.—~

<—a3) N

N34,N39

ifta <ay Vas >azthen... ;

a,al,az,aa:le

IF(a — al)nl,nz,nz
na| 1F(az — as)n,n,n
ml ...
n| CONTINUE
FIV:

IF(a.LT.a;.0R.a2.GT.a3) . ..

N34,N39

ifa<ayVas +azthen... ;

a,a1,a2,a3:N12

1F(a — a1)ny,ne,ne
n2| IF(az — aa)nl,n,nl
n1| e
n| CONTINUE
FIV:
IF(a.LT.0;.OR.a3.NE.—~
<—a3) e

N34,N39

ifa <a1 V az <as then ...

a,a1,a2,a3:N12

I1F(a — a;1)my,me,me
ne| IF(az — as)ni,n,n
m|l ...

GO TO ng

ns| CONTINUE



if... =+ ...then ALGOL->FORTRAN

FIV:
IF(a.LT.a;.0R.a;.LT.—~
<—a3) N
IF(NOT.(a.LT.a;.0R.—~
<—a2.LT.a3)) . e
N34,N37
if 7a £a;then... ; IF(a — a1)n,ni,m
n1| PN
n| CONTINUE
a,a;:N12 FIV:
IF(.NOT.(a.NE.wy)) . ..
N34,N39

The logical expression to which
.NOT. applies must be enclosed in
parentheses if it contains two or
more quantities.

if 7a + a;then ...else... ; I1F(a — ay)n,myn
n1| PN
GO TO Nno
a,a;:N12 n
no] CONTINUE
FIV:
IF(.NOT.a.NE.ay)) . ..

IF(a.NE.a,) ...
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ALGOL->FORTRAN

N34,N37

The logical expression to which
.NOT. applies must be enclosed in
parentheses if it contains two or
more quantities.

ifa <ay=a3 =azthen... ;

a,a1,a2,a3 :-N12

IF(a — a1)n1,nz,ne
ne| IF(as — asz)n,na,n
m| IF{(as — as)nz,n,ns

n3| e
n| CONTINUE
FIV:
IF(@.LT.a;) GO TO n,
IF(az.NE.aa) GO TOn
n2|

GO TO n
n1| IF(az.NE.aa) GO TO No
n| CONTINUE

N34

if a <ai=az + az then ...

a,a1,az,a3:N12 .

else IF(a — aj)ni,ne,ne
ne| IF(az — ag)n,n3,n
n1| IF(az — a3)n3,n,n3
n3| [P
GO TO nq

n CONTINUE

FIV:
IF(@a.LT.a;) GO TO ny
IF(a2.NE.az) GO TO n
n2| . e
GO TO ns
n| IF(as.NE.a3) GO TO ng

ns| CONTINUE

N34
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if...> ...then

ALGOL>FORTRAN

ifa < a O az *aathon...

IF(a — a1)ny,ne,ne

na| IF(az — as)n,ng,m
ni| IF(az — ag)ng,n,ng
a,ay,az,a3-N12 ng| ...
n| CONTINUE
FIV:
IF(a.LT.a1) GO TO m
IF(a2.NE.a3) GO TO m
ne| ...
GO TOn
ni| IF(as.NE.a3) GO TO ny
n| CONTINUE
N34
if a <a; o as + a3z then ... else IF(a — a1)ny,na,ne
ce s ne| IF(az — ag)ni,ns,n
a,a),a2,03:-N12 m| IF(az — as)ng,n,ns
GO TO nyg
ny CONTINUE
FiVv:
I1F(a.LT.ay) GO TO my
IF(az.NE.aa) GO TO n
nzl . e
GO TO ng
ny| IF(az.NE.a3) GO TO n.
ns] CONTINUE
N34
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ALGOL->FORTRAN

integer

integer v1,vs, . . ., g,

No type declaration necessary.
The variable identifiers must be
changed into Nuv;,Nve, ..., N
throughout the program.
R2
FIV:

INTEGER V1,02, ..., Vg

N30

integer array matrix;
see also:
procedure token(Nmatrix),

This statement indicates that the
parameter matrix of the subpro-
gram is an array.

Omit in translation.

integer array matriz[Nci:Nca];

integer array matrix[ —Nc;:Nez];

DIMENSION Nmatrix—
<—(N62)
R7
Nex < B
DIMENSION Nmatrix—
<—(N01 + Necz + 1)
R7,N44

Ncy + Nex +1 <8

Whenever Nmatriz appears in the
program, the subscript must be
increased by Nc¢; + 1.

example:

integer array Z[ —13:47];

Z[L): = N/M;

DIMENSION NZ(61)

NZ(L + 14) = N/M
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integer array ALGOL->FORTRAN

integer array matriz[ —Ncy: — Ncz]; DIMENSION Nmatrix—
«~(Ney)
R7
Ney < B

Whenever Nmatriz appears in the
program, one has to multiply the
subscript by —1. Since a negative
subscript is not permitted, an
additional statement must pre-
cede the subscripted variable.

example:
integer array KURT[—5:—1]; DIMENSION KURT(5)
KURT[K): = N = M; KK — —K
KURT(KK) = N/M
integer array matriz[1:Nc]; DIMENSION Nmatrix(Nc)
R7
Nec < B
integer array matriz[0:Nc]; DIMENSION Nmatrix—
«~[Nc¢ + 1]
R7,N44
Ne+1<2§B

Whenever Nmatrixz appears in the
program the subscript must be
increased by +1.
example:
integer array A RL[0:35]; DIMENSION JARL(36)

ARL[L): = L/M + N: JARL(L + 1) = LM + N
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integer array

integer array matriz[if a; < a then

DIMENSION Nmatrix—

Nc;-else NCz.‘NCa],‘ <-—(N03)
R7
Nes < B
integer array matriz|Nc,: if a > a; IF(a — ay)ny,n,n
then Nc. else Ncs): n| DIMENSION Nmatrix—>
«~(Nes)
GO TO n,
n| DIMENSION Nmatrix—
~(Nez)
ne| CONTINUE
R7
NCZ,NC:; < B
integer array matrizl matriz2, DIMENSION Nmatrizl—~
matriz3[1:Nc]; «~(Nc),Nmatriz2(Nc),—~
< Nmatriz3(Nc)
R7
Nec <
integer array matria[Nci:Neco, DIMENSION Nmatrix—
NCa.’NC4],‘ <—(N02,NC4)
R7

AYc2aNc4 < B

integer array matriz[1:Ncy,1:
Neq]s

DIMENSION Nmatrix—
<——(N01,N62)

R7
Ney,Nex < B
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integer array matriz[Nc;:Nce,
‘\"03 :N C4 ,;’VCs N Co] N

DIMENSION Nmatrix—
(—(NCZ)NCQ)NCQ)

R7
Nez,Ncy,Ncg < B

integer array matrix[1:Nc,,1:
Nes, 1:Nes);

DIMENSION Nmatrix—
«<- (1\’(:1 ,NC21V63)

R7
Ncy,Ncg,Nes < B

Restriction: IBM 1401 and IBM
16201 permit only a maximum of
two dimensions for an array.

integer array matriz[Nci:Ncs,
Nes:Nea, ..., Neg-1:Nek);

For k > 6 no translation possible
for IBM processors.

integer array matrizl matrix2,
matriz3[1:Nc,],matricd,matrixd
[1:Ne¢s,1:Ncs);

DIMENSION Nmatrixl—
«~(Ncy),Nmatriz2(Necy),—~
<~Nmatrix3(Nc,),Nmatricd—
«(Nce,Nca).Nmatrixh —
<—(NC2,N63)

R7
NCI,ch,NCa < B

integer procedure fokenl;

see also:

integer procedure foken(. ., . .,
tokenl, . ., ..);

This statement indicates that the
parameter of the subprogram is the
identifier of a subprogram. Omit
in translation.
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integer procedure

integer procedure token;

end;

SUBROUTINE token
COMMON vy, ...,

RETURN
END

R5,R6,N21

FIV:

The same as above. R5,R6N21,
N29

integer procedure Zoken(. .

61,...,615,..,..),

end;

N22

integer procedure token(. .

vl,...,vk,..,..);

end;

N22

FUNCTION Ntoken—
4—(..,..,01,...,-*
“Clky o oy )
RETURN
END

R5,R6

FIV:R5,N16,N29,N31
FUNCTION Ntoken—
e T, P
“«Vky ooy« )

COMMON vy, ...,v

RETURN
END
R5.R6.N21

FIV:
R5,N16,N21,N29,N31
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integer procedure token(. ., .., FUNCTION Ntoken—
Nmatrix, . ., ..): «~(..,.., Nmatriz, ..,..)
COMMON vy, ...,v;
integer array Nmatrix; DIMENSION Nmatrix(Nc)
end: RETURN
END

N22

R5,R6,N21

Nc is the same number as in the
DIMENSION Nmatrix(Nc) de-
claration in the main program.
(Sometimes it is possible to use a
smaller number for Nc¢ in the
subprogram.)

FIV:

R5,N16,N21,N29,N31

Nc can be replaced by an arbitrary
integer variable identifier Nv.

integer procedure token(. ., .., FUNCTION Ntoken—
‘text’, .., ..); <~(..,..,cHtext,..,..)
COMMON vy, ..., v
string text; ..

. RETURN
end: END

¢ is the number of fields occupied
by text.

R5,R6,N21
FIV:
R5N16,N21,N29,N31
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integer procedure

integer procedure token(. ., ..,
tokenl, . ., ..);

procedure tokenl;

end;

N22

Only some processors permit the
use of a subprogram identifier as
an argument. This requires special
declarative information on ‘“F”
cards, see the appropriate instruc-
tion manual.

FIV:
INTEGER FUNCTION —~
«~token(. ., .., tokenl,—

COMMON v, . .., v

RETURN
END

R5,N21,N29,N31

The call for the subprogram must
be preceded by the declaration
EXTERNAL tokenl

integer procedure token(v,v1,c,)
text:(a1,v2,02);

end;

N22

FUNCTION Ntoken—
~(v,01,¢,a1,02,a2)

COMMON vy, ...,

RETURN
END
R5,R6,N21

FIV:
R5,N16,N21,N29,N31
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integer procedure token(..,...,..) FUNCTION Ntoken—
text;(..,...,. extl:(..,...,..); S (R
- yoo)

COMMON v, -. ., v

RETURN
N22 END
R5,R6,N21
FIV:
R5,N21,N29,N31
integer procedure foken(v,vs,a1) FUNCTION Ntoken—
fext:(c.as.v3)text:(cy,c2); «~(v1,2,a1,¢,82,03,C1,C2)
COMMON v, ...,v
end. e
RETURN
END
N22
R5,R6,N21
FIV:
R6,N16,N21,N29,N31
label Nc; This statement indicates that the
see also: parameter Nc of the subprogram
procedure token(..,.., Nc...,..); is a label.
Omit in translation.
label v; This statement indicates that the
see also: parameter v of the subprogram is
procedure token(..,..,v,..,..); alabel.

Omit in translation.
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cooln(a). .. ...ALOG(Aa) . ..

R1

Exception: Some processors such

as IBM 1401 and IBM 1620

require:

... LOGF(Aa)...

...In(term) . .. ; ... ALOG(Aterm) . . .

R1

Aterm :N2

Exception: Some processors such
as IBM 1401 and IBM 1620
require :

... LOGF(Aterm) . ..

logical operators:

N <ul

FIV:
Not to be translated directly
Not to be translated directly*
.OR.
AND.
NOT.
The logical expression to which
.NOT. applies must be enclosed
in parentheses if it contains two
or more quantities.

logical values: FIV:
true .TRUE.
false FALSE.
multiplication :
a; X az ar*ap

N2

* For example: Lterm1 D Lterm2 can be translated by : Lterm2 .OR.(.NOT.(Lterm1)).
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numbers:

0 0

123 123

1234 1234
+0.1234 +40.1234
—123.456 —123.456
+1.23105 +1.23E5
9.8710+12 9.87E 412
210—3 2E-3
—.012,p—03 —0.012E —03
—108 —1.E8

10—5 1.E—5
+10+5 +1LE+5

Range for real numbers:
Range for integer numbers: &
Range for exponents: 7

procedure declaration:

see: procedure ..., or integer

procedure . .. ; or real procedure
. » or Boolean procedure . .. ;

procedure tokenl;
see also:
procedure token(. ., .., tokenl,

)

This statement indicates that the
parameter tokenl of the subpro-
gram is the identifier of a sub-
program.

Omit in translation.

procedure token,

end;

SUBROUTINE token
COMMON Viy oo« 5 V5
RETURN
END

R5,R6,N21

FIV:
The same as above. R5,N21,N29
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procedure token(..,..,cy, ... SUBROUTINE token—
Chky o o s .)s ey ey Cly ey CRy eyl )
end; RETURN
END
N22
R5,R6

FIV:
The same as above. R5,N29

procedure token(..,.., vy, ...

vk,..,..)'

end;

N22

SUBROUTINE token—
4—(..,..,’01,...,1)1‘:,..,..)

COMMON v, ...,v;

RETURN
END

R5,R6,N21
FIV:
The same as above. R5N21,N29

procedure token(. ., .., v,

cy e l)s
label v;

go to v;

SUBROUTINE token—
e CITTPI ) SRS |
COMMON v, ..., v
Nv =v

ASSIGN n TO Nv
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end;

N22

GO TO n
RETURN

RETURN
END

R5,R6,N21

Exception: IBM 1401 and IBM
1620;, in this case: the label » must
be replaced by an integer number.
This number must then agree with
the appropriate number in the
GO TO statement.

FIV:

The same as above. R5,N21,N29

procedure token(..,..,Nc,..,..);

label Ne¢;
go to Nc;
end;

N22

SUBROUTINE token—
«~(.,..,Ne,..,..)
COMMON Viy e oo V5

GO TO Ne
RETURN

RETURN
END

R5,R6,N21
FIV:
The same as above. R5,N21,N29
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procedure token(. ., .., Nmatriz, SUBROUTINE token—

)y «~(..,.., Nmatriz, . .,..)
COMMON vy, ...,v;
integer array Nmatrix;

end;

N22

DIMENSION Nmatrix(Nc)

RETURN
END

R5,R6,N21

Nc is the same number as in the
DIMENSION Nmatrix(Nc) de-
claration in the main program.
Sometimes it is possible to use a
smaller number for Nc¢ in the
subprogram.

FIV:

The same as above. R5,N21,N29
Nc can be replaced by an arbitrary
integer variable identifier Nv.

procedure foken(. ., .., ‘text’,
R
string text;

end;

SUBROUTINE token—
<~(..,..,cHtext,..,..)
COMMON vy, ...,v;

RETURN
END

¢ is the number of fields occupied
by text.

R5,R6,N21

FIV:

The same as above. R5,R6,N21,
N29
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procedure token(. ., . ., tokenl,
s

procedure fokenl;
end;

N22

Only some processors permit the
use of subprogram identifiers as an
argument. This requires special
declarative information on “F”’
cards, see the appropriate instruc-
tion manual.
FIV:
SUBROUTINE token—
~(..,..,tokenl, ..,..)
COMMON v, ...,v

RETURN
END

R5,N21,N29

The call for the subprogram must
be preceded by the declaration
EXTERNAL tokenl.

procedure token(v,v1,a3)text:(a1,vs,
az);

end,

N22

SUBROUTINE token(v,—
«01,a3,a1,v2,d2)

COMMON v, . .., v

RETURN
END

R5,R6,N21
F1V:
The same as above. R5N21,N29
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procedure

procedure foken(vy,ve,a, )text1:(c,
az’m)text‘?"(cl’cz);

end,

SUBROUTINE token(vy,—
‘_vz,al’c’aZ:vascth)

COMMON V,, ..., v

RETURN
END
N22
R5,R6,N21
FIV:
The same as above. R5N21,N29
real vy, vz, . . ., vi; No type declaration necessary.

The variable identifiers must be
changed into:

Avy,Av,, . . ., Avg throughout the
program.
R2
FIV:
REAL V1,02, . .., Vg
N30

real array matrix;
see:
array matriz;

real array matriz[. . .];
identical with:
array matriz[. . .];
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real procedure fokenl;
see also:

real procedure token(. ., ..,

tokenl, . ., ..);

This statement indicates that the
parameter tokenl of the subpro-
gram is the identifier of a sub-
program.

Omit in translation.

real procedure foken;

end;

SUBROUTINE token
COMMON v, . .., v,

RETURN
END

R5,R6,N21
FIV:
The same as above. R5,N21,N29

real procedure token(. ., . .
..,Ck,..,..),'

end;

N22

» €1,

FUNCTION Atoken(. . ,—
e 3 Clye ey Chynnsyas)

RETURN
END

R5,R6
FORTRAN 1IV:

R5,N28,N29,N32
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real procedure

real procedure foken(. . ,

..,vk,..,..);

end;

N22

v,

FUNCTION Atoken(. . ,—
“«..,0V1,...,0,.. )

COMMON wv,, . .., v,

RETURN
END

R5,R6,N21
FIV:

R5,N21,N28,N29,N32

real procedure foken(. ., ..,

Amatriz, . ., ..);

array Amatriz;

end;

N22

FUNCTION Atoken(. . ,—
.., Amatrix, ey )
COMMON Viy « oo, Uj
DIMENSION Amatriz(Nc)

RETURN
END

R5,R6,N21

Nc¢ is the same number as in the
DIMENSION Amatriz(Nc) de-
claration in the main program.
Sometimes it is possible to use a
smaller number for N¢ in the sub-

program.
FIV:

R5,N21,N28,N29,N32

Nec can be replaced by an arbitrary
integer variable identifier Nv.
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real procedure token(. ., ..,
‘text’, .., ..);

string text;

end;

FUNCTION Atoken(. . ,—~
«..,cHtext, .., ..)
COMMON Vi o« o, Vg

RETURN
END

¢ is the number of fields occupied
by text.

R5,R6,N21
FIV:

R5,N21,N29,N32N28,

real procedure token(. ., ..,
tokenl, . ., ..);

procedure tokenl;

end;

N22

Only some processors permit the
use of a subprogram identifier as
an argument. This requires special
declarative information on “F”
cards, see the appropriate instruc-
tion manual.

FIV.
REAL FUNCTION —~
«~token(. ., .., tokenl, ..,
«..)

COMMON v, . . ., v,

RETURN
END

R5,N21,N29,N32

The call for the subprogram must
be preceded by the declaration
EXTERNAL tokenl
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real procedure

real procedure foken(v,v;,c)text:

(al’vzaaZ);

end;

N22

FUNCTION Atoken(v,v1,—
«C,a1,V2,a2)
COMMON vy, ..., v

RETURN
END

R5,R6,N21
FIV:

R5,N21,N28,N29,N32

real procedure token(vi,vs,a:1)
text:(c,az,v3)lext:(c1,c2);

end;

N22

FUNCTION Atoken(vy,—
«102,a1,C,a2,V3,C1,C2)

COMMON v, . .., v;

RETURN
END

R5,R6,N21
FIV:

R5,N21,N28,N29,N32

relational operators:

+VWVIAA

The translation of the relational
operators can be found in connec-
tion with the if statements.
FIV:

LT.

.LE.

EQ.

.GE.

.QT.

NE.
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...8gn(a) ... ;

1F(a)n,ne,n3
Na = —1
GO TO n
Na =0

GO TOn
Na =1
CONTINUE
...Na...

. sign(Aa) . . . :
. sign(Ne) . . . ¢

'. sign(term) . .

FIV:

n1|
’nzl

n3|

...SIGN(Aa) . ..
...ISIGN(Na) . . .
1 F(term)ny,na,ng

Na = —1

GO TOn

Na =0

GO TOn

Na =1
CONTINUE
...Na...

.sm(a) ... g

. SIN(4a) . ..

R1,N42

. sin(term) . .. ;

...SIN(Aterm) ...

R1,N42
Aterm : N2
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...8qrta) ... ; ...SQRT(Aa) ...
R1,N42

... 8qrt(term) ... ; ... SQRT(Aterm) . ..
R1,N42
Aterm : N2

statement label:
n...y n|
n <

Only columns 1 through 5 can
contain a statement label. Excep-
tion: IBM 1620, in this case only
columns 2 through 5 can contain a
statement label.

statement label:
a...; nl ..
n <¢

If a is an alphabetic character,
it must be replaced by an integer
number, this number must then
agree with the appropriate num-
ber in the GO TO statement.
Only columns 1 through 5 can con-
tain a statement label.

Exception: IBM 1620, in this case
only columns 2 through 5 can con-
tain a statement label.

statement separator:
. No separator, different statements

must be on different records.

b
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string text,
see also:

This statement indicates that text
is used as a parameter of the sub-

procedure token(. ., .., ‘text’,.., program.

L)s Omit in translation.

subtraction:

a — az ay — az
N2

switch declaration:

see: switeh jump: = .., ...,

switch jump; This statement indicates that the
parameter jump of the subprogram
is the identifier of a switch.
Omit in translation.

switch jump: = Ney, ..., Ncg;

go to jump[Nv];

Ncl: .
NCz.‘ P

ch.‘ .

GO TO(Ncy, ..., Ncg),Nv

N01| o« o
NCzI oo
chl

Nv < 10
No switch declaration necessary.
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switech

switch jump: = vy, ..., vy;
g0 to jump[Nv];
.

V2. ...

V. .

G'O TO(n, ..., m),Nv

n|
Tg|

nkl

Nv < 10
No switch declaration necessary.
The statement labels vy, ..., vx
must be replaced by the statement
labels ni, ..., ng throughout the
program.

switeh jump: = v1,v2,Nc, if
a + a; then
N C1 else N Ce,

.gt') .to Jump[Nv];

V1) .

V2. ..
Ne: ..
Ncl: . e
Neo: ...

G’O TO(ny,n2,Nc,ng),Nv
ng| IF(a — a1)Ney,Neg,Ney

n1| e

n2| .

Ne| ...
N Cll . e
Ney| ...
Nv <10
No switch declaration necessary.
The statement labels v;,v2 must be
replaced by the statement labels
n1,me throughout the program.
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switeh jump: = v,Nc,v1,v2,matrix

[Nvz],Nee;

. GO TO(n,Ne,ny,ma,mz,—
. <Nc¢3),Nv
go to jump[Nv]; ce

Ne: ... n
10 ... NOI
Vol ... nll
th.'... n2|
. nq7| Nvs = Nmatriz(Nvz)
GO TO(NC,;, .oy ch),N1)4
. Nc¢| o6
IVC;; .
N02.'
chl
NCzI
Ne;, . .., Nci are the elements of
matrix[ . . .].
Nv,Nvy < 10

No switch declaration necessary.
The statement labels »,v1,v2 must
be replaced by the statement
labels n,n;,ms throughout the pro-
gram.

. token(. . N I No logical statements possible in
token is the ldentlﬁer of a pre- FORTRAN II.
viously defined Boolean procedure. FIV:
LOGICAL token

COMMON Vi e ooy, Vg
.token(..,...,..) ...

N21
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token

. token(. . R
token is the 1dent1ﬁer of a pre-
viously defined integer procedure.

COMMON v, . . ., v

Ltoken(. ., ...,..) ...,
token is the identifier of a pre-
viously defined real procedure.

. token(. . , .., tokenl, .., ..)
token is the identifier of a pre-
viously defined real procedure or
integer procedure or Boolean pro-
cedure.

. Ntoken(..,...,..)...
N21
FIV:
INTEGER token
COMMON Vi, - . .5 Vg
token(. . . . .. S R
N21
COMMON v, ..., v
.. Atoken(. .,...,..) ...
N21
FIV:
REAL token
COMMON vy, ..., v
.token(..,...,..)...
N21
FIV:
REAL token,tokenl
EXTERNAL tokenl
.. .'tolcen(. ..., tokenl,—
T
N21

The type declaration REA L token,
tokenl might be changed in agree-
ment with the type of the sub-
programs token and tokenl.
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token(. . ) COMMON vy, ..., v
token 1is the identifier of a pre- CALL token(. . , y o)
viously defined procedure.
N21
N22
token(. ., .., tokenl, ..,..); FIV:
token is the identifier of a pre- EXTERNAL tokenl
viously defined procedure. COMMON vy, ..., v
CALL token(. .,..,—
«~tokenl, . .,..)
token(. . , , . Jtext:(. ., ..., COMMON vy, ..., v
)s CALL token(. ., e >
token is the identifier of a pre- DN |
viously defined procedure.
N21
N22
token(. . . textl:(. . , COMMON v, . ..v;

. text2: ( N CALL token(..,...,..,—>
token is the 1dent1ﬁer of a pre- ey ey yes)
viously defined procedure.

N21
N22

.true ... ; FIV:

.TRUE. ...

type declaration:

see: integer vy, . .., Vg,

or realvy, ..., v

or Boolean vy, ..., v,

value vy, ..., v Omit in translation.
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variable identifier

(integer) variable identifier:
The variable identifier must be
listed in an integer declaration.

The first character of the variable
identifier must be I,J,K,L M, or
N.

The maximum length of the vari-
able identifier is restricted to «
characters.

N1o
examples:
K K
B NB
G42 NG42
E803 NES03
IBM IBM
N3
FIV:

The variable identifier must be
listed in an INTEGER declara-
tion. If it is declared under
INTEGER, then the variable
identifier can begin with an arbi-
trary alphabetic character.
N10,N30

(real) variable identifier:
The variable identifier must be
listed in a real declaration.

The first character of the variable
identifier cannot be I,J,K,L,M, or
N.

The maximum length of the vari-
able identifier is restricted to «
characters.

N1o0
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examples:
E605 E605
LANDAU ANDAU
Z Z
M AM
AI2F AI2F
N4
FIV:

The variable identifier must be
listed in a REAL declaration. If
it is declared under REAL, then
the variable identifier can begin
with an arbitrary alphabetic
character.

N10,N30

(subscripted) variable identifier:

The same, only the subscript
appears in round brackets.

The maximum value for a sub-
script is B.

N10

examples:
X[1] X(1)
T[Z)] T(NZ)
HANS[38] HANRS(38)
BETA[I,N] BETA(I,N)
KALLA[8,M,105] KALLA(8,M,105)
M30[1] M30(I)
AIR + 1,1] AI(NR + 1,L)

DELTA[3 x M — 5]

DELTA(3*M — 5)
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Part b

FORTRAN Il and IV — ALGOL 60



Ox~ the following pages the left column contains FORTRAN II and
FORTRAN IV statements (the latter are indicated by a preceding FIV :)
and the right column the appropriate ALGOL 60 statements. The se-
quence of statements is in alphabetical order, except where this rule is
broken to place together statements which belong together. Some parts
of a computer program (such as subprograms or GO TO (...), Nv or
ASSIGN, etc.) are easier to translate when treated as a group of state-
ments; such statements are grouped together. Groups with essential
combinations of statements inside this group are translated first. After
this, a few examples show how these groups can be combined together.
The meaning of the notes (abbreviated by N) and restrictions (abbre-
viated by R) is given in Part 2.2 and 2.3. Statements which cannot
be translated directly, since they refer to special machine features (such
as SENSE SWITCH, BACKSPACE, etc.), are explained. Since
ALGOL 60 does not include input/output statements, the examples are
given with the input/output statements of the National Elliott 803 (NE
803).

Important remark: Occasionally, the length of a FORTRAN state-
ment exceeds the width of a line. To indicate that the next ne should
appear as a continuation of the previous line, we use two arrows — <.

The following example makes this clear:
The statement

DIMENSION Amatrix(Nc,),—
<~ Amatriz(Ncs)

should actually be written as:
DIMENSION Amatriz(Nc,),Amatriz(Ncs)



FORTRAN--ALGOL

FORTRAN->ALGOL ABS
FIV,FII:
...ABS(a) ... ...abs(a)...;
a:N12 N1
...ABSF(a) ... ...abs(a) ... ;
a:N12,N42 N1
ACCEPT n,a This statement is used to allow

a to be read in from the console
typewriter in accordance with the
format statement n.

ACCEPT TAPE n,a This statement causes a to be
read from the paper tape reader,
in accordance with the format
statement n.

addition:

a + ag ay + az
FIV:

...AINT(Aa) ... .. .entier(da) . . . ;
FIV,FII:

... ALOG(a) . .. co.m(a) ... ;
a:N12
FIV:

...ALOG10(a) . .. ... 04342945 x In(a) ... ;
a:N12
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AND
FIV:
. AND. .. AL

arithmetic operators:

+ +

.

/ /

*%k T
assignment statement:

a1 = az ay’ = Qg;
az:N12
FIV:
logical assignment statement:

a.BEQ.ay a = a1

ASSIGN n TO Nv

Omit in translation.

FIV, FII:
...ATAN(@)... ...arctan(a) ... ;
a:N12
...ATANF(@)... ...arctan(a) ... ;
a:N12
FIV:
BACKSPACE Na This statement causes the mag-

netic tape unit Na to backspace
one record.
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C (in column 1) text

; comment fext ;

For the computation, this is equi-
valent to: ;

Restriction: fext may not include
a semicolon.

Alternative translation: directly
after an end statement.

end fext

For the computation, this is equi-
valent to: end

Restriction: text may not include
end or ; or else.

Alternative translation:

begin comment text ;

For the computation, this is equi-
valent to: begin

Restriction: text may not include
a semicolon.

FIV:

CALL DUMP(v, . ..

’ vk)

This causes the indicated limits
of the core storage to be dumped
and execution to be terminated,
but allows the computer to con-
tinue on its next program.

CALL EXIT

Terminates execution, but allows
the computer to continue on its
next program.

CALL LINK token

This statement is used to call the
subprogram token from magnetic
disk storage and transfer is made
to the first executable statement.

131



CALL FORTRAN->ALGOL
FIV:
CALL PDUMP(vy, ..., This causes the indicated limits
«~vg) of core storage to be dumped and
execution to be continued.
FIV:
CALL SSWTCH(Nv,—~
N ‘vz)
equivalent to:
IF(SENSE SWITCH—~
<Nc)ny,ne
CALL token token;

token is the identifier of a SUB-
ROUTINE without parameters.

The declaration of the appropriate
procedure must precede this state-
ment.

CALL token(..,...,..)

token is the identifier of a SUB-
ROUTINE.

token(..,...,..);

The declaration of the appropriate
procedure must precede this state-
ment.

FIV:
CALL token(. .,..,—
«~tokenl, .., ..)
token is the identifier of a SU B-
ROUTINE.

token(. . , .., tokenl, .., ..);

The declaration of the appropriate
procedure must precede this state-
ment.

COMMON v, ..

<~—matrix

-y Ugy,—>

Variables and/or array identifiers
appearing in this statement can be

or shared by a main program and its
COMMON wv,/. . .||~ subprograms.
<~matriz Omit in translation.

FIV:
COMPLEX vy, ...,vk,—~ The declared variables and func-
<«token tion are complex.

For writing complex numbers see:
numbers.
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CONTINUE This is a dummy statement which
results in no instructions to the
program. It is most frequently
used as the last statement in the
range of a loop to provide a trans-
fer address for IF and GO TO
statements.
FIV, FII:
...C08 (). .. .cos(a) ...
a:N12
...COSF()... ...co8(@)... s
a:N12,N42
FIV:
DATA vy, . .., v(c1,~> V1. = €15
.0, ck)
V. = Ck,
example 1:
DATA A,BL.NON,AR3,—~ A: = —3.25;
«~Z(—3.25,9.23E5,13,~ B: = 9.23,05;
~2.5,—1.2) NON: = 13;
AR3: = 2.5;
Z: = —1.2;
example 2:
DATACCU),I = 1,4)~ Cl1]: =2.3;
«(2.3,3.4,0.5,7.203) C[2]: = 3.4;
C[3]: = 0.5;
C[4]: = 7.203;
FIV:
DATA v1,v2,v3(c1,62,03),~> 17 = C1; V2! = C2’ V3" = C3;
«v4, ..., Vk(C4, ..., Ck) V4 =Ca5 ... VRS = Ck;
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FIV:
DATA v,ve, . .., vi(c1,—> V1. = C1; Vo' = C3;
<«2/Nc/c3,CNe+3,CNe+4,—> V3’ = Vg =.... = CNc+2' = C3;
“...,Cr) UNc+3' = CNc+3; - - - 5 Uk’ = Ck;
example:

DATA B1,B2,B3,B4,—~
«~B5,T,8,U,V,W,Z(5,—~

Bl: = §; B2: =7.01;
B3.‘ == B4.’ = B5.' — T,‘ 1

«7.01/7/3,2.5,3.735) S:=U:=V:=3;
W:=26;2Z: =3735;
FIV:
...DATAN(). .. ...arctan(a) ...
N41
a:N12
FIV:
...DCOS(a) ... ...co8(a)...;
N41
a:N12
DEFINE DISK ... This statement specifies to the
processor the size and quantity
of data records that will be used
with a particular program.
FIV:
...DEXP(a)... .exp(a)...
N41
a:N12
DIMENSION Amatrix—  array Amairix[1:Nc];
«~(Nc)
Ne < B
N26
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DIMENSION Nmatrix—  integer array Nmatriz[1:Nc);

«~(Nc)
Ne < B

N26
DIMENSION Amatrix—  array Amatriz[1:Nc1,1:Ncs);
«~(Necy,Nceg)

NCI ’NCZ < B

N26
DIMENSION Nwmatrix—' integer array Nmatrix[1:Nc,,
«(Nc1,Ncs) I1:Ncg];

N26 Ney,Nez < B
DIMENSION Amatrix—  array Amatriz[1:Nc1,1:Ncs,
<—(N61,N02,N63) 1.'NC3];

Nci,Nea.Nez < B

N26
DIMENSION Nmatrix—  integer array Nmatrix[1:Nc;,
<—-(N01,N62,N03) 1.'N02,1.'1V03];

Nci,Ncg,Nes < B

N26
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DIMENSION Amatrixl—- array Amatrizl, Amatriz?,
«~(Nc),Amatriz2(Nc),~> Amatriz3[1:Nc);
<~ Amatriz3(Nc)

Nec < B

N26

DIMENSION Nmatrixl—
«~—(Nc¢y),Nmatrizx2(Ncg),—
<~ Nmatriz3(Ncs)

integer array NmatrixI[1:Nc;],
Nmatrix2[1:Ncg],Nmatrix3
[1 :N 03] N

NCI’NCZ’NC3 < B

N26
DIMENSION Amatrixl— array Amatrial[1:Nc;],
«~(Nc¢;),Nmatrix(Ncg,— Amatriz2[1:Ncy,1:Ncs,1:Ncg);
«~Nc3),Amatriz2(Ncy,— integer array Nmatria[1:Nc,
<~Nes5,N¢g) 1:Ncs);
Ney, ..., Neg < ﬁ
division:
ar/a ai/a
a,a;:N12
exception:
Na;/Na Na, -+ Na
if the arithmetic operator - is

not available then translate:
sign(Nai/Na) x entier(abs
(N al/N a))
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FIV:
...DLOG(a) ... oon(a) ...
N41
a:N12
FIV:
...DLOG10(a) . . . ... 0.4342945 X In(a) ... ;
N41
a:N12
DO n Nv = my,mg for Nv: = m,; step I until ms do
begin
n
end ;
N18
DO n Nv = my,mg,me for Nv: = m; step mq until ms do
begin
n
end;
N18
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FIV:

DOUBLE PRECISION —~ The declared variables and func-

«vy, ..., U token tions are calculated with a pre-
cision equivalent to twice as many
significant digits as are obtained
in ordinary operation.

FIV:
...DSIN(a). .. ...sm(a)...;
N41
a:N12
FIV:
...DSQRT(). .. ...8qri(a) ...
N41
a:N12
END end
FIV:

END FILE Na This statement causes an end-of-
file mark to be written on the tape
of the magnetic tape unit Na.

FIV:
. .EQ. .« s = N

EQUIVALENCE (v,v2) V1 = Vo,

EQUIVALENCE (v1,v2,v3) v1: = va: = vg;

V1,02,03:N2
If N2 is violated then translate:

V1’ = v3;
Vg = vg;
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EQUIVALENCE (v1,v2),~ 1 = va;
<—(v3,v4,05) V3: = vy’ = V5]
v3,04,05- N2
If N2 is violated then translate:
v = vg;
V3. = vs;
V4. = Us,
FIV, FII:
...EXP@a)... ...exp(a)...;
a:N12
...EXPF(a).. ...exp(a)...
a:N12 N42
exponentiation:
al**a al‘ra
a,al:N12
expression :

An expression is of integer type
if all the operands are integer.
An expression is of real type if
all the operands are real.

An expression is of integer type if
all the operands are integer, other-
wise the expression is of real type.

FIV:
EXTERNAL tokenl,—
«~token? token3

This statement indicates, that the
subprogram identifiers tokenl,
token2,token3 can be used as argu-
ments in subprograms.

Omit in translation.
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FIV:
... .FALSE. ...

...false... ;

FETCH(c)am, ..., a

This statement is used to read
from the disc storage the data
ai, . . ., ax from the record specified
by c.

FIN D(a)

This statement is used to position
the access arm of a disk storage
drive over the cylinder which
contains the record a.

... FLOAT(Na) ...

FIV:
FORMAT(Dw.d)

example:

n| FORMAT(D17.10)
PUNCH n,C

|7.1991567432D + lOl

.Na...;

The number in connection with
this input/output statement ap-
pears as a double precision number
with exponent on a field of width
w with d digits to the right of the
decimal point.
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FORMAT

FORMAT(Ew.d)

This number in connection with
this input/output statement ap-
pears as a real number with
exponent on a field of width w
with d digits to the right of the
decimal point.

NE 803:

No translation of a format state-
ment if this is connected with an
input statement.

SCALED(w — 6)

example:
n| FORMAT(E10.3) PRINT SCALED4),C;
PUNCH n,C (2.997 @ + 10]
2.997E + 10
FORMAT(Fw.d) The number in connection with

141

this input/output statement ap-
pears as a real number without
exponent on a field of width w
with d digits to the right of the
decimal point.

NE 808:

No translation of a format state-
ment if this is connected with an
input statement.

ALIGNED(w — d — 2,d)



FORMAT
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example:
n| FORMAT(F9.4) PRINT ALIGNED(3,4),C;
PUNCH n,C |—938.2129|
|—938.2129|
FORMAT(Iw) The number in connection with

n| FORMAT(IS5)
PUNCH n,K

this input/output statement ap-
pears as an integer number in a
field of width w.

NE 803:

No translation of a format state-
ment if this is connected with an
input statement.

DIGITS(w — 1)

example:

PRINT DIGITS(4),K;

[ 137,

FIV:
FORMAT(Lw)

example:

n| FORMAT(L6)
PUNCH n,C

T

if C has the value .TRUE.

or

[

if C has the value .FALSE.

This statement in connection with
an input statement causes a value
of .TRUE. or .FALSE. to be
assigned to the corresponding logi-
cal variable, depending whether
the first character in the field is a
Toran F.

Note: If the field of width w con-
sists entirely of blanks, a value
of . FALSE. is assumed.

This statement in connection with
an output statement causes a T or
an F inserted in the output
record for the corresponding logi-
cal variable with a value of
.TRUE. or .FALSE.. The single
character is preceded by w — 1
blank fields.
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FORMAT(cX{ },eX,—~ The two numbers in connection

)} with this input/output statement
appear on one record, the first
number is preceded by ¢ blank
fields and the second number is
preceded by e blank fields.

NE 803:

No translation of a format state-
ment if it is connected with an
input statement.

$Sc?,{ },SAMELINE v,,$Se?,

{ },’02;
example:
n| FORMAT(5X,E10.3,~ PRINT $852,SCALED(4),
12X ,F5.2) SAMELINE,A,$812?,
PUNCH n,A,B ALIGNED(1,2),B;
FORMAT(2(F10.5,~
«~E10.3),18)

this is equivalent to:

FORMAT(F10.56,£10.3,~
«~F10.5,E£10.3,18)

FORMAT{ },...,{})

NE 803:
example:

FORMAT(F7.3,10X,~ PRINT ALIGNED(2,3),
+~F6.3,10X,E13.4) SAMELINE,A,$810?,ALIGNED
PUNCH n,A,B,C (1,3),B,$810?,SCALED(7),C;
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|

FORMAT(cEw.d,eFw.d)

The ¢ + ¢ numbers in connection
with this input/output statement
appear on one record. The format
of the first group of numbers is
specified as Ew.d and the second
group of numbers as Fw.d.

NE 803:

No translation of a format state-
ment if it is connected with an in-
put statement.

example:

FORMAT(3E10.3,2F5.2)
PUNCH n,4,B,C,D.E

PRINT SCALED(4),
SAMELINE . A,B,C,ALIGNED
(1,2),D,E;

FORMAT(cEw.d/(eFw.d))

The format of the starting ¢ num-
bers in connection with this input/
output statement is specified as
Ew.d, the remaining numbers ap-
pear on new records in groups
of e numbers on one record and in
the format Fw.d.

FORMAT({ }//K D)

The first and second number in
connection with this input/output
statement are separated by 3
empty records.

NE 803:

No translation of a format state-
ment if it is connected with an
input statement.
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example:
n| FORMAT(E10.3//|F5.2) PRINT SCALED(4),A,8L3?,
PUNCH n,A,B ALIGNED(1,2),B;
[3.321E + 33| 3.321 @ + 33|
[EX (B2
FORMAT( (cHtext) text in connection with this input/

output statement appears on a
field of width c.

NE 803:

example:

FORMAT(14H THIS—~
<IS A TRIAL)
PUNCH n

[THISIS A TRIAL)

PRINT $ THIS IS A TRIAL?;
[THIS IS A TRIAL

FORMAT({ },cHtext)

The number in connection with
this input/output statement ap-
pears as specified under { } fol-
lowed by text occupying a field of
width c.

NE 803:
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|

example:

FORMAT(13,14H =~ PRINT DIGITS(2),K,$ =
<~ATOMIC NUMBER) ATOMIC NUMBER?;

PUNCH n,K [16 = ATOMIC NUMBER|
|76 = ATOMIC NUMBER]

FORMAT(cHtext{ }) text in connection with this input/
output statement appears on a
field of width ¢ followed by a
number specified by{ }.

example:
NE 803:

FORMAT(20H —~ PRINT $ SOMMERFELDS
~SOMMERFELDS-~  CONSTANT = ?SAMELINE,
«~ OONSTANT = F8.3) ALIGNED(3,3),8;

PUNCH n,8 [SOMMERFELDS CONSTANT = 137.040|

SOMMERFELDS CONSTANT = 137.040

FORMAT(Ac{ },...,~ ¢ alphameric characters appear
~{}) followed by numbers specified by

{h.. o {}

example:

NE 803:

FORMAT(A7,3X,13,—~ PRINT $§ COBALT?,
~5X,F6.2) SAMELINE,$83?,DIGITS(2),
PUNCH n, COBALT,K,A K,$856?,ALIGNED(2,2),A;

146



FORTRAN->ALGOL

FORMAT

FORMAT(1H +,{})

This format statement indicates

or that the records appearing on the
FORMAT(1H,{ }) line-printer are single spaced.
FORMAT(1HOA }) This format statement indicates
that the records appearing on the
line-printer are double spaced.
FORMAT(1H1,{ }) This format statement indicates
that the records appear on the
next page of the line-printer.
FUNCTION Atoken— real procedure Atoken (.., ..,
“eeyeesClyennyCly—> ClyvoesChyoesyes)s
COMMON ..,...,. begin
RETURN end;
END
N23
N27
FUNCTION Ntoken— integer procedure Nioken(. .,..,
<—(..,..,01,...,ck,—> 61,...,63,..,..),'
COMMON ..,...,.. begin
.R.F;'TURN end;
END
N23
N27
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FUNCTION Atoken— real procedure Atoken (. ., . .,
oy Ve Ukyeey™> VL eeay Vkye vy s)s
<—) value..,vl,...,vk,..;
COMMON ..,...,.. real ..,...,..;
integer ..,...,..;
- begin
RETURN cen
END
end;
N27 N23,N24,N25
FUNCTION Ntoken— integer procedure Ntoken (. .,
U P /A R VPR ) R
.yl value.., v, ..., 0, ..
COMMON ..,...,.. real..,...,..;
.. integer..,...,..;
e begin
RETURN e
END
end;
N27 N23,N24,N25
FUNCTION Atoken— real procedure Afoken (..,..,
~(..,.., Nmatriz, .. ,— Nmatriz, . .,..);
«..) ce
COMMON ..,...,.. integer array Nmatriz;
DIMENSION Nwmatrix— ..
+(Nc) begin
RETURN end;
END
N27 N23
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FUNCTION Ntoken— integer procedure Ntoken (. ., ..,

~(..,.., Nmatriz, .. ,— Nmatriz, . .,..);
COMMON ..,...,.. integer array Nmatrix;
DIMENSION Nmatrix— ..
«~—(Nc) begin
RETURN end;
END
N27 N23
FUNCTION Atoken— real procedure Atoken(. ., ..,
«~(..,..,cHtext,..,— ‘text’, . .,..);
«..) ce
COMMON ..,...,.. string text;
begin
RETURN
END ...
end;
N27 N23
FUNCTION Ntoken— integer procedure Ntoken(. ., ..,
«~(..,..,cHtext,..,~ ‘text’, . ., ..);
COMMON ..,...,.. string text;
. begin
RETURN
END e
end;
N27 N23
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FUNCTION Atoken— real procedure Atoken (Av,,Avs,
“(Avl,sz,st,cl,cz,** N'vs,61,0z,A1Mtrix);
(—A"natrix) value Avl,sz,st;
COMMON . ) . real Avy,Avs;
DI MENSION Amatm:-» integer Nvs;
<«(Nec) array Amatriz;
.. begin
RETURN ..
END end;
N27 N23,N24,N25
FUNCTION Ntoken— integer procedure Ntoken(Av,
«~(Av1,Nve,Nvs,c,— Nuvg,Nvg,c,Amatriz, Nmatrizl,
<~ Amatriz, Nmatrixl,— Nmatriz2);
<~Nmatriz2) value Av;,Nvz,Nvs;
COMMON . - real Av;
DIMENSI ON Amatm:—» integer Nvg,Nvs;
«~—(Nc),Nmatrizl(Nc1),— integer array Nmatrizl,
«~Nmatriz2(Ncs) Nmatriz2;
e array Amatriz;
begin
RETURN '
END Ce
end;
N27 N23,N24 N25
FIV:
. .GE. .. 2y
GO TO n go to n;
n <
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FIV:
GO TO Nv,(n1,n9,—~ go to Nv;
“«. .., nk)

This statement is preceded by ap-
propriate ASSIGN declarations.

GO TO(mins, . .., ng),Nv switch jump: = nine, ..., ng;

go to jump[Nv];

ny
n. .
n2
Nk .
ng' ...
Jjump must be defined in a preced-
ing switch declaration.
FIV:
..QT. ... S
...IABS(a)... .. .entier(abs(a)) ... :
a:N12
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IF
IF(a) ni,ne,ns if a =0 then go to n: else if
a < 0 then go to 7, else go to ns;
a:N12
N17,N18
I1F(a) ni,n1,n2 if a < 0 then go to n; else go to
ne;
a:N12
N17,N18
I F(a) n1,n2,m if a = 0 then go to n: else go to
n;
a:N12
N17,N18
I1F(a) ny,ne,mse if > 0 then go to n: else go to
ny
a:N12
N17,N18
FIV:

IF(Lterm) . ..

if Lterm then .. .else ... ;

IF(SENSE LIGHT —~
<—Nc) ni,ne

Control is transferred to state-
ment n; or ng if the designated
sense light on the computer con-
sole is on or off respectively.

Omit in translation.
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IF(SENSE SWITCH —~ Control is transferred to the state-
<Nc) ny,ne ment whose label is n; or ng if
sense switch Nc¢ is on or off,
respectively. The sense switches
are set manually from the com-
puter console.
This statement can be used for
operator controlled branches.*

...IFIX(Aa)... . ..entier(Aa) . .. ;

FIV:
INTEGER v,ve, ..., vk integer v1,vs, . . . , vg;

N30

FIV:
INTEGER..,..,~
«tokenl, . ., ..

This statement indicates that the
results of the arithmetic statement
function tokenl or of the subpro-
gram tokenl are of integer type.
Omit in translation, but watch
that the appropriate arithmetic
statement function or the sub-
program is translated by integer
procedure tokenl.
If tokenl is the identifier of a
library function, then tokenl must
be replaced by

entier(tokenl)
throughout the program, see ex-
ample:

* This statement could be translated in the following way:

read Ncy;

if Nc; = 1 then go to n; else go to n3;

Ne; = 1 for SENSE SWITCH Ne on and N¢; = 0 for SENSE SWITCH Nec off.
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example:
INTEGER ABS
k ‘: ABS(T)*S K: = entier(abs(T)) x S;
FIV:
INTEGER—~ The same as for FUNCTION
<~FUNCTION token— Ntoken(..,..,C1, ..., Cky.vy..)
“(oeyeusClyee.sCh..,~> only
“«..) Ntoken = token.
COMMON . .,... -
N29
RETURN
END
N27
FIV:
INTEGER—~ The same as for FUNCTION
«~FUNCTION token— Ntoken(..,..,v1, ..., 0% ..... )
(., .5V,...,0,..,> only
«..) Ntoken = token.
COMMON ..,...,..
N24,N25N29
RETURN
END
N27
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INTEGER FUNCTION

FIV:
INTEGER—> The same as for FUNCTION
«~FUNCTION token— Ntoken(. ., .., Nmatriz, . ., ..)
<~(..,.., Nmatriz, . . ,— only Ntoken = token.
«..)
COMMON ..,...,..
DIMENSION Nmatrix—  N29
<—(NC)
RETURN
END
N27
FIV:
INTEGER—~ integer procedure token(. . , . .,
<~ FUNCTION token— ‘text’, . ., ..);
«~(..,..,cHtext,..,..)
COMMON ..,...,. string text;
.. begin
RETURN .
END end;
N27 N29
FIV:
INTEQGER—~ integer procedure token(. . . . . ,
<~ FUNCTION token— tokenl, . .,..);
«~(..,..,tokenl, .., ..)
COMMON . .,...,.. real procedure tokenl;
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begin
RET URN ...
END end;
N27 N29
The indicator real procedure must
be replaced by integer procedure or
by procedure if tokenl is the identi-
fier of an integer procedure or of a
procedure.
FIV:
INTEGER—~ The same as for FUNCTION
«~FUNCTION token— Ntoken (Avy,Nvs,Nvs,c,Amatriz,
«~—(Avy,Nvs,Nvs,c,— Nmatrizl, Nmatriz2) only
<~—Amatrix, Nmatrixl,— Ntoken = token.
<~Nmatriz2)
COMMON ..,...,..
DIMENSION Amatrix—  N24,N25N29
«(Nc), Nmatrizi(Ney),—
«~Nmatriz2(Ncg)
RETURN
END
N27
FIV:
... ISIGN(Na) . .. ...sgn(Na) . .. ;
FIV:
LE. ... <Ly
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... LOG(a) . .. ... n(a) .. .;
a:N12
...LOGF(a)... oo ln(a) ...
a:N12 N42
FIV:
LOGICAL V1,02, . . ., Vg Boolean v;,vs, . . ., vg;
FIv:

LOGICAL . . ,tokenl, .. This statement indicates that
tokenl is a logical statement func-
tion or that the subprogram tokenl
is of logical type.

Omit in translation, but watch
that the appropriate arithmetic
statement function or subprogram
is translated by Boolean procedure
tokenl.

FIV:

LOGICAL— Boolean procedure foken(. . , . .,

«~FUNCTION token— Cly o v vy Chyovyod)t

(e e ey Clyee ey Chy oo y™> o

«..) begin

COMMON . .,...,.. .

- end;

RETURN

END
N29

N27
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FIV:
LOGQICAL—~ Boolean procedure token(. . , . .,
«~FUNCTION token— Vi e ooy Vkyoosos)s
ey V1, V.., ValUe .., V1, ...,V .,
«..) real . .,...,..;
COMMON ..,...,. integer ..,...,..;
Boolean..,...,..;
- begin
RETURN -
END
end;
N27
N24,N29,N36
FIV:
LOGICAL— Boolean procedure token(. . ,
«~FUNCTION token— Nmatriz, . ., ..);
<~(..,.., Nmatriz, . . ,—
“..) integer array Nmatriz;
COMMON . , -
DIMENSI ON Nmatmx—» begin
+(Ne) e
e end;
RETURN
END
N29
N27
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FIV:
LOGICAL— Boolean procedure token(. ., ..,
<~FUNCTION token— tokenl, . . ,..);
~(..,..,tokenl,..,..)
COMMON ..,...,.. real procedure tokenl;
e begin
RETURN -
END end;
N27 N29
The indicator real procedure must
be replaced by integer procedure or
by Boolean procedure or by pro-
cedure if tokenl is the identifier of
an integer procedure or of a
Boolean procedure or of a pro-
cedure.
FIV:
LOGICAL— Boolean procedure token(Avi,Nve,

N27

<~FUNCTION token—
~(Av1,Nve,Nvs,c,—
<—Amatrix, Nmatrixzl, —
<~—Nmatrix2,v)
COMMON ..,...,..
DIMENSION —~
<~—Amatriz(Nc),—
«~Nmatrizl(Nc,),—~
<~—Nmatriz2(Ncg)

RETURN
END

Nug,c,Amatrix, Nmatrizl,
Nmatrix2,v);

value Av1,Nvs,Nvg,v;
real Av;;

integer Nvg,Nvg,
Boolean v;

integer array Nmatrizl,
Nmatrix2;

array Amatriz;

begin

end;

N24,N29,N36
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logical operators:

.OR. |4
AND. A
NOT. 7
logical values:
.TRUE. true
.FALSE. false
FIV:
LT. . <.
multiplication:
ar*as a1 X az
FIV:
..NE. ... CF
FIV:
. .NOT. ... ...
numbers:
0 0
0. 0
123 123
123. 123
1234 1234
+0.1234 +0.1234
—123.456 —123.456
+1.23E5 +1.23105
9.87F +12 9.8710+12
2E—-3 210—3
SE4 8104
—0.012E—03 —0.012;0—03
—1.E8 —108
1.E—5 10—95
+1.E+5 +10+5

Range for real numbers: ¢
Range for integer numbers: §
Range for exponents: 5
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OR.

The following numbers appear
only in connection with input
data:

E2
Eo2
+2
—2
+02

FIV:
double-precision numbers:

21.9D0
0.203D0
8.0D3
5.5D — 5

complex numbers:

102
102
102
10—2
102

21.9
0.203
8.0103
5.510 — b5

(7.3,1.76) is equal to 7.3 + 1.76i
(5.1E2, — 3.23) is equal to 510 — 3.23i
(1.1,0.0) is equal to 1.1 + 0.0i

Vel

This statement halts the computer.
Pressing the start key causes the
program to resume execution of
the program with the next state-
ment.

In a PAUSE n statement, the
number » is displayed on the
console during the halt.

FIV:
.OR. ..
PAUSE
or
PAUSE n
FIV:.
PRINT nw

This statement is used to print
out » on the line-printer in ac-
cordance with the format state-
ment n.

This format statement n includes
information to space the printed
output properly.
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PUNCH n This statement causes information
to be punched out according to
the format statement x.

PUNCH n,w This statement causes the value of
the variable identifier » to be
punched out according to the

N8 format statement n.

NE 803:
PRINT { };

N15

PUNCH n,vy, ..., v This statement causes the values
of the wvariable identifiers v,
..., vg to be punched out accord-
N8 ing to the format statement n.

NE 803:
PRINT { },v1, ...,k

Ni15
PUNCH n,(matrix(Nv),—  for Nv: = Na; step I until Na,
<~Nv = Na;,Naz) do output statement for matrix
[Nv];
Nv,Na;,Nax:N14
N8
NE 803:

FOR Nv: = Na; STEP 1
UNTIL Na; DO PRINT { },
matriz(Nv);

N15
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PUNCH

PUNCH n,(matriz(Nv),~
«<Nv = Na;,Naz,Nas)

for Nv: = Na; step Nas until Na.
do output statement for matriz
[Nv];

Nv,Na;,Nas,Nasz:N14

N8
NE 803:
FOR Nv: = Na; STEP Nas
UNTIL Na; DO PRINT { },
matriz(Nv);
N15
PUNCH n,((matrix— for Nvy: = 1 step I until m: do
«~—(Nv1,Nvg),Nvs = 1,—~ for Nv,: = I step 1 until m; do
<~mg),Nvy = 1,my) output statement for matriz[ Nv,
N’Uz],’
Nvy,Nvs,my,ma:N14
N8

NE 803:

FOR Nvy,: =1 STEP 1 UNTIL
me DO

FOR Nvy: =1 STEP 1 UNTIL
ma .DO

PRINT { }matriz(Nvy1,Nvs);

N15
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N8

PUNCH n,((matriz(Nvy,—
«~Nvy),Nva = my,mz),—>
«~Nv; = mg,my)

for Nvg: = my step I until m: do
for Nv,: = ms step I until m, do
output statement for matriz[Nvy,
Nvg);

Nvl,Nvg,ml,mg,ma,m4 :N14

NE 803:

FOR Nve: =my STEP1UNTIL
me DO

FOR Nvi: =mg STEP1UNTIL
my .DO

PRINT { },matriz(Nvi,Nvs);

N15

N8

PUNCH n,((matric—
«~(Nv1,Nvg),Nve = Na;,—
<—Na2,Na3),N'vl = Na4,—->
<—Na5,Nae)

for Nvy: = Na, step Nas until Na.
do for Nv;: = Nay step Nae until
Nas do output statement for
matriz[ Nvi,Nvs];

Nv;,Nve,Nay, ..., Nag:N14

NE 803:

FOR N’vz.’ = Na1 STEP Naa
UNTIL Na; DO FOR Nv,: =
Nay STEP Nag UNTIL Nas DO
PRINT{ },matriz(Nv,,Nvs);

N15
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PUNCH

PUNCH n,(matric—
«—(Nve),matrixl(Nvs,—
<—N’U4),N’vz = Nal,Naz,—>
«Nag)

N8

for Nv;: = Na, step Nas until Na,
do output statement for matriz
[Nvs],matrixl[ Nvg,Nvg);
sz,Nva,Nm,Nal,Naz,Naa:N14

NE 803:

FOR Nvs: = Nay STEP Naj
UNTIL Na, DO PRINT {},
matrix(Nve),matrixl(Nvs,Nvs);

N15

FIV:
PUNCH TAPE n,w

This statement causes v to be
punched by the paper tape punch
according to the format statement
n.

READ nmatrix

N8

example:
DIMENSION NUT(5,8)

n| FORMAT((})
READ n,NUT

This statement causes the values
of the array identifier matrix to be
read in according to the format
statement n.

NE 803:

INTEGER ARRAY NUT(:5,
1:8);

FORN: —18TEP 1 UNTIL 8
DO FOR M:—1 STEP 1
UNTIL 5 DO READ NUT(M,
N);

N,M:N14
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READ »n

example:

n| FORMAT (cHtext )
READ n

This statement causes information
to be read in according to the
format statement n.

NE 803:
READ § text ?;

READ n,a

N8

This statement causes the value of
the identifier ¢ to be read in
according to the format state-
ment n.

NE 803:
READ a;

a:N14

READ n,a,, ..., a

N8

This statement causes the values
of the identifiers a;, ..., ax to be
read in according to the format
statement n.

NE 803:
READ ay, . .., ax;

Aly o o oy ak:Nl4

FIV:
READ(Nc¢) ay, ..., a

This statement causes a, ..., ax
to be read in in binary form from
input device Nc.
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FIV:
READ(Nen) ay, . . ., ax This statement causes ay, ..., ak
to be read in from input device
Nc according to format statement
n.
READ n,(matriz(Nv),— for Nv: = Na, step I until Na,
«Nv = Na;,Nas) do input statement for matriz
[Nv];
Nv,Nal,Nag:NM
N8
NE 803:
FOR Nv: = Na, STEP 1
UNTIL Na; DO READ matrix
(Nv);
READ n,(matriz(Nv),— for Nv: = Na, step Nas until Na,
«<Nv = Na;,Naz,Na3) do input statement for matrixz
[Nv];
Nv,Na;,Nas,Nas:N14
N8
NE 803:
FOR Nv: = Na; STEP Nagz
UNTIL Na; DO READ maltrix
(Nv);
READ n,((matriz(Nvy,— for Nvs: = 1 step I until m; do
«~Nvg),Nve = 1,mz),— for Nvy: =1 step I until m; do
«~Nv, = 1,m) input statement for matriz[Nv,
N’Dz],’
Nvl,sz,ml,'me:NM
N8

NE 803:

FOR Nvs: =1 STEP 1 UNTIL
mg DO FOR Nv,: =1 STEP 1
UNTIL mi DO READ matrix
(Nvl,sz);
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READ n,((matrix—
<—(Nvl,Nv2),Nv2 = m,—>
«~mg),Nvy = mg,my)

N8

for Nvs: = m; step I until me do
for Nv;: = mg3 step I until m4 do
input statement for matriz[Nv;,
N 1)2],'

Nvl,N'vg,ml, ey m4:Nl4

NE 803:

FOR Nvy: =my STEP1 UNTIL
ms DO FOR Nvy: =m3 STEP 1
UNTIL mgy DO READ matrix
(Nv1,Nvg);

READ n,((matrix—
«(N‘UI,N’Uz),N‘Uz == Na,l, -
<—Na2,Na3),Nv1 = Na4,—->
<—Na5,Na6)

N8

for Nvs: = Na, step Nas until Na,
do for Nv,: = Nay4 step Nag until
Nas do input statement for matriz
[N v, N ’02] N

Nv,Nvg,Nay, ..., Nag:N14

NE 803:

FOR Nvy: = Nay STEP Na,
UNTIL Na; DO FOR Nv,: =
Nay STEP Nag UNTIL Nas DO
READ matrix(Nvy,Nvs);

READ n,(matriz(Nvs),—
<~matrizl(Nvs,Nvy),—~
«~Nvy = Naj,Naz,Nag)

N8

for Nv,: = Na, step Nas until Nas
do input statement for matrixz
[Nve),matrixl[ Nvs,Nvs];

sz,Nv:;,Nm,Nal,Nag,Nag:Nl«L

NE 803:

FOR Nvy: = Nay STEP Nag
UNTIL Na; DO READ matrix
(Nvg),matrizl(Nvs,Nvs);

FIV.
READ INPUT TAPE—~
«~Nec,n,a

This statement causes the value of
the identifier a to be read in from
the magnetic tape unit Nc¢ accord-
ing to the format statement =.
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READ TAPE

FIV:

READ TAPE Nc,a

This statement causes the value
of the identifier a to be read in
from the magnetic tape unit Nec.

FIV:

N30

REAL v, ..., v

real vy, ..., v

FIV:

REAL.., .., tokenl,—

.., ..

This statement indicates that the
result of the arithmetic statement
function tokenl, or of the library
function tokenl, or of the sub-
program tokenl are of real type.
Omit in translation, but watch
that the appropriate arithmetic
statement function or the sub-
program is translated by real
procedure fokenl.

FIV:

N27

REAL FUNCTION —~
<~token(..,..,c1,...,~>
“«Cky v vy e )

COMMON ..,...,..

RE’T URN
END

The same as for FUNCTION
Atoken(. ., ..,c1, -« . Cky.n .. )
only Atoken = token.
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FIV:
REAL FUNCTION —~ The same as for FUNCTION
«~token(..,..,v1,...,~> Atoken(. ., .., v1, ..., 0k ..,..)
“Vky oo ye ) only Atoken = token.
COMMON ..,... -
N24 N25N29
RETURN
END
N27
FIV:
REAL FUNCTION — The same as for FUNCTION
«~token(. . ,..,~ Atoken(. ., .., Nmatriz, . .,..)
~Nmatriz,. . ,..) only Atoken = token.
COMMON ..,...,..
DIMENSION Nmatrix—
<—(Nc) N29
RETURN
END
N27
FIV:
REAL FUNCTION —~ real procedure token(. ., ..,
~token(. ., .., cHtext,— ‘text’, .., ..);
“—..,.0) ..
COMMON. .....,.. string text;
begin
RETURN -
END end;
N27 N29
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REAL FUNCTION

FIV:
REAL FUNCTION — real procedure token(. ., ..,
<«token(. ., .., tokenl,— tokenl, . . ,..);
“..,..) ce
COMMON ..,...,.. real procedure tokenl;
. begin
RETURN -
END end;
N27 N23
The indicator real procedure must
be replaced by
integer procedure
Boolean procedure
procedure
if tokenl is the identifier of an
integer procedure
Boolean procedure
procedure
FIV:
REAL FUNCTION — The same as for FUNCTION
«~token(Avy,Avs,— token(Avy,Avs,Ncs,c1,c2, Amatrix)
«Ncg,c1,c2,Amatrix) only Atoken = token.
COMMON ..,...,..
DIMENSION Amatriz—
«(Nc) N24,N25 N29
RETURN
END
N27
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RECORD(a) a, . . ., ax

This statement is used to write
ay, . . . , ax into the disk storage on
the record a.

relational operators:
.LT.
.LE.
EQ.
.GE.
.GT.
NE.

*VWVIAA

RETURN
The statement directly following
is not END.

go to a;

The last end statement of the sub-

program must be replaced by
acend;

example:

FUNCTION KLAUS(T)

integer procedure K LAUS(T);

RETURN g0 to LOS;
RETURN LOS: end:
END

RETURN end;

END

FIV:
REWIND Nc

This statement causes an end-of-
file mark to be written on the tape
of magnetic tape unit Nc and the
tape to be rewound.

SENSE LIGHT Nc

If Nc = 0, all sense lights on the
control console will be turned off,
otherwise the sense light specified
by Nc¢ will be turned on.
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FIV:

...SIGN(4a) . .. .. sign(da) . . . ;
FIV, FII:

...8IN(a)... ..om(a). ..y
a:N12

...S8INF(a)... ..em(a). ..y
a:N12, N42
FIV, FII:

...S8QRT(a). .. ..8qri(a) ...
a:N12

...SQRTF(a)... .sqri(a) . ..
a:N12 N42

statement label (number):

n|

statement separator:

No special statement separator, ;
different statements must be on The statements are separated by a

different records.

semicolon.

STOP
or

STOP n

This statement causes a halt in
such a way that pressing the start
key has no effect. The message
STOP is typed on the console
typewriter. If STOP n is used, the
number # is displayed on the con-
sole.
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SUBROUTINE
SUBROUTINE token procedure foken;
COMMON ..,...,.. begin
RETURN end;
END
N23
N27
SUBROUTINE token— procedure token(..,..,ci,...
ey eyl e ey Che ey e d) Chkyevsod)s
COMMON ..,...,..
begin
'Ii;E.JTUBN ...
END end;
N27 N23
SUBROUTINE token— procedure foken(..,.., v, ...
4—(..,..,1)1,...,7)k,..,—> 'Uk,..,..),'
<—) value..,vl,...,vk,..;
COMMON . .,...,.. real..,...,..
integer . .,...,..;
. .. begin
RETURN A
END
end;
N27
N23,N24,N25
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SUBROUTINE token— procedure foken(..,..,n,..,..);
ey, )

COMMON ..,...,.. label n;
- begin
RETURN .
END end;

N27 N23

n is a statement label (number).

SUBROUTINE token— procedure token(. ., .., Nmatriz,
~(..,.., Nmatriz, .. ,— R
COMMON ..,...,.. integer array Nmatrix;
DIMENSION Nmatriz(Nc) begin
RETURN end;
END

N23

N27
SUBROUTINE token— procedure loken(. ., .., ‘text’, ..,
«~(..,..,cHtext,..,..) L)

COMMON..,...,..

e string text;
begin

RETURN

END -
end;

N27

N23

175



SUBROUTINE FORTRAN->ALGOL
FIV:
SUBROUTINE token— procedure foken(. ., .., tokenl, . .,
<~(..,..,tokeny,..,..) 2)s
COMMON . .,...,.
real procedure tokenl;
begin
RETURN
END .
end;
N27
N23

The indicator real procedure must
be replaced by integer procedure or
procedure if tokenl is the identifier
of an integer procedure or of a
procedure.

SUBROUTINE token—
<~(Av,Av;,Nmatrizl,—
«~—Amatrix2, Amatriz3, —
«term)

COMMON ..,...,..
DIMENSION Nmatrixl —~
~(Ne)

DIMENSION Amatriz2—
~(Ney)

DIMENSION Amatrix3—
<—(]VCz)

...

RETURN
END

N27

procedure token(Av,Av;,Nmatrizl,
Amatrix2, Amatriz3,term);

value 4v,Av;;

real Av,Av,;

integer array Nmatrixl;

array Amatrixz2, Amatriz3;

begin

end,

23,N24,N25N26
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SUBROUTINE

SUBROUTINE token— procedure foken(Nv,Av,,Avs,c.cy,
«—(Nv,Avi,Ave,c.cr,term,—~  term,mi,ms);
COMMON ..,...,.. real Avy,Ave;
... integer Nv;
label ni,ne;
- begin
RETURN .
END
end;
N27
N23,N24 N25
subtraction:
ay — Qo a — a»
FIV:
Lootoken(. ., ..., ). N 77) 727 PP I
token is the identifier of an The declaration of the appro-

INTEGER FUNCTION or of a
REAL FUNCTION or of a
LOGICAL FUNCTION or of an
arithmetic statement function.

priate integer procedure or real
procedure or Boolean procedure
must precede this statement.

FIV:
... token(. ., .., tokenl,—

token is the identifier of a REAL
FUNCTION or ofan INTEGER
FUNCTION or of a LOGICAL
FUNCTION.

<.

...token(.., .., tokenl, .. ... )

.« ey

The declaration of the appropriate
real procedure or integer procedure
or Boolean procedure must precede
this statement.

... Atoken(. ., ...,..) ...

Atoken is the identifier of a
FUNCTION or of an arithmetic
statement function.

... Atoken(. ., ..., )L

The declaration of the appropriate
real procedure must precede this
statement.
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...Ntoken(. .,...,..)...

Ntoken is the identifier of a
FUNCTION or of an arithmetic
statement function.

...Ntoken(..,...,..)...

The declaration of the appropriate
integer procedure must precede
this statement.

... AtokenF(......,..)—~>

<«~. ..

AtokenF is the identifier of an
arithmetic statement function.

... AtokenF(. ., ..., .)...;

The declaration of the appropriate
real procedure must precede this
statement.

... NtokenF(..,...... )—>

..

Ntoken is the identifier of an
arithmetic statement function.

...NtokenF(..,...,..)...

The declaration of the appropriate
integer procedure must precede
this statement.

... XtokenF(..,...,..

)—>

XtokenF is the identifier of an
arithmetic statement function.

... XtokenF(..,...,..)...;

The declaration of the appropriate
integer procedure must precede
this statement.

arithmetic statement function.

real procedure foken(..,...,..);
value..,...... ;
real..,...,..
integer . .,...,..;

begin

token: = term;

end;

N24,N25

It is a real procedure if token is
declared in the program as real,
and an integer procedure if token is
declared as integer.

The identifiers of term must be
declared in the main program.
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Atoken(. . ,...,..) =term real procedure Atoken(..,...,
H

arithmetic statement function.

begin

Atoken: = term;
end;

N24,N25
The identifiers of term must be
declared in the main program.

Ntoken(..,...,..) =term integer procedure Ntoken(. . .. .. ,
L)

value..,...,..;

real .., ...,..;
integer..,...,..;

begin

Ntoken : = term:

end;

arithmetic statement function.

N24,N25
The identifiers of term must be
declared in the main program.

AtokenF(..,...,..) =—  real procedure AtokenF(. ., ...,
«~lerm .y

arithmetic statement function.

begin
AtokenF: = term;
end;

N24,N25
The identifiers of term must be
declared in the main program.
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NtokenF(. ., ... ,..) =

<«term

arithmetic statement function.

integer procedure NtokenF(. .,
NN

begin
NtokenF : = term;
end:

N24,N25
The identifiers of term must be
declared in the main program.

XtokenF(......,..) =—
«term

arithmetic statement function.

integer procedure XtokenF\(. .,
value..,...,..;

real ..,...,..;
integer . .,...,..;

begin

XtokenF: = term:

end:

N24 N25
The identifiers of term must be
declared in the main program.

FIV:
... .TRUE. ...

...true...;

TYPE n,a

This statement is used to type out
the value of the variable identifier
a on the console typewriter ac-
cording to the format statement n.
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FIV:

type declaration:

See INTEGER . ., ...,..

or REAL . .,...,..

or LOGICAL . .,...,..

(integer) variable identifier: Not more than o characters are
used to identify a variable identi-
fier.

Those variable identifiers must
be listed in the type declaration
under integer.
examples:

K K

MG42 MG42

NES03 NES03

J142 J142

LANDAU LANDAU

(real) variable identifiers: Not more than o characters are
used to identify a variable identi-
fier.

Those variable identifiers must
be listed in the type declaration
under real.
examples:

E605 E605

AX121 AX121

BI12 BI12

DDT DDT

Z514AAA Z51444
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(subscripted) variable identifier:

Not more than o« characters are
used to identify a variable iden-
tifier.

The subscript appears in square
brackets.

It is not necessary to list those
variable identifiers in a type decla-
ration.

The maximum value for a sub-

script is f.
N9
examples:

X(1) X[1]

HANS(38) HANS[38]

BETA(I,N) BETA[I,N]

KALLE(8,M,105) KALLE[8,M,105]

M30(I) M30[(1]

AI(K + 1,L) AIK + 1,L]

DELTA(3*M — b) DELTA[3 x M — 5]

FIV:

WRITE(Nc) ay, . . ., ax This statement causes a;, ..., ax
to be written, in binary form, on
the device Nc.

FIV:

WRITE(Nc,n) ay, ...,ar  This statement causes ay, ..., a
to be written on device N¢ in
accordance with format statement
n.

FIV:

WRITE OUTPUT
«<TAPE Ncn,a

This statement causes a to be
written on the magnetic tape unit
Nc¢ in accordance with format
statement 7.
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WRITE TAPE

FIV:
WRITE TAPE Nc,a

This statement causes a to be
written, in binary form, on the
magnetic tape unit Nc.

.XABSF(a). ..

.« .y

. . . entier(abs(a)) .

a:N12

..XEXPF@)... ... entter(exp(a)) . .. ;
a:N12

..XLOGF(a)... .. .entier(ln(a)) . .. ;
a:N12

.XSQRTF(a)... .. .enlier(sqrt(a)) . .. ;

a:N12

.. Xtoken(..,...,..)... ...Xtoken(..,...,..)...;

Xtoken is the identifier of an
arithmetic statement function.

The declaration of the appropriate
integer procedure must precede
this statement.

Xtoken(..,...,..) =term

arithmetic statement function.

The same as for Ntoken(.., ...,
..) = term only Ntoken = Xtoken.
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6.1 ALGOL 60 INTO FORTRAN

O~ the following pages the method of translating an ALGOL 60
program into a FORTRAN program is described. The translation of
the program itself is explained, together with a comment on how to
adapt input data. The input/output statements are not treated
here, they are discussed in Part 3.

Three different ALGOL 60 (6.1.4) and ALGOL (6.1.5 and 6.1.6)*
programs and their translations into FORTRAN II serve as examples
to illustrate the method of translation.t

The ALGOL programs are computed on the NE 803B (8K memory,
paper tape input/output)} and the FORTRAN II programs were run
on the IBM 162051 (40,000 character memory, punched cards input/
output).

6.1.1 Translation of the Program into FORTRAN |I.

To translate an ALGOL program into a FORTRAN II program, it is
recommended that the following pattern be followed :

1. Begin at the type declaration. Change the first letter of the variable
identifiers declared under integer, so that the first letter becomes 1, .J,
K, L, M, or N. (Naturally no change is necessary if the variable
identifier already begins with I, J, K, L, M, or N.) Change the first
letter of the variable identifiers declared under real, so that the first
letterisnot I, J, K, L, M, or N.

2. Replace the changed variable identifiers throughout the entire
program with the new variable identifiers.

3. The identifier of a subscripted variable declared under array or
real array must be changed in such a manner that the first character
isnot I, J, K, L, M, or N. The identifier of a subscripted variable
declared under integer array must be changed in such a manner that the
first letter is I, J, K, L, M, or N.

4. Replace the changed array identifiers throughout the entire pro-
gram with the new array identifiers.

* An ALGOL program is an ALGOL 60 program which includes input/output state-
m?rn?rsl.lis includes data input and output of the computed results.

t The program itself contains NE input/output statements, but the ALGOL 60

reference language symbols are not altered due to the hardware representation of the
NE.
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5. Examine the right side of every statement throughout the entire
program to see whether it contains only identifiers and numbers of the
same type. Keep in mind that every number with a decimal point or
written as a power of ten is of real type. If real and integer identifiers
are mixed, then change the integer identifiers into real identifiers in a
statement, which precedes the mixed statement. If integer numbers
appear together with real identifiers, then change the integer numbers
by inserting a decimal point.

6. Link the different correlated pairs of begin and end with a line.
These correlated pairs can be found by linking the innermost begin
with the next end, then repeat the linking by starting with the now

innermost begin.

l—begin
—end
—begin
—begin
-begin
|-end
—end
—end

begin and end act similar to opening and closing brackets and so it is
very useful to see which of these pairs belong together.

7. If the program contains integer procedure and/or real procedure
and/or procedure, then translate these subprograms separately. (Un-
like ALGOL, a FORTRAN subprogram is generally compiled
separately from the main program.) By comparing the correlated
begin and end pairs, one finds the end of a subprogram very easily.
The translation of these subprograms must be carried out in the same
way as for a new program, i.e. one should start with the same pattern
as given above.

8. Watch carefully whether a statement beginning with if is an if . . .
then or an if . . . then . . . else statement.

9. Now translate statement by statement, beginning with the very
first statement of the program, with the aid of Part 4.

10. When you reach input and/or output statements, see Part 3.

11. Do not hesitate to use CONTINUE statements; it makes the
program clearer.

12. After translating the given program statement by statement, one
may, if one wishes, rearrange the sequence of some records in order to
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get a clearer program (this rearrangement is not carried out in the
example of Part 6). The recommended sequence of statements is:

DIMENSION

EQUIVALENCE

COMMON

FORMAT

main program (includes comment cards)
subprograms

6.1.2 Translation of the Program into FORTRAN IV
To translate an ALGOL 60 program into a FORTRAN IV program, it
is recommended that the following pattern be followed:

1. Although it is optional to use the type declaration, it is highly
recommended that the type declaration be translated according to Part
4.

2. The identifier of a subscripted variable declared under array or
real array must be changed in such a manner that the first character
isnot I, J, K, L, M, or N. The identifier of a subscripted variable
declared under integer array must be changed in such a manner that
the first letteris I, J, K, L, M, or N.

3. Replace the changed array identifiers throughout the entire pro-
gram with the new array identifiers.

4. Examine the right side of every statement throughout the entire
program to see whether it contains only identifiers and numbers of the
same type. Keep in mind that every number with a decimal point or
written as a power of ten is of real type. If real and integer identifiers
are mixed, then change the integer identifiers (by using the first letter,
as in FORTRAN II, for determining the type) into real identifiers in a
statement, which precedes the mixed statement. If integer numbers
appear together with real identifiers, then change the integer numbers
by inserting a decimal point.

5. Link the different correlated pairs of begin and end with a line.
These correlated pairs can be found by linking the innermost begin
with the next end, then repeat the linking by starting with the now
innermost begin.

l—begin
—end
begin
—begin
-begin
nd
—end
—end

189



DICTIONARY FOR COMPUTER LANGUAGES

begin and end act similar to opening and closing brackets, and so it is
very useful to see which of these pairs belong together.

6. If the program contains integer procedure and/or real procedure
and/or procedure, then translate these subprograms separately. (Un-
like ALGOL 60 a FORTRAN subprogram is generally compiled
separately from the main program.) By comparing the correlated
begin and end pairs, one finds the end of a subprogram very easily.
The translation of these subprograms must be carried out in the same
way as for a new program, i.e. one should start with the same pattern
as given above.

7. Watch carefully whether a statement beginning with if is an
if .. .thenoranif ... then ... else statement.

8. Now translate statement by statement, beginning with the very
first statement of the program, with the aid of Part 4.

9. When you reach input and/or output statements, see Part 3.

10. Do not hesitate to use CONTINUE statements; it makes the
program clearer.

11. After translating the given program, statement by statement, one
can (optionally) rearrange the sequence of some records in order to get
a clearer program. (This rearrangement is not carried out in the ex-
ample of Part 6.) The recommended sequence of statements is:

REAL

INTEGER

LOGQICAL

DIMENSION

DATA

EQUIVALENCE

COMMON

FORMAT

main programs (includes comment records)
subprograms

6.1.3 The Data

To translate input data for an ALGOL program into input data for a
FORTRAN program, one should keep the following points in mind:

1. If the ALGOL processor follows the FORTRAN input rules (see
Part 3), the input data may be copied directly.

2. If the ALGOL processor does not follow the FORTRAN input
rules, then the numbers or values can be separated by any character
except 0, 1, 2, 3,4,5,6,7,8,9, 10, ., —, or +. Most likely they are
separated by using spaces (blanks), by using a new record, or by using
a new line. In contrast to this, numbers or values in FORTRAN are
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identified by appropriate format statements, and though it is not
necessary to separate the different numbers or values on the record,
certainly a separation is recommended.

3. The format of every number or value must be determined by the
main program, i.e. if the variable identifier is of integer type, then a
FORMAT(Iw) must be chosen, etc. Although certain relaxations in
input data format are permitted, it is highly recommended that the
input data be written on the record in exact agreement with the
appropriate format statement. That means that a number with an
appropriate £ or F format statement must have a decimal point.

4. Not all FORTRAN processors accept a number without a decimal
point in connection with an exponent. For that reason, it is recom-
mended that every number in connection with an exponent be
written with a decimal point, i.e. not 5E22 but 5.E22.

5. After keeping this recommendation in mind, translate the input
data with the aid of Part 4 “numbers”.

6.1.4 A Very Simple Example

program

begin comment LANDAUVERTEILUNG NACH BLUNCK-LEISEGANG KORRIGIERT
(ZEITSCHRIFT FUER PHYSIK 130, 641-649),
MIT PRIMAERSPEKTRUM GEFALTET

HORST THEISSEN DEZ 1963;

integer N,Z,A,K;

real RHO,R,QMIT,EPRIM,EMAX,EMIN,H,E2,W,Q:

array E1[—10:100];

integer array COUNTS[—10:100];

real procedure LANDAU(E,Q);

real E,Q;

begin real LAMBDA,BB,R1,R2,R3,R4;

AR:=0.154 xZx RHO X R/A;

LAMBDA :=(Q—QMIT)/AR+In(E/AR)—1.116;

BB:=(0.00002 x QMIT x (Z11.33333))/(AR % AR);

R1:=BB+3.24;

R2:=BB+4;

R3:=BB+9;

R4:=BB+25;

LANDAU :=(0.3132/sqrt(R1)) x exp(—(LAMBDA x LAMBDA)/R1)
+(0.116/sqrt(R2)) x exp(— ((LAMBDA — 3)12)/R2)
+(0.057/sqrt(R3)) x exp(— ((LAMBDA — 6.5)12)/R3)
+(0.035/sqrt(R4)) X exp(— ((LAMBDA —11)12)/R4)

end LANDATU;

input statement for: Z,A,RHO,R,QMIT,EPRIM,EMAX,EMIN,H,N;
for K:=1 step 1 until N do
input statement for: E1[K],COUNTS[K];
E1[0]:=2 x E1[1]—- E1[2];
E1[N+1]:=2x E1[N]-E1[N-1];
for E2:=EMAX step — H until EMIN do
begin W:=0;
Q:=E1[1]-E2;
for K:=1 step 1 until N do
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begin W:=(W+LANDAU(E1(K],Q) x (E1[K}/E1[1]) x COUNTS[K]
x ((E1[K —1] - E1[K])/2+(E1[K] - E1[K +1))/2));
Q:=Q-(E1[K]-E1[K+1])

end;

output statement for: E2,EPRIM - E2,W/H;
end FALTUNG;

translated program

CLANDAUVERTEILUNG NACH BLUNCK-LEISEGANG KORRIGIERT
C(ZEITSCHRIFT FUER PHYSIK —130,641 — 649),
CMIT PRIMAERSPEETRUM GEFALTET.

CHORST THEISSEN DEZ 1963

(£

—

13

14

12

[

DIMENSION E1(111)

DIMENSION KOUNTS(111)
FORMAT(215,7F10.4/12)

READ 2,NZ,NA,RHO,R,QMIT,EPRIM,EMAX,EMIN,H, N
FORMAT(F6.3,6X,I5)

READ 3,(E1(K+11),KOUNTS(K+11),K=1,N)
E1(11)=2.*E1(12)— E1(13)
E1(N+12)=2.*E1(N+11)—-E1(N+10)
N1=ABS((EMIN — EMAX)/(—H))+0.0000001 + 1.
DO12 KI=1,NI

AI=KI-1

E2=AI*(—H)+EMAX

W=0.0

Q=E1(12)—-E2

NE=ABS((N—-1)/1)+1

DO 13 KE=1,NE

K=(KE-1)*1+1

COMMON NZ, NA, RHO, R, QMIT
COUNTS=KOUNTS(K +11)
W=(W+ANDAU(E1(K+11),Q)*(E1(K +11)/E1(12))*COUNTS
*((EX(K +10)—- E1(K +11))/2.+(E1(K 4+ 11) - El(K +12))/2.))
Q=Q—-(E1(K+11)-EN(K+12))

CONTINUE

D=EPRIM - E2

F=W/H

FORMAT(F7.3,10X,F6.3,10X,E11.4)

PUNCH 14,E2,D,F

CONTINUE

END

FUNCTION ANDAU(E,Q)

COMMON NZ7,NA,RHO,R,QMIT

Z=NZ

A=NA

AR=0.154*Z*RHO*R/A

AMBDA =(Q—QMIT)/AR+ALOG(E/AR)—1.116

BB =(0.00002*QMIT*(Z**1.33333))/(AR*AR)
R1=BB+3.24

R2=BB+4.

R3=BB+9.

R4=BB+25.

ANDAU=(0.3132/SQRT(R1))*EXP(— (AMBDA*AMBDA)/R1)
+(0.116/SQRT(R2))*EXP(— ((AMBDA — 3.)**2)/R2)
+(0.057/SQRT(R3))*EXP(— ((AMBDA — 6.5)**2)/R3)
+(0.035/SQRT(R4))*EXP(— ((AMBDA —11.)**2)/R4)
RETURN

END
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6.1.5 A Simple Example Including Input Data and Computed
Output Values

Remarks: This example is written in ALGOL 60 (except for the input/
output statements) and translated into FORTRAN II. The input/out-
put statements are written according to the rules of the NE computer
(except that read and print appearing in the example are written with
small letters). In order to run this ALGOL program, it was changed
due to the hardware representation and restrictions of the NE (this
modified program is not given here) and fed, together with the data
given, into the NE 803B. The output values of this computation are
presented.

The translated program, including the input data, was computed on
a IBM 162011. The output values of this computation are also presented.

In order to compare the output values from the two programs, one
must know that the numbers of the NE output are rounded and that
the numbers of the IBM output are truncated ; thus, a difference of +1
in the last digit is due to this procedure.

program

begin comment LANDAUVERTEILUNG NACH BLUNCK-LEISEGANG KORRIGIERT
(ZEITSCHRIFT FUER PHYSIK 130,641 —649),
MIT PRIMAERSPEKTRUM GEFALTET.

HORST THEISSEN DEZ 1963;

integer N,Z,A,K;

real RHO,R,QMIT,EPRIM,EMAX,EMIN,H,E2,W,Q:
array E1[—10:100];

integer array COUNTS[ —10:100];

real procedure LANDAU(E,Q);

real E,Q;

begin real LAMBDA,AR,BB,R1,R2,R3,R4;

AR:=0.15¢ xZx RHO x R/A;

LAMBDA :=(Q—QMIT)/AR +In(E/AR)—1.116;

BB:=(0.00002 x QMIT x (Z11.33333))/(AR x AR);

R1:=BB+3.24;

R2:=BB+4;

R3:=BB+9;

R4:=BB+25;

LANDAU :=(0.3182/sqrt(R1)) x exp(— (LAMBDA x LAMBDA)/R1)
+(0.116/8qrt(R2)) x exp(— ((LAMBDA —3)42)/R2)
+(0.057/sqrt(R3)) x exp(— ((LAMBDA — 6.5)12)/R3)
+(0.035/sqrt(R4)) x exp(— ((LAMBDA — 11)42)/R4)

end;

read Z,A,RHO,R,QMIT,EPRIM,EMAX,EMIN,H,N;
for K:=1 step 1 untll N do read E1[K],COUNTS[K];
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print $$L10?
LANDAUVERTEILUNG EINSCHL. BLUNCK-LEISEGANG-KORREKTUR,
MIT DEM PRIMAERSPEKTRUM GEFALTET $L3??,
Z,$ = ORDNUNGSZAHL DES TARGETKERNES?,
A,$ = ATOMGEWICHT DES TARGETKERNES?,
RHO,$=DICHTE DES TARGETS (GR/CM-—3)?,
R,$= DICKE DES TARGETS (CM)?
EPRIM,$= ENERGIE DER EINF ELEKTRONEN (MEV)?,
QMIT,$= MITTLERER ENERGIEVERLUST (MEV)$L3?
ENERGIE ENERGIEVERLUST LANDAU-
(MEV) (MEV) VERTEILUNG $L7??;

E1[0):=2x E1[1]- E1[2];
E1[N+1]:=2x E1[N]- E1[N—-1];
for E2:=EMAX step — H until EMIN do
begin W:=0;
Q:=E1[1]-E2;
for K:=1 step 1 until N do
begin W:=W + LANDAU(E1[K],Q) x (E1[K]/E1[1]) x COUNTS[K]
x ((E1[K —1] - E1[K])/2+(E1[K] - E1[K +1])/2);
Q:=Q—(E1{K]—-E1[K+1])

ond;

print ALIGNED(2,3),SAMELINE, E2,$$510??, EPRIM — E2,$$510??

SCALED(5),W/H;

end

end
6
12
2.0665
0.1545
0.599
53.382
653.2
52.3
0.05
23
53.509 227
53.490 474
53.470 1174
53.451 1931
53.431 3985
53.412 7084
53.393 7726
53.373 9309
53.354 10131
53,334 10084
53.315 9388
53.296 8199
653.276 6537
53.257 4836
53.237 3463
53.218 2452
653.198 1947
53.179 1389
53.140 1032
53.101 732
53.063 636
52.986 417
52.907 399
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result output

LANDAUVERTEILUNG EINSCHL. BLUNCK-LEISEGANG-KORREKTUR
MIT DEM PRIMAERSPEKTRUM GEFALTET

6 ORDNUNGSZAHL DES TARGETKERNES

12 ATOMGEWICHT DES TARGETKERNES
2.0666000= DICHTE DES TARGETS (GR/CM—3)
.15450000= DICKE DES TARGETS (CM)
58.382000= ENERGIE DER EINF ELEKTRONEN (MEV)
.59900000= MITTLERER ENERGIEVERLUST (MEV)

ENERGIE ENERGIEVERLUST LANDAU-
(MEV) (MEV) VERTEILUNG
58.200 0.182 6.4727@ — 03
53.160 0.232 1.2136@ —00
63.100 0.282 3.4180@ +01
53.050 0.332 2.7633@ + 02
53.000 0.382 1.1167@ +03
52.950 0.432 2.3822@ +03
52.900 0.482 3.1976 @ + 03
52.850 0.532 3.0564@ +03
52.800 0.582 2.2981@ + 03
52.750 0.632 1.5741@ + 03
52.700 0.682 1.0749@ + 03
52.650 0.732 7.8431@+02
52.600 0.782 5.4104@ +02
52.550 0.832 4.1008 @ + 02
52.5600 0.882 2.9780@ +02
52.450 0.932 2.2588@ + 02
52.400 0.982 1.1222@ +02
52.350 1.032 6.0251@ +01
52.300 1.082 3.2770@+01

translated program

CLANDAUVERTEILUNG NACH BLUNCK-LEISEGANG KORRIGIERT
C(ZEITSCHRIFT FUER PHYSIK 130,641 —649),

CMIT PRIMAERSPEKTRUM GEFALTET.

CHORST THEISSEN DEZ 1963

DIMENSION EI(111)
DIMENSION KOUNTS(111)
2 FORMAT(2I5,6F10.4/F10.4,12)
READ 2,NZ,NA,RHO,R,QMIT,EPRIM,EMAX,EMIN,H, N
3 FORMAT(F6.3,6X,I5)
READ 3,(E1(K+11),KOUNTS(K+11),K=1,N)
1 FORMAT(//////////53H LANDAUVERTEILUNG EINSCHL. BLUNCK-LELIS EGANG-KO
1 RREKTUR/33H MIT DEM PRIMAERSPEKTRUM GEFALTET///)

PUNCH 1

4 FORMAT(19,32H = ORDNUNGSZAHL DES TARGETKERNES)
PUNCH 4,NZ

5 FORMAT(19,31H = ATOMGEWICHT DES TARGETKERNES)
PUNCH 5,NA

6 FORMAT(F10.7,30H= DICHTE DES TARGETS (GR/CM-3))
PUNCH 6,RHO

7 FORMAT(F10.8,24H= DICKE DES TARGETS (CM))
PUNCH 7,R

8 FORMAT(F10.6,35H= ENERGIE DER EINF ELEKTRONEN (MEV))
PUNCH 8,EPRIM

9 FORMAT(F10.8,32H= MITTLERER ENERGIEVERLUST (MEV)///)
PUNCH 9,QMIT
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FORMAT(42HENERGIE ENERGIEVERLUST LANDAU-)
PUNCH 10

FORMAT(45H (MEV) (MEV) VERTEILUNG/)
PUNCH 11

E1(1D)=2.°E1(12)— E1(13)
EI(N+12)=2*E1(N +11)— EI(N +10)
NI=ABSF((EMIN — EMAX)/(— H))+0.0000001 + 1.
DO12 KI=1,NI

Al=KI-1

E2=Al*(—-H)+ EMAX

W=0.0

Q=E1(12)-- E2

NE=ABSF(N—D/1)+1

DO 13 KE=1,NE

K=(KE-1)*1+1

COMMON NZ, NA, RHO, R, QMIT

COUNTS =KOUNTS(K +11)

W =(W + ANDAU(EI(K +11),Q)*(E1(K + 11)/E1(12))*COUNTS
*((EI(KE +10)— E1(K + 11))/2. + (E1(K + 11) — E1(K + 12))/2.))
Q=Q—(El(K+11)- E}(K +12))

CONTINUE

D=EPRIM- E2

F=W/H

FORMAT(F7.3,10X,¥7.3,10X,E11.4)

PUNCH 14,E2,D,F

CONTINUE

END

FUNCTION ANDAU(E,Q)

COMMON NZ,NA,RHO,R,QMIT

Z=XN1Z

A=NA

AR=0.154*Z*RHO*R/A

AMBDA =(Q—-QMIT)/AR+ LOGF(E/AR)—1.116

BB =(0.00002*QMIT*(Z**1.33333))/(AR*AR)
R1=BB+3.2¢4

R2=BB+4.

R3=BB+9.

R4=BB+25.

ANDAU =(0.3132/SQRTF(R1))*EXPF(—-(AMBDA*AMBDA)/R1)
+(0.116/SQRTF(R2))*EXPF(— ((AMBDA — 3.)**2)/R2)
+(0.057/SQRTF(R3))*EXPF(— ((AMBDA — 6.5)**2)/R3)
+(0.035/SQRTF(R4))*EXPF(— ((AMBDA —11.)**2)/R4)
RETURN

END
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input data
6 12 2.0665 .1545 .599 58.382 53.2 52.3
05 23
53.509 227
53.490 474
53.470 1174
53.451 1931
53.431 3985
53.412 7084
53.393 7725
53.373 9309
53.354 10131
53.334 10084
53.315 9388
53.206 8199
53.276 6537
53.257 4836
53.237 3463
53.218 2452
53.108 1947
53.179 1389
53.140 1032
53.101 732
53.063 636
52.985 417
52.907 399

output values

LANDAUVERTEILUNG EINSCHL. BLUNCK-LEISEGANG-KORREKTUR
MIT DEM PRIMAERSPEKTRUM GEFALTET

6 = ORDNUNGSZAHL DES TARGETKERNES

12 = ATOMGEWICHT DES TARGETKERNES
2.0665000 = DICHTE DES TARGETS (GR/CM—3)
.15450000= DICKE DES TARGETS (CM)
53.382000= ENERGIE DER EINF ELEKTRONEN (MEV)
.59900000 = MITTLERER ENERGIEVERLUST (MEY)

ENERGIE ENERGIEVERLUST LANDAU-
(MEV) (MEV) VERTEILUNG
53.200 .182 6.4726E — 03
53.150 232 1.2137E-00
53.100 .282 3.4181E+01
53.050 .332 2.7533E + 02
53.000 .382 1.1167E+03
52.950 432 2.3822E 403
52.900 482 3.1977E 403
52.850 .532 3.05664E + 03
52.800 .582 2.2982E + 03
52.760 .632 1.5740E + 03
52.700 .682 1.0749E+ 03
52.650 732 7.8430E + 02
52.600 .782 5.4104E+ 02
52.650 .832 4.1008E + 02
52.500 .882 2.9781E + 02
52.450 .932 2.2588E + 02
52.400 082 1.1222E+ 02
52.350 1.032 6.0262E + 01
52.300 1.082 3.2770E + 01
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6.1.6 A More Complex Example Including Input Data and
Computed Output Values
Remarks: This example is written in ALGOL 60 (except for the input/
output statements) and translated into FORTRAN II.

The input/output statements are written according to the rules of
the NE computer (except that read and print appearing in the example
are written with small letters). In order to run this ALGOL program,
it was changed due to the hardware representation and restrictions of
the NE (this modified program is not given here) and fed, together
with the data given, into the NE 803B. The output values of this
computation are presented.

The translated program, including the input data, was computed on
a IBM 16205;. The output values of this computation are also presented.

In order to compare the output values from the two programs, one
must know that the numbers of the NE output are rounded and that
the numbers of the IBM output are truncated; thus a difference of 41
in the last digit is due to this procedure.

program
begin LANDAUVERTEILUNG;

integer Z,A,K,KMAX,L,LMAX;

real QMIT,AR,BQU,TS,ENULL,T,R2,R1,R3,R4,N K,
AA,BB,X1,X,C,ALPHAMM,LE,QWRS,U,Q1,
E,W,TY,GAMA,BETA,LAMBDA,CNORM,CMAX;

array E1,E2,C1,C2,Q,LA[—2:27];

real procedure GAMMA(X);
real X;
begin real XSTERN,G,X2,X3,X4;
XSTERN:=X;
it X < 10 then
begin if X < 0 then
begin if X —entier(X)=0 then
begin print $GAMMA(?,SAMELINE, X,
$)= UNENDLICH?;
goto M
end
else XSTERN :=10+ (entier(X) -- X)
end;
if X > 0then XSTERN:=10+ (X—entier(X))
end;
X2:=XSTERN x XSTERN;
X3:=X2x XSTERN;
X4:=X3x XSTERN;
G:=2.506628 x exp(— XSTERN x (XSTERN --0.5) x In(XSTERN))
X (1+0.08333333/XSTERN + 0.0034722222/X2 — 0.00268132716/
X3-0.000229472094/X4);
if X < 10 then
begin real N,F,F0;
N:=1;
F0:=9+(if X < 0 then entier(X)—X
else X —entier(X));
for F:=F0,F—1 while F > entier(X) do
N:=NxF;
G:=G/N
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end;
GAMMA:=G;
M: end GAMMA;

real procedure PHI(A,C,X);
value A,C,X;
real A,C,X;
begin real P,Q;
integer J;
Q:=P:=1;
for J:=1,J+1 while abs(P) > ,,—7 do
begin P:=(P x (A +J) > X)/((C+T)x (1 +13));
Q:=Q+P
end;
PHI:=Q
end PHI;

real procedure PARCYLF(NY,Z);
value NY,Z;
real NY,Z;
begin if NY = O then PARCYLF:=exp(—.5xZx2Z);
it NY + 0 A abs(Z) = 3 then
begin integer J;
real Q,P,MIN;
if Z > 0 then
begin Q:= 1;
P:=-1;
MIN:=10;
for J:= 0,J+1 while abs(P) = MIN A abs(P) > ,,—5 do
begin P:= —PX(NY—-2xJ)X(NY-2xJ-1)((J+1)xX2xZ xZ);

Q:=Q+P;
if abs(P) < MIN then MIN:=abs(P)
end;
PARCYLF:=exp(—0.5 XZ x Z) X (ZtNY) x (Q —P)
end;
i Z < 0 then
begin Z:=—-127;
P:=1;
Q:=1;
MIN:=10;

for J:=0,J+1 while abs(P) = MIN A abs(P) > ,,—5 do
begin P:=P X (NY+2XJ+1)x (NY+2xT+2)/(2XZXZ X (T +1));

Q:=P+Q;
it abs(P) < MIN then MIN:=abs(P)
end;
PARCYLF:=2.506628 < (Z}N —NY —1)) x(Q—P)/GAMMA(—-NY)
end

end;
it NY £ 0 A abs(2) 3 then
begin real S1,52;
it (0.5—0.5x NY)—entier(0.5- 0.5 <NY) = 0

then S1:=0

olse S1:=1.772454 x PHI(—0.5x NY,0.5,0.5 x Z x Z)iGAMMA(0.5
—0.5xNY);

it (—0.5xNY)—entier(—0.5xNY) = 0

then S2:=0

olse S2:=23.544908 x Z x PHI(0.5--0.5 x NY,1.5,0.5 x Z x Z)
1(1.4142183 x GAMMA(— 0.5 x NY));
PARCYLF:=21(0.5 x NY) x exp(— 0.5 X Z X Z) x (81 —82)
end
end PARCYLF;

real procedure LANDAU(E,Q1);
real E,Q1;
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begin real LAMBDA,X1,X2,X3,X4,F,W;

LAMBDA:=(Q1—-QWRS)/AR —-.05;

X1:=1.4142x LAMBDA/sqrt(R1);

X2:=1.4142 x (LAMBDA — 3);3qrt(R2):

X3:=1.4142 x (LAMBDA - 6.5)/3qrt(R3);

X4:=1.4142 x (LAMBDA —11)/sqrt(R4);

F:=(51(.5xTS)) x(.3132 x PARCYLF(— TS, — X1)/sqrt(R1t{NE)+.116 x
PARCYLF(— TS, — X2)/3qrt(R2tNE)+.057 x PARCYLF(—TS, — X3)/
sqrt(R3t1NE) +.085 x PARCYLF( — TS, — X4),sqrt( R4} NE));

W:=((AR/ENULL)}TS) x F;

LANDAU: =W

end LANDAU;

PUSCHKIN:

read Z,A,T,ENULL,AA,BB,X1,C,ALPHA MM,CNORM,U;
for K:=1 step 1 until 50 do
begin read E1{K]};

it E1{K] = 4711 then begin KMAX:=K-1;

go to VAT6Q
end;

E1l(K]}:=U x E1[K]};

read C1(K])
ond;

VAT69:

GAMA:=ENULL,0.511:

BETA:=sqrt(1—1,GAMA%2);

AR:=.1537xZ < T/(A x BETA > BETA);

TS:=(T % .0013965333 x Z x (Z+ 1) x In(183/(Z1.3333)))/

(A X (1+4.12x(Z/82) x (Z/82)));

LE:=In(sqrtGAMA x GAMA —1));

X:=LE/2.3026;

W:=1.022 < sqrt(GAMA x GAMA — 1) « BETA/21;

TY:=(TS < TS)/(2x W x W);

AA:=AAXTx(14+TY/TS)/(BETA x BETA);

QMIT:=AA x(BB+.43+2x LE+In(ENULL)~-1

—(f X < X1 then 4.606 x X+C+ ALPHA x ((X1—X){MM)
else 4.606 x X +C));

BQU : =(.00002 x QMIT x (Z11.3333))/(AR x AR);

QWRS:=AA % (BB+1.06+2x LE+In(AA)-1)—(f X < X1 then
4.808 x X +C+ ALPHA x ((X1—X){MM) else 4.606 x X +C) x AA
+.05x AR XxBQU+2x AR X TS;

R1:=BQU +3.24;

R2:=BQU +14;
R3:=BQU+9;
R4:=BQU +25;
NE:=1-TS:

print 88$L10?

LANDAUVERTEILUNG EINSCHL BLUNCK-LEISEGANG-
UND BREMSSTRAHLUNGSKORREKTUR, MIT DEM
PRIMAERSPEKTRUM GEFALTET $L3??

Z,$ = ORDUNGSZAHL 2?,

A,$ = ATOMGEWICHT(A)?,

T,$= SCHICHTDICKE (G/CM**2)?,
$SL??,

AA/T,$= KONSTANTE GROSS A?,
BB,$= KONSTANTE GROSS B?,
X1,$= KONSTANTE X17?,

C,8= KONSTANTE C?,
ALPHA,$= KONSTANTE KLEIN A?,
MM,8= KONSTANTE KLEIN M?,
$$L??,

200
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ENULL,$= ENERGIE DER EINF ELEKTRONEN (MEV)?,
QMIT,$= MITTLERER ENERGIEVERLUST (MEV)?,

QWRS,$= WAHRSCHEINLICHSTER ENERGIEVERLUST (MEV)?.
AR,$= A*R (MEV)?,

T8,$= SCHICHTDICKE/STRAHLUNGSLAENGE?,

BQU,$= B**2?,

$$L2?
FREQUENZ ENERGIE E-VERLUST LAMBDA VERTEILUNG
( MHZ) (MEV) (MEV) (1) (COUNTS)
$L??;
L:=1,;
CMAX:=0;

E1[0]): =2 x E1{1]— E1(2];
E1[EMAX+1]):=2x E1[KMAX]-E1[KMAX —1];
for LAMBDA:=—5 step 1 untll —1.9,—1.5 step
.5 until 3.1,4,5,6 step 2 until 16 do
begin E2[L]:=ENULL--QWRS — AR x (LAMBDA +.05);
C2[L]}:=0;
Q[L]:=E1[(1]-E2(L];
for K:=1 step 1 until KMAX do
begin C2[L}:=C2[L]+ LANDAU(E1[K],Q[L]) x C1[K]
(E1[K—1]-E1[K])/2
+(E1[K]-E1[K +1))/2);
Q[L]):=Q[L}—-(E1[K]—-E1[K+1))
end;
C2[L):=C2[L}/AR;
LA[L]):=LAMBDA;
it C2(L] > CMAX then CMAX:=C2({L];
L:=L+1
end;
LMAX:=L-1;
for L:=1 step 1 until LMAX do
print SAMELINE,$8?,ALIGNED(2,3),E2[L)/U,PREFIX($$55??),E2[L],
ENULL—E2[L],LA[L],DIGITS(4),entier(C2[L] x CNORM +.5)

end LANDAUVERTEILUNG;

input data

(]

12

4.98

54.130

0.0768

18.26

2

-3.22

.531

2.63

5824

3.88

14.010 363
13.995 551
13.985 1041
13.980 1757
13.976 3394
13.970 6185
18.965 10206
13.960 16135
18.965 20094
18.945 26488
18.930 26252
13.925 20946



DICTIONARY FOR COMPUTER LANGUAGES

13.920 16308
18.916 12407
18.910 93385
18.900 6803
18.890 5062
13.880 4161
13.870 35138
13.850 2728
13.810 1696
13.770 1125
13.730 968
4711

LANDAUVERTEILUNG EINSCHL BLUNCK-LEISEGANG-
UND BREMSSTRAHLUNGSKORREKTUR, MIT DEM
PRIMAERSPEKTRUM GEFALTET

6 = ORDNUNGSZAHL Z
12 = ATOMGEWICHT(A)
4.9800000= SCHICHTDICKE(G/CM**2)

.07696900= KONSTANTE GROSS A
18.260000= KONSTANTE GROSS B
2.0000000= KONSTANTE X1
—3.2200000= KONSTANTE C
.53100000= KONSTANTE KLEIN A
2.6300000= KONSTANTE KLEIN M

54.130000= ENERGIE DER EINF ELEKTRONEN (MEV)
9.5403885= MITTLERER ENERGIEVERLUST (MEV)

7.9705478= WAHRSCHEINLICHSTER ENERGIEVERLUST (MEV)
.38274711= A*R (MEV)

.11219839= SCHICHTDICKE/STRAHLUNGSLAENGE

.01419977= B**2

FREQUENZ ENERGIE E-VERLUST LAMBDA
(MHZ) (MEYV) (MEV) (1)
12.385 48.054 6.076 —5.000
12.286 47.671 6.459 —4.000
12.188 47.289 6.841 —3.000
12.089 46.906 7.224 —2.000
12.040 46.714 7.416 —1.500
11.990 46.523 7.607 --1.000
11.941 46.332 7.798 —0.500
11.892 46.140 7.990 0.000
11.843 45.949 8.181 0.500
11.793 45.758 8.372 1.000
11.744 45.566 8.564 1.500
11.695 45.376 8.755 2.000
11.645 45.183 8.947 2.500
11.596 44.992 9.138 3.000
11.497 44.609 9.5621 4.000
11.399 44.227 9.903 5.000
11.300 43.844 10.286 6.000
11.103 43.078 11.062 8.000
10.905 42.313 11.817 10.000
10.708 41.547 12.5683 12.000
10.511 40.782 13.348 14.000
10.313 40.016 14.114 16.000

result output

VERTEILUNG

(COUNTS)

211
1084
1982
3163
4381
5355
5824
5740
5271
4670
4130
3702
3018
2361
1860
1361
1005
764
598
469
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translated progam

C LANDAUVERTEILUNG
DIMENSION E1(30),E2(30),C1(30),C2(30),Q(80),ALA(30)
COMMON E1,E2,C1,C2,ALA,L, KMAX,CMAX,QWRS,AR,ENULL,R1,R2,R3,R4,T8,
1 ANE
1001 FORMAT(I2)
101 READ 1001,NZ
Z=NZ
1002 FORMAT(IS3)
READ 1002,NA
A=NA
1003 FORMAT(4F10.4)
READ 1008,T,ENULL,AA,BB
READ 1001,NX1
X1=NX1
READ 1008,C,ALPHA,AMM,CNORM
1004 FORMAT(F5.2)
READ 1004,U
1005 FORMAT(F9.3)
DO 200 K=1,100
READ 1005,E1(K +8)
IF(E1(K +3)—4711.)201,202,201
202 KMAX=K-1
GO TO 102
201 CONTINUE
E1(K+38)=U*E1(K+3)
1006 FORMAT(F8.1)
READ 1006,C1(K+3)
200 CONTINUE
102 GAMA=ENULL/0.511
BETA=SQRTF(1.—1./GAMA®**2)
AR =0.1537*Z*T/(A*BETA*BETA)
TS =(T*0.0013965333*Z*(Z +1.)*LOGF(1883./(Z**0.3333)))/
(A*(1.+40.12%(Z/82.)*(Z/82.)))
ALE=LOGF(SQRTF(GAMA*GAMA—-1.))
X=ALE/2.3026
W=1.022*SQRTF(GAMA*GAMA —1.)*BETA/21.
TY =(TS*T8)/(2.*W*W)
AA=AA*T*(1.+TY/TS)/(BETA*BETA)
IF(X — X1)300,300,301
300 QMIT=AA*(BB+.43+2.*ALE+LOGF(ENULL)—1.—(4.606*X +C+ ALPHA*((X1— X)**MM
1))
GO TO 302
301 QMIT=AA*BB+.43+2.*ALE+LOGF(ENULL)—1.—(4.606*X +C))
802 CONTINUE
BQU =(0.00002*QMIT*(Z**1.3333))/(AR*AR)
IF(X —X1)308,303,804
303 QWRS=AA*(BB+1.06+2.*ALE+LOGF(AA)—1.)—(4.606*X +C+ALPHA*((X1— X)**MM)
)*AA+.06*AR*BQU +2.*AR*TS
GO TO 305
304 QWRS=AA*(BB+1.06+2.*ALE+LOGF(AA)—1.)—(4.606*X+C)*AA+.06*AR*BQU +2.*
1 AR*TS
305 CONTINUE
R1=BQU +3.24
R2=BQU +4.
R3=BQU+9.
R4=BQU +25.
ANE=1.—T8
400 FORMAT(//////////42HLANDAUVERTEILUNG EINSCHL BLUNCK-LEISEGANG-—/37H
1 UND BREMSSTRAHLUNGSKORREKTUR, MIT DEM/
2 24HPRIMAERSPEKTRUM GEFALTET///)
PUNCH 400

—

-

203
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402
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FORMAT(/I9,17H = ORDNUNGSZAHL Z/I9,17H = ATOMGEWICHT(A)/
F10.7,24H= SCHICHTDICKE (G/CM**2))

PUNCH 401,Z,A,T

FORMAT(/F10.8,19H= KONSTANTE GROSS A/F10.6,19H= KONSTANTE GROSS B/
F10.7,14H= KONSTANTE X1/F10.7,13H= KONSTANTE C/F10.8,19H= KONSTANT

1
2 E KLEIN A/F10.7,19H= KONSTANTE KLEIN M)

403

TAA=AA/T
PUNCH 402,TAA,BB,X1,C,ALPHA,AMM
FORMAT(/F10.6,35H= ENERGIE DER EINF ELEKTRONEN (MEV)/

1 F10.7,32H= MITTLERER ENERGIEVERLUST (MEV)/
2 F10.7,41H= WAHRSCHEINLICHSTER ENERGIEVERLUST (MEV)/F10.8,11H= A*R
3 (MEV)/F10.8,31H= SCHICHTDICKE/STRAHLUNGSLAENGE/F10.8,6H= B**2)
PUNCH 403,ENULL,QMIT,QWRS,AR,TS,BQU
404 FORMAT(//6lHFREQUENZ ENERGIE E-VERLUST LAMBDA VER
1 TEILUNG/60H ( MHZ) (MEV) (MEV) a) (co
2 UNTS)/))
PUNCH 404
L=1
CMAX =0.

500

503

507

509

611

512
513

514

510

E1(3)=2.*E1(4)— E1(5)
E1(KEMAX+4)=2*E1(KMAX+3)—EI(KMAX +2)
NI1=ABSF(—1.9+5.)+1.00000000001
DO 500 NA1=1,NI1
All=NAl-1
AMBDA =AI1-5.
CALL MESS(AMBDA)
CONTINUE
NI2=ABSF((3.1+1.5)/0.5)+ 1.00000000001
DO 503 NA2=1,NI2
AI2=NA2-1
AMBDA =AI2*0.5—-1.5
CALL MESS(AMBDA)
CONTINUE
AMBDA=4.0
CALL MESS(AMBDA)
AMBDA=5.0
CALL MESS(AMBDA)
NI3=ABSF((16.—6.)/2.) +1.00000000001
DO 509 NA3=1,NI3
AI3=NA3-1
AMBDA = AI3*2.+6.
CALL MESS(AMBDA)
CONTINUE
LMAX=L-1
DO 510 L=1,LMAX
IF(C2(L+3)*CNORM/CMAX +0.5)511,612,512
NUT=C2(L+3)*CNORM/CMAX +0.5—1.
GO TO 513
NUT=C2(L+3)*CNORM/CMAX +0.56
CONTINUE
DOG=E2(L+3)/U
HOUND=E2(L+3)
CAT=ENULL-E2(L+3)
TIGER=ALA(L+3)
FORMAT(1X,F7.3,5X,F7.3,6X,F7.3,5X,F7.3,5X,15)
PUNCH 514,DOG,HOUND,CAT,TIGER,NUT
CONTINUE
END
LANDAUVERTEILUNG
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[

601

603
602
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SUBROUTINE MESS(AMBDA)

DIMENSION E1(30),E2(30),C1(30),C2(30),Q(30),ALA(30)
COMMON E1,E2,C1,C2,ALA,L, KMAX,CMAX,QWRS,AR,ENULL,R1,R2,R3,R4, TS,
ANE

E2(L+3)=ENULL— QWRS — AR*(AMBDA +0.05)
C2(L +3)=0.

QL +3)=E1(4)— E2(L +3)

DO 601 K=1,KMAX

C2(L +8)=C2(L + 3)+ ANDAU(EI(K +3),Q(L +3))*C1(K + 3)*
((E1(K +2)~ EI(K +3))/2.

+(EI(K +3)— EI(K +4))/2.)

Q(L+8)=Q(L+8)— (EL(K +3)— EI(K +4))

CONTINUE

C2(L+8)=C2(L+3)/AR

ALA(L+3)=AMBDA

IF(C2(L + 3) - CMA X)6802,602,603

CMAX =C2(L+3)

CONTINUE

L=L+1

RETURN

END

FUNCTION ANDAU(E,Q1)
DIMENSION E1(80),E2(30),C1(30),C2(30),Q(30),ALA(80)

1

COMMON E1,E2,C1,C2,ALA,L KMAX,CMAX,QWRS,AR,ENULL,R1,R2,R3,R4,TS,
ANE

AMBDA =(Q1—-QWRS)/AR—-0.05

X1=1.4142°AMBDA/SQRTF(R1)

X2=1.4142*(AMBDA —3.)/SQRTF(R2)

X3=1.4142*(AMBDA — 6.5)/SQRTF(R3)

X4=1.4142*(AMBDA —11.)/SQRTF(R4)

F=(.6**(.5°T8))*

1 (.3132*PARCYL(—TS,— X1)/SQRTF(R1**ANE)
2 +.116*PARCYL(—- T8, — X2)/SQRTF(R2**ANE)
3 +.057*PARCYL(—TS,— X3)/SQRTF(R3**ANE)
4 +.035*PARCYL(— T8, — X4)/SQRTF(R4**ANE))
W =((AR/ENULL)**TS)*F
ANDAU=W
RETURN
C ANDAU
END

FUNCTION PARCYL(Y,Z)
IF(Y)10,11,10

11
10

12

16
17

24

25

20

PARCYL=EXPF(—0.6*2*Z)
CONTINUE

IF(Y)12,13,12
IF(ABSF(Z)-3.)13,13,15
1F(Z)16,16,17

Q=1.

P=-1.

AMIN =10.

J=0

AJ=J
P=—P*(Y—2°A7)*(Y—2.°AJ — 1.)/((AJ +1.)*2.°2°2)
Q=Q+P

IF(ABSF(P)— AMIN)25,26,26
AMIN = ABSF(P)

CONTINUE

J=J+1

IF(ABSF(P)— AMIN)27,28,27
IF(ABSF(P)—1.0E - 05)27,27,30

205



31
32

27

16

36

42
35

45

44

34
13

57

59

61
62

64

63
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AJ=7J
P —P(Y —2.2AT)%(Y — 2.%AT — 1.)/((AT +1.)2.°Z*Z)
Q=Q+P

IF(ABSF(P)— AMIN)31,82,32

AMIN = ABSF(P)

CONTINUVE

GO TO 20

CONTINUE

PARCYL =EXPF(—0.5°Z*Z)*(Z**Y)*(Q—P)
CONTINUE

1F(Z)33,34,34

Z=—12

P=1.

Q=1.

AMIN=10.

J=0

AJ=J

P=P*(Y+2.5AT+1.)%(Y +2.°AT +2.)/(2.2*Z*(AJ +1.))
Q=P+Q

IF(ABSF(P)— AMIN)42,48,43

AMIN = ABSF(P)

CONTINUE

J=J+1

IF(ABSF(P)— AMIN)44,45,44
IF(ABSF(P)—1.0E — 05)44,44,47

AT=J

P=P*Y+2*AT+1.)%(Y+2.2AT +2/(2.°Z*Z*(AT +1.))
Q=P+Q

IF(ABSF(P)— AMIN)48,49,49

AMIN = ABSF(P)

CONTINUE

GO TO 35

CONTINUE

PARCYL =2.506628*(Z**(— Y —1.))*(Q — P)/AMMA(-Y)
CONTINUE

CONTINUE

IF(Y)50,51,50

IF(ABSF(Z)—8.)52,62,51
IF(0.5—0.5*Y)54,55,55

NP=05-0.5*Y—1.

GO TO 56

NP=0.5—-0.5*Y

CONTINUE

P=NP

IF((0.5—0.5*Y) — P)57,58,57

81=0.

GO TO 59

AB=—0.5°Y

XB=0.5ZZ

XC=0.5—0.5Y
81=1.772454*PHI(AB,0.5,XB)/AMMA(XC)
CONTINUE

IF(—0.5*Y)60,61,61

NR=—-0.5°Y—1.

GO TO 62

NR=-0.5*Y

CONTINVE

R=NR

IF(—0.5°Y—R)63,64,63

S2=0.

GO TO 65

DOOF=0.5—0.5*Y
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DUMM=0.5*Z*2
DEP=—-0.5*Y
82=-3.544008*Z*PHI(DOOF,1.5,DUMM)/(1.414213*AMMA(DEP))
65 CONTINUE
PABRCYL=2.**(0.5*Y)*EXPF(—0.5°Z*Z)*(S1 —82)
51 CONTINUE
RETURN
C PARCYL
END

FUNCTION AMMA(X)
XSTERN=X
IF(X-10.)10,11,11
10 IF(X)12,12,13
12 IF(X)14,15,15
14 NX=X-1.
GO TO 16
16 NX=X
16 CONTINUE
PX=NX
IF(X-PX)17,81,17
18 FORMAT(5HAMMA(,E18.12,12H)= UNENDLICH)
81 PUNCH 18,X
GO TO 103
17 XSTERN=10.+(PX-X)
13 CONTINUE
IF(X)11,11,19
19 XSTERN=10.+(X-PX)
11 CONTINUE
X2=XSTERN*XSTERN
X3=X2*XSTERN
X4=X3*XSTERN
G =2.506628*EXPF(— XSTERN +(XSTERN —0.5)*LOGF(XSTERN))
*(1.40.08333333/XSTERN + 0.0034722222/X 2 — 0.00268182716/
X3—0.000229472094/X4)
IF(X-10.)20,21,21
20 AN=1.
IF(X)8,9,9
8 NX=X-1.
GO TO 7
9 NX=X
7 CONTINUE
PX=NX
IF(X)22,22,23
22 F0=9.+PX-X
GO TO 24
23 F0=9.+X-PX
24 CONTINUE
F=F0
AN=AN*F
33 F=F-1.
IF(F —PX)30,31,31
31 AN=AN*F
GO TO 33
30 CONTINUE
86 G=G/AN
21 CONTINUE
AMMA =G
108 RETURN
C AMMA
END

[
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FUNCTION PHI(A,C,X)
Q=1.
P=1.
J=0
AJ=J
P=(P*(A+AJ)*X)/((C+AJ*(1.+ AJ))
Q=Q+P
18 J=J+1
IF(ABSF(P)—1.0E —07)15,15,16
16 AJ=J
P=(P*A+AJ)*X)/((C+AT)*(1.+ AT))
Q=Q+P
GO TO 13
15 CONTINUE
PHI=Q
RETURN
C PHI
END

4.98 54.13 0.0768 18.26

—3.22 .531 2.63 5824.

208
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4161.
13.870
3513.
13.850
2728.
13.810
1696.
13.770
1125.
13.730
968.
4711.

output values

LANDAUVERTEILUNG EINSCHL BLUNCK-LEISEGANG-
UND BREMSSTRAHLUNGSKORREKTUR, MIT DEM
PRIMAERSPEKTRUM GEFALTET

6= ORDNUNGSZAHL Z
12= ATOMGEWICHT(A)
1.9800000= SCHICHTDICKE (G/CM**2)

.076968909= KONSTANTE GROSS A
18.250000= KONSTANTE GROSS B
2.0000000= KONSTANTE X1
—3.2200000= KONSTANTE C
.53100000= KONSTANTE KLEIN A
2.6300000= KONSTANTE KLEIN M

54.130000= ENERGIE DER EINF ELEKTRONEN (MEYV)
9.5403880= MITTLERER ENERGIEVERLUST (MEV)

7.97056479= WAHRSCHEINLICHSTER ENERGIEVERLUST (MEV)
.38274712= A*R (MEYV)

11219838 = SCHICHTDICKE/STRAHLUNGSLAENGE

.01419976= B**2

FREQUENZ ENERGIE E-VERLUST LAMBDA VERTEILUNG
(MHZ) (MEV) (MEV) (n (COUNTS)
12.385 48.054 6.075 —5.000 1
12.286 47.671 6.458 —4.000 23
12.187 47.288 6.841 ~3.000 211
12.089 46.905 7.224 —2.000 1084
12.039 46.714 7.415 —1.500 1982
11.990 46.523 7.606 —1.000 3153
11.941 46.331 7.798 —.500 4381
11.891 46.140 7.989 0.000 5355
11.842 45.948 8.181 .500 5824
11.793 45.767 8.372 1.000 5740
11.743 45.566 8.563 1.500 5271
11.694 46.374 8.766 2.000 4670
11.645 45.183 8.946 2.600 4130
11.595 44.992 9.137 3.000 3708
11.497 44.609 9.520 4.000 3018
11.398 44.226 9.903 5.000 2361
11.299 43.843 10.286 6.000 1850
11.102 43.078 11.051 8.000 1361
10.905 42.312 11.817 10.000 1005
10,708 41.647 12.582 12.000 754
10.510 40.781 18.348 14.000 598
10.313 40.016 14.118 16.000 469
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6.2 FORTRAN INTO ALGOL 60

On the following pages the method of translating a FORTRAN program
into an ALGOL 60 program is described. The translation of the
program itself is explained, together with a comment on how to adapt
the input data. The input/output statements are not treated here,
they are discussed in Part 3.

Two different FORTRAN II programs (including data input and
computed results) and their translations into ALGOL* serve as ex-
amples to illustrate the method of translation.

The FORTRAN II programs, were computed on the IBM 16205
(40,000 character memory, punched cards input/output) and the
ALGOL programs were run on the NE 803B (8K memory, paper tape
input/output).t

6.2.1 Translation from a FORTRAN Il Program

To translate a FORTRAN II program into an ALGOL program, it is
recommended that the following patterns be followed :

1. Scan the main program and the COMMON statements of the
subprograms for integer variable identifiers. The first character of these
integer variable identifiers is either I, J, K, L, M, or N. Declare such
identifiers in the beginning of the ALGOL program under integer.

2. Scan the main program and the COM MON statements of the sub-
programs for real variable identifiers. The first character of these real
variable identifiers is any alphabetic character except I, J, K, L, M,
or N. Declare such identifiers in the beginning of the program under
real.

3. Look for GO TO(. . .),Nv statements in the main program, because
their translation (see Part 5 “GO T0”) leads to a switch declaration in
the beginning of the program.

4. Look for arithmetic statements, functions, and subprograms, their
translation must be placed before the translation of the main program.

5. If one reaches a format statement or an input/output statement,
then there are two possibilities:

(a) If the input/output of the ALGOL processor follows the FOR-
TRAN rules (see Part 3), then one must copy the format statements
and the input/output statements.

(b) If the input/output of the ALGOL processor follows other rules
than FORTRAN the format statements must be bypassed. They must

* An ALGOL program is an ALGOL 60 program which includes input/output state-
ments.
T The program itself contains only the NE input/output statements, the ALGOL 60

reference language symbols are not altered due to the hardware representation of the
NE.
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be translated together with the appropriate input/output statements
with the aid of Part 3.

Note: Most ALGOL processors do not need any specification on the
input data (such as format statements). Most of the ALGOT. processors
allow the print-out of the desired numbers (standard format) with e (or
8) decimal digits times a power of ten if no declaration of desired format
is made.

6. Before translating line by line (or sometimes group of statements
by group of statements) with the aid of Part 5, it is useful to keep the
following points in mind:

(1) Numbers terminating with a decimal point can be written without
the decimal point.

(ii) Do not forget to place a semicolon after every statement.

(iii) A semicolon before end is not necessary.

(iv) After translating the program, check whether for every begin

here is an appropriate end.

(v) After translation of the program, the sequence of the statements
must be as followes. (If this is not the case, the sequence must be
changed in the proper way.):

integer

real

array and/or integer array

switch

subprograms

main program
The sequence in a subprogram (i.e. procedure and/or real procedure
and/or integer procedure) is:

(a) type of procedure (real procedure, integer procedure, procedure)
and subprogram identifier with (if any) the appropriate parameters

(b) value

(c) specifications (integer, real, label, integer array, array, switch,
string, procedure, real procedure, integer procedure)

(d) subprogram.
Comment records may be placed anywhere.

6.2.2 Translation from a FORTRAN IV Program

To translate a FORTRAN IV program into an ALGOL 60 program, it
is recommended that the following pattern be followed:

1. Scan the main program and the COM MON statements of the sub-
programs for integer variable identifiers which are not declared under
INTEGER or REAL or LOGICAL in the FIV program (N30). The
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first character of these integer variable identifiers is either I, J, K,
L, M, or N. If any of these identifiers are found, declare them in the
ALGOL program under integer, together with the identifiers listed
under INTEGER in the FIV program.

2. Scan the main program and the COMMON statements of the sub-
programs for real variable identifiers which are not declared under
REAL or INTEGER or LOGICAL in the FIV program (N30). The
first character of these real variable identifiers is any alphabetic
character except I, J, K, L, M, or N. If any of these identifiers are
found, declare them in the ALGOL program under real, together with
the identifiers listed under REAL in the FIV program.

3. Look for GO TO(...),Nv statements in the main program, be-
cause their translation (see Part 5 “GO T0O’’) leads to a switch declara-
tion in the beginning of the program.

4. Look for arithmetic statement functions and subprograms, their
translation must be placed before the translation of the main program.

5. If one reaches a format statement or an input/output statement,
then there are two possibilities:

(a) If the input/output of the ALGOL processor follows the FOR-
TRAN rules (see Part 3), then one must copy the format statements
and the input/output statements.

(b) If the input/output of the ALGOL processor follows other rules
than FORTRAN the format statements must be bypassed. They must
be translated together with the appropriate input/output statements
with the aid of Part 3.

Note : Most ALGOL processors do not need any specification on the
input data (such as format statements). Most of the ALGOL processors
allow the print-out of the desired numbers (standard format) with e (or
3) decimal digits times a power of ten if no declaration of desired format
is made.

6. Before translating line by line (or sometimes group of statements
by group of statements) with the aid of Part 5, it is useful to keep the
following points in mind:

(1) Numbers terminating with a decimal point can be written without
the decimal point.

(ii) Do not forget to place a semicolon after every statement.

(iii) A semicolon before end is not necessary.

(iv) After translating the program, check whether for every begin
there is an appropriate end.

(v) After translation of the program, the sequence of the statements
must be as follows. (If this is not the case the sequence must be
changed in the proper way.)
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integer

real

Boolean

array and/or integer array

switch

subprograms

main program
The sequence in a subprogram (i.e. procedure and/or real procedure
and/or integer procedure and/or Boolean procedure) is:

(a) type of subprogram (real procedure, integer procedure, Boolean
procedure, procedure) and subprogram identifier with (if any) the
appropriate parameters

(b) value

(c) specifications (integer, real, Boolean, label, integer array, array,
switeh, string, procedure, real procedure, integer procedure, Boolean
procedure)

(d) subprogram.

Comment records may be placed anywhere.

6.2.3 The Data

To translate input data of a FORTRAN program into input data of an
ALGOL program, one should keep the following points in mind:

1. If the ALGOL processor follows the FORTRAN input rules (see
Section 3) the input data may be copied directly.

2. If the ALGOL processor does not follow the FORTRAN input
rules, then the different input numbers or values must be separated.
(This is opposite to FORTRAN, where a separation of the numbers or
values is not necessary because the numbers or values are identified
with the aid of the appropriate format statements.) Although ALGOL
processors allow any character as a number or value separator except
0,1,2,3,4,5,6,7,8,9, —, +, ., or 19, it is recommended to separate
by using a new record.

3. Blank spaces on an input data record in FORTRAN are evaluated
as zeros.

4. After keeping these points in mind, translate the input data
with the aid of Part 5 “numbers”.

6.2.4 A Simple Example Including Input Data and
Computed Output Values
Remarks: This example is written in FORTRAN II and translated into
ALGOL.
The program, including the input data given, was run on a
IBM 162011. The output values of this computation are presented. The
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input/output statements are translated according to the rules of the
NE computer (except that read and print appearing in the example
are written with small letters). In order to run the translated program,
it was changed due to the hardware representation and restrictions of
the NE (this modified program is not given here) and fed, together
with the data given, into the NE 803B. The output values of this

computation are also given.

In order to compare the output values from the two programs, one
must know that the numbers of the NE output are rounded and that
the numbers of the IBM output are truncated; thus a difference of 4-1
in the last digit is due to this procedure.

program

C POLYNOMIAL CURVE FITTING
DIMENSION A(12,13)
2 Jv=13
READ 3,XMN,XRA,MIND,INC,MAXD
3 FORMAT(2F10.3,3I5)
ARX=1.0/XRA
IF(MIND)4,6,6
PRINT 5
FORMAT(8HMIND NEG)
GO TO 69
6 MAXI=MAXD+1
IF(JV—-MAXI)7,7,8
7 MAXI=JV-1
8 EMIN=MIND+1
C CLEAR TOTAL BOXES
A(1,JV)=0.0
YSQ=0.0
NP=0
DO 9 J=2,MAXI
A(JJIV)=0.0
M=J-1
DO 9 I=M,J
9 A(,J)=0.0
C READ DATA AND ACCUMULATE SUMS OF POWERS
10 READ 11,P,QJ
11 FORMAT(F10.4,F10.4,11)
IF(J)16,12,16
12 NP=NP+1
S=(P— XMN)*ARX
YS8Q=YSQ+Q*Q
T=1.0
K=1
DO 15 J=2,MAXI
M=J-1
DO 15 I=M,J
IF(K -MAXI13,13,14
13 AK,JV)=A(K,JV)+T*Q
K=K+1
14 T=T*S8
15 ALJ)=AIJI)+T
GO TO 10
16 PUNCH 3,XMN,XRA,MIND,INC
D=NP
A(1,1)=D
N=(MAXI-KMIN)/INC
IF(NP—-N)17,17.18

O
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17 N=NP-1
18 MAXD=N*INC+MIND
MAXI=MAXD+1
C SPREAD TOTALS THROUGHOUT TOP HALF OF MATRIX
M1=MAXI-2
DO 20 I=KMIN,M1,INC
DO 20 J=I,MAXI,INC
IF(J —-I-2)20,19,19
19 L=I+47J
K=L/2
L=L-K
A(LT)=A(K,L)
20 CONTINUE
PUNCH 21,MAXD,NP,YSQ
21 FORMAT(7HMAX DEG I3,11H NO POINTS 15,12H RAW 8 OF 8 El1.4)
C SET UP TO SOLVE EQUATIONS
DO 42 K=KMIN,MAXI,INC
P=1.0/A(K,K)
A(K,K)=(K,JV)*P
C SOLVE FOR RESIDUALS
Y8Q=YSQ-A(K.K)*A(K,JV)
D=D-1.0
IF(D)22,22,23
22 Q=0.9999E99
GO TO 26
28 IF(YSQ)24,24,25
24 Q=0.0
GO TO 26
25 Q=S8QRTF(YSQ/D)
26 J=K-1
PUNCH 27,J,Y8Q,Q
27 FORMAT(8HPOLY DEG I3,13H RESID S OF S E11.4,7H ST ERR El1.4)
C SOLVE FOR COEFFICIENTS
M1=K+INC
M=MAXI-M1
IF(M)30,28,28
28 DO 29 J=M1MAXILINC
A(J,K)=A(K,J)
290 A(K,J)=A(K,J)*P
30 L=1
N=KMIN
T=1.0
DP 41 I=1MAXI
IF(N —-1)4,31,40
31 N=N+INC
IF(I-K)33,37,32
32 Ml=I
33 P=A{,K)
IF(M)36,34,34
34 DO 35 J=M1MAXILINC
35 A(LY)=AJ)-AK,J)*P
36 A(LK)=A(IJV)— A(K,K)*P
GO TO(38,41),L
37 L=2
38 J=I-1
R=A(LK)*T
PUNCH 39,J,R
39 FORMAT(I4,10H DEG COEF E11.4)
40 T=T*ARX
41 CONTINUE
42 JVv=K
60 CONTINUE
END
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0.0 2.0 0 1 3
-0.9 0.500 0
-0.7 0.977 0
-0.5 1.199 0
—-0.3 1345 0
—-0.1 145¢ 0
0.1 1.541 0
0.3 1614 0
0.5 1.676 0
0.7 1.730 0
0.9 1.779 0
0.0 0.0 1
0.000E —99 2.000E — 00 0 1
MAX DEG 3 NO POINTS 10 RAW 8 OF 8 2.0511E+01

POLY DEG 0 RESID S OF S 1.4262E—00 ST ERR 3.9808E—01
0 DEG COEF 1.3815E—00

POLY DEG 1 RESID 8 OF S 2.0671E—01 ST ERR 1.6074E—01
0 DEG COEF 1.3815E—-00
1 DEG COEF 6.0790E—01

POLY DEG

2 RESID S OF S 4.3332E—02 ST ERR 7.8678E—02

0 DEG COEF 1.5266E —00
1 DEG COEF 6.0790E—01
2 DEG COEF —4.3977E—01
POLY DEG 3 RESID 8 OF 8 9.2597E—03 ST ERR 3.9284E —02
0 DEG COEF 1.5266E—00
1 DEG COEF 3.6462E—01
2 DEG COEF —4.3977E—01
3 DEG COEF 4.1516E—-01

begin comment POLYNOMIAL CURVE FITTING;
integer JV,MIND,MAXD,MAXI,KMIN,NP,J,M,I,K,N,M1,L;
real XMN,XRA,ARX,YSQ,P,Q,8,T,D,R;
array A[1:12,1:13];
switch JUMP:=38,41;

JV:=13;

read XMN,XRA MIND,INC,MAXD;
ARX:=1/XRA;

if MIND > O then go to 6 else go to 4;
print$MIND NEG?;

go to 69;

MAXI:=MAXD+1;

it JV—-MAXI) < 0 then go to 7 else go to 8;
MAXI:=JV-1;

KMIN:=MIND+1;

comment CLEAR TOTAIL BOXES;

10:

12:

A[1JV]:=0;
YSQ:=0;
NP:=0;
for J:=1 step 1 untll MAXI do
begin A[{J,JV]:=0;
M:=J-1;
for I:=M step 1 untll J do A[I,J]:=0
end
READ DATA AND ACCUMULATE SUMS OF POWERS;
read P,Q,J;
It J = 0 then go to 12 else go to 16;
NP:=NP+1;
8:=(P—XMN) x ARX;
Y8Q:=Y8Q+QxQ;

216
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output values
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T:=1;
K:=1;
for J:=2 step 1 until MAXI do
begin M:=J+1;
for I:=M step 1 until J do
begin if (K- MAXI) < O then go to 13
else go to 14;
13: A[K,JV]:=A[KJV]+TxQ;

K:=K+1;
14: T:=Tx8S;
A[LI):=A[LJ[+T
end
end;
go to 10;

print SCALED(4),SAMELINE,XMN,XRA,DIGIT(4),MIND,INC;
D:=NP;

A[1,1):=D;

N:=(MAXI-KMIN)/INC;

if (NP—N) < 0 then go to 17 else go to 18;

N:=NP-1;

MAXD:=NXxINC+MIND;

MAXI:=MAXD+1;

comment SPREAD TOTALS THROUGHOUT TOP HALF OF MATRIX;

M1:=MAXI-2;
for I:=KMIN step INC until M1 do
begin for J:=1I step INC until MAXI do
begin i1(J—TI—2) = 0 then go to 19 else go to 20;

19: L:=I+7J;
K:=L/2;
L:=L-K;
A[1,J]:=A[K,L];
20: end
end;

print $MAX DEG?,SAMELINE,DIGITS(2),MAXD,$ NO POINTS ?,
DIGITS(4),NP,$ RAW S OF 8 ?,SCALED(5),YSQ;

comment SET UP TO SOLVE EQUATIONS;

for K:=KMIN step INC until MAXI do
begin P:=1/A[K,K];
A[K,K]:=A[KJV]xP;
comment SOLVE FOR RESIDUALS;
YSQ:=YSQ—-A[K,K]xA[K,JV];
D:=D-1;
it D < 0 then go to 22 else go to 23;
22: Q:=0.9999,,99;
go to 26;
23: if YSQ < O then go to 24 else go to 25;
24: Q:=0;
go to 26;
25: Q:=sqrt(YSQ/D);
26: J:=K-1;
print $POLY DEG?,SAMELINE,DIGITS(2),J,
$ RESID S OF 8 ?, SCALED(5),YSQ,
$ ERROR ?,Q;

comment SOLVE FOR COEFFICIENTS;

M1:=K+INC;

M:=MAXI-—M1;

it M > 0 then go to 28 else go to 30;
28: for J:=M1 step INC until MAXI do

begin A[J,K]:=A[K,J];

A[K,JJ):=A[K,J]xP

end;
80: L:=1;

N:=KMIN;

T:=1;
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for I:=1 step 1 untll MAXI do
begin if (N—I) = 0 then go to 31 else
it (N—I) < 0 then go to 4 else go to 40;
31: N:=N+INC;
it (I—K) = 0 then go to 37 else
it (I-K) -~ O then go to 33 else go to 32;
32: Mi:=1I:
33: P:=A[LK];
it M > O then go to 34 else go to 36;
34: for J:=M1 step INC until MAXI do
A[LJ):=A[LJ]-AIK,J]~ P;
36:  A[LK]:=A[LJV]-A[K,K]xP;
go to JUMP|(L];
37 L:=2;
38: J:=I-1;
R:=A[LLK]xT;
print SAMELINE,DIGITS(3),J,8 DEG COEF ?,

SCALED(5),R;
40: T:=TxARX,;
41: end;
42: JV:=K
end
69: end

input data

- 2190

1.345
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output values
0.000@+00 2.000@+00 0 1
MAX DEG 3 NO POINTS 10 RAW S OF § 2.0512@+01
POLY DEG 0 RESID S OF S 1.4262@+00 ST ERROR 3.9808@ — 01
0 DEG COEF  1.3816@+00
POLY DEG 1 RESID S OF § 2.0672@—01 ST ERROR 1.6075@ —01
0 DEG COEF  1.3816@+00
1 DEG COEF  6.0791@—01
POLY DEG 2 RESID S OF S 4.3332@—02 ST ERROR 7.8678@ — 02
0 DEG COEF  1.5266@+00
1 DEG COEF  6.0701@—01
2 DEG COEF —4.3977@ 01
POLY DEG 3 RESID S OF § 0.2602@ - 03 ST ERROR 3.9284@ —02
0 DEG COEF  1.5266@+ 00
1 DEG COEF  3.6462@— 01
2 DEG COEF —4.3977@—01
3 DEG COEF  4.1516@—01

6.2.5 A More Complex Example Including Input Data and
Computed Output Values
Remarks: This example is written in FORTRAN II and translated into
ALGOL.

The program, including the input data given, was run on a IBM
16201;. The output values of this computation are presented.

The input/output statements are translated according to the rules of
the NE computer (except that read and print appearing in the example
are written with small letters). In order to run the translated program,
it was changed due to the hardware representation and restrictions of
the NE (this modified program is not given here) and fed, together with
the data given, into the NE 803B. The output values of this computation
are also presented.

In order to compare the output values from the two programs, one
must know that the numbers of the NE output are rounded and that
the numbers of the IBM output are truncated; thus a difference of --1
in the last digit is due to this procedure.

program

C CALCULATION OF THE TSAI-RADIATION-CORRECTION(PHYS.REV.122,1898(1961))
C CORR FOR A GIVEN DE, AN ELECTRON-ENERGY E, A SCATTERING ANGLE

C THETA AND AN ATOMIC NUMBER Z.
FORMAT(I10,3F10.3,F15.5)

FORMAT(3F8.1,2F8.3,17)

FORMAT(27H TSAI-RADIATION-CORRECTION ////)
FORMAT(46H E THETA DE DELTA
PUNCH3

PUNCH 4

READ 1,NZ,E,THETA,DE,GRM

Z=NZ

IF(NZ—8)10,10,11

11 PUNCH 2

10 A=THETA*3.1416/180.

ZAHL= —1./(187.04*3.1416)

EMEM=0.511*0.511

ETA=1.+E*(1.—COSF(A))/GRM

[N = L g
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E3=E/ETA

E4=E+GRM—-E3

BETA4=8SQRTF(E4*E4— GRM*GRM)/E4
QQ=(—-4.*E*E*(SINF(0.5*A))**2)/ETA

TERM1=ZAHL*(28./9. —(13./6.)*LOGF(— QQ/EMEM) + (LOGF(— QQ/EMEM)
1.+2.*Z*LOGF(ETA))*(2.*LOGF(E/DE)—3.*LOGF(ETA)))
TERM2=ZAHL*(F((E3 — E)/E3)—Z*Z*LOGF(E4/GRM))
TERM3=ZAHL*(Z*Z*LOGF(GRM/(ETA*DE))*((1./BETA4)*LOGF
((1.+BETA4)/(1.—BETA4))—2.)+(Z*Z/BETA4)*(0.6*LOGF((1.+ BETA4)

/(1.— BETA4))*LOGF((E4 + GRM)/(2.*GRM)) — F(— SQRTF((E4— GRM)/(E4 + GRM))
*SQRTF((1.4+BETA4)/(1.— BETA4)))))

TERM4=ZAHL*Z*(F(—(GRM — E3)/E) - F(GRM*(GRM — E3)/

(2.*E3*E4— GRM*E))+ F(2.*E3*(GRM — E3)/(2.*E3*E4 — GRM*E))+ LOGF(ABSF(
(2.*E3*E4 — GRM*E)/(E*(GRM —2.*E3))))*LOGF(GRM/(2.*E3)))
TERM5=ZAHL*Z*(F(— (E4— E3)/E3)— F(GRM*(E4— E3)/(2.*E*E4— GRM*E3))
+F(2.*E*(E4—E3)/(2.*E*E4— GRM*E3))+ LOGF(ABSF((2.*E*E4— GRM*E3)
/(E3*(GRM — 2.*E))))*LOGF(GRM/(2.*E)))

TERM6=ZAHL*Z*(F(— (GRM — E)/E)— F((GRM — E)/E)+F(2.*(GRM — E)/GRM)
+LOGF(ABSF(GRM/(2.*E — GRM)))*LOGF(GRM/(2.*E)))
TERM7=ZAHL*Z*(F(—(GRM — E3)/E3) - F((GRM — E3)/E3) + F(2.*(GRM — E3)/
GRM)+ LOGF(ABSF(GRM/(2.*E3— GRM)))*LOGF(GRM/(2.*E3)))
TSAI=TERM1—-TERM2+ TERM3+ TERM4 - TERM5— TERM6+ TERM7
CORR =EXPF(TSAI)

PUNCH 6,E,THETA,DE,TSAI,CORR,Z

STOP

END

IS THE SPENCE-FUNCTION CALCULATED FROM MITCHELL(PHIL. MAG.

C 40,351,(1949))

101

102
103

104
105

106
107

108
109

110

C END

10

C THIS

FUNCTION F(X)

PIPI=9.8696/6.

IF(X +1.)101,102,102

Y=1./(1.-Y)
F=—PIPI+8SUM(Y)—-0.5*(LOGF(ABSF(1.— X)))**2
RETURN

1F(X)103,103,104

Y=X/(X-1.)

=—SUM(Y)—-0.5*(LOGF(ABSF(X —1.)))**2

RETURN

IF(X - 0.5)105,103,106

Y=X

F=8UM(Y)

RETURN

IF(X —1.)107,108,108

Y=1.-X
F=PIPI-SUM(Y)—-LOGF(X)*LOGF(1.—X)
RETURN

IF(X -2.)109,110,110

Y=(X-1)/X
F=PIPI+SUM(Y)—-0.5*LOGF(ABSF(X))*LOGF(((X —1.)**2)/ABSF(X))
RETURN

Y=1./X
F=PIPI*2.—-SUM(Y)—0.5*(LOGF(X))**2
RETURN

END
OF SUBPROGRAM F(X)

FUNCTION SUM(Y)

DO 10 N=2,8

AN=N*N*(N+1)

T=(Y—1.)**N/AN

SUM=(Y*3.+Y/4.+ T)+2.#(1.— Y)*LOGF(1.- Y))/(1.+Y)
RETURN

IS THE SUM TERM Y**N/(N*N(N+1))

END
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input data
1 900. 145. 13.1 938.213

output values
TSAI-RADIATION-CORRECTION

E THETA DE DELTA CORR Z

900.0 145.0 13.1 —.155 .856 1

translated program

begin comment CALCULATION OF THE TSAI-RADIATION-CORRECTION
(PHYS.REV.122,1898(1961)) CORR FOR A GIVEN DE,
AN ELECTRON-ENERGY E, A SCATTERING ANGLE THETA
AND AN ATOMIC NUMBER Z.;
integer NZ,N;
real Z,E,THETA,DE,A,ETA,GRM,EMEM,E3,E4,BETA4,QQ,ZAHL, TERM]1,
TERM2,TERM3,TERM4,TERM5, TERM6,TERM7,TSAI,CORR;
real procedure F(X);
value X;
real X;
begin real PIPLY;
real procedure SUM(Y);
value Y;
real Y;
begin integer N;
real T,AN;
for N:=2 step 1 untll 8 do
begin AN:=NXxN x(N+1);
T:=(Y—-1){N/AN
end;
SUM:=(Yx(3+Y/44+T)+2x(1-Y)xIn(1-Y))/(1+Y)
end
THIS IS THE SUM TEJ.M Y{N/(N x N(N+1));
begin PIPI:=9.8696/6;
it (X+1) = 0 then go to 102 else go to 101;
101: Y:=1/1-X);
F:=—PIPI+8SUM(Y)— 0.5 x In(abs(1 — X)))12;
go to 211;
102: it X < O then go to 103 else go to 104;
103: Y:=X/(X-1);
F:=—SUM(Y)—0.5 x (In(abs(X —1)))12;
go to 211;
104: it (X—0.5) = O then go to 103 else
it (X—0.5) < O then go to 105 else go to 106;
105: Y:=X;
F:=SUM(Y);
go to 211;
106: if (X—1) = O then go to 108 else go to 107;
107: Y:=1-X;
F:=PIPI-SUM(Y)—In(X) xIn(1 - X);
go to 211;
108: it (X—2) = 0 then go to 110 else go to 109;
109: Y:=(X-1)/X;
F:=PIPI+SUM(Y)~— 0.5 X In(abs(X)) X In(((X — 1)12)/
abs(X));
go to 211;
110: Y:=1/X;
F:=PIPI x 2—-SUM(Y)—0.5x (In(X))12;
211 end
end OF SUBPROGRAM F(X);

221
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end
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print $ TSAI-RADIATION-CORRECTION $L4??;

print $H E THETA DE DELTA CORR
read NZ,E,THETA,DE,GRM;
Z:=N2Z;

if (NZ—8) < O then go to 10 else go to 11;
print $ NOTE BORN-APPROXIMATION VIOLATED?;

: A:=THETA x 3.1416/180;

ZAHL:=—1/(187.04 x 3.1416);

EMEM:=0.511 x 0.511

ETA:=1+E x (1—cos(A))/GRM;

E3:=E/ETA;

E4:=E+GBM—-E3;

BETA4:=3qrt(E4 x E4— GRM x GRM)/E4;

QQ:=(—4xE x E x (8in(0.5 x A))}2)/ETA;

TERM1:=ZAHL x (28/9—(13/6) X In(— QQ/EMEM) + (In(— QQ/EMEM)
—142xZ X% In(ETA)) X (2 X In(E/DE)— 8 x In(ETA)));

TERM2:=ZAHL x (F(E3—E)/E8)—Z x Z x In(E4/GRM));

TEBRM3:=ZAHL x(Z x Z X In(GRM/(ETA x DE)) x ((1/BETA4) xIn((1+ BETA4)
/(1—BETA4))—2)+(Z x Z/BETA4) x (0.5 x 1n((1+ BETA4)/
(1—-BETA4)) x In((E4+ GRM)/(2 x GRM)) — F(—sqrt((E4— GRM)/
(E4+ GRM)) x sqrt((1+ BETA4)/(1— BETA4)))));

Z $L21?;

TERM4:=ZAHL x Z X (F(—(GRM — E3)/E)—F(GRM x (GRM — E3)/(2 x E3 x E4 — GRM X E))
+F(2xE3x(GRM—E3)/(2x E3 x E4—GRM x E))+ 1n(abs((2 X E3 x E4—

GRM x E)/(E x (GRM — 2 x E3)))) X In(GRM/(2 x E3)));

TERM5:=ZAHL x Z x (F(— (E4—E3)/E3)— F(GRM x (E4—E3)/(2 x E x E4— GRM

x E3))+F(2x E x (E4—E3)/(2 X E x E4 — GRM x E3))+In(abs((2 x E x

E4—- GRM x E3)/(E3 x (GRM — 2 x E)))) x In(GRM/(2 x E)));
TERM6:=ZAHL xZ x (F(—(GRM— E)/E)— F(GRM —E)/E)+ F(2 x (GRM — E)/

GRM)+In(abs(GRM/(2 x E— GRM))) x In(GRM/(2 x E)));

TERM7:=ZAHL x Z x (F(— (GRM — E3)/E3) - F((GRM — E3)/E3+F(2 x (GRM — E3)/

GRM)+In(abs(GRM/(2 x E3 — GRM))) X In(GRM/(2 x E8)));
TSAI:=TERM1—-TERM2+ TERM3+ TERM4 —TERM5— TERM6+ TERM7;
CORR:=exp(TSAI);
print ALIGNED(5,1),SAMELINE,E,THETA,DE,ALIGNED(3,3),TSAI,

CORR, DIGITS(6),Z

input data

900

145
13.1
938.213

TSAI-RADIATION-CORRECTION

E THETA DE DELTA CORR zZ
900.0 145.0 13.1 —0.1564 0.857 1
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SUMMARY

THE report gives a complete defining description of the international algorithmic
language ALGOL 60. This is a language suitable for expressing a large class of
numerical processes in a form sufficiently concise for direct automatic translation
into the language of programmed automatic computers.

The introduction contains an account of the preparatory work leading up to
the final conference, where the language was defined. In addition the notions
reference language, publication language, and hardware representations are
explained.

In the first chapter a survey of the basic constituents and features of the
language is given, and the formal notation, by which the syntactic structure is
defined, is explained.

The second chapter lists all the basic symbols, and the syntactic units known
as identifiers, numbers, and strings are defined. Further some important notions
such as quantity and value are defined.

The third chapter explains the rules for forming expressions and the meaning
of these expressions. Three different types of expressions exist: arithmetic,
Boolean (logical), and designational.

The fourth chapter describes the operational units of the language, known as
statements. The basic statements are: assignment statements (evaluation of
a formula), go to statements (explicit break of the sequence of execution of state-
ments), dummy statements, and procedure statements (call for execution of a
closed process, defined by a procedure declaration). The formation of more com-
plex structures, having statement character, is explained. These include: con-
ditional statements, for statements, compound statements, and blocks.

In the fifth chapter the units known as declarations, serving for defining per-
manent properties of the units entering into a process described in the language,
are defined.

The report ends with two detailed examples of the use of the language and an
alphabetic index of definitions.

INTRODUCTION
Background

After the publication*,t of a preliminary report on the algorithmic language
ALGOL, as prepared at a conference in Zurich in 1958, much interest in the
ALGOL language developed.

As a result of an informal meeting held at Mainz in November 1958, about
forty interested persons from several European countries held an ALGOL
implementation conference in Copenhagen in February 1959. A ‘“hardware
group’’ was formed for working cooperatively right down to the level of the paper

* “Preliminary Report—International Algebraic Language,” Communs Ass. compul.
Mach. 1, No. 12 (1958), 8.

+ “Report on the Algorithmic Language ALGOL by the ACM Committee on Pro-
gramming Languages and the GAMM Committee on Programming,” edited by A. J.
Peruis and K. SAMELSON, Numerische Mathematik 1, 41-60, 1959.
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tape code. This conference also led to the publication by Regnecentralen, Copen-
hagen, of an Algol Bulletin, edited by PETER NAUR, which served as a forum for
further discussion. During the June 1959 ICIP Conference in Paris several
meetings, both formal and informal ones, were held. These meetings revealed
some misunderstandings as to the intent of the group which was primarily re-
sponsible for the formulation of the language, but at the same time made it clear
that there exists a wide appreciation of the effort involved. As a result of the
discussions it was decided to hold an international meeting in January 1960 for
improving the ALGOL language and preparing a final report. At a European
ALGOL Conference in Paris in November 1959 which was attended by about
fifty people, seven European representatives were selected to attend the January
1960 Conference, and they represent the following organizations: Association
Frangaise de Calcul, British Computer Society, Gesellschaft fiir Angewandte
Mathematik und Mechanik, and Nederlands Rekenmachine Genootschap. The
seven representatives held a final preparatory meeting at Mainz in December
1959.

Meanwhile, in the United States, anyone who wished to suggest changes or
corrections to ALGOL was requested to send his comments to the Communications
of the ACM, where they were published. These comments then became the basis
of consideration for changes in the ALGOL language. Both the SHARE and USE
organizations established ALGOL working groups, and both organizations were
represented on the ACM Committee on Programming Languages. The ACM
Committee met in Washington in November 1959 and considered all comments on
ALGOL that had been sent to the Communications of the ACM. Also, seven repre-
sentatives were selected to attend the January 1960 international conference.
These seven representatives held a final preparatory meeting in Boston in De-
cember 1959.

January 71960 Conference

The thirteen representatives,* from Denmark, England, France, Germany,
Holland, Switzerland, and the United States, conferred in Paris from January
11 to 16, 1960.

Prior to this meeting a completely new draft report was worked out from the
preliminary report and the recommendations of the preparatory meetings by
PETER NAUR, and the Conference adopted this new form as the basis for its report.
The Conference then proceeded to work for agreement on each item of the report.
The present report represents the union of the Committee’s concepts and the
intersection of its agreements.

* WiLLiaM TuraNskI of the American group was killed by an automobile just prior
to the January 1960 Conference.
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April 1962 Conference [Edited by M. WOODGER]

A meeting of some of the authors of ALGOL 60 was held on April 2-3, 1962, in
Rome, Italy, through the facilities and courtesy of the International Computation
Centre. The following were present:

Authors Advisers Observer
F. L. BAUER M. PavuL W. L. VAN DER PoEL
J. GREEN R. FrANCIOTTI (Chairman, IFIP TC 2.1
C. Katz P. Z. INGERMAN Working Group
R. KoGoN (representing ALGOL)
J. W. Backus)
P. NaUr
K. SAMELsON G. SEEGMULLER
J. H. WEGSTEIN R. E. UTmMAN
A. vAN WIJNGAARDEN
M. WooDGER P. LANDIN

The purpose of the meeting was to correct known errors in, attempt to eliminate
apparent ambiguities in, and otherwise clarify the ALGOL 60 Report. Extensions
to the language were not considered at the meeting. Various proposals for cor-
rection and clarification that were submitted by interested parties in response
to the Questionnaire in Algol Bulletin No. 14 were used as a guide.

This report* constitutes a supplement to the ALGOL 60 Report which should
resolve a number of difficulties therein. Not all of the questions raised concerning
the original report could be resolved. Rather than risk hastily drawn conclusions
on a number of subtle points, which might create new ambiguities, the committee
decided to report only those points which they unanimously felt could be stated in
clear and unambiguous fashion.

Questions concerned with the following areas are left for further consideration
by Working Group 2.1 of IFIP, in the expectation that current work on advanced
programming languages will lead to better resolution:

. Side effects of functions.

. The call by name concept.

. own: static or dynamic.

. For statement: static or dynamic.

. Conflict between specification and declaration.

The authors of the ALGOL 60 Report present at the Rome Conference, being
aware of the formation of a Working Group on ALGOL by IFIP, accepted that
any collective responsibility which they might have with respect to the develop-
ment, specification, and refinement of the ALGOL language will from now on
be transferred to that body.

This report has been reviewed by IFIP TC 2 on Programming Languages in
August 1962 and has been approved by the Council of the International Federa-
tion for Information Processing.

W N =

%13

* Editor’s note: The present edition follows the text which was approved by the
Council of IFIP. Although it is not clear from the Introduction, the present version is
the original report of the January 1960 Conference modified according to the agree-
ments reached during the April 1962 Conference. Thus, the report mentioned here is
incorporated in the present version. The modifications touch the original report in the
following sections: Changes of text: 1 with footnote; 2.1 footnote; 2.3; 2.7; 3.3.3; 3.3.4.2;
4.1.3; 4.2.3; 4.2.4; 4.3.4; 4.7.3; 4.7.3.1; 4.7.3.3; 4.7.5.1; 4.7.5.4; 4.7.6; 5; 5.3.3; 5.3.5;
5.4.3; 5.4.4: 5.4.5. Changes of syntax: 3.4.1; 4.1.1; 4.2.1; 4.5.1.
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As with the preliminary ALGOL report, three different levels of language
are recognized, namely a Reference Language, a Publication Language, and
several Hardware Representations.

Reference Language

1. It is the working language of the committee.

2. It is the defining language.

3. The characters are determined by ease of mutual understanding and not
by any computer limitations, coder’s notation, or pure mathematical notation.

4. It is the basic reference and guide for compiler builders.

5. It is the guide for all hardware representations.

6. It is the guide for transliterating from publication language to any locally
appropriate hardware representations.

7. The main publications of the ALGOL language itself will use the reference
representation.

Publication Language

1. The publication language admits variations of the reference language accord-
ing to usage of printing and handwriting (e.g. subscripts, spaces, exponents,
Greek letters).

2. It is used for stating and communicating processes.

3. The characters to be used may be different in different countries, but
univocal correspondence with reference representation must be secured.

Hardware Representations

1. Each one of these is a condensation of the reference language enforced by
the limited number of characters on standard input equipment.

2. Each one of these uses the character set of a particular computer and is the
language accepted by a translator for that computer.

3. Each one of these must be accompanied by a special set of rules for trans-
literating from publication or reference language.

For transliteration between the reference language and a language suitable
for publications, among others, the following rules are recommended.

Reference language Publication language

Subscript brackets [] Lowering of the line between the hrackets and
removal of the brackets.

Exponentiation Raising of the exponent.

Parentheses () Any form of parentheses, brackets, braces.

Basis of ten 1o Raising of the ten and of the following integral
number, inserting of the intended multiplication
sign.

DESCRIPTION OF THE REFERENCE LANGUAGE

Was sich iiberhaupt sagen laBt, laBt sich klar sagen; und wovon man
nicht reden kann, dariiber mu8 man schweigen. Lubpwic WITTGENSTEIN

1. Structure of the Language

As stated in the introduction, the algorithmic language has three different
kinds of representations—reference, hardware, and publication—and the develop-
ment described in the sequel is in terms of the reference representation. This
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means that all objects defined within the language are represented by a given set
of symbols—and it is only in the choice of symbols that the other two represen-
tations may differ. Structure and content must be the same for all representa-
tions.

The purpose of the algorithmic language is to describe computational processes.
The basic concept used for the description of calculating rules is the well-known
arithmetic expression containing as constituents numbers, variables, and func-
tions. From such expressions are compounded, by applying rules of arithmetic
composition, self-contained units of the language—explicit formulae—called
assignment statements.

To show the flow of computational processes, certain non-arithmetic state-
ments and statement clauses are added which may describe, e.g. alternatives or
iterative repetitions of computing statements. Since it is necessary for the func-
tion of these statements that one statement refers to another, statements may be
provided with labels. A sequence of statements may be enclosed between the
statement brackets begin and end to form a compound statement.

Statements are supported by declarations which are not themselves computing
instructions, but inform the translator of the existence and certain properties
of objects appearing in statements, such as the class of numbers taken on as
values by a variable, the dimension of an array of numbers, or even the set of
rules defining a function. A sequence of declarations followed by a sequence of
statements and enclosed between begin and end constitutes a block. Every
declaration appears in a block in this way and is valid only for that block.

A program is a block or compound statement which is not contained within
another statement and which makes no use of other statements not contained
within it.

In the sequel the syntax and semantics of the language will be given.*

1.1 Formalism for Syntactic Description

The syntax will be described with the aid of metalinguistic formulae.t Their
interpretation is best explained by an example:

<ab::=(| [ | <ab)(|<ab) <d>

Sequences of characters enclosed in the bracket (> represent metalinguistic
variables whose values are sequences of symbols. The marks ::= and | (the
latter with the meaning of or) are metalinguistic connectives. Any mark in a
formula, which is not a variable or a connective, denotes itself (or the class of
marks which are similar to it). Juxtaposition of marks and/or variables in a
formula signifies juxtaposition of the sequences denoted. Thus, the formula above
gives a recursive rule for the formation of values of the variable (ab). It indicates
that (ab)> may have the value ( or [ or that given some legitimate value of
<{ab), another may be formed by following it with the character ( or by following

* Whenever the precision of arithmetic is stated as being in general not specified,
or the outcome of a certain process is left undefined or said to be undefined, this is to
be interpreted in the sense that a program only fully defines a computational process if
the accompanying information specifies the precision assumed, the kind of arithmetic
assumed, and the course of action to be taken in all such cases as may occur during the

execution of the computation.
1t Cf. J. W. Backus, “The syntax and semantics of the proposed international

algebraic language of the Ziirich ACM—-GAMM conference.” ICIP Paris, June 1959.
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it with some value of the variable {(d). If the values of (d> are the decimal digits,
some values of (ab) are:

[(((Z(37(

(12345(

(((
(86

In order to facilitate the study, the symbols used for distinguishing the metalin-
guistic variables (i.e. the sequences of characters appearing within the brackets
¢> as ab in the above example) have been chosen to be words describing approxi-
mately the nature of the corresponding variable. Where words which have
appeared in this manner are used elsewhere in the text they will refer to the
corresponding syntactic definition. In addition, some formulae have been given
in more than one place.
Definition:
{empty)::=
(i.e. the null string of symbols).

2. Basic Symbols, Identifiers, Numbers, and Strings.

Basic Concepts
The reference language is built up from the following basic symbols:

{basic symbol)::=(letter) | (digit) | <logical value) | {delimiter)

2.1 Letters
(letter) ::=alb|c|d|e| flg|h||j|k]lm|n|o|p|q|r|s|t|u|v|w|x|y|z|
A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|\U\V|W|X|Y|Z

This alphabet may arbitrarily be restricted, or extended with any other distinc-
tive character (i.e. character not coinciding with any digit, logical value, or
delimiter).

Letters do not have individual meaning. They are used for forming identifiers
and strings* (cf. Sections 2.4. Identifiers, 2.6. Strings).

2.2.1. Digits.

(digit)::=0|1|2|3|4|5]|6|7|8|9

Digits are used for forming numbers, identifiers, and strings.

2.2.2. Logical values.
(logical value)::=true | false

The logical values have a fixed obvious meaning.

2.3. Delimiters

{delimiter)::=(operator) | (separator) | (bracket) | (declarator) | (specificator)
(operator)::=(arithmetic operator) | (relational operator) | (logical operator) |
{sequential operator)

* It should be particularly noted that throughout the reference language under-
lining [in typewritten copy; bold face type in printed copy—£Ed.] is used for defining
independent basic symbols (see sections 2.2.2 and 2.3). These are understood to have
no relation to the individual letters of which they are composed. Within the present
report [not included headings---Ed.] underlining |bold face—Ed.] will be used for no
other purposes.
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arithmetic operator)::= + | — | X | /]| = [}

(relational operator)::= < | < |=|= | > |+

logical operator)::== |2 |V |A| 7

{sequential operator)::= go to | if | then | else | for | dot
{separator)::=,|.|10]| :|;|:= | U | step | until | while | comment

{bracket>::= (|)|[]|1]¢]|’|begin | end
{declarator)::= own | Boolean | integer | real | array | switeh | procedure
{specificator) :: = string | label | value

Delimiters have a fixed meaning which for the most part is obvious or else will
be given at the appropriate place in the sequel.

Typographical features such as blank space or change to a new line have no
significance in the reference language. They may, however, be used freely for
facilitating reading.

For the purpose of including text among the symbols of a program the following
‘“‘comment’’ conventions hold:

The sequence of basic symbols: is equivalent to
; ecomment {any sequence not containing;>; ;
begin comment {any sequence not containing;>; begin

end {any sequence not containing end or; or else)> end

By equivalence is here meant that any of the three structures shown in the left-
hand column may be replaced, in any occurence outside of strings, by the symbol
shown on the same line in the right-hand column without any effect on the action
of the program. It is further understood that the comment structure encountered
first in the text when reading from left to right has precedence in being replaced
over later structures contained in the sequence.

2.4, ldentifiers

2.4.1. Syntax.
(identifier): := (letter) | {identifier) (letter) | (identifier> (digit)
2.4.2. Examples. q
Soup
Vi7a
a34kTMNs
MARILYN

2.4.3. Semantics. Identifiers have no inherent meaning, but serve for the iden-
tification of simple variables, arrays, labels, switches, and procedures. They may
be chosen freely (cf., however, Section 3.2.4. Standard Functions).

The same identifier cannot be used to denote two different quantities except
when these quantities have disjoint scopes as defined by the declarations of the
program (cf. Section 2.7. Quantities, Kinds, and Scopes and Section 5. Declara-
tions).

2.5. Numbers

2.5.1. Syntax.
{unsigned integer) :: = {digit) | {unsigned integer) <{digit)>
(integer) ::= (unsigned integer) | 4- (unsigned integer) | — {(unsigned integer)

t do is used in for statements. It has no relation whatsoever to the do of the pre-
liminary report, which is not included in ALGOL 60.
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{decimal fraction)::=.{unsigned integer)
{exponent part)::=o{integer)
{decimal number) ::= (unsigned integer) | (decimal fraction) |
{unsigned integer) (decimal fraction)
{unsigned number) :: = (decimal number) | (exponent part) |
{decimal number) {exponent part)
{number) : : = {unsigned number) | + (unsigned number) | —(unsigned number)

2.5.2. FExamples. 0 —200.084 —.08310—02
177 + 07.43108 —107
5384 9.3410+ 10 10—4
+0.7300 210—4 +10+9

2.5.3. Semantics. Decimal numbers have their conventional meaning. The ex-
ponent part is a scale factor expressed as an integral power of 10.

2.5.4. Types. Integers are of type integer. All other numbers are of type real
(cf. Section 5.1 Type Declarations).

2.6. Strings
2.6.1. Syntax.
{proper string):: = {any sequence of basic symbols not containing ‘or’) |
(empty)
{open string): :={proper string) | ‘{open string>’ | {open string)> {open string)>
{string)::="‘{open string)’

2.6.2. Examples. ‘Sk,, — ‘[[['A = [Tt
‘.ThisUisldall ‘string’’

2.6.3. Semantics. In order to enable the language to handle arbitrary sequences
of basic symbols the string quotes ‘and’ are introduced. The symbol L denotes
a space. It has no significance outside strings.

Strings are used as actual parameters of procedures (cf. Sections 3.2. Function
Designators and 4.7. Procedure Statements).

2.7. Quantities, Kinds, and Scopes

The following kinds of quantities are distinguished: simple variables, arrays,
labels, switches, and procedures.

The scope of a quantity is the set of statements and expressions in which the
declaration of the identifier associated with that quantity is valid. For labels see
Section 4.1.3.

2.8. Values and Types

A value is an ordered set of numbers (special case: a single number), an ordered
set, of logical values (special case: a single logical value), or a label.

Certain of the syntactic units are said to possess values. These values will in
general change during the execution of the program. The values of expressions
and their constituents are defined in Section 3. The value of an array identifier
is the ordered set of values of the corresponding array of subscripted variables
(cf. Section 3.1.4.1.)

The various ‘‘types’ (integer, real, Boolean) basically denote properties of
values. The types associated with syntactic units refer to the values of these
units.

[\
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3. Expressions

In the language the primary constituents of the programs describing algorith-
mic processes are arithmetic, Boolean, and designational expressions. Consti-
tuents of these expressions, except for certain delimiters, are logical values,
numbers, variables, function designators, and elementary arithmetic, relational,
logical, and sequential operators. Since the syntactic definition of both variables
and function designators contains expressions, the definition of expressions, and
their constituents, is necessarily recursive.

{expression): := {arithmetic expressions) | (Boolean expression) |
{designational expression)

3.1. Variables

3.1.1. Syntazx.
{variable identifier) : : = {identifier)
{simple variable)::={(variable identifier)
{subscript expression)::={arithmetic expression)
{subscript list:: = {subscript expression) | {subscript list),{subscript expression)
{array identifier) :: = {identifier)
{subscripted variable)::={array identifier)[{subscript list)]
{variable)::= {simple variable) | (subscripted variable)

3.1.2. Examples. epsilon
det A
al7
Q[7.2] .

zlsin(n X pi/2),Q[3,n,4]]

3.1.3. Semantics. A variable is a designation given to a single value. This value
may be used in expressions for forming other values and may be changed at will
by means of assignment statements (Section 4.2). The type of the value of a
particular variable is defined in the declaration for the variable itself (cf. Section
5.1. Type Declarations) or for the corresponding array identifier (cf. Section 5.2.
Array Declarations).

3.1.4. Subscripts. 3.1.4.1. Subscripted variables designate values which are
components of multidimensional arrays (cf. Section 5.2. Array Declarations).
Each arithmetic expression of the subscript list occupies one subscript position of
the subscripted variable and is called a subscript. The complete list of subscripts
is enclosed in the subscript brackets []. The array component referred to by a
subscripted variable is specified by the actual numerical value of its subscripts
(cf. Section 3.3. Arithmetic Expressions).

3.1.4.2. Each subscript position acts like a variable of type integer and the
evaluation of the subscript is understood to be equivalent to an assignment to
this fictitious variable (cf. Section 4.2.4.) The value of the subscripted variable
is defined only if the value of the subscript expression is within the subscript
bounds of the array (cf. Section 5.2. Array Declarations).

3.2. Function Designators
3.2.1. Syntax.
{procedure identifier) :: = (identifier)

{actual parameter)::=(string) | {expression) | array identifier) |
{switch identifier) | {procedure identifier)
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(letter string)::=letter) | (letter string) (letter)
(parameter delimiter)::=, | ) (letter string:(
{actual parameter list)::=(actual parameter) |

{actual parameter list) (parameter delimiter) {actual parameter)
{actual parameter part)::={empty) | ((actual parameter list))
{function designator)::= (procedure identifier) (actual parameter part)

3.2.2. Kxamples. sin(a — b)
J(v -+ sn)
R
S(s — 5) Temperature : (T') Pressure : (P)
Compile (‘:=") Stack : (Q)

3.2.3. Semantics. Function designators define single numerical or logical values
which result through the application of given sets of rules defined by a procedure
declaration (cf. Section 5.4. Procedure Declarations) to fixed sets of actual para-
meters. The rules governing specification of actual parameters are given in
Section 4.7. Procedure Statements. Not every procedure declaration defines the
value of a function designator.

3.2.4. Standard functions. Certain identifiers should be reserved for the stan-
dard functions of analysis, which will be expressed as procedures. It is recom-
mended that this reserved list should contain:

abs (E) for the modulus (absolute value) of the value of the expression E
sign (E) for the sign of the value of E(+1 for E>0, 0 for E=0, — 1 for E <0)
sqrt (E) for the square root of the value of E

sin (E) for the sine of the value of E

cos (E) for the cosine of the value of E

arctan (E) for the principal value of the arctangent of the value of Il
in (E) for the natural logarithm of the value of E

exp (E) for the exponential function of the value of E (eE)

These functions are all understood to operate indifferently on arguments both
of type real and integer. They will all yield values of t; pe real, except for sign (E)
which will have values of type integer. In a particular representation these
functions may be available without explicit declarations (cf. Section 5. Declara-
tions).

3.2.5. Transfer functions. Tt is understood that transfer functions between any
pair of quantities and expressions may be defined. Among the standard functions
it is recommended that there be one, namely

entier (E),

which “‘transfers’ an expression of real type to one of integer type, and assigns
to it the value which is the largest integer not greater than the value of E.

3.3 Arithmetic Expressions
3.3.1. Syntazx.
(adding operator)::= - | —
<multiplying operator)::= x | /| -
<primary}::= (unsigned number) | {variable> | {function designator) |
(<arithmetic expression))
factor)::—= (primary) | <factor) {{primary)
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{term)::={factor) | {term) {multiplying operator) {factor)

{simple arithmetic expression)::={term) | (adding operator) {term) |
{simple arithmetic expression) (adding operator) {term)

(if clause::=if (Boolean expression) then

{arithmetic expression) ::=({simple arithmetic expression) |
<if clause) (simple arithmetic expression) else {arithmetic expression)

3.3.2. Examples. Primaries:

7.39410 — 8

sum

wlt + 2,8]

cos(y + 2z X 3)

(@ — 3ly + vut 8)

Factors:

omega

sum 4 cos(y 4 z X 3)

7.39410 — 8t wli 4- 2,811 (« — By 4 vut8)
Terms:
U

omega X sum? cos(y -+ z X 3)/7.39410 — 81 w(i 4 2,814 (@ — 3/y - cul §)
Simple arithmetic expression:

U — Yu + omega X sum? cos(y + z X 3)/
7.39410 — 84 w[t + 2,811 (@ — 3/y + vut 8)
Arithmetic expressions:
w X u— QS + Cu)t 2
ifg>0then S + 3 x Q/delse2 X S+ 3 X ¢
ifa <Othen U + Velseifa x b > 17 then U/V else if k% y then V/U else 0
a X sin(omega X t)
0.571012 X o[N X (N — 1)/2,0]
(A x arctan(y) + Z)4 (7 + Q)
if g then n — 1 else n
if a < 0 then A/B else if b = 0 then B/A else =

3.3.3. Semantics. An arithmetic expression is a rule for computing a numerical
value. In case of simple arithmetic expressions this value is obtained by executing
the indicated arithmetic operations on the actual numerical values of the pri-
maries of the expression, as explained in detail in Section 3.3.4. below. The
actual numerical value of a primary is obvious in the case of numbers. For
variables it is the current value (assigned last in the dynamic sense), and for
function designators it is the value arising from the computing rules defining
the procedure (cf. Section 5.4.4. Values of Function Designators) when applied
to the current values of the procedure parameters given in the expression.
Finally, for arithmetic expressions enclosed in parentheses the value must
through a recursive analysis be expressed in terms of the values of primaries of the
other three kinds.

In the more general arithmetic expressions, which include if clauses, one out
of several simple arithmetic expressions is selected on the basis of the actual
values of the Boolean expressions (cf. Section 3.4. Boolean Expressions). This
selection is made as follows: The Boolean expressions of the if clauses are eva-
luated one by one in sequence from left to right until one having the value true
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is found. The value of the arithmetic expression is then the value of the first
arithmetic expression following this Boolean (the largest arithmetic expression
found in this position is understood). The construction:

else (simple arithmetic expression)
is equivalent to the construction:
else if true then (simple arithmetic expression)

3.3.4. Operators and types. Apart from the Boolean expressions of if clauses,
the constituents of simple arithmetic expressions must be of types real or integer
(cf. Section 5.1. Type Declarations). The meaning of the basic operators and the
types of the expressions to which they lead are given by the following rules:

3.3.4.1. The operators +, —, and X have the conventional meaning (addition,
subtraction, and multiplication). The type of the expression will be integer if
both of the operands are of integer type, otherwise real.

3.3.4.2. The operations {term)/{factor) and {term)» - (factor) both denote
division, to be understood as a multiplication of the term by the reciprocal of
the factor with due regard to the rules of precedence (cf. Section 3.3.5). Thus, for
example

alb X 7/(p — q) X v/s
means
(@ x (671)) X 7) X ((p — @)™1)) X v) X (871)

The operator | is defined for all four combinations of types real and integer
and will yield results of real type in any case. The operator = is defined only
for two operands both of type integer and will yield a result of type integer,
mathematically defined as follows:

a — b = sign(a/b) X entier(abs(a/b))
(cf. Sections 3.2.4 and 3.2.5).

3.3.4.3. The operation (factor) } {primary) denotes exponentiation, where the
factor is the base and the primary is the exponent. Thus, for example,

2¢ntk means (2n)*
while
2Mntm) means 2“"

Writing ¢ for a number of integer type, r for a number of real type, and a for
a number of either integer or real type, the result is given by the following rules:

ali If¢ > 0: a X a X ...X a(times), of the same type as a.
Ifi =0, ifa # 0: 1, of the same type as a.
if a = 0: undefined.
Ifi <0, ifa*0: I/axaXxX...xXa) (the denominator has — ¢
factors), of type real.
if a = 0: undefined.

alr Ifa > 0: exp(r x In(a)), of type real.
Ifa=0, ifr>0: 0.0,of type real.
if r < 0: undefined.
Ifa < 0: always undefined.

3.3.5. Precedence of operators. The sequence of operations within one expres-
sion is generally from left to right, with the following additional rules:
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3.3.5.1. According to the syntax given in Section 3.3.1, the following rules of
precedence hold:

first: 0
second: X /=
third: +—

3.3.5.2. The expression between a left parenthesis and the matching right paren-
thesis is evaluated by itself and this value is used in subsequent calculations.
Consequently the desired order of execution of operations within an expression
can always be arranged by appropriate positioning of parentheses.

3.3.6. Arithmetics of real quantities. Numbers and variables of type real must
be interpreted in the sense of numerical analysis, i.e. as entities defined inherently
with only a finite accuracy. Similarly, the possibility of the occurrence of a
finite deviation from the mathematically defined result in any arithmetic expres-
sion is explicitly understood. No exact arithmetic will be specified, however,
and it is indeed understood that different hardware representations may evaluate
arithmetic expressions differently. The control of the possible consequences of
such differences must be carried out by the methods of numerical analysis.
This control must be considered a part of the process to be described, and will
therefore be expressed in terms of the language itself.

3.4. Boolean Expressions
3.4.1. Syntax.
(relational operator)::= < | < |=|2|> | *
(relational) :: = {simple arithmetic expression) {relational operator>
{simple arithmetic expression)
{Boolean primary) ::=<logical value) | {variable) | {function designator) |
(relation) | (Boolean expression) |
{Boolean secondary) ::=(Boolean primary) | 7/ {Boolean primary
{Boolean factor)::={Boolean secondary) |
{Boolean factor) A (Boolean secondary)
{Boolean term)::={Boolean factor) | (Boolean term) V {Boolean factor)
(implication): : = (Boolean term) | {implication) > (Boolean term)
{simple Boolean ::={implication) | {(simple Boolean)= {implication)
{Boolean expression)::={simple Boolean} |
(f clause) (simple Boolean) else (Boolean expression)

3.4.2. Examples. x = — 2
Y>VVvz<yg
a+b>—56Az—d>qf2
pPAgVz*y
g= 7aAbA 7 cVdVed /f
ifk <Ithens > welseh < ¢
if if if o then b else c then d else f then g else h < k

3.4.3. Semantics. A Boolean expression is a rule for computing a logical value.
The principles of evaluation are entirely analogous to those given for arithmetic
expressions in section 3.3.3.

3.4.4. Types. Variables and function designators entered as Boolean primaries
must be declared Boolean (cf. Section 5.1. Type Declarations and Section 5.4.4
Values of Function Designators).
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3.4.5. The Operators. Relations take on the value true whenever the correspond-
ing relation is satisfied for the expressions involved, otherwise false.

The meaning of the logical operators 7/ (not), A (and), V (or), > (implies),
and = (equivalent), is given by the following function table:

b1 false false true true
b2 false true false true
7 b1 true true false false
b1 A b2 false false false true
b1V b2 false true true true
b1 o b2 true true false true
bl= b2 true false false true

3.4.6. Precedence of operators. The sequence of operations within one expres-
sion is generally from left to right, with the following additional rules:

3.4.6.1. According to the syntax given in Section 3.4.1 the following rules of
precedence hold:

first: arithmetic expressions according to Section 3.3.5.
second: < < = 2> > *

third: 7/

fourth: A

fifth: A\’

sixth: >

seventh: =

3.4.6.2. The use of parentheses will be interpreted in the sense given in Section
3.3.5.2.

3.5. Designational Expressions

3.5.1. Syntax.
label)::=(identifier) | (unsigned integer)
{switch identifier): : = (identifier)
(switch designator) ::= {switch identifier) [(subscript expression)]
{simple designational expression)::=(label) | {switch designator) |
({designational expression))
{designational expression)::={simple designational expression) |
<if clause) (simple designational expression) else {designational expression)

3.5.2. Examples. 17
P9
Choose[n — 1]
Touwn[if y < 0 then N else N + 1]
if Ab < c then 17 else g[if w < 0 then 2 else n]

3.5.3. Semantics. A designational expression is a rule for obtaining a label of
a statement (cf. Section 4. Statements). Again the principle of the evaluation
is entirely analogous to that of arithmetic expressions (Section 3.3.3). In the
general case the Boolean expressions of the if clauses will select a simple designa-
tional expression. If this is a label the desired result is already found. A switch
designator refers to the corresponding switch declaration (cf. Section 5.3. Switch
Declarations) and by the actual numerical value of its subscript expression
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selects one of the designational expressions listed in the switch declaration by
counting these from left to right. Since the designational expression thus selected
may again be a switch designator this evaluation is obviously a recursive process.

3.5.4. The subscript expression. The evaluation of the subscript expression is
analogous to that of subscripted variables (cf. Section 3.1.4.2). The value of a
switch designator is defined only if the subscript expression assumes one of the
positive values 1, 2, 3, ..., n, where n is the number of entries in the switch list.

3.5.56. Unsigned integers as labels. Unsigned integers used as labels have the
property that leading zeros do not affect their meaning, c.g. 00217 denotes the
same label as 217.

4. Statements

The units of operation within the language are called statements. They will
normally be executed consecutively as written. However, this sequence of opera-
tions may be broken by go to statements, which define their sucessor explicitly,
and shortened by conditional statements, which may cause certain statements
to be skipped.

In order to make it possible to define a specific dynamic succession, statements
may be provided with labels.

Since sequences of statements may be grouped together into compound state-
ments and blocks the definition of statement must necessarily be recursive.
Also since declarations, described in Section 5, enter fundamentally into the
syntactic structure, the syntactic definition of statements must suppose declara-
tions to be already defined.

4.1. Compound Statements and Blocks
4.1.1. Syntaz.

{unlabelled basic statement) : : =<{assignment statement) | {go to statement) |
{dummy statement) | {procedure statement)
{basic statement) : : = {unlabelled basic statement) | <label):(basic statement)
(unconditional statement)::=<basic statement) |
{compound statement) | (block)
{staterment) : := {unconditional statement) | (conditional statement) |
(for statement)
{compound tail)::=(statement) end | (statement);{compound tail)
¢block head)::=begin {declaration) | (block head);{declaration)
{unlabelled compound)::=bhegin {compound tail)
(unlabelled block) ::=(block head) :{compound tail)
{compound statement) : :=<{unlabelled compound) |
{label) :(compound statement)
{block) : :=<unlabelled block) | <label:(block)
{program) ::=(block) | (compound statement)

This syntax may be illustrated as follows: Denoting arbitrary statements, de-
clarations, and labels by the letters S, D, and L, respectively, the basic syntactic
units take the forms:
Compound statement:
L:L:...begin S;S;...S; S end
Block:
L:L:...beginD; D;..D; S;S;...S; Send
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It should be kept in mind that each of the statements S may again be a complete
compound statement or block.

4.1.2. Examples. Basic statements:
a:=p+gq
go to Naples
Start : Continue: W: = 7.993

Compound statement :
begin x: = 0; for y: = Istep I until n do x: = « + A[y];
if « > ¢ then go to STOP else if x > w — 2 then go to S;
Aw: St: W: = x + bob end

Block:
@: begin integer ¢, k; real w;
for 2: = 1 step I until m do
for k: = ¢ 4 1 step I until » do
begin w: = A[¢,k];
A[i,k]: = A[k,2];
Alk,i]: = w end for ¢ and k
end block Q@

4.1.3. Semantics. Every block automatically introduces a new level of nomen-
clature. This is realized as follows: Any identifier occurring within the block
may through a suitable declaration (cf. Section 5. Declarations) be specified to
be local to the block in question. This means (a) that the entity represented
by this identifier inside the block has no existence outside it, and (b) that any
entity represented by this identifier outside the block is completely inaccessible
inside the block.

Identifiers (except those representing labels) occurring within a block and not
being declared to this block will be non-local to it, i.e. will represent the same
entity inside the block and in the level immediately outside it. A label separated
by a colon from a statement, i.e. labelling that statement, behaves as though
declared in the head of the smallest embracing block, i.e. the smallest block whose
brackets begin and end enclose that statement. In this context a procedure body
must be considered as if it were enclosed by begin and end and treated as a block.

Since a statement of a block may again itself be a block, the concepts local
and non-local to a block must be understood recursively. Thus, an identifier
which is non-local to a block A may or may not be non-local to the block B in
which A is one statement.

4.2. Assignment Statements
4.2.1. Syntax.
left part)::=(variable):= | {(procedure identifier) :=
(left part list)::=(left part) | (left part list) {left part)
{assignment statement) :: = (left part list) (arithmetic expression) |
(left part list) (Boolean expression)

4.2.2. Examples. 8: = p[0]: =n:=n + 1 + .
n:=mn-+ 1
A:=B/C—-v—qgX S
S[v,k + 2]: = 3 — arctan(s X zeta)
V:i=Q>YAZ
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4.2.3. Semantics. Assignment statements serve for assigning the value of an
expression to one or several variables or procedure identifiers. Assignment to
a procedure identifier may only occur within the body of a procedure defining
the value of a function designator (cf. Section 5.4.4). The process will in the
general case be understood to take place in three steps as follows:

4.2.3.1. Any subscript expressions occurring in the left part variables are evalu-
ated in sequence from left to right.

4.2.3.2. The expression of the statement is evaluated.

4.2.3.3. The value of the expression is assigned to all the left part variables,
with any subscript expressions having values as evaluated in step 4.2.3.1.

4.2.4. Types. The type associated with all variables and procedure identifiers
of a left part list must be the same. If this type is Boolean the expression must
likewise be Boolean. If the type is real or integer the expression must be arith-
metic. If the type of the arithmetic expression differs from that associated
with the variables and procedure identifiers appropriate transfer functions are
understood to be automatically invoked. For transfer from real to integer
type the transfer function is understood to yield a result equivalent to

entier(E + 0.5)

where E is the value of the expression. The type associated with a procedure
identifier is given by the declarator which appears as the first symbol of the
corresponding procedure declaration (cf. Section 5.4.4).

4.3. Go to Statements
4.3.1. Syntazx.
{go to statement)::=go to (designational expression)

4.3.2. Examples. go to 8
go to exit[n + 1]
go to Townl[if y < 0 then N else NV 4- 1]
go to if Ab < c then 17 else ¢[if w < 0 then 2 else 7]

4.3.3. Semantics. A go to statement interrupts the normal sequence of opera-
tions, defined by the write-up of statements, by defining its successor explicitly by
the value of a designational expression. Thus, the next statement to be executed
will be the one having this value as its labe!

4.3.4. Restriction. Since labels are inherently local, no go to statement can lead
from outside into a block. A go to statement may, however, lead from outside
into a compound statement.

4.3.5. Go to an undefined switch designator. A go to statement is equivalent
to a dummy statement if the designational expression is a switch designator
whose value is undefined.

4.4. Dummy Statements
4.4.1. Syntazx.
{dummy statement) ::={empty)
4.4.2. Examples.
L:
begin. ... ; John: end
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4.4.3. Semantics. A dummy statement executes no operation. 1t may serve to
place a label.

4.5. Conditional Statements

4.5.1. Syntax.
(f clause) : : =if{Boolean expression) then
{unconditional statement}:: = (basic statement) | {compound statement) |
{block>
(if statement) :: = (if clause) {unconditional statement)
{conditional statement)::= (if statement) | {if statement) else (statement) |
(if clause) (for statement) | (label):{(conditional statement)

4.5.2. Examples. if x > 0 thenn: =n + 1
if v > wthen V:q: := n + melse go to B
ifs <OV P < @then A4: begin if ¢ << v then a: = v/s
else y: = 2 x a end else if v > s then
a:=v—q
elseif v > s — 1 then go to S

4.5.3. Semantics. Conditional statements cause cértain statements to be execu-
ted or skipped depending on the running values of specified Boolean expressions.

4.5.3.1. If statement. The unconditional statement of an if statement will be
executed if the Boolean expression of the if clause is true. Otherwise it will be
skipped and the operation will be continued with the next statement.

4.5.3.2. Conditional statement. According to the syntax two different forms of
conditional statements are possible. These may be illustrated as follows:

if B1 then S1 else if B2 then S2 else S3; S4

and

if 131 then S1 else if B2 then S2 else if B3 then S3; S4

Here Bl to B3 are Boolean expressions, while S1 to 83 are unconditional state-
ments. S4 is the statement following the complete conditional statement.

The execution of a conditional statement may be described as follows: The
Boolean expressions of the if clauses are evaluated one after the other in sequence
from left to right until one yielding the value true is found. Then the uncondi-
tional statement following this Boolean is executed. Unless this statement de-
fines its successor explicitly the next statement to be executed will be S4, i.e.
the statement following the complete conditional statement. Thus the effect
of the delimiter else may be described by saying that it defines the successor of
the statement it follows to be the statement following the complete conditional
statement.

The construction

else (unconditional statement)
is equivalent to
else if true then {unconditional statement)

If none of the Boolean expressions of the if clauses is true the effect of the
whole conditional statement will be equivalent to that of a dummy statement.
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For further explanation the following picture may be useful :

0 ) ¥
if B1 then S1 else if B¢2 then S2 else S3; S4

B1 false B2 false

4.5.4. Qo to into a conditional statement. The effect of a go to statement leading
into a conditional statement follows directly from the above explanation of the
effect of else.

4.6. For Statements
4.6.1. Syntax.

for list element) :: = (arithmetic expression) |
{arithmetic expression) step {arithmetic expression) until
{arithmetic expression) |
{arithmetic expression) while {(Boolean expression}
{for list) : : =(for list element) | {for list), {(for list element)
{for clause)::=1for {variable): = (for list)> do
{for statement)::=(for clause) {statement) |
(label) :{for statement)

4.6.2. Examples. for g: = 1 step s until » do A[q]: = B[q]
for k: = 1,V1 x 2 while V1 < N do
forj: =1 + G,L,1Istep I until N,C - D do A[k,5]: =
Bik,j]

4.6.3. Semantics. A for clause causes the statement S which it precedes to be
repeatedly executed zero or more times. In addition, it performs a sequence of
assignments to its controlled variable. The process may be visualized by means
of the following picture:

Initialize; test; statement S; advance; successor

)

for list exhausted

In this picture the word initialize means: perform the first assignment of the for
clause. Advance means: perform the next assignment of the for clause. Test
determines if the last assignment has been done. 1f so, the execution continues
with the successor of the for statement. TIf not, the statement following the for
clause is executed.

4.6.4. The for list elements. The for list gives a rule for obtaining the values
which are consecutively assigned to the controlled variable. This sequence of
values is obtained from the for list elements by taking these one by one in the
order in which they are written. The sequence of values generated by each of
the three species of for list elements and the corresponding execution of the state-
ment S are given by the following rules:

4.6.4.1. Arithmetic expression. This element gives rise to one value, namely
the value of the given arithmetic expression as calculated immediately before
the corresponding execution of the statement S.
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4.6.4.2. Step-until-element. An element of the form A step B until C, where A,
B, and C are arithmetic expressions, gives rise to an execution which may be
described most concisely in terms of additional ALGOL statements as follows:

V:=A;
L1:i(V — C) x sign(B) > 0 then go to Element exhausted ;
Statement S;
V: =V 4+ B;
goto Li;

where V is the controlled variable of the for clause and Element exhausted points
to the evaluation according to the next element in the for list, or if the step-
until-element is the last of the list, to the next statement in the program.

4.6.4.3. While-element. The execution governed by a for list element of the
form E while F, where E is an arithmetic and F a Boolean expression, is most
concisely described in terms of additional ALGOL statements as follows:
L3:V:=E;
if 7 F then go to Element exhausted;
Statement S;
go to L3;

where the notation is the same as in 4.6.4.2 above.

4.6.5. The value of the controlled variable upon exit. Upon exit out of the state-
ment S (supposed to be compound) through a go to statement the value of the
controlled variable will be the same as it was immediately preceding the execution
of the go to statement.

If the exit is due to exhaustion of the for list, on the other hand, the value of
the controlled variable is undefined after the exit.

4.6.6. Go to leading into a for statement. The effect of a go to statement, out-
side a for statement, which refers to a label within the for statement, is unde-

fined.

4.7. Procedure Statements

4.7.1. Syntax.

{actual parameter) ::={string) | {expression) | {array identifier) |
{switch identifier) | {(procedure identifier)

(letter string)::=(letter) | (string letter) <letter)

{parameter delimiter)::=, | ) {letter string):(

{actual parameter list)::=(actual parameter) |
{actual parameter list) (parameter delimiter) {actual parameter)

{actual parameter part)::={empty) | ( (actual parameter list) )

{procedure statement) ::=(procedure identifier) {actual parameter part)>

4.7.2. Examples.  Spur (A) Order : (7) Result to : (V)
Transpose (W, + 1)
Absmax (A,N,M,Yy,I,K)
Innerproduct (A[t,P,u], B[P], 10, P, Y)
These examples correspond to examples given in Section 5.4.2.

4.7.3. Semantics. A procedure statement serves to invoke (call for) the execu-
tion of a procedure body (cf. Section 5.4. Procedure Declarations). Where the pro-
cedure body is a statement written in ALGOL the effect of this execution will be
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equivalent to the effect of performing the following operations on the program
at the time of execution of the procedure statement:

4.7.3.1. Value assignment (call by value). All formal parameters quoted in the
value part of the procedure declaration heading are assigned the values (cf.
Section 2.8. Values and Types) of the corresponding actual parameters, these
assignments being considered as being performed explicitly before entering the
procedure body. The effect is as though an additional block embracing the
procedure body were created in which these assignments were made to variables
local to this fictitious block with types as given in the corresponding specifica-
tions (cf. Section 5.4.5). As a consequence, variables called by value are to be
considered as non-local to the body of the procedure, but local to the fictitious
block (cf. Section 5.4.3.)

4.7.3.2. Name replacement (call by name). Any formal parameter not quoted
in the value list is replaced, throughout the procedure body, by the corresponding
actual parameter, after enclosing this latter in parentheses wherever syntactically
possible. Possible conflicts between identifiers inserted through this process and
other identifiers already present within the procedure body will be avoided by
suitable systematic changes of the formal or local identifiers involved.

4.7.3.3. Body replacement and execution. Finally, the procedure body, modi-
fied as above, is inserted in place of the procedure statement and executed. If the
procedure is called from a place outside the scope of any non-local quantity of
the procedure body the conflicts between the identifiers inserted through this
process of body replacement and the identifiers whose declarations are valid
at the place of the procedure statement or function designator will be avoided
through suitable systematic changes of the latter identifiers.

4.7.4. Actual-formal correspondence. The correspondence between the actual
parameters of the procedure statement and the formal parameters of the proce-
dure heading is established as follows: The actual parameter list of the procedure
statement must have the same number of entries as the formal parameter list
of the procedure declaration heading. The correspondence is obtained by taking
the entries of these two lists in the same order.

4.7.5. Restrictions. For a procedure statement to be defined it is evidently
necessary that the operations on the procedure body defined in Sections 4.7.3.1
and 4.7.3.2 lead to a correct ALGOL statement.

This imposes the restriction on any procedure statement that the kind and type
of each actual parameter be compatible with the kind and type of the correspond-
ing formal parameter. Some important particular cases of this general rule are
the following:

4.7.5.1. If a string is supplied as an actual parameter in a procedure statement
or function designator, whose defining procedure body is an ALGOL 60 state-
ment (a8 opposed to non-ALGOL code, cf. Section 4.7.8), then this string can
be used only within the procedure body as an actual parameter in further proce-
dure calls. Ultimately it can only be used by a procedure body expressed in non-
ALGOL code.

4.7.5.2. A formal parameter which occurs as a left part variable in an assign-
ment statement within the procedure body and which is not called by value can
only correspond to an actual parameter which is a variable (special case of expres-
sion).

4.7.5.3. A formal parameter which is used within the procedure body as an
array identifier can only correspond to an actual parameter which is an array
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identifier of an array of the same dimensions. In addition, if the formal para-
meter is called by value the local array created during the call will have the same
subscript bounds as the actual array.

4.7.5.4. A formal parameter which is called by value cannot in general cor-
respond to a switch identifier or a procedure identifier or a string, because these
latter do not possess values (the exception is the procedure identifier of a pro-
cedure declaration which has an empty formal parameter part (cf. Section 5.4.1)
and which defines the value of a function designator (cf. Section 5.4.4). This pro-
cedure identifier is in itself a complete expression).

4.7.5.5. Any formal parameter may have restrictions on the type of the cor-
responding actual parameter associated with it (these restrictions may, or may
not, be given through specifications in the procedure heading). In the procedure
statement such restrictions must evidently be observed.

4.7.6. Deleted.

4.7.7. Parameter delimiters. All parameter delimiters are understood to be
equivalent. No correspondence between the parameter delimiters used in a pro-
cedure statement and those used in the procedure heading is expected beyond
their number being the same. Thus, the information conveyed by using the
elaborate ones is entirely optional.

4.7.8. Procedure body expressed in code. The restrictions imposed on a proce-
dure statement calling a procedure having its body expressed in non-ALGOL
code evidently can be derived only from the characteristics of the code used and
the intent of the user, and thus fall outside the scope of the reference language.

5. Declarations

Declarations serve to define certain properties of the quantities used in the
program, and to associate them with identifiers. A declaration of an identifier
is valid for one block. Outside this block the particular identifier may be used
for other purposes (cf. Section 4.1.3).

Dynamically this implies the following: at the time of an entry into a block
(through the begin, since the labels inside are local and therefore inaccessible from
outside) all identifiers declared for the block assume the significance implied by
the nature of the declarations given. If these identifiers had already been defined
by other declarations outside they are for the time being given a new significance.
Identifiers which are not declared for the block, on the other hand, retain their
old meaning.

At the time of an exit from a block (through end, or by a go to statement)
all identifiers which are declared for the block lose their local significance.

A declaration may be marked with the additional declarator own. This has
the following effect: upon a re-entry into the block, the values of own quantities
will be unchanged from their values at the last exit, while the values of declared
variables which are not marked as own are undefined. Apart from labels and
formal parameters of procedure declarations and with the possible exception of
those for standard functions (cf. Sections 3.2.4 and 3.2.5) all identifiers of a
program must be declared. No identifier may be declared more than once in
any one block head.

Syntar.

{declaration::—={type declaration) | (array declaration) |
{switch declaration) | (procedure declaration)
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5.1. Type Declarations

5.1.1. Syntaz.
(type list)::={simple variable) | (simple variable),(type list)
{type)::=real | integer | Boolean
(local or own type)::={type) | own {type>
(type declaration)::=(local or own type) (type list)

5.1.2. Examples. integer p, q, s
own Boolean Acryl, n

5.1.3. Semantics. Type declarations serve to declare certain identifiers to re-
present simple variables of a given type. Real declared variables may only
assume positive or negative values including zero. Integer declared variables
may only assume positive and negative integral values including zero. Boolean
declared variables may only assume the values true and false.

In arithmetic expressions any position which can be occupied by a real declared
variable may be occupied by an integer declared variable.

For the semantics of own, see the fourth paragraph of Section 5 above.

5.2. Array Declarations
5.2.1. Syntazx.

{lower bound) : :={arithmetic expression)
{upper bound)::=(arithmetic expression)
<{bound pair)::=<{lower bound): {upper bound)
{bound pair list) : :=(bound pair) | {<bound pair list), (bound pair)
(array segment) : : = (array identifier) [(bound pair list)] |
{array identifier), (array segment)
{array list)::=J{array segment) | (array list), {array segment)
{array declaration)::=array <array list) |
{local or own type) array {array list)

5.2.2. Examples. array a, b, c[7:n, 2:m], s[—2:10)]
own integer array A[if ¢ << 0 then 2 else 1:20]
real array o[ —7: —1I]

5.2.3. Semantics. An array declaration declares one or several identifiers to re-
present multidimensional arrays of subscripted variables and gives the dimen-
sions of the arrays, the bounds of the subscripts, and the types of the variables.

5.2.3.1. Subscript bounds. The subscript bounds for any array are given in the
first subscript bracket following the identifier of this array in the form of a bound
pair list. Each item of this list gives the lower and upper bound of a subscript
in the form of two arithmetic expressions separated by the delimiter. The bound
pair list gives the bounds of all subscripts taken in order from left to right.

5.2.3.2. Dimensions. The dimensions are given as the number of entries in the
bound pair lists.

5.2.3.3. T'ypes. All arrays declared in one declaration are of the same quoted
type. If no type declarator is given the type real is understood.

5.2.4. Lower upper bound expressions.

5.2.4.1. The expressions will be evaluated in the same way as subscript expres-
sions (cf. Section 3.1.4.2).
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5.2.4.2. The expressions can only depend on variables and procedures which
are non-local to the block for which the array declaration is valid. Consequently,
in the outermost block of a program only array declarations with constant
bounds may be declared.

5.2.4.3. An array is defined only when the values of all upper subscript bounds
are not smaller than those of the corresponding lower bounds.

5.2.4.4. The expressions will be evaluated once at each entrance into the bloclk.

5.2.5. The identity of subscripted variables. The identity of a subscripted
variable is not related to the subscript bounds given in the array declaration.
However, even if an array is declared own the values of the corresponding sub-
scripted variables will, at any time, be defined only for those of these variables
which have subscripts within the most recently calculated subscript bounds.

5.3. Switch Declarations
5.3.1. Syntax.
{switch list)::={designational expression) |
{switch list), {(designational expression)
(switch declaration)::=switeh (switch identifier) : = {switch list)

5.3.2. Examples. switeh S: = S1, S2, Q[m], if v > — 5 then S3 else S4
switech @: = pl, w

5.3.3. Semantics. A switch declaration defines the set of values of the cor-
responding switch designators. These values are given one by one as the values of
the designational expressions entered in the switch list. With each of these
designational expressions there is associated a positive integer, 1, 2, . . . , obtained
by counting the items in the list from left to right. The value of the switch desig-
nator corresponding to a given value of the subscript expression (cf. Section 3.5.
Designational Expressions) is the value of the designational expression in the
switch list having this given value as its associated integer.

5.3.4. Evaluation of expressions in the switch list. An expression in the switch
list will be evaluated every time the item of the list in which the expression
occurs is referred to, using the current values of all variables involved.

5.3.5. Influence of scopes. If a switch designator occurs outside the scope of
a quantity entering into a designational expression in the switch list, and an
evaluation of this switch designator selects this designational expression, then
the conflicts between the identifiers for the quantities in this expression and the
identifiers whose declarations are valid at the place of the switch designator will
be avoided through suitable systematic changes of the latter identifiers.

5.4. Procedure Declarations
5.4.1. Syntax.
(formal parameter): := (identifier)
(formal parameter list): :=(formal parameter) |
{formal parameter list) (parameter delimiter) (formal parameter)
{formal parameter part)::=<{empty) | ((formal parameter list))
(identifier list)::=(identifier) | {identifier list), {identifier>
{value part)::=value (identifier list); | (empty)
<specifier)::=string | (type) | array | {type) array | label | switch |
procedure | {type> procedure
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{specification part)::={empty) | (specifier) (identifier list); |
{specification part) {specifier) {identifier list);

{procdure heading) ::= (procedure identifier) (formal parameter part);
{value part) {specification part)

{procedure body) ::=(statement) | {code)

{procedure declaration)::=procedure {procedure heading) {procedure body> |
{type) procedure {procedure heading) (procedure body)»

5.4.2. Examples (see also the examples at the end of the report).

procedure Spur (a) Order: (n) Result: (s); value n;
array a; integer »; real s;

begin integer k;

8: = 0;

for k: = 1 step 1 until » do s: = s 4- «[k,k]

end

procedure 7T'ranspose (a) Order : (n); value n;
array a; integer »;
begin real w; integer <,k;
for ¢: = 1 step I until » do

for k: = 1 + ¢ step I until » do

begin w: = a[s,k];

ali,k): = a[k,];
alkzi]l:=w

end
end T'ranspose
integer procedure Step (u); real «;
Step: = i 0 < uAwu < Ithen I else 0
procedure Absmax (a) size : (n, m) Result : (y) Subscripts: (i, k);
comment The absolute greatest element of the matrix a, of size b by m is transferred
to y, and the subscripts of this element to i and k;
array a; integer n, m, ¢, k; real y;
begin integer p, ¢;
y:=0;
for p: = 1 step I until » do for g: = 1 step I until m do
if abs(a[p,q]) > y then begin y: = abs(a[p,ql); *: = p; k: = ¢ end end Absmax
procedure Innerproduct (a, b) Order : (k, p) Result: (y), value k;
integer k, p; real y, a, b;
begin real s;

8: = 0;
for p: = 1 step 7 until £ do s: == s 4 a x b;
y: =3

end Innerproduct

5.4.3. Semantics. A procedurc declaration serves to define the procedure asso-
ciated with a procedure identifier. The principal constituent of a procedure
declaration is a statement or a piece of code, the procedure body, which through
the use of procedure statements and/or function designators may be activated
from other parts of the block in the head of which the procedure declaration
appears. Associated with the body is a heading, which specifies certain identifiers
occurring within the body to represent formal parameters. Formal parameters in
the procedure body will, whenever the procedure is achieved (cf. Section 3.2.
Function Designators and Section 4.7. Procedure Statements), be assigned the
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values of or replaced by actual parameters. Identifiers in the procedure body
which are not formal will be either local or non-local to the body, depending on
whether they are declared within the body or not. Those of them which are non-
local to the body may well be local to the block in the head of which the procedure
declaration appears. The procedure body always acts like a block, whether it
has the form of one or not. Consequently the scope of any label labelling a
statement within the body or the body itself can never extend beyond the pro-
cedure body. In addition, if the identifier of a formal parameter is declared anew
within the procedure body (including the case of its use as a label as in Section
4.1.3), it is thereby given a local significance and actual parameters which cor-
respond to it are inaccessible throughout the scope of this inner local quantity.

5.4.4. Values of function designators. For a procedure declaration to define the
value of a function designator there must, within the procedure body, occur
one or more explicit assignment statements with the procedure identifier in a
left part; at least one of these must be executed, and the type associated with
the procedure identifier must be declared through the appearance of a type
declarator as the very first symbol of the procedure declaration. The last value
so assigned is used to continue the evaluation of the expression in which the
function designator occurs. Any occurrence of the procedure identifier within
the body of the procedure other than in a left part in an assignment statement
denotes activation of the procedure.

5.4.5. Specifications. In the heading a specification part, giving information
about the kinds and types of the formal parameters by means of an obvious
notation, may be included. In this part no formal parameter may occur more
than once. Specifications of formal parameters called by value (cf. Section 4.7.3.1)
must be supplied and specifications of formal parameters called by name (cf.
Section 4.7.3.2) may be omitted.

5.4.6. Code as procedure body. It is understood that the procedure body may
be expressed in non-ALGOL language. Since it is intended that the use of this
feature should be entirely a question of hardware representation, no further
rules concerning this code language can be given within the reference language.

Examples of procedure declarations
Example 1
procedure euler ( fct, sum, eps, tim); value eps, tim; integer tim;
real procedure fct; real sum, eps;
comment euler computes the sum of fct (i) for < from zero up to infinity by means of
a suitably refined euler transformation. The summation is stopped as soon as tim
times in succession the absolute value of the terms of the transformed series are found
to be less than eps. Hence, one should provide a function fct with one integer argument,
an upper bound eps, and an integer tim. The output is the sum sum. euler is parti-
cularly efficient in the case of a slowly convergent or divergent alternating series;
begin integer 7, &, n, ¢; array m[0:15]; real mn, mp, ds;
t:=n:=t: = 0; m[0]: = fet(0); sum: = m[0]/2;
nextterm: ¢: = ¢ 4+ I; mn: = fct(i);
for k: = 0 step I until » do
begin mp: = (mn + m[k])/2 ; m[k]: = mn; mn: = mp end means;
it (abs(mn) < abs(m[n])) A (n < 15) then
begin ds: = mn/2; n: = n + 1; m[n]: = mn end accept
else ds: = mn;
sum: = sum + ds;
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if abs(ds) < epsthent: =t + lelset: = 0;
it t < tim then go to nextterm
end euler

Example 2 *

procedure RK(z, y, n, FKT, eps, eta, zE, yk, fi); value z, y; integer n;
Boolean fi; real z, eps, eta, zE; array y, yE; procedure FKT;

comment RK integrates the system y'x = fi(x, y1, Y2, . . ., Yn)k = 1,2, ...7)

of differential equations with the method of Runge-Kutta with automatic search for
appropriate length of integration step. Parameters are : The initial values x and y[k]
for x and the unknown functions yx(x). The order n of the system. The procedure
FKT(z,y, n, z) which represents the system to be integrated, i.e. the set of functions fx.
The tolerance values eps and eta which govern the accuracy of the numerical integra-
tion. The end of the integration interval xE. The output parameter yE which re-
presents the solution at x = xE. The Boolean variable fi, which must always be
gwven the value true for an vsolated or first entry into RK. If, however, the functions y
must be available at several meshpoints xo, x1, . . . , Tn, then the procedure must be
called repeatedly (with x = xx, *FE = xg+1, for k = 0,1,..., n — 1) and then the
later calls may occur with fi = false which saves computing time. The input para-
meters of F KT must be x, y, n, the output parameter z represents the set of derivatives
2[k] = falz, y[1], y[2], . . . , y[n]) for = and the actual y's. A procedure comp enters
as a non-local vdentifier;

begin
array z, y1, y2, y3[1:n]; real x1, x2, 3, H; Boolean out;
integer %, 5; own real s, Hs;
procedure RKI1ST(x, y, h, xe, ye); real x, h, xe; array y, ye;
comment RKIST integrates one single Runge-Kutta step with initial
values z, y[k] which yields the output parameters xe = z -- h and ye[k],
the latter being the solution at xe.
Important : the parameters n, FKT, z enter RK1ST as non-local entities;
begin
array w(l:n], a[1:5]; integer &, j;
a[1]: = a[2]): = a[5]: = h/2; a[3]: = a[4): = h; xwe: = a;
for k: = 1 step I until n do ye[k]): = w[k]: = y[k];
for j: = 1 step I until ¢ do
begin
FKT(xe, w, n, 2);
ze: = z + a[j];
for k: = I step I until » do
begin
wlk]: = ylk] + alj] x 2[k];
ye[k]: = ye[k] + a[j + 1] X 2[k]/3
end &k
end j
end RKIST;

* This RK-program contains some new ideas which are related to ideas of S. GILL,
“A process for the step by step integration of differential equations in an automatic
computing machine”, Proc. Camb. Phil. Soc. 47 (1951), p. 96, and E. Fr6BERG, ‘‘On
the solution of ordinary differential equations with digital computing machines”,
Fysiograf. Séllsk. Lund, Forhd. 20 Nr. 11 (1950), p. 136-152. It must be clear, however,
that with respect to computing time and round-off errors it may not be optimal, nor
has it actually been tested on a computer.
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Begin of program :
if fi then begin H: = zE — z; 8: = 0 end else H: = Hs;
out: = false;

AA: it (x + 2.01 x H — zE > 0)= (H > 0) then
begin Hs: = H; out: = true; H: = (zE — x)/2 end if;
RKI1ST(x,y, 2 X H, x1, yl);

BB: RKIST(x, y, H, 22, y2); RK1ST(x2, y2, H, 23, y3,);
for k: = 1 step 1 until »n do

it comp(y1[k], y3[k), eta) > eps then go to CC;

comment comp (a, b, c) 78 a function designator, the value of which s the
absolute value of the difference of the mantissae of a and b, after the expo-
nents of these quantities have been made equal to the largest of the exponents
of the originally given parameters a, b, c;
z: = z3; if out then go to DD;
for k: = 1 step 1 until » do y[k]: = y3[k];
if s = 5 then begin s: = 0; H: = 2 x H end <f;
8:=g8+ 1;g0t0 AA;

CC: H: = 0.5 x H; out: = false; x1 = z2;
for k: = 1 step I until » do yI[k]: = y2[k];

go to BB;
DD :for k: = 1 step I until n do yE[k]: = y3[k]
end RK

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND
SYNTACTIC UNITS

All references are given through section numbers. The references are given
in three groups:

def Following the abbreviation “def”’, reference to the syntactic definition
(if any) is given.

synt Following the abbreviation ‘‘synt’’, references to the occurrences in
metalinguistic formulae are given. References already quoted in the def-
group are not repeated.

text Following the word “‘text’”’, the references to definitions given in the text
are given.

The basic symbols represented by signs other than underlined (bold faced.
Publishers remark) words have been collected at the beginning. The examples
have been ignored in compiling the index.

+ see: plus
— see: minus
X see: multiply
| =+ see: divide
1 see: exponentiation
< = 2 > % see: (relational operator)
> V A 77 see: (logical operator)
, 8ee:comma
see: decimal point
10 see: ten
: see: colon
; see: semicolon

A
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: = see: colon equal
LI see: space
() see: parentheses
[] see: subscript bracket
‘* see: string quote
{actual parameter), def 3.2.1. 4.7.1
{actual parameter list), def 3.2.1, 4.7.1
{actual parameter part), def 3.2.1, 4.7.1
{adding operator), def 3.3.1
alphabet, text 2.1
arithmetic, text 3.3.6
Carithmetic expression), def 3.3.1 synt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1, 4.6.1, 5.2.1
text 3.3.3
{arithmetic operator), def 2.3 text 3.3.4
array, synt 2.3, 5.2.1, 5.4.1
array, text 3.1.4.1
(array declaration), def 5.2.1 synt 5 text 5.2.3
{array identifier), def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8
(array list), def 5.2.1
{array segment), def 5.2.1
{assignment statement), def 4.2.1 synt 4.1.1 text 1, 4.2.3

(basic statement), def 4.1.1 synt 4.5.1
(basic symbol), def 2

begin, synt 2.3, 4.1.1
(block), def 4.1.1 synt 4.5.1. text 1, 4.1.3, 5
{block head), def 4.1.1

Boolean, synt 2.3, 5.1.1 text 5.1.3
{Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 text 3.4.3
{Boolean factor), def 3.4.1
{Boolean primary), def 3.4.1
{Boolean secondary), def 3.4.1
{Boolean term), def 3.4.1
{bound pair), def 5.2.1
(bound pair list), def 5.2.1
(bracket), def 2.3

{code), synt 5.4.1 text 4.7.8, 5.4.6
colon:, synt 2.3, 3.2.1, 4.1.1, 4.5.1, 4.6.1, 4.7.1, 5.2.1
colon equal: = , synt 2.3, 4.2.1, 4.6.1, 5.3.1
comma, , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1, 5.1.1, 5.2.1, 5.3.1, 5.4.1
comment, synt 2.3
comment convention, text 2.3
{compound statement), def 4.1.1 synt 4.5.1 text 1
{compound tail), def 4.1.1
{conditional statement), def 4.5.1 synt 4.1.1 text 4.5.3

{decimal fraction), def 2.5.1
{decimal number), def 2.5.1 text 2.5.3
decimal point ., synt 2.3, 2.5.1
{declaration), def 5 synt 4.1.1 text 1, 5 (complete section)
{declarator), def 2.3
{delimiter), def 2.3 synt 2
{designational expression), def 3.5.1 synt 3, 4.3.1, 5.3.1 text 3.6.3
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<digit), def 2.2.1 synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / -, synt 2.3, 3.3.1 text 3.3.4.2
do, synt 2.3, 4.6.1
{dummy statement), def 4.4.1 synt 4.1.1 text 4.4.3

else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, 4.5.1 text 4.5.3.2
(empty), def 1.1 synt 2.6.1, 3.2.1, 4.4.1, 4.7.1, 5.4.1
end. synt 2.3, 4.1.1
entier, text 3.2.5
exponentiation 4, synt 2.3, 3.3.1 text 3.3.4.3
{exponent part), def 2.5.1 text 2.5.3
{expression), def 3 synt 3.2.1, 4.7.1 text 3 (complete section)

{factor), def 3.3.1
false, synt 2.2.2
for, synt 2.3, 4.6.1
/for clause), def 4.6.1 text 4.6.3
{for list), def 4.6.1 text 4.6.4
(for list element), def 4.6.1 text 4.6.4.1, 4.6.4.2, 4.6.4.3
{formal parameter), def 5.4.1 text 5.4.3
(formal parameter list), def 5.4.1
{formal parameter part), def 5.4.1
(for statement), def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete section)
{function designator), def 3.2.1 synt 3.3.1, 3.4.1 text 3.2.3, 5.4.4

go to, synt 2.3, 4.3.1
{go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

¢identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.4.3
(identifier list), def 5.4.1

if, synt 2.3, 3.3.1, 4.5.1
(if clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
(if statement), def 4.5.1 text 4.5.3.1
(implication), def 3.4.1

integer, synt 2.3, 5.1.1 text 5.1.3
{integer), def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1
(label), def 3.5.1 synt 4.1.1, 4.5.1, 4.6.1 text 1, 4.1.3
(left part), def 4.2.1
(left part list), def 4.2.1
(letter), def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
(letter string), def 3.2.1, 4.7.1

local, text 4.1.3
(local or own type), def 5.1.1 synt 5.2.1
(logical operator), def 2.3 synt 3.4.1 text 3.4.5
logical value), def 2.2.2 synt 2, 3.4.1
{lower bound), def 5.2.1 text 5.2.4

minus —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text 3.3.4.1
{multiplying operator), def 3.3.1

non-local, text 4.1.3
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{(number), def 2.5.1 text 2.5.3, 2.5.4

{open string), def 2.6.1
{operator), def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

{parameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 5.4.1, text 3.3.5.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1

{primary), def 3.3.1
procedure, synt 2.3, 5.4.1

{procedure body), def 5.4.1

{procedure declaration), def 5.4.1 synt 5 text 5.4.3

{procedure heading), def 5.4.1 text 5.4.3

{procedure identifier), def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4

{procedure statement), def 4.7.1 synt 4.1.1 text 4.7.3

{program), def 4.1.1 text 1

{proper string), def 2.6.1

quantity, text 2.7

real, synt 2.3, 5.1.1 text 5.1.3
{relation), def 3.4.1 text 3.4.5
(relational operator), def 2.3, 3.4.1

scope, text 2.7
semicolon;, synt 2.3, 4.1.1, 5.4.1
{separator), def 2.3
{sequential operator), def 2.3
{simple arithmetic expression), def 3.3.1 text 3.3.3
{simple Boolean), def 3.4.1
{simple designational expression), def 3.5.1
{simple variable), def 3.1.1 synt 5.5.1 text 2.4.3
space L], synt 2.3 text 2.3, 2.6.3
{specification part), def 5.4.1 text 5.4.5
{specificator), def 2.3
{specifier), def 5.4.1
standard function, text 3.2.4, 3.2.5
{statement), def 4.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete section)
statement bracket see: begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1
{string), def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes ¢ ’, synt 2.3, 2.6.1, text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript brackets[], synt 2.3, 3.1.1, 3.5.1, 5.2.1
{subscripted variable), def 3.1.1 text 3.1.4.1
{subscript expression), def 3.1.1 synt 3.5.1
{subscript list), def 3.1.1
successor, text 4
switeh, synt 2.3, 5.3.1, 5,4.1
¢switch declaration), def 5.3.1 synt 5 text 5.3.3
¢switch designator), def 3.5.1 text 3.5.3

255



DICTIONARY FOR COMPUTER LANGUAGES

{switch identifier), def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1
{switch list), def 5.3.1

{term}, def 3.3.1
ten 10, synt 2.3, 2.5.1
then, synt 2.3, 3.3.1, 4.5.1
transfer function, text 3.2.5
true, synt 2.2.2
(type), def 5.1.1 synt 5.4.1 text 2.8
{type declaration), def 5.1.1 synt 5 text 5.1.3
(type list), def 5.1.1

{unconditional statement), def 4.1.1, 4.5.1

{unlabelled basic statement), def 4.1.1

{unlabelled block), def 4.1.1

<unlabelled compound), def 4.1.1

<unsigned integer), def 2.5.1, 3.5.1

{unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

{upper bound), def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1

value, text 2.8, 3.3.3
{value part), def 5.4.1 text 4.7.3.1
(variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1, text 3.1.3
{variable identifier), def 3.1.1

while, synt 2.3, 4.6.1 text 4.6.4.3
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Definition of FORTRAN

(Published in Communications of the Association for
Computing Machinery T, No. 10, 590 (1964))

HISTORY AND SUMMARY OF FORTRAN STANDARD-
IZATION DEVELOPMENT FOR THE ASA

By
W. P. HEersiNag



THE American Standards Association (ASA) Sectional Committee X3 for Com-
puters and Information Processing was established in 1980 under the sponsorship
of the Business Equipment Manufacturers Association. ASA X3 in turn estab-
lished an X38.4 Sectional Subcommittee to work in the area of common pro-
gramming language standards. On May 17, 1962, X3.4 established by resolution
a working group, X3.4.3-FORTRAN to develop American Standard FORTRAN
proposals.

REsOLVED:
That X 3.4 form a FORTRAN Working Group, to be known as X3.4.3-FORTRAN,
with the

Scope. To develop proposed standards of FORTRAN language.

Organization. Shall contain a Policy Committee and a Technical Committee.
The Policy Committee will be responsible to X3.4 for the Working Group’s
mission being accomplished. It will determine general policy, such as language
content, and direct the Technical Committee.

Policy Committee Membership. Will be determined by the X3.4 Steering
Committee subject to written guidelines which may be amended later and
including the following:

(a) For each FORTRAN implementation in active development or use, one
sponsor voting representative and one user voting representative are authorized,

(b) A representative who is inactive may be dropped.

(c) Associate members, not entitled to vote but entitled to participate in
discussion, are authorized.

Technical Committee. Will develop proposed standards of FORTRAN language
under the Policy Committee direction. The Technical Committee will conduct
investigations and make reports to the Policy Committee.

On June 25, 1962, invitations to an organizational meeting of X3.4.3 were
sent to manufacturers and user groups who might be interested in participating
in the development of FORTRAN standards. The first meeting was held August
13-14, 1962, in New York City. X3.4.3 decided to proceed because (1) FORTRAN
standardization was needed, and (2) a sufficiently wide representation of inter-
ested persons was participating.

A resolution on objectives was adopted unanimously on August 14, 1962.

The objective of the X3.4.3 Working Group of ASA is to produce a document
or documents which will define the ASA Standard or Standards for the FORTRAN
language. The resulting standard language will be clearly and recognizably
related to that language, with its variations, which has been called FORTRAN
in the past. The criteria used to consider and evaluate various language elements
will include (not in order of importance):

(a) ease of use by humans;

(b) compatibility with past FORTRAN use;

(¢) scope of application;

(d) potential for extension;

(e) facility of implementation, i.e. compilation and execution efficiency.

The FORTRAN standard will facilitate machine-to-machine transfer of pro-
grams written in ASA Standard FORTRAN. The Standard will serve as a
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reference document both for users who wish to achieve this objective and for
manufacturers whose programming products will make it possible. The content
and method of presentation of the standard will recognize this purpose.”

It was the consensus of the group that (1) there was definite interest in develop-
ing a standard corresponding to what is popularly known as FORTRAN IV,
and (2) there was interest in developing for small and intermediate computers a
FORTRAN standard near the power of FORTRAN II, however suitably modified
to be compatible with the associated FORTRAN IV. Accordingly, two Technical
Committees, designated X3.4.3-IV and X3.4.3-1I respectively, were established
to create drafts. Most of the detailed work in developing drafts has been done by
technical committees.

The X.3.4.3-IT Technical Committee completed and approved a draft in May
1963. A Technical Fact Finding Committee was appointed and reported in
August 1964 on a comparison of the X3.4.3-1II approved draft and an approved
working draft of the X3.4.3-IV Technical Committee. This brought to light
stylistic, terminological, and content differences and conflicts. In April 1964 the
X3.4.3-IV Technical Committee completed a draft of FORTRAN. In June 1964
X3.4.3 received and compared the two drafts and (1) resolved conflicts in content,
and (2) resolved the conflicting style and terminology. This was accomplished by
recasting the X3.4.3-II document to reflect the style of the X3.4.3-IV document
while retaining the original content. To reduce confusion, X.3.4.3 decided to
call the languages Basic FORTRAN and FORTRAN.

The following working documents have been produced by a Subcommittee of the American
Standards Association Sectional Committee X3, Computers and Information Processing.
in its efforts to develop a proposed American Standard. In order that the final version of the
proposed American Standard reflect the largest public consensus, X3 has authorized publi-
cation of these documents to elicit comment, criticism, and general public reaction, with the
understanding that such working documents are intermediate results in the standardization
process and are subject to change, modification, or withdrawal in part or in whole. Corre-
spondence about the documents should be addressed to the X3 Secretary, BEM A, 235 East
42nd Street, New York, N.Y. 10017.—R.V.S.
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1. INTRODUCTION

1.1. Purposki. This specification establishes the form for and the interpretation
of programs expressed in the FORTRAN language for the purpose of promoting
a high degree of interchangeability of such programs for use on a variety of
automatic data processing systems. A processor shall conform to this specifica-
tion provided it accepts, and interprets as specified, at least those forms and
relationships described herein.

Insofar as the interpretation of the form and relationships described are not
affected, any statement of requirement could be replaced by a statement ex-
pressing that the specification does not provide an interpretation unless the
requirement is met. Further, any statement of prohibition could be replaced by a
statement expressing that the specification does not provide an interpretation
when the prohibition is violated.

1.2. Scope. This specification establishes:

1. The form of a program written in the FORTRAN language.

2. The form of writing input data to be processed by such a program operating
on automatic data processing systems.

3. Rules for interpreting the meaning of such a program.

4. The form of the output data resulting from the use of such a program on
automatic data processing systems, provided that the rules of interpretation

establish an interpretation.
This specification does not prescribe:

1. The mechanism by which programs are transformed for use on a data
processing system (the combination of this mechanism and data processing system
is called a processor).

2. The method of transcription of such programs or their input or output data
to or from a data processing medium.

3. The manual operations required for set-up and control of the use of such
programs on data processing equipment.

4. The results when the rules for interpretation fail to establish an interpretation
of such a program.

5. The size or complexity of a program that will exceed the capacity of any
specific data processing system or the capability of a particular processor.

6. The range or precision of numerical quantities.

2. BASIC TERMINOLOGY

"This section introduces some basic terminology and some concepts. A rigorous
treatment of these is given in later sections. Certain assumptions concerning the
meaning of grammatical signs and particular words are presented.

A program that can be used as a self-contained computing procedure is called
an executable program (9.1.6).

An executable program consists of precisely one main program and possibly
one or more subprograms (9.1.6).

A main program is a set of statements and comments not containing a FUNC-
TION, SUBROUTINE, or BLOCK DATA statement (9.1.5).

A subprogram is similar to a main program but is headed by a BLOCK DATA,
FUNCTION, or SUBROUTINE statement. A subprogram headed by a BLOCK
DATA statement is called a specification subprogram. A subprogram headed by
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a FUNCTION or SUBROUTINE statement is called a procedure subprogram
(9.1.3, 9.1.4).

The term program wunit will refer to either a main program or subprogram
(9.1.7).

Any program unit except a specification subprogram may reference an external
procedure (Section 9).

An external procedure that is defined by FORTRAN statements is called a
procedure subprogram. External procedures also may be defined by other means.
An external procedure may be an external function or an external subroutine.
An external function defined by FORTRAN statements headed by a FUNC-
TION statement is called a function subprogram. An external subroutine defined
by FORTRAN statements headed by a SUBROUTINE statement is called a
subroutine subprogram (Sections 8 and 9).

Any program unit consists of statements and comments. A statement is divided
into physical sections called lines, the first of which is called an initial line, and
the rest of which are called continuation lines (3.2).

There is a type of line called a comment that is not a statement and merely
provides information for documentary purposes (3.2).

The statements in FORTRAN fall into two broad classes—executable and
nonexecutable. The executable statements specify the action of the program
while the nonexecutable statements describe the use of the program, the charac-
teristics of the operands, editing information, statement functions, or data
arrangement (7.1, 7.2).

The syntactic elements of a statement are names and operators. Names are
used to reference objects such as data or procedures. Operators, including the
imperative verbs, specify action upon named objects.

One class of name, the array name, deserves special mention. The name and
the dimensions of the array of values denoted by the array name are declared
prior to use. An array name may be used to identify an entire array. An array
name qualified by a subscript may be used to identify a particular element of the
array (5.1.3).

Data names and the arithmetic (or logical) operators may be connected into
arithmetic (or logical) expressions that develop values. These values are derived
by performing the specified operations on the named data (Section 6).

The identifiers used in FORTRAN are names and numbers. Data are named.
Procedures are named. Statements are labelled with numbers. Input/output
units are numbered or identified by a name whose value is the numerical unit
designation (Sections 3, 6, 7).

At various places in this document there are statements with associated lists
of entries. In all such cases the list is assumed to contain at least one entry
unless an explicit exception is stated. As an example, in the statement

SUBROUTINE s(ay, az, . . . an)

it is assumed that at least one symbolic name is included in the list within
parentheses. A list is a set of identifiable elements, each of which is separated from
its successor by a comma. Further, in a sentence a plural form of a noun will be
assumed to also specify the singular form of that noun as a special case when the
context of the sentence does not prohibit this interpretation.

The term reference is used as a verb with special meaning as defined in Section 5.
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3. PROGRAM FORM

Every program unit is constructed of characters grouped into lines and state-
ments.

3.1. ThHE FORTRAN CHARACTER SET. A program unit is written using the
following characters: A, B,C,D, E,F,G,H,1,J,K,L,M,N,0,P,Q, R, S, T,
U,V,W,X,Y,2,0,1,2,3,4,5,6,7,8,9, and:

Character Name of Character
Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

$ Currency Symbol

T R 4

The order in which the characters are listed does not imply a collating se-
quence.

3.1.1. Digits. A digit is one of the ten characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Unless specified otherwise, a string of digits will be interpreted in the decimal
base number system when a number system base interpretation is appropriate.

An octal digit is one of the eight characters: 0, 1, 2, 3, 4, 5, 6, 7. These are only
used in the STOP (7.1.2.7.1) and PAUSE (7.1.2.7.2) statements.

3.1.2. Letters. A letter is one of the twenty-six characters: A, B, C, D, E, F,
GHILJ K LMNOPQR,S,T,U,V,WX, Y, Z

3.1.3. Alphanumeric Characters. An alphanumeric character is a letter or a
digit.

3.1.4. Special Characters. A special character is one of the eleven characters
blank, equals, plus, minus, asterisk, slash, left parenthesis, right parenthesis,
comma, decimal point, and currency symbol.

3.1.4.1. Blank Character. With the exception of the uses specified (3.2.2, 3.2.3,
3.2.4, 4.2.6, 5.1.1.6, 7.2.3.6, and 7.2.3.8), a blank character has no meaning and
may be used freely to improve the appearance of the program subject to the
restriction on continuation lines in 3.3.

3.2. LiNES. A line is a string of 72 characters. All characters must be from the
FORTRAN character set except as described in 5.1.1.6 and 7.2.3.8.

The character positions in a line are called columns and are consecutively
numbered 1, 2, 3, . . ., 72. The number indicates the sequential position of a
character in the line starting at the left and proceeding to the right.

3.2.1. Comment Line. The letter C in column 1 of a line designates that line
as a comment line. A comment line must be immediately followed by an initial
line, another comment line, or an end line.

A comment line does not affect the program in any way and is available as a
convenience for the programmer.

3.2.2. End Line. An end line is a line with the character blank in columns 1
through 6, the characters E, N, and D, once each and in that order, in columns
7 through 72, preceded by, interspersed with, or followed by the character blank.
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The end line indicates to the processor the end of the written description of a
program unit (9.1.7). Every program unit must physically terminate with an end
line.

3.2.3. Initial Line. An initial line is a line that is neither a comment line nor
an end line and that contains the digit 0 or the character blank in column 6.
Columns 1 through 5 contain the statement label or each contains the character
blank.

3.2.4. Continuation Line. A continuation line is a line that contains any
character other than the digit 0 or the character blank in column 6, and does not
contain the character C in column 1.

A continuation line may only follow an initial line or another continuation line.

3.3. STATEMENTS. A statement consists of an initial line optionally followed
by up to nineteen ordered continuation lines. The statement is written in columns
7 through 72 of the lines. The order of the characters in the statement is columns
7 through 72 of the initial line followed, as applicable, by columns 7 through 72
of the first continuation line, columns 7 through 72 of the next continuation line,
etc.

3.4. STaATEMENT LABEL. Optionally, a statement may be labelled so that it
may be referred to in other statements. A statement label consists of from one
to five digits. The value of the integer represented is not significant but must be
greater than zero. The statement label may be placed anywhere in columns 1
through 5 of the initial line of the statement. The same statement label may not
be given to more than one statement in a program unit. Leading zeros are not
significant in differentiating statement labels.

3.5. SymBoric NAMES. A symbolic name consists of from one to six alpha-
numeric characters, the first of which must be alphabetic. See 10.1 through
10.1.10 for a discussion of classification of symbolic names and restrictions on
their use.

3.6. ORDERING OF CHARACTERS. An ordering of characters is assumed within
a program unit. Thus, any meaningful collection of characters that constitutes
names, lines, and statements exists as a totally ordered set. This ordering is
imposed by the character position rule of 3.2 (which orders characters within
lines) and the order in which lines are presented for processing.

4. DATA TYPES

Six different types of data are defined. These are integer, real, double precision,
complex, logical, and Hollerith. Each type has a different mathematical signi-
ficance and may have different internal representation. Thus, the data type has a
significance in the interpretation of the associated operations with which a datum
is involved. The data type of a function defines the type of the datum it supplies
to the expression in which it appears.

4.1. Data TyrE AssociaTiON. The name employed to identify a datum or
function carries the data type association. The form of the string representing a
constant defines both the value and the data type.

A symbolic name representing a function, variable, or array must have only a
single data type association for each program unit. Once associated with a par-
ticular data type, a specific name implies that type for any differing usage of that
symbolic name that requires a data type association throughout the program
unit in which it is defined.

Data type may be established for a symbolic name by declaration in a type-
statement (7.2.1.8) for the integer, real, double precision, complex, and logical
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types. This specific declaration overrides the implied association available for
integer and real (5.3).

There exists no mechanism to associate a symbolic name with the Hollerith
data type. Thus data of this type, other than constants, are identified under
the guise of a name of one of the other types.

4.2. Data TypeE PropPErRTIES. The mathematical and the representation
properties for each of the data types are defined in the following sections. For
real, double precision, and integer data, the value zero is considered neither
positive nor negative.

4.2.1. Integer Type. An integer datum is always an exact representation of an
integer value. It may assume positive, negative, and zero values. It may only
assume integral values.

4.2.2. Real Type. A real datum is a processor approximation to the value of a
real number. It may assume positive, negative, and zero values.

4.2.3. Double Precision Type. A double precision datum is a processor ap-
proximation to the value of a real number. It may assume positive, negative,
and zero values. The degree of approximation, though undefined, must be
greater than that of type real.

4.2.4. Complex Type. A complex datum is a processor approximation to the
value of a complex number. The representation of the approximation is in the
form of an ordered pair of real data. The first of the pair represents the real part
and the second, the imaginary part. Each part has, accordingly, the same degree
of approximation as for a real datum.

4.2.5. Logical Type. A logical datum may assume only the truth values of
true or false.

4.2.6. Hollerith Type. A Hollerith datum carries symbolic information (as
opposed to a numeric or logical value). The symbolic information may consist of
any symbol combination capable of representation in the processor. The rep-
resentation for blank is a valid and significant character in a Hollerith datum.

5. DATA AND PROCEDURE IDENTIFICATION

Names are employed to reference or otherwise identify data and procedures.

The term reference is used to indicate an identification of a datum implying
that the current value of the datum will be made available during the execution
of the statement containing the reference. If the datum is identified but not
necessarily made available the datum is said to be named. One case of special
interest in which the datum is named is that of assigning a value to a datum, thus
defining or redefining the datum.

The term, reference, is used to indicate an identification of a procedure imply-
ing that the actions specified by the procedure will be made available.

A complete and rigorous discussion of reference and definition, including
redefinition, is contained in Section 10.

5.1. DaTA AND PROCEDURE NAMES. A data name identifies a constant, a
variable, an array or array element, or a block (7.2.1.3). A procedure name
identifies a function or a subroutine.

6.1.1. Constants. A constant is a name that references a value or symbolic
information derived from the name. A constant may not be redefined.

An integer, real, or double precision constant is said to be signed when it is
immediately preceded by a plus or minus. Also, for these types, an optionally
signed constant is either a constant or a signed constant.

266



DEFINITION OF FORTRAN

5.1.1.1. Integer Constant. An integer constant is formed by a nonempty string
of digits. The datum formed this way is interpreted as the value represented by
the digit string.

5.1.1.2. Real Constant. A basic real constant is formed by an integer part, a
decimal point, and a decimal fraction part in that order. Both the integer part
and the decimal fraction part are formed by a string of digits; either one of these
strings may be empty, but not both. The datum formed this way is interpreted
ag representing a value that is an approximation to the number represented by
the integer and fraction parts.

A decimal exponent is formed by the letter E followed by an optionally
signed integer constant. This exponent is interpreted as a multiplier (to be
applied to the constant immediately preceding it) that is an approximation to
ten raised to the power specified by the field following the E.

A real constant is a basic real constant, a basic real constant followed by a
decimal exponent, or an integer constant followed by a decimal exponent.

5.1.1.3. Double Precision Constant. A double precision exponent is formed and
interpreted identically to a decimal exponent except that the letter D is used
instead of the letter E.

A double precision constant is a basic real constant followed by a double
precision exponent or an integer constant followed by a double precision exponent.

5.1.1.4. Complex Constant. A complex constant is formed by an ordered pair of
optionally signed real constants, separated by a comma, and enclosed within
parentheses. The datum formed this way is interpreted as an approximation to
the complex number represented by the pair.

5.1.1.5. Logical Constant. A logical constant is formed as one of the strings
TRUE. or .FALSE. ; these are interpreted as representing the truth values of
true and false, respectively.

5.1.1.6. Hollerith Constant. A Hollerith constant is formed by an integer
constant (whose value n is greater than zero) followed by the letter H , followed
by exactly n characters. Any n characters capable of representation by the
processor may follow the H . However, the differing character sets of different
processors may cause the interpretation of these constants to vary. The character
blank is significant in a Hollerith constant.

This constant form is only defined for use in the argument list of a CALL
statement and in the data initialization statement.

5.1.2. Variable. A variable is a datum that is identified by a symbolic name
(3.5). Such a datum may be referenced and defined.

5.1.3. Array. An array is an ordered set of data of one, two, or three dimen-
sions. An array is identified by a symbolic name. Identification of the entire
ordered set is achieved via use of the array name.

5.1.3.1. Array Element. An array element is one of the members of the set of
data of an array. An array element is identified by immediately following the
array name with a qualifier, called a subscript, which points to the particular
element of the array.

An array element may be referenced and defined.

5.1.3.2. Subscript. A subscript is formed by a parenthesized list of subscript
expressions. Each subscript expression is separated by a comma from its sue-
cessor, if there is a successor. The number of subscript expressions must cor-
respond to the declared dimensionality (7.2.1.1), except in an EQUIVALENCE
statement (7.2.1.4). Following evaluation of all of the subscript expressions, the
array element successor function (7.2.1.1.1) determines the identified array
element.
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5.1.3.3. Subscript Expressions. A subscript expression is formed from one of

the following constructs:

c*v+k

c*v—k

c*v

v+-k

v—k

v

k
where ¢ and k are integer constants and v is an integer variable reference. See
Section 6 for a discussion of evaluation of expressions and 10.2.8 and 10.3 for
requirements that apply to the use of a variable in a subscript.

5.1.4. Procedures. A procedure (Section 8) is identified by a symbolic name. A
procedure is a statement function, an intrinsic function, a basic external function,
an external function, or an external subroutine. Statement functions, intrinsic
functions, basic external functions, and external functions are referred to as
functions or function procedures; external subroutines as subroutines or sub-
routine procedures.

A function supplies a result to be used at the point of reference; a subroutine
does not. Functions are referenced in a manner different from subroutines.

5.2. FunctioN REFERENCE. A function reference consists of the function
name followed by an actual argument list enclosed in parentheses. If the list
contains more than one argument, the arguments are separated by commas.
The allowable forms of function arguments are given in Section 8.

See 10.2.1 for a discussion of requirements that apply to function references.

5.3. TyPE RULES FOR DATA AND PrROCEDURE IDENTIFIERS. The type of a
constant is implicit in its name.

There is no type associated with a symbolic name that identifies a subroutine
or a block.

A symbolic name that identifies a variable, an array, or a statement function
may have its type specified in a type-statement. In the absence of an explicit
declaration, the type is implied by the first character of the name: I, J, K, L, M,
and N imply type integer; any other letter implies type real.

A symbolic name that identifies an intrinsic function or a basic external
function when it is used to identify this designated procedure, has a type asso-
ciated with it as specified in Tables 3 and 4.

In the program unit in which an external function is referenced its type defi-
nition is defined in the same manner as for a variable and an array. For a function
subprogram, type is specified either implicitly by its name or explicitly in the
FUNCTION statement.

The same type is associated with an array element as is associated with the
array name.

5.4. Dummy ARGUMENTS. A dummy argument of an external procedure
identifies a variable, array, subroutine, or external function.

When the use of an external function name is specified, the use of a dummy
argument is permissible if an external function name will be associated with that
dummy argument. (Section 8.)

When the use of an external subroutine name is specified, the use of a dummy
argument is permissible if an external subroutine name will be associated with
that dummy argument.

When the use of a variable or array element reference is specified, the use of a
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dummy argument is permissible if a value of the same type will be made available
through argument association.

Unless specified otherwise, when the use of a variable, array, or array element
name is specified, the use of a dummy argument is permissible provided that a
proper association with an actual argument is made.

The process of argument association is discussed in Sections 8 and 10.

6. EXPRESSIONS

This seetion gives the formation and evaluation rules for arithmetic, relational,
and logical expressions. A relational expression appears only within the context
of logical expressions. An expression is formed from elements and operators.
See 10.3 for a discussion of requirements that apply to the use of certain entities
in expressions.

6.1. ARITHMETIC EXPRESSIONS. An arithmetic expression is formed with
arithmetic operators and arithmetic elements. Both the expression and its
constituent elements identify values of one of the types integer, real, double
precision, or complex. The arithmetic operators are:

Operator Representing
+ Addition, positive value (zero + element)
- Subtraction, negative value (zero — element)
* Multiplication
/ Division
* Exponentiation

The arithmetic elements are primary, factor, term, signed term, simple arith-
metic expression, and arithmetic expression.

A primary is an arithmetic expression enclosed in parentheses, a constant, a
variable reference, an array element reference, or a function reference.

A factor is a primary or a construct of the form:

primary**primary
A term is a factor or a construct of one of the forms:

term/factor
or
term*term

A signed term is a term immediately preceded by + or —.

A simple arithmetic expression is a term or two simple arithmetic expressions
separated by a + or —.

An arithmetic expression is a simple arithmetic expression or a signed term or
either of the preceding forms immediately followed by a + or — immediately
followed by a simple arithmetic expression.

A primary of any type may be exponentiated by an integer primary, and the
resultant factor is of the same type as that of the element being exponentiated.
A real or double precision primary may be exponentiated by a real or double
precision primary, and the resultant factor is of type real if both primaries are of
type real and otherwise of type double precision. These are the only cases for
which use of the exponentiation operator is defined.

By use of the arithmetic operators other than exponentiation, any admissible
element may be combined with another admissible element of the same type,
and the resultant element is of the same type. Further, an admissible real
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element may be combined with an admissible double precision or complex
element; the resultant element is of type double precision or complex, respec-
tively.

6.2. RELATIONAL EXPRESSIONS. A relational expression consists of two arith-
metic expressions separated by a relational operator and will have the value true
or false as the relation is true or false, respectively. One arithmetic expression
may be of type real or double precision and the other of type real or double
precision, or both arithmetic expressions may be of type integer. If a real ex-
pression and a double precision expression appear in a relational expression, the
effect is the same as a similar relational expression. This similar expression
contains a double precision zero as the right hand arithmetic expression and the
difference of the two original expressions (in their original order) as the left.
The relational operator is unchanged. The relational operators are:

Operator Representing
LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

6.3. Logicar. ExPRESSIONS. A logical expression is formed with logical
operators and logical elements and has the value true or false. The logical
operators are:

Operator Representing
.OR. Logical disjunction
.AND. Logical conjunction
.NOT. Logical negation

The logical elements are logical primary, logical factor, logical term, and
logical expression.

A logical primary is a logical expression enclosed in parentheses, a relational
expression, a logical constant, a logical variable reference, a logical array element
reference, or a logical function reference.

A logical factor is a logical primary or .NOT. followed by a logical primary.

A logical term is a logical factor or a construct of the form:

logical term .AND. logical term
A logical expression is a logical term or a construct of the form:
logical expression .OR. logical expression

6.4. EvALUATION OF EXPRESSIONS. A part of an expression need be evaluated
only if such action is necessary to establish the value of the expression. The rules
for formation of expressions imply the binding strength of operators. It should
be noted that the range of the subtraction operator is the term that immediately
succeeds it. The evaluation may proceed according to any valid formation
sequence.

When two elements are combined by an operator the order of evaluation of
the elements is optional. If mathematical use of operators is associative, com-
mutative, or both, full use of these facts may be made to revise orders of com-
bination, provided only that integrity of parenthesized expressions is not violated.
The value of an integer factor or term is the nearest integer whose magnitude does
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not exceed the magnitude of the mathematical value represented by that factor
or term.

Any use of an array element name requires the evaluation of its subscript.
The evaluation of functions appearing in an expression may not validly alter the
value of any other element within the expressions, assignment statement, or
CALL statement in which the function reference appears. The type of the
expression in which a function reference or subscript appears does not affect, nor
is it affected by, the evaluation of the actual arguments or subscript.

No factor may be evaluated that requires a negative valued primary to be
raised to a real or double precision exponent. No factor may be evaluated that
requires raising a zero valued primary to a zero valued exponent.

No element may be evaluated whose value is not mathematically defined.

7. STATEMENTS

A ~tatement may be classified as executable or nonexecutable. Executable
statements specify actions; nonexecutable statements describe the characteristics
and arrangements of data, editing information, statement functions, and classi-
fication of program units.

7.1. EXECUTABLE STATEMENTS. There are three types of executable state-
ments:

1. Assignment statements.
2. Control statements.
3. Input/output statements.

7.1.1. Assignment Statements. There are three types of assignment statements:

1. Arithmetic assignment statement.
2. Logical assignment statement.
3. GO TO assignment statement.

7.1.1.1. Arithmetic Assignment Statement. An arithmetic assignment statement
is of the form:
v=ce

where v is a variable name or array element name of type other than logical
and e is an arithmetic expression. Execution of this statement causes the evalu-
ation of the expression e and the altering of v according to Table 1.
7.1.1.2. Logical Assignment Statement. A logical assignment statement is of the
form
v=ce

where v is a logical variable name or a logical array element name and ¢ is a
logical expression. Execution of this statement causes the logical expression to
be evaluated and its value to be assigned to the logical entity.
7.1.1.3. GO TO Assignment Statement. A GO TO assignment statement is of the
form:
ASSIGN £ TO ¢

where k is a statement label and ¢ is an integer variable name. After execution
of such a statement, subsequent execution of any assigned GO TO statement
(Section 7.1.2.1.2) using that integer variable will cause the statement identified
by the assigned statement label to be executed next, provided there has been no
intervening redefinition (9.2) of the variable. The statement label must refer to
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an executable statement in the same program unit in which the ASSIGN state-
ment appears.

Once having been mentioned in an ASSIGN statement, an integer variable
may not be referenced in any statement other than an assigned GO TO statement
until it has been redefined (Section 10.2.3).

TABLE 1. RULES FOR ASSIGNMENT OF € TO v

If v Type Is And e Type Is The Assignment Rule Is*
Integer Integer Assign
Integer Real Fix & Assign
Integer Double Precision | Fix & Assign
Integer Complex P
Real Integer Float & Assign
Real Real Assign
Real Double Precision | DP Evaluate & Real Assign
Real Complex P
Double Precision Integer DP Float & Assign
Double Precision Real DP Evaluate & Assign
Double Precision Double Precision | Assign
Double Precision Complex P
Complex Integer P
Complex Real P
Complex Double Precision P
Complex Complex Assign
* Nores.

1. P means prohibited combination.

2. Assign means transmit the resulting value, without change, to the entity.

3. Real Assign means transmit to the entity as much precision of the most significant
part of the resulting value as a real datum can contain.

4. DP Evaluate means evaluate the expression according to the rules of 6.1 (or any

more precise rules) then DP Float.
5. Fix means truncate any fractional part of the result and transform that value to

the form of an integer datum.

6. Float means transform the value to the form of a real datum.

7. DP Float means transform the value to the form of a double precision datum,
retaining in the process as much of the precision of the value as a double precision datum

can contain.

7.1.2. Control Statements. There are eight types of control statements:

1. GO TO statements.

2. Arithmetic IF statement.

3. Logical IF statement.

4. CALL statement.

5. RETURN statement.

6. CONTINUE statement.

7. Program control statements.
8. DO statement.

The statement labels used in a control statement must be associated with
executable statements within the same program unit in which the control
statement appears.
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7.1.2.1. GO TO Statements. There are three types of GO TO statements:

1. Unconditional GO TO statement.
2. Assigned GO TO statement.
3. Computed GO TO statement.

7.1.2.1.1. Unconditional GO TO Statement. An unconditional GO TO statement
is of the form:

GO TO k
where k is a statement label.
Execution of this statement causes the statement identified by the statement
label to be executed next.
7.1.2.1.2. Assigned GO TO Statement. An assigned GO TO statement is of the
form:
GO TO ¢, (k1, ka2, - - . , ka)

where ¢ is an integer variable reference, and the k’s are statement labels.

At the time of execution of an assigned GO TO statement, the current value
of 7 must have been assigned by the previous execution of an ASSIGN statement
to be one of the statement labels in the parenthesized list, and such an execution
causes the statement identified by that statement label to be executed next.

7.1.2.1.3. Computed GO TO Statement. A computed GO TO statement is of the
form:

GO TO (k1, k2y-0 o o s kn), 2

where the k’s are statement labels and ¢ is an integer variable reference. See
10.2.8 and 10.3 for a discussion of requirements that apply to the use of a variable
in a computed GO TO statement.

Execution of this statement causes the statement identified by the statement
Tabel k; to be executed next, where j is the value of z at the time of the execution.
This statement is defined only for values such that 1 < j < n.

7.1.2.2. Arithmetic IF Statement. An arithmetic IF statement is of the form:

IF (e) ku, ke, ks

where e is any arithmetic expression of type integer, real, or double precision,
and the k’s are statement labels.

The arithmetic IF is a three-way branch. Execution of this statement causes
evaluation of the expression e following which the statement identified by the
statement label ki, k2, or k3 is executed next as the value of e is less than zero,
zero, or greater than zero, respectively.

7.1.2.3. Logical IF Statement. A logical IF statement is of the form:

IF (e) S

where e is a logical expression and S is any executable statement except a DO
statement or another logical IF statement. Upon execution of this statement,
the logical expression e is evaluated. If the value of e is false, statement S is
executed as though it were a CONTINUE statement. If the value of e is true,
statement S is executed.

7.1.2.4. CALL Statement. A CALL statement is of one of the forms:

CALL s (a1, as, . . . @s)
or
CALL s

where s is the name of a subroutine and the a’s are actual arguments (8.4.2).
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The inception of execution of a CALL statement references the designated
subroutine. Return of control from the designated subroutine completes execu-

tion of the CALL statement.
7.1.2.5. RETURN Statement. A RETURN statement is of the form:

RETURN

A RETURN statement marks the logical end of a procedure subprogram and,
thus, may only appear in a procedure subprogram.

Execution of this statement when it appears in a subroutine subprogram
causes return of control to the current calling program unit.

Execution of this statement when it appears in a function subprogram causes
return of control to the current calling program unit. At this time the value of
the function (8.3.1) is made available.

7.1.2.6. CONTINUE Statement. A CONTINUE statement is of the form:

CONTINUE

Execution of this statement causes continuation of normal execution sequence.
7.1.2.7. Program Control Statements. 'T'here are two types of program control
statements:

1. STOP statement.
2. PAUSE statement.

7.1.2.7.1. STOP Statement. A STOP statement is of one of the forms:

STOP »
or
STOP

where n is an octal digit string of length from one to five.
Execution of this statement causes termination of execution of the executable

program.
7.1.2.7.2. PAUSE Statement. A PAUSE statement is of one of the forms:
PAUSE n
or
PAUSE

where n is an octal digit string of length from one to five.

The inception of execution of this statement causes a cessation of execution
of this executable program. Execution must be resumable. At the time of
cessation of execution the octal digit string is accessible. The decision to resume
execution is not under control of the program; but if execution is resumed, exe-
cution of the PAUSE statement is completed.

7.1.2.8. DO Statement. A DO statement is of one of the forms:

DO n ¢ = my, me, ms3
or
DO n 1 = my, me
where:

1. n is the statement of an executable statement. This statement, called the
terminal statement of the associated DO, must physically follow and be in the
same program unit as that DO statement. The terminal statement may not be a
GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE, or DO statement,
nor a logical IF containing any of these forms.
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2. ¢ is an integer variable name; this variable is called the control variable.

3. mi, called the initial parameter; mz, called the terminal parameter; and
mg, called the incrementation parameter, are each either an integer constant or
integer variable reference. If the second form of the DO statement is used so
that m; is not explicitly stated, a value of one is implied for the ircrementation
parameter. At time of execution of the DO statement, mi, ms, and ms must be
greater than zero.

Associated with each DO statement is a range that is defined to be those
executable statements from and including the first executable statement following
the DO, to and including the terminal statement associated with the DO. A
special situation occurs when the range of a DO contains another DO statement.
In this case, the range of the contained DO must be a subset of the range of the
containing DO.

A completely nested nest is a set of DO statements and their ranges, and any
DO statements contained within their ranges, such that the first occurring ter-
minal statement of any of those DO statements physically follows the last
occurring DO statement and the first occurring DO statement of the set is not
in the range of any DO statement.

A DO statement is used to define a loop. The action succeeding execution of
a Do statement is described by the following five steps:

1. The control variable is assigned the value represented by the initial para-
meter. This value must be less than or equal to the value represented by the
terminal parameter.

2. The range of the DO is executed.

3. If control reaches the terminal statement, anu after execution of the ter-
minal statement, the control variable of the most recently executed DO state-
ment associated with the terminal statement is incremented by the value rep-
resented by the associated incrementation parameter.

4. If the value of the control variable after incrementation is less than or
equal to the value represented by the associated terminal parameter the action
as described starting at step 2 is repeated with the understanding that the range
in question is that of the DO, the control variable of which was most recently
incremented. If the value of the control variable is greater than the value
represented by its associated terminal parameter the DO is said to have been
satisfied and the control variable becomes undefined.

5. At this point, if there were one or more other DO statements referring to the
terminal statement in question the control variable of the next most recently
executed DO statement is incremented by the value represented by its associated
incrementation parameter and the action as described in step 4 is repeated until
all DO statements referring to the particular termination statement are satisfied,
at which time the first executable statement following the terminal statement is
executed.

Upon exiting from the range of a DO by execution of a GO TO statement or
an arithmetic IF statement, that is, other than by satisfying the DO, the control
variable of the DO is defined and is equal to the most recent value attained as
defined in the foregoing.

A DO is said to have an extended range if both of the following conditions
apply:

1. There exists a GO TO statement or arithmetic IF statement within the
range of the innermost DO of a completely nested nest that can cause control to
pass out of that nest.

2. There exists a GO TO statement or arithmetic IF statement not within the
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nest that, in the collection of all possible sequences of execution in the particular
program unit could be executed after a statement of the type described in (1),
and the execution of which could cause control to return into the range of the
innermost DO of the completely nested nest.

If both of these conditions apply, the extended range is defined to be the set
of all executable statements that may be executed between all pairs of control
staterments, the first of which satisfies the condition of (1) and the second of (2).
The first of the pair is not included in the extended range; the second is. A
GO TO statement or an arithmetic IF statement may not cause control to pass
into the range of a DO unless it is being executed as part of the extended range
of that particular DO. Further, the extended range of a DO may not contain a
Do that has an extended range. When a procedure reference occurs in the range
of a DO, the actions of that procedure are considered to be temporarily within
that range, i.e. during the execution of that reference.

The control variable, initial parameter, terminal parameter, and incrementation
parameter of a DO may not be redefined during the execution of the range or
extended range of that DO.

If a statement is the terminal statement of more than one DO statement the
statement label of that terminal statement may not be used in any GO TO or
arithmetic IF statement that occurs anywhere but in the range of the most
deeply contained DO with that terminal statement.

7.1.3. Input/Output Statements. There are two types of input/output state-
ments:

1. READ and WRITE statements.
2. Auxiliary Input/Output statements.

The first type consists of the statements that cause transfer of records of
sequential files to and from internal storage, respectively. The second type con-
sists of the BACKSPACE and REWIND statements that provide for positioning
of such an external file, and ENDFILE, which provides for demarcation of such
an external file.

In the following descriptions « and f identify input/output units and format
specifications, respectively. An input/output unit is identified by an integer
value and u may be either an integer constant or an integer variable reference
whose value then identifies the unit. The format specification is described in
Section 7.2.3. Either the statement label of a FORMAT statement or an array
name may be represented by f. If a statement label, the identified statement must
appear in the same program unit as the input/output statement. If an array
name, it must conform to the specifications in 7.2.3.10.

A particular unit has a single sequential file associated with it. The most
general case of such a unit has the following properties:

1. If the unit contains one or more records, those records exist as a totally
ordered set.

2. There exists a unique position of the unit called its initial point. If a unit
contains no records, that unit is positioned at its initial point. If the unit is at
its initial point and contains records, the first record of the unit is defined as the
next record.

3. If a unit is not positioned at its initial point, there exists a unique pre-
ceding record associated with that position. The least of any records in the order-

ing described by (1) following this preceding record is defined as the next record
of that position.
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4. Upon completion of execution of a WRITE or ENDFILE statement, there
exist no records following the records created by that statement.

5. When the next record is transmitted, the position of the unit is changed so
that this next record becomes the preceding record.

If a unit does not provide for some of the properties given in the foregoing,
certain statements that will be defined may not refer to that unit. The use of
such a statement is not defined for that unit.

7.1.3.1. READ and WRITE Statements. The Read and WRITE statements
specify transfer of information. Each such statement may include a list of the
names of variables, arrays, and array elements. The named elements are assigned
values on input and have their values transferred on output.

Records may be formatted or unformatted. A formatted record consists of a
string of the characters that are permissible in Hollerith constants (5.1.1.6).
The transfer of such a record requires that a format specification be referenced to
supply the necessary positioning and conversion specifications (7.2.3). The
number of records transferred by the execution of a formatted READ or WRITE
is dependent upon the list and referenced format specification (7.2.3.4). An
unformatted record consists of a string of values. When an unformatted or
formatted READ statement is executed, the required records on the identified
unit must be, respectively, unformatted or formatted records.

7.1.3.1.1. Input/Output Lists. The input list specifies the names of the variables
and array elements to which values are assigned on input. The output list
specifies the references to variables and array elements whose values are trans-
mitted. The input and output lists are of the same form.

Lists are formed in the following manner. A simple list is a variable name, an
array element name, or an array name, or two simple lists separated by a comma.

A list is a simple list, a simple list enclosed in parentheses, a DO-implied list,
or two lists separated by a comma.

A DO-implied list is a list followed by a comma and a DO-implied specification,
all enclosed in parentheses.

A DO-implied specification is of one of the forms:

1 = my, Mz, M3
or
1= my, ma

The elements %, m1, mez, and ms are as defined for the DO statement (7.1.2.8).
The range of DO-implied specification is the list of the DO-implied list and, for
input lists, 7, m1, ms, and ms may appear, within that range, only in subscripts.

A variable name or array element name specifies itself. An array name specifies
all of the array element names defined by the array declarator, and they are
specified in the order given by the array element successor function (7.2.1.1.1).

The elements of a list are specified in the order of their occurrence from left to
right. The elements of a list in a DO-implied list are specified for each cycle of
the implied DO.

7.1.3.1.2. Formatted READ. A formatted READ statement is of one of the

forms:
READ (u, f)k

or
READ (u, f)
where k is a list.
Execution of this statement causes the input of the next records from the unit
identified by w. The information is scanned and converted as specified by the
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format specification identified by f. The resulting values are assigned to the
elements specified by the list. See, however, 7.2.3.4.
7.1.3.1.3. Formatted WRITE. A formatted WRITE statement is of one of the
forms:
WRITE (u, f) k
or
WRITE (u, f)
where k is a list.
Execution of this statement creates the next records on the unit identified
by u. The list specifies a sequence of values. These are converted and positioned
as specified by the format specification identified by f. See, however, 7.2.3.4.

7.1.3.1.4. Unformatted READ. An unformatted READ statement is of one of
the forms:
READ (u) k
or
READ (u)

where k is a list.

Execution of this statement causes the input of the next record from the unit
identified by u, and if there is a list these values are assigned to the sequence
of elements specified by the list. The sequence of values required by the list may
not exceed the sequence of values from the unformatted record.

7.1.3.1.5. Unformatted WRITE. An unformatted WRITE statement is of the
form:

WRITE (u) k
where k is a list.

Execution of this statement creates the next record on the unit identified by »
of the sequence of values specified by the list.

7.1.3.2. Auxiliary Input/Output Statements. There are three types of auxiliary
input/output statements:

1. REWIND statement.
2. BACKSPACE statement.
3. ENDFILE statement.

7.1.3.2.1. REWIND Statement. A REWIND statement is of the form:
REWIND »

Execution of this statement causes the unit identified by  to be positioned at
its initial point.
7.1.3.2.2. BACKSPACE Statement. A BACKSPACE statement is of the form:
BACKSPACE u

If the unit identified by w is positioned at its initial point, execution of this
statement has no effect. Otherwise, the execution of this statement results in the
positioning of the unit identified by u so that what had been the preceding record
prior to that execution becomes the next record.

7.1.3.2.3. ENDFILE Statement. An ENDFILE statement is of the form:

ENDFILE u

Execution of this statement causes the recording of an endfile record on the
unit identified by ». The endfile record is an unique record signifying a demarca-
tion of a sequential file. Action is undefined when an endfile record is encountered
during execution of a READ statement.
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7.1.3.3. Printing of Formaited Records. When formatted records are prepared
for printing the first character of the record is not printed.
The first character of such a record determines vertical spacing as follows:

Character Vertical Spacing Before Printing

Blank One line
0 Two lines
1 To first line of next page
+ No advance

7.2. NONEXECUTABLE STATEMENTS. There are five types of nonexecutable
statements:

1. Specification statements.

2. Data initialization statement.
3. FORMAT statement.

4. Function defining statements.
6. Subprogram statements.

See 10.1.2 for a discussion of restrictions on appearances of symbolic names in
such statements.

The function defining statements and subprogram statements are discussed in
Section 8.

7.2.1. Specification Statements. There are five types of specification statements:

1. DIMENSION statement.

2. COMMON statement.

3. EQUIVALENCE statement.
4. EXTERNAL statement.

5. Type-statements.

7.2.1.1. Array-Declarator. An array declarator specifies an array used in a
program unit.

The array declarator indicates the symbolic name, the number of dimensions
(one, two, or three), and the size of each of the dimensions. The array declarator
statement may be a type-statement, DIMENSION, or COMMON statement.

An array declarator has the form:

v ()
where:

1. v, called the declarator name, is a symbolic name.

2. (¢), called the declarator subscript, is composed of 1, 2, or 3 expressions,
each of which may be an integer constant or an integer variable name. Each
expression is separated by a comma from its successor if there are more than one
of them. In the case where 1 contains no integer variable, ¢ is called the constant
declarator subscript.

The appearance of a declarator subscript in a declarator statement serves to
inform the processor that the declarator name is an array name. The number of
subscript expressions specified for the array indicates its dimensionality. The
magnitude of the values given for the subscript expressions indicates the maxi-
mum value that the subscript may attain in any array element name.

No array element name may contain a subscript that, during execution of the
executable program, assumes a value less than one or larger than the maximum
length specified in the array declarator.
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7.2.1.1.1. Array Element Successor Function and Value of a Subscript. For a
given dimensionality, subscript declarator, and subscript, the value of a sub-
script pointing to an array element and the maximum value a subscript may
attain is indicated in Table 2. A subscript expression must be greater than zero.

The value of the array element successor function is obtained by adding one
to the entry in the subscript value column. Any array element whose subscript
has this value is the successor to the original element. The last element of the
array is the one whose subscript value is the maximum subscript value and has no

successor element.

TABLE 2. VALUE OF A SUBSCRIPT

. . Mazimum
Dimen- Subscript . . .
sionality | Declarator Subscript Subscript Value S?;;zpt

1 (4) (a) a A

2 (4, B) (a, b) a+ A4-(b—1) A-B

3 (4, B, C) (a, b, ¢) a+ A-(b—1) A-B-C
+ A-B-(c—1)

Nortes. 1. a, b, and ¢ are subscript expressions.
2. A, B, and C are dimensions.

7.2.1.1.2. Adjustable Dimension. If any of the entries in a declarator subscript
is an integer variable name the array is called an adjustable array, and the
variable names are called adjustable dimensions. Such an array may appear
only in a subprogram. The dummy argument list of the subprogram must con-
tain the array name and the integer variable names that represent the adjustable
dimensions. The values of the actual arguments that represent array dimensions
in the argument list of the reference must be defined (10.2) prior to calling the
subprogram and may not be redefined or undefined during execution of the sub-
program. The maximum size of the actual array may not be exceeded. For every
array appearing in an executable program (9.1.6.) there must be at least one
constant array declarator associated through subprogram references.

In a subprogram a symbolic name that appears in a COMMON statement
may not identify an adjustable array.

7.2.1.2. DIMENSION Statement. A DIMENSION statement is of the form:

DIMENSION v;(31), v2(i2), - - + » 0n(in)

where each v(z) is an array declarator.
7.2.1.3. COMMON Statement. A COMMON statement is of the form:

COMMON /21 /a1 /... %/ an

where each a is a nonempty list of variable names, array names, or array declara-
tors (no dummy arguments are permitted) and each x is a symbolic name or is
empty. If x; is empty the first two slashes are optional. Each z is a block name,
a name that bears no relationship to any variable or array having the same name.
This holds true for any such variable or array in the same or any other program
unit. See 10.1.1 for a discussion of restrictions on uses of block names.

In any given COMMON statement the entities occurring between block name
z and the next block name (or the end of the statement if no block name follows)
are declared to be in common block z. All entities from the beginning of the
statement until the appearance of a block name, or all entities in the statement
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if no block name appears, are declared to be in blank or unlabelled common.
Alternatively, the appearance of two slashes with no block name between them
declares the entities that follow to be in blank common.

A given common block name may occur more than once in a COMMON state-
ment or in a program unit. The processor will string together in a given common
block all entities so assigned in the order of their appearance (10.1.2). The first
element of an array will follow the immediately preceding entity, if one exists,
and the last element of an array will immediately precede the next entity, if one
exists.

The size of a common block in a program unit is the sum of the storage re-
quired for the elements introduced through COMMON and EQUIVALENCE
statements. The sizes of labelled common blocks with the same label in the pro-
gram units that comprise an executable program must be the same. The sizes of
blank common in the various program units that are to be executed together
need not be the same. Size is measured in terms of storage units (7.2.1.3.1).

7.2.1.3.1. Correspondence of Common Blocks. If all of the program units of an
executable program that contain any definition of a common block of a particular
name define that block such that:

1. There is identity in type for all entities defined in the corresponding position
from the beginning of that block.

2. If the block is labelled and the same number of entities is defined for the
block, then the values in the corresponding positions (counted by the number of
preceding storage units) are the same quantity in the executable program.

A double precision or a complex entity is counted as two logically consecutive
storage units; a logical, real, or integer entity, as one storage unit.

Then for common blocks with the same number of storage units or blank
common:

1. In all program units which have defined the identical type to a given
position (counted by the number of preceding storage units) references to that
position refer to the same quantity.

2. A correct reference is made to a particular position assuming a given type
if the most recent value assignment to that position was of the same type.

7.2.1.4. EQUIVALENCE Statement. An EQUIVALENCE statement is of the
form:

EQUIVALENCE (k1), (k2), . . ., (kn)
in which each k is a list of the form:
A1, A2, « + « , Am.

Each a is either a variable name or an array element name (not a dummy
argument), the subscript of which contains only constants, and m is greater than
or equal to two. The number of subscript expressions of an array element name
must correspond in number to the dimensionality of the array declarator or must
be one (the array element successor function defines a relation by which an
array can be made equivalent to a one dimensional array of the same length).

The EQUIVALENCE statement is used to permit the sharing of storage by
two or more entities. Each element in a given list is assigned the same storage
(or part of the same storage) by the processor. The EQUIVALENCE statement
should not be used to equate mathematically two or more entities. If a two-
storage unit entity is equivalenced to a one-storage unit entity the latter will
share space with the first storage unit of the former.

The assignment of storage to variables and arrays declared directly in a
COMMON statement is determined solely by consideration of their type and the
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COMMON and array declarator statements. Entities so declared are always
assigned unique storage, contiguous in the order declared in the COMMON
statement.

The effect of an EQUIVALENCE statement upon common assignment may
be the lengthening of a common block; the only such lengthening permitted is
that which extends a common block beyond the last assignment for that block
made directly by a COMMON statement.

When two variables or array elements share storage because of the effects of
EQUIVALENCE statements the symbolic names of the variables or arrays in
question may not both appear in COMMON statements in the same prograin unit.

Information contained in 7.2.1.1.1, 7.2.1.3.1, and the present section suffices
to describe the possibilities of additional cases of sharing of storage between
array elements and entities of common blocks. It is incorrect to cause either
directly or indirectly a single storage unit to contain more than one element of the
same array.

7.2.1.5. EXTERNAL Statement. An EXTERNAL statement is of the form:

EXTERNAL v, v2, ..., Vn

where each v is an external procedure name.

Appearance of a name in an EXTERNAL statement declares that name to be
an external procedure name. If an external procedure name is used as an argu-
ment to another external procedure it must appear in an EXTERNAL statement
in the program unit in which it is so used.

7.2.1.6. T'ype-statements. A type-statement is of the form:

tV1, V2 « 0oy Un

where t is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGI-
CAL, and each v is a variable name, an array name, a function name, or an array
declarator.

A type-statement is used to override or confirm the implicit typing, to declare
entities to be of type double precision, complex, or logical, and may supply
dimension information.

The appearance of a symbolic name in a type-statement serves to inform the
processor that it is of the specified data type for all appearances in the program
unit.

7.2.2. Data Initialization Statement. A data initialization statement is of the
form:

DATA ki /dy /[, ka/da],e..skn]dn]
where:

1. Each k is a list containing names of variables and array elements.

2. Each d is a list of constants and optionally signed constants, any of which
may be preceded by j*.

3. ) is an integer constant.

If a list contains more than one entry the entries are separated by commas.

Dummy arguments may not appear in the list k. Any subscript expression
must be an integer constant.

When the form j* appears before a constant it indicates that the constant is
to be specified j times. A Hollerith constant may appear in the list d.

A data initialization statement is used to define initial values of variables or
array elements. There must be a one-to-one correspondence between the list-
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specified items and the constants. By this correspondence, the initial value is
established.

An initially defined variable or array element may not be in blank common.
A variable or array element in a labelled common block may be initially defined
only in a block data subprogram.

7.2.3. FORMAT Statement. FORMAT statements are used in conjunction
with the input/output of formatted records to provide conversion and editing
information between the internal representation and the external character
strings.

A FORMAT statement is of the form:

FORMAT (qit1z1t222 « . . taznq2)
where:

1. (git1z1t2z2 . . . taznga) i8 the format specification.

2. Each q is a series of slashes or is empty.

3. Each ¢ is a field descriptor or group of field descriptors.
4. Each z is a field separator.

6. n may be zero.

A FORMAT statement must be labelled.

7.2.3.1. Field Descriptors. The format field descriptors are of the forms:

srFw.d
srEw.d
srGw.d
srDw.d

rIw

rLw

rAw

nHhha ... hy
nX

where:

1. The letters F, E, G, D, I, L, A, H, and X indicate the manner of conversion
and editing between the internal and external representations and are called the
conversion codes.

2. w and n are nonzero integer constants representing the width of the field
in the external character string.

3. d is an integer constant representing the number of digits in the fractional
part of the external character string (except for G conversion code).

4. r, the repeat count, is an optional nonzero integer constant indicating the
number of times to repeat the succeeding basic field descriptor.

6. s is optional and represents a scale factor designator.

6. Each h is one of the characters capable of representation by the processor.

For all descriptors, the field width must be specified. For descriptors of the
form w.d, the d must be specified, even if it is zero. Further, w must be greater
than or equal to d.

The phrase basic field descriptor will be used to signify the field descriptor
unmodified by s or r.

The internal representation of external fields will correspond to the internal
representation of the corresponding type constants (4.2 and 5.1.1).

283



DICTIONARY FOR COMPUTER LANGUAGES

7.2.3.2. Field Separators. The format field separators are the slash and the
comma. A series of slashes is also a field separator. The field descriptors or
groups of field descriptors are separated by a field separator.

The slash is used not only to separate field descriptors but also to specify de-
marcation of formatted records. A formatted record is a string of characters. The
lengths of the strings for a given external medium are dependent upon both the
processor and the external medium.

The processing of the number of characters that can be contained in a record
by an external medium does not of itself cause the introduction or inception of
processing of the next record.

7.2.3.3. Repeat Specifications. Repetition of the field descriptors (except nH
and nX) is accomplished by using the repeat count. If the input/output list
warrants, the specified conversion will be interpreted repetitively up to the
specified number of times.

Repetition of a group of field descriptors or field separators is accomplished
by enclosing them within parentheses and optionally preceding the left parenthesis
with an integer constant called the group repeat count indicating the number of
times to interpret the enclosed grouping. If no group repeat count is specified
a group repeat count of one is assumed. This form of grouping is called a basic
group.

A further grouping may be formed by enclosing field descriptors, field separa-
tors, or basic groups within parentheses. Again, a group repeat count may be
specified. The parentheses enclosing the format specification are not considered
as group delineating parentheses.

7.2.3.4. Format Control Interaction with an Input/Output List. The inception of
execution of a formatted READ or formatted WRITE statement initiates format
control. Each action of format control depends on information jointly provided
respectively by the next element of the input/output list, if one exists, and the
next field descriptor obtained from the format specification. If there is an input/
output list at least one field descriptor other than nH or nX must exist.

When a READ statement is executed under format control one record is
read when the format control is initiated, and thereafter additional records are
read only as the format specification demands. Such action may not require more
characters of a record than it contains.

When a WRITE statement is executed under format control, writing of a
record occurs each time the format specification demands that a new record be
started. Termination of format control causes writing of the current record.

Except for the effects of repeat counts, the format specification is interpreted
from left to right.

To each I, F, E, G, D, A, or L basic descriptor interpreted in a format speci-
fication, there corresponds one element specified by the input/output list, except
that a complex element requires the interpretation of two F, E, or G basic
descriptors. To each H or X basic descriptor there is no corresponding element
specified by the input/output list, and the format control communicates infor-
mation directly with the record. Whenever a slash is encountered, the format
specification demands that a new record start or the preceding record terminate.
During a READ operation, any unprocessed characters of the current record will
be skipped at the time of termination of format control or when a slash is en-
countered.

Whenever the format control encounters an I, F, E, G, D, A, or L basic
descriptor in a format specification, it determines if there is a corresponding
element specified by the input/output list. If there is such an element, it transmits
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appropriately converted information between the element and the record and
proceeds. If there is no corresponding element, the format control terminates.

If, however, the format control proceeds to the last outer right parenthesis of
the format specification, a test is made to determine if another list element is
specified. If not, control terminates. However, if another list element is specified
the format control demands a new record start and control reverts to that group
repeat specification terminated by the last preceding right parenthesis, or if none
exists, then to the first left parenthesis of the format speciﬁcation. Note, this
action of itself has no effect on the scale factor.

7.2.3.5. Scale Factor. A scale factor designator is defined for use with the F,
E, G, and D conversions and is of the form:

nP

where 7, the scale factor, is an integer constant or minus followed by an integer
constant.

When the format control is initiated a scale factor of zero is established. Once
a scale factor has been established, it applies to all subsequently interpreted F,
E, G, and D field descriptors, until another scale factor is encountered, and then
that scale factor is established.

7.2.3.5.1. Scale Factor Effects. The scale factor n affects the appropriate
conversions in the following manner:

1. For F, E, G, and D input conversions (provided no exponent exists in the
external field) and F output conversions, the scale factor effect is as follows:

Externally represented number equals internally represented number times
the quantity ten raised to the nth power.

2. For F, E, G, and D input, the scale factor has no effect if there is an ex-
ponent in the external field.

3. For E and D output, the basic real constant part of the output quantity is
multiplied by 107 and the exponent is reduced by n.

4. For G output, the effect of the scale factor is suspended unless the magnitude
of the datum to be converted is outside the range that permits the effective use of
F conversion. If the effective use of E conversion is required, the scale factor has
the same effect as with E output.

7.2.3.6. Numeric Conversions. The numeric field descriptors I, F, E, G, and D
are used to specify input/output of integer, real, double precision, and complex

data.

1. With all numeric input conversions, leading blanks are not significant and
other blanks are zero. Plus signs may be omitted. A field of all blanks is con-
sidered to be zero.

2. With the F, E, G, and D input conversions, a decimal point appearing in
the input field overrides the decimal point specification supplied by the field
descriptor.

3. With all output conversions, the output field is right justified. If the number
of characters produced by the conversion is smaller than the field width leading
blanks will be inserted in the output field.

4. With all output conversions, the external representation of a negative
value must be signed; a positive value may be signed.

5. The number of characters produced by an output conversion must not

exceed the field width.
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7.2.3.6.1. Integer Conversion. The numeric field descriptor Iw indicates that
the external field occupies w positions as an integer. The value of the list item
appears, or is to appear, internally as an integer datum.

In the external input field, the character string must be in the form of an
integer constant or signed integer constant (5.1.1.1), except for the interpretation
of blanks (7.2.3.6).

The external output field consists of blanks, if necessary, followed by a minus
if the value of the internal datum is negative, or an optional plus otherwise,
followed by the magnitude of the internal value converted to an integer constant.

7.2.3.6.2. Real Conversions. There are three conversions available for use with
real data: F, E, and G.

The numeric field descriptor Fw.d indicates that the external field occupies w
positions, the fractional part of which consists of d digits. The value of the list
item appears, or is to appear, internally as a real datum.

The basic form of the external input field consists of an optional sign, followed
by a string of digits optionally containing a decimal point. The basic form may
be followed by an exponent of one of the following forms:

1. Signed integer constant.

2. E followed by an integer constant.

3. E followed by a signed integer constant.
4. D followed by an integer constant.

5. D followed by a signed integer constant.

An exponent containing D is equivalent to an exponent containing E.

The external output field consists of blanks, if necessary, followed by a minus
if the internal value is negative, or an optional plus otherwise, followed by string
of digits containing a decimal point representing the magnitude of the internal
value, as modified by the established scale factor, rounded to d fractional digits.

The numeric field descriptor Ew.d indicates that the external field occupies w
positions, the fractional part of which consists of d digits. The value of the list
item appears, or is to appear, internally as a real datum.

The form of the external input field is the same as for the F conversion.

The standard form of the external output field for a scale factor of zero is*

* ¢ signifies no character position or minus in that position.
fO.xl oo an
where:

1. z; .. .24 are the d most significant rounded digits of the value of the data

to be output.
2. Y is of one of the forms:

E + yiya
or
+y1y2ys
and has the significance of a decimal exponent (an alternative for the plus in the
first of these forms is the character blank).
3. The digit 0 in the aforementioned standard form may optionally be replaced
by no character position.
4. Each y is a digit.

The scale factor n controls the decimal normalization between the number
part and the exponent part such that:
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1. If n < 0 there will be exactly —n leading zeros and d-n significant digits
after the decimal point.

2. If n > 0 there will be exactly n significant digits to the left of the decimal
point and d—n -1 to the right of the decimal point.

The numeric field descriptor Gw.d indicates that the external field occupies w
positions with d significant digits. The value of the list item appears, or is to
appear, internally as a real datum.

Input processing is the same as for the F conversion.

The method of representation in the external output string is a function of
the magnitude of the real datum being converted. Let N be the magnitude of the
internal datum. The following tabulation exhibits a correspondence between N
and the equivalent method of conversion that will be effected :

Magnitude of Datum Equivalent Conversion Effected
0.I1<N<l1 Fw—4)d, 4X
1<N<I10 F(w—4).(d—1), 4X
1042 < N < 1041 F(w—4).1, 4X

1041 < N < 104 F(w—4).0,4X
Otherwise sEw.d

Note that the effect of the scale factor is suspended unless the magnitude of
the datum to be converted is outside of the range that permits effective use of
F conversion.

7.2.3.6.3. Double Precision Conversion. The numeric field descriptor Dw.d
indicates that the external field occupies w positions, the fractional part of which
consists of d digits. The value of the list item appears, or is to appear, internally
as a double precision datum.

The basic form of the external input field is the same as for real conversions.

The external output field is the same as for the E conversion, except that the
character D may replace the character E in the exponent.

7.2.3.6.4. Complex Conversion. Since a complex datum consists of a pair of
separate real data, the conversion is specified by two successively interpreted
real field descriptors. The first of these supplies the real part. The second supplies
the imaginary part.

7.2.3.7. Logical Conversion. The logical field descriptor Lw indicates that the
external field occupies w positions as a string of information as defined below.
The list item appears, or is to appear, internally as a logical datum.

The external input field must consist of optional blanks followed by a T or F
followed by optional characters, for true and false, respectively.

The external output field consists of w—1 blanks followed by a T or F as the
value of the internal datum is true or false, respectively.

7.2.3.8. Hollerith Field Descriptor. Hollerith information may be transmitted
by means of two field descriptors, nH and Aw :

1. The nH descriptor causes Hollerith information to be read into, or written
from, the n characters (including blanks) following the nH descriptor in the format.
specification itself.

2. The Aw descriptor causes w Hollerith characters to be read into, or written
from, a specified list element.

Let g be the number of characters representable in a single storage unit
(7.2.1.3.1). If the field width specified for A input is greater than or equal to g
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the rightmost g characters will be taken from the external input field. If the
field width is less than g the w characters will appear left justified with w—g
trailing blanks in the internal representation.

If the field width specified for A output is greater than g the external output
field will consist of w—g blanks, followed by the g characters from the internal
representation. If the field width is less than or equal to g the external output
field will consist of the leftmost w characters from the internal representation.

7.2.3.9. Blank Field Descriptor. The field descriptor for blanks is nX. On
input, n characters of the external input record are skipped. On output, n
blanks are inserted in the external output record.

7.2.3.10. Format Specification in Arrays. Any of the formatted input/output
statements may contain an array name in place of the reference to a FORMAT
statement label. At the time an array is referenced in such a manner the first
part of the information contained in the array, taken in the natural order, must
constitute a valid format specification. There is no requirement on the informa-
tion contained in the array following the right parenthesis that ends the format
specification.

The format specification which is to be inserted in the array has the same
form as that defined for a FORMAT statement; that is, begins with a left paren-
thesis and ends with a right parenthesis. An nH field descriptor may not be part
of a format specification within an array.

8. PROCEDURES AND SUBPROGRAMS

There are four categories of procedures: statement functions, intrinsic func-
tions, external functions, and external subroutines. The first three categories
are referred to collectively as functions or function procedures; the last as sub-
routines or subroutine procedures. There are two categories of subprograms:
procedure subprograms and specification subprograms. Function subprograms
and subroutine subprograms are classified as procedure subprograms. Block data
subprograms are classified as specification subprograms. Type rules for function
procedures are given in 5.3.

8.1. STATEMENT FUNCTIONS. A statement function is defined internally to the
program unit in which it is referenced. It is defined by a single statement similar
in form to an arithmetic or logical assignment statement.

In a given program unit all statement function definitions must precede the
first executable statement of the program unit and must follow the specification
statements, if any. The name of a statement function must not appear in an
EXTERNAL statement, nor as a variable name or an array name in the same
program unit.

8.1.1. Defining Statement Functions. A statement function is defined by a
statement of the form:

fla, az,...,a,) = e

where f is the function name, e is an expression, and the relationship between f
and e must conform to the assignment rules in 7.1.1.1 and 7.1.1.2. The a’s are
distinct variable names, called the dummy arguments of the function. Since these
are dummy arguments, their names, which serve only to indicate type, number,
and order of arguments, may be the same as variable names of the same type
appearing elsewhere in the program unit.
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Aside from the dummy arguments, the expression ¢ may only contain:

1. Non-Hollerith constants.

2. Variable references.

3. Intrinsic function references.

4. References to previously defined statement functions.
5. External function references.

8.1.2. Referencing Statement Functions. A statement function is referenced by
using its reference (5.2) as a primary in an arithmetic or logical expression. The
actual arguments, which constitute the argument list, must agree in order,
number, and type with the corresponding dummy arguments. An actual argu-
ment in a statement function reference may be any expression of the same type
as the corresponding dummy argument.

Execution of a statement function reference results in an association (10.2.2)
of actual argument values with the corresponding dummy arguments in the
expression of the function definition, and an evaluation of the expression. Fol-
lowing this, the resultant value is made available to the expression that contained
the function reference.

8.2. INTRINSIC FUuNcTIONS AND THEIR REFERENCE. The symbolic names of
the intrinsic functions (see Table 3) are predefined to the processor and have a
special meaning and type if the name satisfies the conditions of 10.1.7.

An intrinsic function is referenced by using its reference as a primary in an
arithmetic or logical expression. The actual arguments, which constitute the
argument list, must agree in type, number, and order with the specification in
Table 3 and may be any expression of the specified type. The intrinsic functions
AMOD, MOD, SIGN, ISIGN, and DSIGN are not defined when the value of the
second argument is zero.

Execution of an intrinsic function reference results in the actions specified in
Table 3 based on the values of the actual arguments. Following this, the resultant
value is made available to the expression that contained the function reference.

8.3. EXTERNAL FUNcCTIONS. An external function is defined externally to the
program unit that references it. An external function defined by FORTRAN
statements headed by a FUNCTION statement is called a function subprogram.

8.3.1. Defining Function Subprograms. A FUNCTION statement is of the
form:

t FUNCTION f (a1, a2, . . . » Gn)
where:

1. ¢t is either INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL, or is empty.

2. f is the symbolic name of the function to be defined.

3. The a’s, called the dummy arguments, are each either a variable name, an
array name, or an external procedure name.

Function subprograms are constructed as specified in 9.1.3 with the following
restrictions:

1. The symbolic name of the function must also appear as a variable name
in the defining subprogram. During every execution of the subprogram this
variable must be defined and, once defined, may be referenced or redefined. The
value of the variable at the time of execution of any RETURN statement in this
subprogram is called the value of the function.

2. The symbolic name of the function must not appear in any nonexecutable
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TABLE 3. INTRINSIC FUNCTIONS

Number . Type of :
Intrinsic Function Definstion of Argu- ng'zl;:iw
menis Argument | Function
Absolute Value |a| 1 ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times 1 AINT Real Real
argest integer INT Real Integer
<|a] IDINT Double Integer
Remaindering* a; (mod as) 2 AMOD Real Real
(see note below) MOD Integer Integer
Choosing Largest Max (a1, az,...) | =2 AMAXO | Integer Real
Value AMAX1 | Real Real
MAXO0 Integer Integer
MAX1 Real Integer
DMAXI1 | Double Double
Choosing Smallest Min (a3, ag, . . .) =2 AMINO Integer Real
Value AMIN1 Real Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double
Float Conversion from 1 FLOAT | Integer Real
integer to real
Fix Conversion from 1 IFIX Real Integer
real to integer
Transfer of Sign Sign of a; times 2 SIGN Real Real
| a1} ISIGN Integer Integer
DSIGN Double Double
Positive Difference a3 — Min (ay, az) 2 DIM Real Real
IDIM Integer Integer
Obtain Most Signi- 1 SNGL Double Real
ficant Part of
Double Precision
Argument
Obtain Real Part of 1 REAL Complex | Real
Complex Argument
Obtain Imaginary 1 AIMAG | Complex | Real
Part of Complex
Argument
Express Single 1 DBLE Real Double
Precision Argu-
ment in Double
Precision Form
Express Two Real a1 + azy/—1 2 CMPLX | Real Complex
Arguments in
Complex Form
Obtain Conjugate of 1 CONJG | Complex | Complex
a Complex
Argument

* The function MOD or AMOD (ay, ag) is defined as a; — [a1/az]az, where [z] is the
integer whose magnitude does not exceed the magnitude of z and whose sign is the

same as z.
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statement in this program unit, except as the symbolic name of the function in
the FUNCTION statement.

3. The symbolic names of the dummy arguments may not appear in an
EQUIVALENCE, COMMON, or DATA statement in the function subprogram.

4. The function subprogram may define or redefine one or more of its arguments
8o as to effectively return results in addition to the value of the function.

5. The function subprogram may contain any statements except BLOCK
DATA, SUBROUTINE, another FUNCTION statement, or any statement that
directly or indirectly references the function being defined.

6. The function subprogram must contain at least one RETURN statement.

8.3.2. Referencing External Functions. An external function is referenced by
using its reference (5.2) as a primary in an arithmetic or logical expression. The
actual arguments, which constitute the argument list, must agree in order,
number, and type with the corresponding dummy arguments in the defining pro-
gram unit. An actual argument in an external function reference may be one of
the following:

1. A variable name.

2. An array element name.

3. An array name.

4. Any other expression.

5. The name of an external procedure.

If an actual argument is an external function name or a subroutine name,
then the corresponding dummy argument must be used as an external function
name or a subroutine name, respectively.

If an actual argument corresponds to a dummy argument that is defined or
redefined in the referenced subprogram the actual argument must be a variable
name, an array element name, or an array name. Execution of an external
function reference as described in the foregoing results in an association (10.2.2)
of actual arguments with all appearances of dummy arguments in executable
statements, function definition statements, and as adjustable dimensions in the
defining subprogram. If the actual argument is as specified in item (4) in the
foregoing this association is by value rather than by name. Following these
associations, execution of the first executable statement of the defining sub-
program is undertaken. An actual argument which is an array element name
containing variables in the subscript could in every case be replaced by the same
argument with a constant subscript containing the same values as would be
derived by computing the variable subscript just before the association of argu-
ments takes place.

If a dummy argument of an external function is an array name the corre-
sponding actual argument must be an array name or array element name (10.1.3).

If a function reference causes a dummy argument in the referenced function
to become associated with another dummy argument in the same function or
with an entity in common a definition of either within the function is prohibited.

Unless it is a dummy argument, an external function is also referenced (in that
it must be defined) by the appearance of its symbolic name in an EXTERNAL
statement.

8.3.3. Basic Eaxternal Functions. FORTRAN processors must supply the
external functions listed in Table 4. Referencing of these functions is accom-
plished as described in (8.3.2). Arguments for which the result of these functions
is not mathematically defined or is of type other than that specified are im-

proper.
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8.4. SUBROUTINE. An external subroutine is defined externally to the program
unit that references it. An external subroutine defined by FORTRAN state-
ments headed by a SUBROUTINE statement is called a subroutine subprogram.

TABLE 4. Basic EXTERNAL FUNCTIONS

: Number , Type of :
Basic External - Symbol
coicBetemal | pgniion | ofrgu. | Sgrbolc
ments Argument | Function
Exponential et 1 EXP Real Real
1 DEXP Double Double
1 CEXP Complex | Complex
Natural Logarithm loge (a) 1 ALOG Real Real
1 DLOG Double Double
1 CLOG Complex | Complex
Common Logarithm | logjo (a) 1 ALOG10 | Real Real
DLOG10 | Double Double
Trigonometric Sine sin (a) 1 SIN Real Real
1 DSIN Double Double
1 CSIN Complex | Complex
Trigonometric Cosine | cos (a) 1 COS Real Real
1 DCOS Double Double
1 CCOS Complex | Complex
Hyperbolic Tangent | tanh (a) 1 TANH Real Real
Square Root (a)1/2 1 SQRT Real Real
1 DSQRT Double Double
1 CSQRT Complex | Complex
Arctangent arctan (a) 1 ATAN Real Real
1 DATAN | Double Double
arctan (a/ag) 2 ATAN2 Real Real
2 DATANZ2 | Double Double
Remaindering* a; (mod ag) 2 DMOD Double Double
Modulus 1 CABS Complex | Real

* The function DMOD (a;, az) is defined as a; — [a1/az]as, where [z] is the integer
whose magnitude does not exceed the magnitude of x and whose sign is the same as
the sign of z.

8.4.1. Defining Subroutine Subprograms. A SUBROUTINE statement is of
one of the forms:

SUBROUTINE s (a1, az,
or
SUBROUTINE s

ceesQn)

where :

1. 8 is the symbolic name of the subroutine to be defined.
2. The a’s, called the dummmy arguments, are each either a variable name, an
array name, or an external procedure name.
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Subroutine subprograms are constructed as specified in 9.1.3 with the following
restrictions:

1. The symbolic name of the subroutine must not appear in any statement in
this subprogram except as the symbolic name of the subroutine in the SUB-
ROUTINE statement itself.

2. The symbolic names of the dummy arguments may not appear in an
EQUIVALENCE, COMMON, or DATA statement in the subprogram.

3. The subroutine subprogram may define or redefine one or more of its
arguments so as to effectively return results.

4. The subroutine subprogram may contain any statements except BLOCK
DATA, FUNCTION, another SUBROUTINE statement, or any statement that
directly or indirectly references the subroutine being defined.

5. The subroutine subprogram must contain at least one RETURN statement.

8.4.2. Referencing Subroutines. A subroutine is referenced by a CALL state-
ment (7.1.2.4). The actual arguments, which constitute the argument list, must
agree in order, number, and type with the corresponding dummy arguments in
the defining program. The use of a Hollerith constant as an actual argument is
an exception to the rule requiring agreement of type. An actual argument in a
subroutine reference may be one of the following:

1. A Hollerith constant.

2. A variable name.

3. An array element name.

4. An array name.

5. Any other expression.

6. The name of an external procedure.

If an actual argument is an external function name or a subroutine name the
corresponding dummy argument must be used as an external function name or a
subroutine name, respectively.

If an actual argument corresponds to a dummy argument that is defined or
redefined in the referenced subprogram the actual argument must be a variable
name, an array element name, or an array name.

Execution of a subroutine reference as described in the foregoing results in an
association of actual arguments with all appearances of dummy arguments in
executable statements, function definition statements, and as adjustable dimen-
sions in the defining subprogram. If the actual argument is as specified in item
(5) in the foregoing this association is by value rather than by name. Following
these associations, execution of the first executable statement of the defining
subprogram is undertaken.

An actual argument which is an array element name containing variables in
the subscript could in every case be replaced by the same argument with a
constant subscript containing the same values as would be derived by computing
the variable subscript just before the association of arguments takes place.

If a dummy argument of an external function is an array name the corre-
sponding actual argument must be an array name or array element name (10.1.3).

If a subroutine reference causes a dummy argument in the referenced sub-
routine to become associated with another dummy argument in the same sub-
routine or with an entity in common, a definition of either entity within the
subroutine is prohibited.

Unless it is & dummy argument, a subroutine is also referenced (in that it
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must be defined) by the appearance of its symbolic name in an EXTERNAL
statement.
8.5. BLock DaTa SuBProGrAM. A BLOCK DATA statement is of the form:

BLOCK DATA

This statement may only appear as the first statement of specification sub-
programs that are called block data subprograms, and that are used to enter
initial values into elements of labelled common blocks. This special subprogram
contains only type-statements, EQUIVALENCE, DATA, DIMENSION, and
COMMON statements.

If any entity of a given common block is being given an initial value in such a
subprogram a complete set of specification statements for the entire block must
be included, even though some of the elements of the block do not appear in
DATA statements. Initial values may be entered into more than one block in a
single subprogram.

9. PROGRAMS

An executable program is a collection of statements, comment lines, and end
lines that completely (except for input data values and their effects) describe a
computing procedure.

9.1. PRoGRAM COMPONENTS. Programs consist of program parts, program
bodies, and subprogram statements.

9.1.1. Program Part. A program part must contain at least one executable
statement and may contain FORMAT statements, and data initialization state-
ments. It need not contain any statements from either of the latter two classes
of statement. This collection of statements may optionally be preceded by
statement function definitions, data initialization statements, and FORMAT
statements. As before only some or none of these need be present.

9.1.2. Program Body. A program body is a collection of specification state-
ments, FORMAT statements or both, or neither, followed by a program part,
followed by an end line.

9.1.3. Subprogram. A subprogram consists of a SUBROUTINE or FUNC-
TION statement followed by a program body, or is a block data subprogram.

9.1.4. Block Data Subprogram. A block data subprogram consists of a BLOCK
DATA statement, followed by the appropriate (8.5) specification statements,
followed by data initialization statements, followed by an end line.

9.1.5. Main Program. A main program consists of a program body.

9.1.6. Executable Program. An executable program consists of a main program
plus any number of subprograms, external procedures, or both.

9.1.7. Program Unit. A program unit is a main program or a subprogram.

9.2. NorMAL EXECUTION SEQUENCE. When an executable program begins
operation execution commences with the execution of the first executable
statement of the main program. A subprogram, when referenced, starts execu-
tion with execution of the first executable statement of that subprogram. Unless
a statement is a GO TO, arithmetic IF, RETURN, or STOP statement or the
terminal statement of a DO, completion of execution of that statement causes
execution of the next following executable statement. The sequence of execution
following execution of any of these statements is described in Section 7. A
program part may not contain an executable statement that can never be exe-
cuted.

A program part must contain a first executable statement.
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10. INTRA- AND INTERPROGRAM RELATIONSHIPS

10.1. SymBoLic NAMES. A symbolic name has been defined to consist of from
one to six alphanumeric characters, the first of which must be alphabetic. Se-
quences of characters that are format field descriptors or uniquely identify
certain statement types, e.g. GO TO, READ, FORMAT, etc., are not symbolic
names in such occurrences nor do they form the first characters of symbolic
names in these cases. In a program unit a symbolic name (perhaps qualified by a
subscript) must identify an element of one (and usually only one) of the following
classes:

Class I An array and the elements of that array.

Class II A variable.

Class III A statement function.

Class IV An intrinsic function.

Class V An external function.

Class VI A subroutine.

Class VII An external procedure which cannot be classified as either a
subroutine or an external function in the program unit in question.

Class VIII A block name.

10.1.1. Restrictions on Class. A symbolic name in Class VIII in a program
unit may also be in any one of the Classes I, II, or III in that program unit.

In the program unit in which a symbolic name in Class V appears immediately
following the word FUNCTION in a FUNCTION statement, that name must
also be in Class II.

Once a symbolic name is used in Class V, VI, VII, or VIII in any unit of an
executable program, no other program unit of that executable program may use
that name to identify an entity of these classes other than the one originally
identified. In the totality of the program units that make up an executable
program a Class VII name must be associated with a Class V or VI name. Class
VII can only exist locally in program units.

In a program unit no symbolic name can be in more than one class except as
noted in the foregoing. There are no restrictions on uses of symbolic names in
different program units of an executable program other than those noted in the
foregoing.

10.1.2. Implications of Mentions in Specification and DATA Statements. A
symbolic name is in Class I if, and only if, it appears as a declarator name. Only
one such appearance for a symbalic name in a program unit is permitted.

A symbolic name that appears in a COMMON statement (other than as a block
name) is either in Class I or in Class II but not Class V. (8.3.1) Only one such
appearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in an EQUIVALENCE statement is either in
Class I or in Class II but not Class V. (8.3.1)

A symbolic name that appears in a type-statement cannot be in Class VI or
Class VII. Only one such appearance for a symbolic name in a program unit is
permitted.

A symbolic name that appears in an EXTERNAL statement is in either Class
V, Class VI, or Class VII. Only one such appearance for a symbolic name in a
program unit is permitted.

A symbolic name that appears in a DATA statement is in either Class I or in
Class II but not Class V. (8.3.1) In an executable program, a storage unit
(7.2.1.3.1) may have its value initialized one time at the most.
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10.1.3. Array and Array Element. In a program unit any appearance of a
symbolic name that identifies an array must be immediately followed by a
subscript, except for the following cases:

1. In the list of an input/output statement.

2. In a list of dummy arguments.

3. In the list of actual arguments in a reference to an external procedure.
4. In a COMMON statement.

5. In a type-statement.

Only when an actual argument of an external procedure reference is an array
name or an array element name may the corresponding dummy argument be an
array name. If the actual argument is an array name the length of the dummy
argument array must be no greater than the length of the actual argument array.
If the actual argument is an array element name the length of the dummy argu-
ment array must be less than or equal to the length of the actual argument array
plus one minus the value of the subscript of the array element.

10.1.4. External Procedures. The only case when a symbolic name is in Class
VII occurs when that name appears only in an EXTERNAL statement and as
an actual argument to an external procedure in a program unit.

Only when an actual argument of an external procedure reference is an external
procedure name may the corresponding dummy argument be an external pro-
cedure name.

In the execution of an executable program a procedure subprogram may not
be referenced twice without the execution of a RETURN statement in that
procedure having intervened.

10.1.5. Subroutine. A symbolic name is in Class VI if it appears:

1. Immediately following the word SUBROUTINE in a SUBROUTINE
statement.
2. Immediately following the word CALL in a CALL statement.

10.1.6. Statement Function. A symbolic name is in Class III in a program unit
if, and only if, it meets all three of the following conditions:

1. It does not appear in an EXTERNAL statement nor is it in Class I.

2. Every appearance of the name, except in a type-statement, is immediately
followed by a left parenthesis.

3. A function defining statement (8.1.1) is present for that symbolic name.

10.1.7. Intrinsic Function. A symbolic name is in Class IV in a program unit
if, and only if, it meets all four of the following conditions:

1. It does not appear in an EXTERNAL statement nor is it in Class I or
Class III.

2. The symbolic name appears in the name column of the table in Section 8.2.

3. The symbolic name does not appear in a type-statement of type different
from the intrinsic type specified in the table.

4. Every appearance of the symbolic name (except in a type-statement as
described in the foregoing) is immediately followed by an actual argument list
enclosed in parentheses.

The use of an intrinsic function in a program unit of an executable program
does not preclude the use of the same symbolic name to identify some other
entity in a different program unit of that executable program.

10.1.8. External Function. A symbolic name is in Class V if it:
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1. Appears immediately following the word FUNCTION in a FUNCTION
statement.

2. Is not in Class I, Class III, Class IV, or Class VI and appears immediately
followed by a left parenthesis on every occurrence except in a type-statement
in an EXTERNAL statement, or as an actual argument. There must be at least
one such appearance in the program unit in which it is so used.

10.1.9. Variable. In a program unit, a symbolic name is in Class II if it meets
all three of the following conditions:

1. It is not in Class VI or Class VII.

2. It is never immediately followed by a left parenthesis unless it is immediately
preceded by the word FUNCTION in a FUNCTION statement.

3. It occurs other than in a Class VIII appearance.

10.1.10. Block Name. A symbolic name is in Class VIII if, and only if, it is
used as a block name in a COMMON statement.

10.2. DEFINITION. There are two levels of definition of numeric values, first-
level definition and second-level definition. The concept of definition on the
first level applies to array elements and variables; that of second-level definition
to integer variables only. These concepts are defined in terms of progression of
execution; and thus, an executable program, complete and in execution, is
assumed in what follows.

There are two other varieties of definition that should be noted. The first,
effected by GO TO assignment and referring to an integer variable being defined
with other than an integer value, is discussed in 7.1.1.3 and 7.1.2.1.2; the second,
which refers to when an external procedure may be referenced, will be discussed
in the next section.

In what follows, otherwise unqualified use of the terms definition and un-
definition (or their alternate forms) as applied to variables and array elements
will imply modification by the phrase on the first level.

10.2.1. Definition of Procedures. If an executable program contains information
describing an external procedure such an external procedure with the applicable
symbolic name is defined for use in that executable program. An external
function reference or subroutine reference (as the case may be) to that symbolic
name may then appear in the executable program, provided that number of
argument agrees between definition and reference. In addition, for an external
function, the type of function must agree between definition and reference.
Other restrictions on agreements are contained in 8.3.1, 8.3.2, 8.4.1, 8.4.2, 10.1.3,
and 10.1.4.

The basic external functions listed in (8.3.3) are always defined and ma> be
referenced subject to the restrictions alluded to in the foregoing.

A symbolic name in Class III or Class IV is defined for such use.

10.2.2. Associations that Effect Definition. Entities may become associated by :

1. COMMON association.
2. EQUIVALENCE association.
3. Argument substitution.

Multiple association to one or more entities can be the result of combinations
of the foregoing. Any definition or undefinition of one of a set of associated
entities effects the definition or undefinition of each entity of the entire set.

For purposes of definition, in & program unit there is no association between
any two entities both of which appear in COMMON statements. Further, there
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is no other association for common and equivalenced entities other than those
stated in 7.2.1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference is an array name, an
array element name, or a variable name, then the discussions in 10.1.3 and 10.2.1
allow an association of dummy arguments with the actual arguments only
between the time of execution of the first executable statement of the procedure
and the inception of execution of the next encountered RETURN statement of
that procedure. Note specifically that this association can be carried through
more than one level of external procedure reference.

In what follows, variables or array elements associated by the information in
7.2.1.3.1 and 7.2.1.4 will be equivalent if, and only if, they are of the same type.

If an entity of a given type becomes defined, then all associated entities of
different type become undefined at the same time, while all associated entities of
the same type become defined unless otherwise noted.

Association by argument substitution is valid only in the case of identity of
type, so the rule in this case is that an entity created by argument substitution
is defined at time of entry if, and only if, the actual argument was defined. If
an entity created by argument substitution becomes defined or undefined (while
the association exists) during execution of a subprogram, then the corresponding
actual entities in all calling program units becomes defined or undefined accord-
ingly.

10.2.3. Events That Effect Definition. Variables and array elements become
initially defined if, and only if, their names are associated in a data initialization
staterment with a constant of the same type as the variable or array in question.
Any entity not initially defined is undefined at the time of the first execution of
the first executable statement of the main program. Redefinition of a defined
entity is always permissible except for certain integer variables (7.1.2.8, 7.1.3.1.1,
and 7.2.1.1.2) or certain entities in subprograms (6.4, 8.3.2, and 8.4.2).

Variables and array elements become defined or redefined as follows:

1. Completion of execution of an arithmetic or logical assignment statement
causes definition of the entity that precedes the equals.

2. As execution of an input statement proceeds, each entity, which is assigned
a value of its corresponding type from the input medium, is defined at the time
of such association. Only at the completion of execution of the statement do
associated entities of the same type become defined.

3. Completion of execution of a DO statement causes definition of the control
variable.

4. Inception of execution of action specified by a DO-implied list causes
definition of the control variable.

Variables and array elements become undefined as follows:

1. At the time a DO is satisfied, the control variable becomes undefined.

2. Completion of execution of an ASSIGN statement causes undefinition of the
integer variable in the statement.

3. Certain entities in function subprograms (10.2.9) become undefined.

4. Completion of execution of action specified by a DO-implied list causes
undefinition of the control variable.

5. When an associated entity of different types becomes defined.

6. When an associated entity of the same type becomes undefined.

10.2.4. Entities in Blank Common. Entities in blank common and those
entities associated with them may not be initially defined.
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Such entities, once defined by any of the rules previously mentioned, remain
defined until they become undefined.

10.2.5. Entities in Labelled Common. Entities in labelled common or any
associates of those entities may be initially defined.

A program unit contains a labelled common block name if the name appears
as a block name in the program unit. If a main program or referenced subprogram
contains a labelled common block name any entity in the block (and its associates)
once defined remain defined until they become undefined.

It should be noted that redefinition of an initially defined entity will allow
later undefinition of that entity. Specifically, if a subprogram contains a labelled
common block name that is not contained in any program unit currently referenc-
ing the subprogram directly or indirectly, the execution of a RETURN state-
ment in the subprogram causes undefinition of all entities in the block (and their
associates) except for initially defined entities that have maintained their initial
definitions.

10.2.8. Entities Not in Common. An entity not in common except for a dummy
argument or the value of a function may be initially defined.

Such entities, once defined by any of the rules previously mentioned, remain
defined until they become undefined.

If such an entity is in a subprogram the completion of execution of a RETURN
statement in that subprogram causes all such entities and their associates at that
time (except for initially defined entities that have not been redefined or become
undefined) to become undefined. In this respect, it should be noted that the
association between dummy arguments and actual arguments is terminated at
the inception of execution of the RETURN statement.

Again, it should be emphasized, the redefinition of an initially defined entity
can result in a subsequent undefinition of that entity.

10.2.7. Basic Block. In a program unit, & basic block is a group of one or
more executable statements defined as follows.

The following statements are block terminal statements:

1. DO statement.

2. CALL statement.

3. GO TO statement of all types.

4. Arithmetic IF statement.

5. STOP statement.

6. RETURN statement.

7. The first executable statement, if it exists, preceding a statement whose
label is mentioned in a GO TO or arithmetic IF statement.

8. An arithmetic statement in which an integer variable precedes the equals.

9. A READ statement with an integer variable in the list.

10. A logical IF containing any of the admissible forms given in the foregoing.

The following statements are block initial statements:

1. The first executable statement of a program unit.
2. The first executable statement, if it exists, following a block terminal

statement.
Every block initial statement defines a basic block. If that initial statement

is also a block terminal statement the basic block consists of that one statement.
Otherwise, the basic block consists of the initial statement and all executable
statements that follow until a block terminal statement is encountered. The
terminal statement is included in the basic block.
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10.2.7.1. Last Executable Statement. In a program unit the last executable
statement (which cannot be part of a logical IF) must be one of the following
statements: GO TO statement, arithmetic IF statement, STOP statement, or
RETURN statement.

10.2.8. Second Level Definition. Integer variables must be defined on the
second level when used in subscripts and computed GO TO statements.

Redefinition of an integer entity causes all associated variables to be undefined
for use on the second level during this execution of this program unit until the
associated integer variable is explicitly redefined.

Except as just noted, an integer variable is defined on the second level upon
execution of the initial statement of a basic block only if both of the following
conditions apply:

1. The variable is used in a subscript or in a computed GO TO in the basic
block in question.

2. The variable is defined on the first level at the time of execution of the
initial statement in question.

This definition persists until one of the following happens:

1. Completion of execution of the terminal statement of the basic block in
question.

2. The variable in question becomes undefined or receives a new definition on
the first level.

At this time the variable becomes undefined on the second level.

In addition, the occurrence of an integer variable in the list of an input state-
ment in which that integer variable appears following in a subscript causes that
variable to be defined on the second level. This definition persists until one of the
following happens:

1. Completion of execution of the terminal statement of the basic block con-
taining the input statement.

2. The variable becomes undefined or receives a new definition on the first
level.

An integer variable defined as the control variable of a DO-implied list is
defined on the second level over the range of that DO-implied list and only over
that range.

10.2.9. Certain Entities in Function Subprograms. If a function subprogram
is referenced more than once with an identical argument list in a single state-
ment, the execution of that subprogram must yield identical results for those
cases mentioned, no matter what the order of evaluation of the statement.

If a statement contains a factor that may not be evaluated (6.4), and if this
factor contains a function reference, then all entities that might be defined in
that reference become undefined at the completion of evaluation of the expression
containing the factor.

10.3. DeFINITION REQUIREMENTS FOR USE OF ENTITIES. Any variable
referenced in a subscript or a computed GO TO must be defined on the second
level at the time of this use.

Any variable, array element, or function referenced as a primary in an ex-
pression and any subroutine referenced by a CALL statement must be defined
at the time of this use. In the case where an actual argument in the argument
list of an external procedure reference is a variable name or an array element
name, this in itself is not a requirement that the entity be defined at the time of
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the procedure reference; however, when such an argument is an external pro-
cedure name, it must be defined.

Any variable used as an initial .value, terminal value, or incrementation
value of a DO statement or a DO-implied list must be defined at the time of this
use.
Any variable used to identify an input/output unit must be defined at the
time of this use.

At the time of execution of a RETURN statement in a function subprogram,
the value (8.3.1) of that function must be defined.

At the time of execution of an output statement, every entity whose value is
to be transferred to the output medium must be defined unless the output is
under control of a format specification and the corresponding conversion code is
A. If the output is under control of a format specification a correct association
of conversion code with type of entity is required unless the conversion code is A.
The following are the correct associations: I with integer; D with double pre-
cision; E, F, and G with real and complex; and L with logical.
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1. INTRODUCTION

1.1. Purprosg. This specification establishes the form for and the interpretation
of programs expressed in the FORTRAN language for the purpose of promoting
a high degree of interchangeability of such programs for use on a variety of auto-
matic data processing systems. A processor shall conform to this specification
provided it accepts, and interprets as specified, at least those forms and relation-
ships described herein.

Insofar as the interpretation of the form and relationships described are not
affected, any statement of requirement could be replaced by a statement express-
ing that the specification does not provide an interpretation unless the require-
ment is met. Further, any statement of prohibition could be replaced by a state-
ment expressing that the specification does not provide an interpretation when
the prohibition is violated.

1.2. Scope. This specification establishes:

1. The form of a program written in the FORTRAN language.

2. The form of writing input data to be processed by such a program operating
on automatic data processing systems.

3. Rules for interpreting the meaning of such a program.

4. The form of the output data resulting from the use of such a program on
automatic data processing systems, provided that the rules of interpretation
establish an interpretation.

This specification does not prescribe:

1. The mechanism by which programs are transformed for use on a data
processing system (the combination of this mechanism and data processing system
is called a processor).

2. The method of transcription of such programs or their input or output data
to or from a data processing medium.

3. The manual operations required for set-up and control of the use of such pro-
grams on data processing equipment.

4. The results when the rules for interpretation fail to establish an interpreta-
tion of such a program.

5. The size or complexity of a program that will exceed the capacity of any
specific data processing system or the capability of a particular processor.

6. The range of precision of numerical quantities.

2. BASIC TERMINOLOGY

This section introduces some basic terminology and some concepts. A rigorous
treatment of these is given in later sections. Certain conventions concerning the
meaning of grammatical forms and particular words are presented.

A program that can be used as a self-contained computing procedure is called an
executable program (9.1.6).

An executable program consists of precisely one main program and possibly one
or more subprograms (9.1.6).

A main program i8 a set of statements and comments not containing a FUNC-
TION or SUBROUTINE statement (9.1.5).
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A procedure subprogram is similar to a main program but is headed by a FUNC-
TION or SUBROUTINE statement. A procedure subprogram is sometimes
referred to as a subprogram (9.1.3).

The term program wunit will refer to either a main program or subprogram
(9.1.7).

Any program unit may reference an external procedure (Section 9).

An external procedure that is defined by FORTRAN statements is called a
procedure subprogram. External procedures also may be defined by other means.
An external procedure may be an external function or an external subroutine.
An external function defined by FORTRAN statements headed by a FUNCTION
statement is called a function subprogram. An external subroutine defined by
FORTRAN statements headed by a SUBROUTINE statement is called a sub-
routine subprogram (Sections 8 and 9).

Any program unit consists of statements and comments. A statement is divided
into physical sections called lines, the first of which is called an ¢nitial line and the
rest of which are called continuation lines (3.2).

There is a type of line called a comment that is not a statement and merely
provides information for documentary purposes (3.2).

The statements in FORTRAN fall into two broad classes—executable and non-
executable. The executable statements specify the action of the program while
the nonexecutable statements describe the use of the program, the characteristics
of the operands, editing information, statement functions, or data arrangement
(7.1, 7.2).

The syntactic elements of a statement are names and operators. Names are
used to reference objects such as data or procedures. Operators, including the
imperative verbs, specify action upon named objects.

One class of name, the array name, deserves special mention. The name and
the dimensions of the array of values denoted by the array name are declared
prior to use. An array name may be used to identify an entire array. An array
name qualified by a subscript may be used to identify a particular element of the
array (5.1.3).

Data names and the arithmetic operators may be connected into arithmetic
expressions that develop values. These values are derived by performing the
specified operations on the named data (Section 6).

The identifiers used in FORTRAN are names and numbers. Data are named.
Procedures are named. Statements are labelled with numbers. Input/output
units are numbered or identified by a name whose value is the numerical unit
designation.

At various places in this document there are statements with associated lists
of entries. In all such cases the list is assumed to contain at least one entry unless
an explicit exception is stated. As an example, in the statement

SUBROUTINE s(ai, az, . ., @)

it is assumed that at least one symbolic name is included in the list within
parentheses. A list is a set of identifiable elements, each of which is separated from
its successor by a comma. Further, in a sentence a plural form of a noun will be
assumed to also specify the singular form of that noun as a special case when the
context of the sentence does not prohibit this interpretation.

The term reference is used as a verb with special meaning as defined in Section 5.
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3. PROGRAM FORM

Every program unit is constructed of characters grouped into lines and state-
ments.

3.1. THE FORTRAN CHARACTER SET. A program unit is written using the
following characters: A, B,C, D, E,F,G, H,1,J,K,L, M, N, 0, P, Q, R, §,
T, U,V,W,X,Y,2,0,1,2,3,4,5,6,7,8,9, and:

Character Name of Character
Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma
Decimal Point

The order in which the characters are listed does not imply & collating sequence.

3.1.1. Digits. A digit is one of the ten characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Unless specified otherwise, a string of digits will be interpreted in the decimal
base number system when a number system base interpretation is appropriate.

An octal digit is one of the eight characters: 0, 1, 2, 3, 4, 5, 6, 7. These are
only used in the STOP (7.1.2.7.1) and PAUSE (7.1.2.7.2) statements.

3.1.2. Letters. A letter is one of the twenty-six characters: A, B, C, D, E, F, G,
H,LJ,K,L,M,N,0,P,Q,R,S8,T,0,V,W, X, Y, Z.

3.1.3. Alphanumeric Characters. An alphanumeric character is a letter or a
digit.

3.1.4. Special Characters. A special character is one of the ten characters: blank,
equals, plus, minus, asterisk, slash, left parenthesis, right parenthesis, comma,
and decimal point.

3.1.4.1. Blank Character. With the exception of the uses specified (3.2.2, 3.2.3,
3.2.4, 7.2.3.6, and 7.2.3.8), a blank character has no meaning and may be used
freely to improve the appearance of the program subject to the restriction on
continuation lines in 3.3.

3.2. LinEs. A line is a string of 72 characters. All characters must be from the
FORTRAN character set except as described in 7.2.3.8.

The character positions in a line are called columns and are consecutively
numbered 1, 2, 3, ..., 72. The number indicates the sequential position of a
character in the line starting at the left and proceeding to the right.

3.2.1. Comment Line. The line C in column 1 of a line designates that line as a
comment line. A comnment line must be immediately followed by an initial line,
another comment line, or an end line.

A comment line does not affect the program in any way and is available as a
convenience for the programmer.

3.2.2. End Line. An end line is a line with the character blank in columns 1
through 6, the characters E, N, and D, once each in that order, in columns 7
through 72, preceded by, interspersed with, or followed by the character blank.
The end line indicates, to the processor, the end of the written description of &
program unit (9.1.7). Every program unit must physically terminate with an end
line.

o¢VA\*|.|
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3.2.3. Initial Line. An initial line is a line that is neither a comment line nor
an end line and that contains the digit 0 or the character blank in column 6.
Columns 1 through 5 contain the statement label or each contains the character
blank.

3.2.4. Continuation Line. A continuation line is a line that contains any charac-
ter other than the digit 0 or the character blank in column 6, and does not contain
the character C in column 1.

A continuation line may only follow an initial line or another continuation line.

3.3. STATEMENTS. A statement consists of an initial line optionally followed by
up to five ordered continuation lines. The statement is written in columns 7
through 72 of the lines. The order of the characters in the statement is columns 7
through 72 of the initial line followed, as applicable, by columns 7 through 72
of the first continuation line, columns 7 through 72 of the next continuation line,
etc.

3.4. STATEMENT LABEL. Optionally, a statement may be labelled so that it may
be referred to in other statements. A statement label consists of from one to four
digits. The value of the integer represented is not significant but must be greater
than zero. The statement label may be placed anywhere in columns 1 through 5
of the initial line of the statement. The same statement label may not be given
to more than one statement in a program unit. Leading zeros are not significant
in differentiating statement labels.

3.6. SymBoric NAMES. A symbolic name consists of from one to five alpha-
numeric characters, the first of which must be alphabetic. See 10.1 through
10.1.10 for a discussion of classification of symbolic names and restrictions on
their use.

3.6. ORDERING OF CHARACTERS. An ordering of characters is assumed within
a program unit. Thus, any meaningful collection of characters that constitutes
names, lines, and statements exists as a totally ordered set. This ordering is
imposed by the character position rule of 3.2 (which orders characters within a
line) and the order in which lines are presented for processing.

4. DATA TYPES

Two different types of data are defined. These are integer and real. Each type
has a different mathematical significance and may have different internal repre-
sentation. Thus, the data type has a significance in the interpretation of the
associated operations with which a datum is involved. The data type of a func-
tion defines the type of the datum it supplies to the expression in which it appears.

4.1. DatA TyPE AssocIiATION. The name employed to identify a datum or
function carries the data type association. The form of the string representing a
constant defines both the value and the data type.

A symbolic name representing a function, variable, or array must have only a
single data type association for each program unit. Once associated with a par-
ticular data type, a specific name implies that type for any differing usage of that
symbolic name that requires a data type association throughout the program
unit in which it is defined.

Data type is established for a symbolic name by the first character of that name
(5.3).

4.2. Data TyrE ProPERTIES. The mathematical and the representation pro-
perties for each of the data types are defined in the following sections. For both
real and integer data, the value zero is considered neither positive nor negative.

4.2.1. Integer Type. An integer datum is always an exact representation of an
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integer value. It may assume positive, negative, and zero values. It may only
assume integral values.

4.2.2. Real Type. A real datum is a processor approximation to the value of a
real number. It may assume positive, negative, and zero values.

5. DATA AND PROCEDURE IDENTIFICATION

Names are employed to reference or otherwise identify data and procedures.

The term reference is used to indicate an identification of a datum implying that
the current value of the datum will be made available during the execution of the
statement containing the reference. If the datum is identified but not necessarily
made available the datum is said to be named. One case of special interest in
which the datum is named is that of assigning a value to a datum, thus defining
or redefining the daturn.

The term, reference, is used to indicate an identification of a procedure implying
that the actions specified by the procedure will be made available.

A complete and rigorous discussion of reference and definition, including re-
definition, is contained in Section 10.

5.1. DATA AND PROCEDURE NAMES. A data name identifies a constant, a
variable, an array, or an array element. A procedure name identifies a function
or a subroutine.

5.1.1. Constants. A constant is a name that references a value. A constant may
not be redefined.

An integer or real constant is said to be signed when it is immediately preceded
by a plus or minus. Also, for these types, an optionally signed constant is either
a constant or a signed constant.

5.1.1.1. Integer Constant. An integer constant is formed by a nonempty string
of digits. The datum formed this way is interpreted as the value represented by
the digit string.

5.1.1.2. Real Constant. A basic real constant is formed by an integer part, a
decimal point, and a decimal fraction part in that order. Both the integer part
and the decimal fraction part are formed by a string of digits; either one of these
strings may be empty, but not both. The datum formed this way is interpreted as
representing a value that is an approximation to the number represented by the
integer and fraction parts.

A decimal exponent is formed by the letter E followed by an optionally signed
integer constant. This exponent is interpreted as a multiplier (to be applied to the
constant immediately preceding it) that is an approximation to ten raised to the
power specified by the field following the E.

A real constant is either a basic real constant or a basic real constant followed
by a decimal exponent.

5.1.2. Variable. A variable is a datum that is identified by a symbolic name
(3.5). Such a datum may be referenced and defined.

5.1.3. Array. An array is an ordered set of data of one or two dimensions. An
array is identified by a symbolic name. Identification of the entire ordered set is
achieved via use of the array name.

5.1.3.1. Array Element. An array element is one of the members of the set, of
data of an array. An array element is identified by immediately following the
array name with a qualifier, called a subscript, which points to the particular
element of the array.

An array element may be referenced and defined.

5.1.3.2. Subscript. A subscript is formed by a parenthesized list of subscript
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expressions. The subscript expressions are separated by a comma if two are
present. The number of subscript expressions must correspond to the declared
dimensionality (7.2.1.1), except in an EQUIVALENCE statement (7.2.1.4).
Following evaluation of all of the subscript expressions, the array element suc-
cessor function (7.2.1.1.1) determines the identified array element.

5.1.3.3. Subscript Expressions. A subscript expression is formed from one of the
following constructs:

c*v+-k
crv—k
c*v
v+k
v—k

v

k

where ¢ and k are integer constants and v is an integer variable reference. See
Section 6 for a discussion of evaluation of expressions and 10.2.8 and 10.3 for
requirements that apply to the use of a variable in a subscript.

5.1.4. Procedures. A procedure (Section 8) is identified by a symbolic name. A
procedure is a statement function, an intrinsic function, a basic external function,
an external function, or an external subroutine. Statement functions, intrinsic
functions, basic external functions, and external functions are referred to as
functions or function procedures; external subroutines as subroutines or sub-
routine procedures.

A function supplies a result to be used at the point of reference; a subroutine
does not. Functions are referenced in a manner different from subroutines.

5.2. FuncTiON REFERENCE. A function reference consists of the function name
followed by an actual argument list enclosed in parentheses. If the list contains
more than one argument, the arguments are separated by commas. The allowable
forms of function arguments are given in Section 8.

See 10.2.1 for a discussion of requirements that apply to function references.

5.3. TypE RuLEs FOR DATA AND PROCEDURE IDENTIFIERS. The type of a
constant is implicit in its name.

‘There is no type associated with a symbolic name that identifies a subroutine.

A symbolic name that identifies a variable, an array, or a statement function
has a type implied by the first character of the name: I, J, K, L, M, and N imply
type integer; any other letter implies type real.

A symbolic name that identifies an intrinsic function or a basic external func-
tion when it is used to identify this designated procedure, has a type associated
with it as specified in Tables 3 and 4.

In the program unit in which an external function is referenced or defined its
type definition is defined in the same manner as for a variable and an array.

The same type is associated with an array element as is associated with the
array name.

5.4. DumMy ARGUMENTS. A dummy argument of an external procedure
identifies a variable or an array.

Unless specified otherwise, when the use of a variable, array, or array element
name is specified, the use of a dummy argument is permissible provided that a
proper association with an actual argument is made.

The process of argument association is discussed in Sections 8 and 10.
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6. EXPRESSIONS

This section gives the formation and evaluation rules for arithmetic expressions.
An expression is formed from elements and operators. See 10.3 for a discussion of
requirements that apply to the use of certain entities in expressions.

6.1. ARITHMETIC EXPRESSIONS. An arithmetic expression is formed with
arithmetic operators and arithmetic elements. Both the expression and its
constituent elements identify values of one of the types integer or real. The
arithmetic operators are:

Operator Representing
+ Addition, positive value (zero -+ element)
— Subtraction, negative value (zero — element)
* Multiplication
/ Division
ok Exponentiation

The arithmetic elements are primary, factor, term, signed term, simple arith-
metic expression, and arithmetic expression.

A primary is an arithmetic expression enclosed in parentheses, a constant, a
variable reference, an array element reference, or a function reference.

A factor is a primary or a construct of the form:

primary**primary
A term is a factor or a construct of one of the forms:

term/factor
or
term*term

A signed term is a term immediately preceded by + or —.

A simple arithmetic expression is a term or two simple arithmetic expressions
separated by a + or —.

An arithmetic expression is a simple arithmetic expression or a signed term or
either of the preceding forms immediately followed by a 4+ or — immediately
followed by a simple arithmetic expression.

A primary of any type may be exponentiated by an integer primary and the
resultant factor is of the same type as that of the element being exponentiated.
A real primary may be exponentiated by a real primary, and the resultant factor
is of type real. These are the only cases for which use of the exponentiation
operator is defined.

By use of the arithmetic operators other than exponentiation, any admissible
element may be combined with another admissible element of the same type, and
the resultant element is of the same type.

6.4. EvALUuATION OF EXPRESSIONS. A part of an expression need be evaluated
only if such action is necessary to establish the value of the expression. The rules
for formation of expressions imply the binding strength of operators. It should be
noted that the range of the subtraction operator is the term that immediately
succeeds it. The evaluation may proceed according to any valid formation
sequence.

When two elements are combined by an operator the order of evaluation of
the elements is optional. If mathematical use of operators is associative, com-
mutative, or both, full use of these facts may be made to revise orders of combina-
tion, provided only that integrity of parenthesized expressions is not violated.
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The value of an integer factor or term is the nearest integer whose magnitude
does not exceed the magnitude of the mathematical value represented by that
factor or term.

Any use of an array element name requires the evaluation of its subscript.
The evaluation of functions appearing in an expression may not validly alter the
value of any other element within the expressions, assignment statement or CALL
statement in which the function reference appears. The type of the expression
in which a function reference or subscript appears does not affect, nor is it affected
by, the evaluation of the actual arguments or subscript.

No factor may be evaluated that requires a negative valued primary to be
raised to a real exponent. No factor may be evaluated that requires raising a zero
valued primary to a zero valued exponent.

No element may be evaluated whose value is not mathematically defined.

7. STATEMENTS

A statement may be classified as executable or nonexecutable. Executable
statements specify actions; nonexecutable statements describe the characteristics
and arrangement of data, editing information, statement functions, and classifica-
tion of program units.

7.1. EXECUTABLE STATEMENTS. There are three types of executable state-
ments:

1. Assignment statements.
2. Control statements.
3. Input/output statements.

7.1.1. Assignment Statements. There is a single assignment statement, the
arithmetic assignment statement.
7.1.1.1. Arithmetic Assignment Statement. An arithmetic assignment statement
is of the form:
v=ce

where v is a variable name or array element name and e is an arithmetic expres-
sion. Execution of this statement causes the evaluation of the expression ¢ and
the altering of v according to Table 1.

TABLE 1. RULES FOR ASSIGNMENT OF € TO v

If v Type Is | And e Type Is | The Assignment Rule Is*

Integer Integer Assign

Integer Real Fix & Assign
Real Integer Float & Assign
Real Real Assign

* NOTES.

1. Assign means transmit the resulting value, without change, to the entity.

2. Fix means truncate any fractional part of the result and transform that value to
the form of an integer datum.

3. Float means transform the value to the form of a real datum.
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7.1.2. Control Statements. There are seven types of control statements:

. GO TO statements.

. Arithmetic IF statement.

. CALL statement.

. RETURN statement.

. CONTINUE statement.

. Program control statements.
7. DO statement.

O W DD

The statement labels used in a control statement must be associated with
executable statements within the same program unit in which the control state-

ment appears.
7.1.2.1. GO TO Statements. There are two types of GO TO statements:

1. Unconditional GO TO statement.
2. Computed GO TO statement.

7.1.2.1.1. Unconditional GO TO Statement. An unconditional GO TO statement

is of the form:
GO TO k

where k is a statement label.

Execution of this statement causes the statement identified by the statement
label to be executed next.
7.1.2.1.3. Computed GO TO Statement. A computed GO TO statement is of the

form:
GO TO (k1, b2y o o 5 k), 2

where the k’s are statement labels and ¢ is an integer variable reference. See
10.2.8 and 10.3 for a discussion of requirements that apply to the use of a variable
in a computed GO TO statement.

Execution of this statement causes the statement identified by the statement
label k; to be executed next, where j is the value of 7 at the time of the execution.
This statement is defined only for values such that 1 < 5 < n.

7.1.2.2. Arithmetic IF Statement. An arithmetic IF statement is of the form:

IF (e) ka, ke, ks

where e is any arithmetic expression of type integer or real, and the k’s are state-
ment labels.

The arithmetic IF is a three-way branch. Execution of this statement causes
evaluation of the expression e following which the statement identified by the
statement label ki, k2, or k3 is executed next as the value of e is less than zero, zero,
or greater than zero, respectively.

7.1.2.4. CALL Statement. A CALL statement is of one of the forms:

CALL 8 (a1, ag, « . . , Gn)
or
CALL ¢

where s is the name of a subroutine and the a’s are actual arguments (8.4.2).

The inception of execution of a CALL statement references the designated
subroutine. Return of control from the designated subroutine completes execu-
tion of the CALL statement.
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7.1.2.5. RETURN Statement. A RETURN statement is of the form:
RETURN

A RETURN statement marks the logical end of a procedure subprogram and,
thus, may only appear in a procedure subprogram.

Execution of this statement when it appears in a subroutine subprogram causes
return of control to the current calling program unit.

Execution of this statement when it appears in a function subprogram causes
return of control to the current calling program unit. At this time the value of the
function (8.3.1) is made available.

7.1.2.6. CONTINUE Statement. A CONTINUE statement is of the form:

CONTINUE

Execution of this statement causes continuation of normal execution sequence.
7.1.2.7. Program Control Statements. There are two types of program control
statements:

1. STOP statement
2. PAUSE statement

7.1.2.7.1. STOP Statement. A STOP statement is of one of the forms:

STOP n
or
STOP

where 7 is an octal digit string of length from one to four.
Execution of this statement causes termination of execution of the executable

program.
7.1.2.7.2. PAUSE Statement. A PAUSE statement is of one of the forms:
PAUSE n
or
PAUSE

where 7 is an octal digit string of length from one to four.

The inception of execution of this statement causes a cessation of execution of
this executable program. Execution must be resumable. At the time of cessation
of execution, the octal digit string is accessible. The decision to resume execution
is not under control of the program; but if execution is resumed, execution of the
PAUSE statement is completed.

7.1.2.8. DO Statement. A DO statement is of one of the forms:

DO n t = my, ma, ms
or
DO n ¢+ = my, me

where:

1. n is the statement label of an executable statement. This statement, called
the terminal statement of the associated DO, must physically follow and be in the
same program unit as that DO statement. The terminal statement may not be a
GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE, or DO statement.

2. ¢ is an integer variable name; this variable is called the control variable.

3. my, called the initial parameter ;mg, called the terminal parameter; and ms,
called the incrementation parameter, are each either an integer constant or
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integer variable reference. If the second form of the DO statement is used so that
mg is not explicitly stated, a value of one is implied for the incrementation para-
meter. At time of execution of the DO statement, m;, ms, and ms must be greater
than zero.

Associated with each DO statement is a range that is defined to be those execut-
able statements from and including the first executable statement following the
DO, to and including the terminal statement associated with the DO. A special
situation occurs when the range of a DO contains another DO statement. In this
case, the range of the contained DO must be a subset of the range of the contain-
ing DO.

A DO statement is used to define a loop. The action succeeding execution of a
DO statement is described by the following five steps:

1. The control variable is assigned the value represented by the initial para-
meter. This value must be less than or equal to the value represented by the
terminal parameter.

2. The range of the DO is executed.

3. If control reaches the terminal statement, and after execution of the terminal
statement, the control variable of the most recently executed DO statement
associated with the terminal statement is incremented by the value represented
by the associated incrementation parameter.

4. If the value of the control variable after incrementation is less than or equal
to the value represented by the associated terminal parameter the action as
described starting at step 2 is repeated with the understanding that the range in
question is that of the DO, the control variable of which was most recently
incremented. If the value of the control variable is greater than the value
represented by its associated terminal parameter the DO is said to have been
satisfied and the control variable becomes undefined.

5. At this point, if there were one or more other DO statements referring to the
terminal statement in question the control variable of the next most recently
executed DO statement is incremented by the value represented by its associated
incrementation parameter and the action as described in step 4 is repeated until
all DO statements referring to the particular termination statement are satisfied,
at which time the first executable statement following the terminal statement is
executed.

Upon exiting from the range of a DO by execution of a GO TO statement or an
arithmetic IF statement, that is, other than by satisfying the DO, the control
variable of the DO is defined and is equal to the most recent value attained as
defined in the foregoing.

A GO TO statement or an arithmetic IF statement may not cause control to
pass into the range of a DO from outside its range. When a procedure reference
occurs in the range of a DO, the actions of that procedure are considered to be
temporarily within that range, i.e. during the execution of that reference.

The control variable, initial parameter, terminal parameter, and incrementa-
tion parameters of a DO may not be redefined during the execution of the range
of that DO.

If a statement is the terminal statement of more than one DO statement the
statement label of that terminal statement may not be used in any GO TO or
arithmetic IF statement that occurs anywhere but in the range of the most deeply
contained DO with that terminal statement.

7.1.3. Input/Output Statements. There are two types of input/output state-
ments:
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1. READ and WRITE statements.
2. Auxiliary input/output statements.

The first type consists of the statements that cause transfer of records of
sequential files to and from internal storage, respectively. The second type con-
sists of the BACKSPACE and REWIND statements that provide for positioning
of such an external file, and ENDFILE, which provides for demarcation of such an
external file.

In the following descriptions « and f identify input/output units and format
specifications, respectively. An input/output unit is identified by an integer value
and % may be either an integer constant or an integer variable reference whose
value then identifies the unit. The format specification is described in 7.2.3. The
statement label of a FORMAT statement is represented by f. The identified
statement must appear in the same program unit as the input/output statement.

A particular unit has a single sequential file associated with it. The most
general case of such a unit has the following properties:

1. If the unit contains one or more records, those records exist as a totally
ordered set.

2. There exists a unique position of the unit called its initial point. If a unit
contains no records, that unit is positioned at its initial point. If the unit is at its
initial point and contains records, the first record of the unit is defined as the next
record.

3. If a unit is not positioned at its initial point, there exists a unique preceding
record associated with that position. The least of any records in the ordering
described by (1) following this preceding record is defined as the next record of
that position.

4. Upon completion of execution of a WRITE or ENDFILE statement, there
exist no records following the records created by that statement.

5. When the next record is transmitted, the position of the unit is changed so
that this next record becomes the preceding record.

If & unit does not provide for some of the properties given in the preceding,
certain statements that will be defined may not refer to that unit. The use of such
a statement is not defined for that unit.

7.1.3.1. READ and WRITE Statements. The READ and WRITE statements
specify transfer of information. Each such statement may include a list of the
names of variables, arrays, and array elements. The named elements are assigned
values on input and have their values transferred on output.

Records may be formatted or unformatted. A formatted record consists of a
string of characters. The transfer of such a record requires that a format specifica-
tion be referenced to supply the necessary positioning and conversion specifica-
tions (7.2.3). The number of records transferred by the execution of a formatted
READ or WRITE is dependent upon the list and referenced format specification
(7.2.3.4). An unformatted record consists of a string of values. When an un-
formatted or formatted READ statement is executed, the required records on the
identified unit must be, respectively, unformatted or formatted records.

7.1.3.1.1. Input/Output Lists. The input list specifies the names of the variables
and array elements to which values are assigned on input. The output list speci-
fies the references to variables and array elements whose values are transmitted.
The input and output lists are of the same form.

Lists are formed in the following manner. A simple list is a variable name, an
array element name, or an array name, or two simple lists separated by a comma.
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A list is a simple list, a simple list enclosed in parentheses, a DO-implied list, or
two lists separated by commas.

A DO-implied list is a list followed by a comma and a DO-implied specification,
all enclosed in parentheses.

A DO-implied specification is of one of the forms:

1 = my, Mz, M3
or
i = my, ms

The clements ¢, mi, m2, and mg are as defined for the DO statement (7.1.2.8).
The range of DO-implied specification is the list of the DO-implied list and, for
input lists, 7, m;, ms, and m3 may appear, within that range, only in subscripts.

A variable name or array element name specifies itself. An array name specifies
all of the array element names defined by the array declarator, and they are
specified in the order given by the array element successor function (7.2.1.1.1).

The elements of a list are specified in the order of their occurrence from left to
right. The elements of a list in a DO-implied list are specified for each cycle of
the implied DO.

7.1.3.1.2. Formatted READ. A formatted READ statement is of one of the
forms:

READ (u, f)k
or
READ (u, f)

where k is a list.

Execution of this statement causes the input of the next records from the unit
identified by u. The information is scanned and converted as specified by the
format specification identified by f and the resulting values are assigned to the
elements specified by the list. See, however, 7.2.3.4.

7.1.3.1.3. Formatted WRITE. A formatted WRITE statement is of one of the
forms:

WRITE (u, f)k
or
WRITE (u, f)
where k is a list.

Execution of this statement creates the next records on the unit identified by «.
The list specifies a sequence of values, and these are converted and positioned as
specified by the format specification identified by f. See, however, 7.2.3.4.

7.1.3.1.4. Unformatted READ. An unformatted READ statement is of one
of the forms:

READ (u)k
or
READ (u)
where k is a list.

Execution of this statement causes the input of the next record from the unit
identified by u, and, if there is a list, these values are assigned to the sequence of
elements specified by the list. The sequence of values required by the list may
not exceed the sequence of values from the unformatted record.

7.1.3.1.5. Unformatted WRITE. An unformatted WRITE statement is of the
form:

WRITE (u)k
where k is a list.
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Execution of this statement creates the next record on the unit identified by
u of the sequence of values specified by the list.

7.1.3.2. Auxiliary Input/Output Statements. There are three types of auxiliary
input/output statements:

1. REWIND statement.
2. BACKSPACE statement.
3. ENDFILE statement.

7.1.3.2.1. REWIND Statement. A REWIND statement is of the form:
REWIND u

Execution of this statement causes the unit identified by » to be positioned at
its initial point.
7.1.3.2.2. BACKSPACE Statement. A BACKSPACE statement is of the form:
BACKSPACE u

If the unit identified by « is positioned at its initial point, execution of this
statement has no effect. Otherwise, the execution of this statement results in the
positioning of the unit identified by « so that what had been the preceding record
prior to that execution becomes the next record.

7.1.3.2.3. ENDFILE Statement. An ENDFILE statement is of the form:

ENDFILE »

Execution of this statement causes the recording of an endfile record on the unit
identified by u. The endfile record is a unique record signifying a demarcation of
a sequential file. Action is undefined when an endfile record is encountered during
execution of a READ statement.

7.1.3.3. Printing of Formatted Records. When formatted records are prepared
for printing the first character of such a record is not printed.

7.2. NONEXECUTABLE STATEMENTS. There are four types of nonexecutable
statements:

1. Specification statements.

2. FORMAT statement.

3. Function defining statements.
4. Subprogram statements.

See 10.1.2 for a discussion of restrictions on appearances of symbolic names in

such statements.
The function defining statements and subprogram statements are discussed

in Section 8.
7.2.1. Specification Statements. There are three types of specification state-

ments:

1. DIMENSION statement.
2. COMMON statement.
3. EQUIVALENCE statement.

7.2.1.1. Array Declarator. An array declarator specifies an array used in a pro-

gram unit.
The array declarator indicates the symbolic name, the number of dimensions
(one or two), and the size of each of the dimensions. The array declarator state-

ment is the DIMENSION statement.
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An array declarator has the form:

v (2)
where:
1. v, called the declarator name, is a symbolic name.
2. (1), called the declarator subscript, is composed of an integer constant or two
integer constants separated by a comma.

The appearance of a declarator in a declarator statement serves to inform
the processor that the declarator name is an array name. The number of subscript
expressions specified for the array indicates its dimensionality. The magnitude of
the value given for the subscript expressions indicates the maximum value that
the subscript may attain in any array element name.

No array element name may contain a subscript that, during execution of the
executable program, assumes a value less than one or larger than the maximum
length specified in the array declarator.

7.2.1.1.1. Array Element Successor Function and Value of a Subscript. For a
given dimensionality, subscript declarator, and subscript, the value of a subscript
pointing to an array element and the maximum value a subscript may attain are
indicated in Table 2. A subscript expression must be greater than zero.

The value of the array element successor function is obtained by adding one to
the entry in the subscript value column. Any array element whose subscript has
this value is the successor to the original element. The last element of the array
is the one whose subscript value is the maximum subscript value and has no suc-
cessor element.

TABLE 2. VALUE OF A SUBSCRIPT

. . Maximum
Dimen- Subscript . , .
sionality | Declarator Subscript Subscript Value Su#;lc;zept

1 (4) (a) a A
2 (4, B) (a, b) a+A4A-b—1) A-B

Notes. 1. a and b are subscript expressions.
2. A and B are dimensions.

7.2.1.2. DIMENSION Statement. A DIMENSION statement is of the form:
DIMENSION o1 (21), va (22), « « - » ¥n (2n)

where each v (2) is an array declarator.
7.2.1.3. COMMON Statement. A COMMON statement is of the form:

COMMON ay, az, ..., an

where each a is a variable name or an array name.

In any given COMMON statement, the entities occurring in the list of variable
names are declared to be in common.

More than one COMMON statement may appear in a program unit. The pro-
cessor will string together in common all entities so assigned in the order of their
appearance. The first element of an array will follow the immediately preceding
entity, if one exists, and the last element of an array will immediately precede the
next entity if one exists.

The size of common in a program unit is the sum of the storage required for the
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elements introduced through COMMON and EQUIVALENCE statements. The
size of common in the various program units that are to be executed together need
not be the same. Size is measured in terms of storage units (7.2.1.3.1).

7.2.1.3.1. Correspondence of Common Blocks. If all of the program units of an
executable program that contain any definition of common define common such
that there is identity in type for all entities defined in the corresponding position
from the beginning of common, then the values in the corresponding positions are
the same quantity in the executable program.

Each real or integer entity counts as one storage unit.

For common:

1. In all program units that have defined the identical type to a given position
(counted by the number of preceding storage units) references to that position
refer to the same quantity.

2. A correct reference is made to a particular position assuming a given type if
the most recent value assignment to that position was of the same type.

7.2.1.4. EQUIVALENCE Statement. An EQUIVALENCE statement is of the
form:
EQUIVALENCE (k1), (k2)s « « « 5 (kn)

in which each k is a list of the form:
A1, a2 «+ -, Am

Each a is either a variable name or an array element name (not a dummy argu-
ment), the subscript of which contains only constants, and m is greater than or
equal to two. The number of subscript expressions of an array element name must
correspond in number to the dimensionality of the array declarator or must be
ope (the array element successor function defines a relation by which an array can
be made equivalent to a one-dimensional array of the same length).

The EQUIVALENCE statement is used to permit the sharing of storage by two
or more entities. Each element in a given list is assigned the same storage (or part
of the same storage) by the processor. The EQUIVALENCE statement should
not be used to equate mathematically two or more entities.

The assignment of storage to variables and arrays declared directly in a COM-
MON statement is determined solely by consideration of their type and the
COMMON and array declarator statements. Entities so declared are always
assigned unique storage, contiguous in the order declared in the COMMON
statement.

The effect of an EQUIVALENCE statement upon common assignment may be
the lengthening of common; the only such lengthening permitted is that which
extends common beyond the last assignment for common made directly by a
COMMON statement.

When two variables or array elements share storage because of the effects of
EQUIVALENCE statements the symbolic names of the variables or arrays in
question may not both appear in COMMON statements in the same program unit.

Information contained in 7.2.1.1.1, 7.2.1.3.1, and the present section suffices to
describe the possibilities of additional cases of sharing of storage between array
elements and entities of common blocks. It is incorrect to cause either directly or
indirectly a single storage unit to contain more than one element of the same
array.

7.32r.3. FORMAT Statement. FORMAT statements are used in conjunction
with the input/output of formatted records to provide conversion and editing
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information between the internal representation and the external character

strings.
A FORMAT statement is of the form:

FORMAT (qit1z1t2z2 .« . « tnzng2)
where:

1. (qat1zat2za . . . ta2ngs) is the format specification.

2. Each q is a series of slashes or is empty.

3. Each ¢ is a field descriptor or group of field descriptors.
4. Each z is a field separator.

5. n may be zero.

A FORMAT statement must be labelled.
7.2.3.1. Field Descriptors. The format field descriptors are of the forms:

rFw.d

rEw.d

rIw

thlhz ) h,.
nX

where:

1. The letters F, E, I, H, and X indicate the manner of conversion and editing
between the internal and external representations and are called the conversion
codes.

2. w and n are nonzero integer constants representing the width of the field in
the external character string.

3. d is an integer constant representing the number of digits in the fractional
part of the external character string.

4. r, the repeat count, is an optional nonzero integer constant indicating the
number of times to repeat the succeeding basic field descriptor.

5. Each h is one character.

For all descriptors, the field width must be specified. For descriptors of the form
w.d, the d must be specified, even if it is zero. Further, w must be greater than or
equal to d.

The phrase basic field descriptor will be used to signify the field descriptor
unmodified by r.

The internal representation of external fields will correspond to the internal
representation of the corresponding type constants (4.2 and 5.1.1).

7.2.3.2. Field Separators. The format field separators are the slash and the
comma. A series of slashes is also a field separator. The field descriptors or groups
of field descriptors are separated by a field separator.

The slash is used not only to separate field descriptors, but to specify demarca.-
tion of formatted records. A formatted record is a string of characters. The
lengths of the strings for a given external medium are dependent upon both the
processor and the external medium.

The processing of the number of characters that can be contained in a record by
an external medium does not of itself cause the introduction or inception of pro-
cessing of the next record.

7.2.3.3. Repeat Specifications. Repetition of the field descriptors (except nH
and nX) is accomplished by using the repeat count. If the input/output list
warrants, the specified conversion will be interpreted repetitively up to the speci-
fied number of times.
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Repetition of a group of field descriptors or field separators is accomplished by
enclosing them within parentheses and optionally preceding the left parenthesis
with an integer constant called the group repeat count indicating the number of
times to interpret the enclosed grouping. If no group repeat count is specified a
group repeat count of one is assumed. This form of grouping is called a basic
group.

7.2.3.4. Format Control Interaction with an Input/Output List. The inception of
execution of a formatted READ or formatted WRITE statement initiates format
control. Each action of format control depends on information jointly provided
respectively by the next element of the input/output list, if one exists, and the
next field descriptor obtained from the format specification. If there is an input/
output list at least one field descriptor other than nH or nX must exist.

When a READ statement is executed under format control one record is read
when the format control is initiated, and thereafter additional records are read
only as the format specification demands. Such action may not require more
characters of a record than it contains.

When a WRITE statement is executed under format control, writing of a
record occurs each time the format specification demands that a new record be
started. Termination of format control causes writing of the current record.

Except for the effects of repeat counts, the format specification is interpreted
from left to right.

To each I, F, or E basic descriptor interpreted in a format specification, there
corresponds one element specified by the input/output list. To each H or X basic
descriptor there is no corresponding element specified by the input/output list,
and the format control communicates information directly with the record.
Whenever a slash is encountered, the format specification demands that a new
record start or the preceding record terminate. During a READ operation, any
unprocessed characters of the current record will be skipped at the time of termi-
nation of format control or when a slash is encountered.

Whenever the format control encounters an I, F, or E basic descriptor in a
format specification, it determines if there is a corresponding element specified by
the input/output list. If there is such an element, it transmits appropriately con-
verted information between the element and the record and proceeds. If there is
no corresponding element, the format control terminates.

If, however, the format control proceeds to the last outer right parenthesis of
the format specification, a test is made to determine if another list element is
specified. If not, control terminates. However, if another list element is specified
the format control demands a new record start and control reverts to that group
repeat specification terminated by the last preceding right parenthesis, or if none
exists, then to the first left parenthesis of the format specification.

7.2.3.6. Numeric Conversions. The numeric field descriptors I, F, and E are
used to specify input/output of integer and real data.

1. In numeric input fields blanks are permitted only to the left of the first
nonblank character or between the sign of the field and the next nonblank
character. Such blanks are treated as zero in conversion. Plus signs may be
omitted. A field of all blanks is considered to be zero.

2. With the F and E input conversions, a decimal point appearing in the input
field overrides the specification supplied by the field descriptor.

3. With all output conversions, the output field is right justified. If the number
of characters produced by the conversion is smaller than the field width leading

blanks will be inserted in the output field.
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4. With all output conversions, the external representdtion of a negative value
must be signed; a positive value may be signed.

5. The number of characters produced by an output conversion must not exceed
the field width. .

7.2.3.6.1. Integer Conversion. The numeric field descriptor Iw indicates that the
external field occupies w positions as an integer. The value of the list item appears,
or is to appear, internally as an integer datum.

In the external input field, the character string must be in the form of an
integer constant or signed integer constant (5.1.1.1), except for the interpretation
of blanks (7.2.3.6).

The external output field consists of blanks, if necessary, followed by a minus
if the value of the internal datum is negative, or an optional plus otherwise,
followed by the magnitude of the internal value converted to an integer constant.

7.2.3.6.2. Real Conversions. There are two conversions available for use with
real data: F and E.

The numeric field descriptor Fw.d indicates that the external field occupies w
positions, the fractional part of which consists of d digits. The value of the list
item appears, or is to appear, internally as a real datum.

The external input field consists of an optional sign, followed by a string of
digits optionally containing a decimal point.

The external output field consists of blanks, if necessary, followed by a minus
if the internal value is negative, or an optional plus otherwise, followed by a string
of digits containing a decimal point representing the magnitude, to d fractional
digits, of the internal value.

The numeric field descriptor Ew.d indicates that the external field occupies w
positions, the fractional part of which consists of d digits. The value of the list
item appears, or is to appear, internally as a real datum.

The basic form of the external input field is the same as for the F conversion.
The basic form may be followed by an exponent of one of the following forms:

1. Signed integer constant.
2. E followed by an integer constant.
3. E followed by a signed integer constant.

The standard form of the external output field is*
0.y ... 2aY
where:

1. z; . . . zg are the d most significant digits of the value of the data to be out-
put.
2. Y is of the form:

E 4+ yye

and has the significance of a decimal exponent (an alternative for the plus in the
first of these forms is the character blank).
3. Each y is a digit.

7.2.3.8. Hollerith Field Descriptor. Hollerith information may be transmitted
by means of the field descriptor nH.
The nH descriptor causes Hollerith information to be read into, or written from,

* ¢ signifies no character position or minus in that position.
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the n characters (including blanks) following the nH descriptor in the format
specification itself.

7.2.3.9. Blank Field Descriptor. The field descriptor for blanks is nX. On in-
put, n characters of the external input record are skipped. On output, n blanks
are inserted in the external output record.

8. PROCEDURES AND SUBPROGRAMS

There are four categories of procedures: statement functions, intrinsic func-
tions, external functions, and external subroutines. The first three categories are
referred to collectively as functions or function procedures; the last as subroutines
or subroutine procedures. Function subprograms and subroutine subprograms
are classified as procedure subprograms. Type rules for function procedures are
given in 5.3.

8.1. STATEMENT FUNCTIONS. A statement function is defined internally to the
program unit in which it is referenced. It is defined by a single statement similar
in form to an arithmetic assignment statement.

In a given program unit all statement function definitions must precede the
first executable statement of the program unit and must follow the specification
statements, if any. The name of a statement function must not appear as a
variable name or an array name in the same program unit.

8.1.1. Defining Statement Functions. A statement function is defined by a

statement of the form:
fla, as ...,a0) =¢

where f is the function name, e is-an expression, and the relationship between f
and e must conform to the assignment rules in 7.1.1.1. The a’s are distinct
variable names, called the dummy arguments of the function. Since these are
dummy arguments, their names, which serve only to indicate type, number, and
order of arguments, may be the same as variable names of the same type appear-
ing elsewhere in the program unit.

Aside from the dummy arguments, the expression e may only contain:

1. Constants.

2. Variable references.

3. Intrinsic function references.

4. References to previously defined statement functions.

5. External function references.

8.1.2. Referencing Statement Functions. A statement function is referenced by
using its reference (5.2) as a primary in an arithmetic expression. The actual
arguments, which constitute the argument list, must agree in order, number, and
type with the corresponding dummy arguments. An actual argument in a state-
ment function reference may be any expression of the same type as the cor-
responding dummy argument.

Execution of a statement function reference results in an association (10.2.2.) of
actual argument values with the corresponding dummy arguments in the expres-
sion of the function definition, and an evaluation of the expression. Following this,
the resultant value is made available to the expression that contained the func-
tion reference.

8.2. InTrINsIC FuNcTIONS AND THEIR REFERENCE. The symbolic names of the
intrinsic functions (see Table 3) are predefined to the processor and have a special
meaning and type if the name satisfies the conditions of 10.1.7.
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An intrinsic function is referenced by using its reference as a primary in an
arithmetic expression. The actual arguments, which constitute the argument list,
must agree in type, number, and order with the specification in Table 3 and may
be any expression of the specified type. The intrinsic functions SIGN and ISIGN
are not defined when the value of the second argument is zero.

Execution of an intrinsic function reference results in the actions specified in
Table 3 based on the values of the actual arguments. Following this, the resultant
value is made available to the expression that contained the function reference.

8.3. EXTERNAL FUNCTIONS. As external function is defined externally to the
program unit that references it. An external function defined by FORTRAN
statements headed by a FUNCTION statement is called a function subprogram.
8.3.1. Defining Function Subprograms. A FUNCTION statement is of the

form:
FUNCTION f (a1, az, . . . , Gn)

where:

1. f is the symbolic name of the function to be defined.
2. The a’s, called the durnmy arguments, are each either a variable name or an
array name.

Function subprograms are constructed as specified in 9.1.3 with the following
restrictions:

1. The symbolic name of the function must also appear as a variable name in
the defining subprogram. During every execution of the subprogram this variable
must be defined and, once defined, may be referenced or redefined. The value of
the variable at the time of execution of any RETURN statement in this sub-
program is called the value of the function.

2. The symbolic name of the function must not appear in any nonexecutable
statement in this program unit, except as the symbolic name of the function in
the FUNCTION statement.

3. The symbolic names of the dummy arguments may not appear in an
EQUIVALENCE or COMMON statement in the function subprogram.

4. The function subprogram may not define or redefine any of its arguments nor
any entity in common.

5. The function subprogram may contain any statements except SUB-
ROUTINE, another FUNCTION statement, or any statement that directly or
indirectly references the function being defined.

6. The function subprogram must contain at least one RETURN statement.

8.3.2. Referencing External Functions. An external function is referenced by
using its reference (5.2) as a primary in an arithmetic expression. The actual
arguments, which constitute the argument list, must agree in order, number, and
type with the corresponding dummy arguments in the defining program unit.
An actual argument in an external function reference may be one of the following :

1. A variable name.

2. An array element name.
3. An array name.

4. Any other expression.

Execution of an external function reference as described in the foregoing
results in an association (10.2.2) of actual arguments with all appearances of
dummy arguments in executable statements and function definition statements.
If the actual argument is as specified in item (4) in the foregoing this association
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B by value rather than by name. Following these associations, execution of the
first executable statement of the defining subprogram is undertaken.

TABLE 3. INTRINSIC FUNCTIONS

Number Sumboli Type of :
Intrinsic Function Definition of Argu- | SY 00
ments ame

Argument | Function

Absolute Value |a] 1 ABS Real Real
IABS Integer Integer

Float Conversion from 1 FLOAT | Integer Real
integer to real

Fix Conversion from 1 IFIX Real Integer
real to integer

Transfer of Sign Sign of a3 times 2 SIGN Real Real
a1 ISIGN Integer Integer

An actual argument that is an array element name containing variables in the
subscript could in every case be replaced by the same array name with a constant
subscript containing the same values as would be derived by computing the
variable subscript just before the association of arguments took place.

If a dummy argument of an external function is an array name the correspond-
ing actual argument must be an array name.

8.3.3. Basic External Functions. FORTRAN processors must supply the
external functions listed in Table 4. Referencing of these functions is accom-
plished as described in 8.3.2. Arguments for which the result of these functions is
not mathematically defined or is of type other than that specified are improper.

8.4. SUBROUTINE. An external subroutine is defined externally to the program
unit that references it. An external subroutine defined by FORTRAN statements
headed by a SUBROUTINE statement is called a subroutine subprogram.

TABLE 4. Basic EXTERNAL FuNcTIONS

Basic External Definition 372’:{;? Symbolic Tpees '
Argument | Function
Exponential e 1 EXP Real Real
Natural logarithm loge. (a) 1 ALOG Real Real
Trigonometric sine sine (a) 1 COS Real Real
Trigonometric cosine cos (a) 1 CoS Real Real
Hyperbolic tangent tanh (a) 1 TANH Real Real
Square Root (a)l/2 1 SQRT Real Real
Arctangent arctan(a) 1 ATAN Real Real
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8.4.1. Defining Subroutine Subprograms. A SUBROUTINE statement is of one
of the forms:

SUBROUTINE s(ai1, as, . . ., @n)
or
SUBROUTINE s

where:

1. s is the symbolic name of the subroutine to be defined.
2. The a’s, called the dummy arguments, are each either a variable name or an
array name.

Subroutine subprograms are constructed as specified in 9.1.3 with the following
restrictions:

1. The symbolic name of the subroutine must not appear in any statement in
this subprogram except as the symbolic name of the subroutine in the SUB-
ROUTINE statement itself.

2. The symbolic names of the dummy arguments may not appear in an
EQUIVALENCE or COMMON statement in the subprogram.

3. The subroutine subprogram may define or redefine one or more of its argu-
ments so as to effectively return results.

4. The subroutine subprogram may contain any statements except FUNC-
TION, another SUBROUTINE statement, or any statement that directly or
indirectly references the subroutine being defined.

5. The subroutine subprogram must contain at least one RETURN statement.

8.4.2. Referencing Subroutines. A subroutine is referenced by a CALL state-
ment (7.1.2.4). The actual arguments, which constitute the argument list, must
agree in order, number, and type with the corresponding dummy arguments in
the defining program. An actual argument in a subroutine reference may be one
of the following:

1. A variable name.

2. An array element name.
3. An array name.

4. Any other expression.

If an actual argument corresponds to a dummy argument that is defined or
redefined in the referenced subprogram the actual argument must be a variable
name, an array element name, or an array name.

Execution of a subroutine reference as described in the foregoing results in an
association of actual arguments with all appearances of dummy arguments in
executable statements or function definition statements. If the actual argument
is as specified in item (4) in the foregoing this association is by value rather than
by name. Following these agsociations, execution of the first executable state-
ment of the defining subprogram is undertaken.

An actual argument that is an array element name containing variables in the
subscript could, in every case, be replaced by the same array element name with a
constant subscript containing the same values as would be derived by computing
the variable subscript just before argument association took place.

If a dummy argument of an external function is an array name the cor-
responding actual argument must be an array name.

If a subroutine reference causes a dummy argument in the referenced sub-
routine to become associated with another dummy argument in the same sub-
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routine or with an entity in common, a definition of either entity within the sub-
routine is prohibited.

9. PROGRAMS

An executable program is a collection of statements, commment lines, and end
lines that completely (except for input data values and their effects) describe a
computing procedure.

9.1. PRoGRAM COMPONENTS. Programs consist of program parts, program
bodies, and subprogram statements.

9.1.1. Program Part. A program part must contain at least one executable
statement and may but need not contain FORMAT statements.

9.1.2. Program Body. A program body is a collection of optional specification
statements optionally followed by statement function definitions, followed by a
program part, followed by an end line. The specification statements must be in
the following order: DIMENSION, COMMON, and EQUIVALENCE.

9.1.3. Subprogram. A subprogram consists of a SUBROUTINE or FUNCTION
statement followed by a program body.

9.1.5. Main Program. A main program consists of a program body.

9.1.6. Executable Program. An executable program consists of a main program
plus any number of subprograms, external procedures, or both.

9.1.7. Program Unit. A program unit is a main program or a subprogram.

9.2. NorMAL EXECUTION SEQUENCE. When an executable program begins
operation execution commences with the execution of the first executable state-
ment of the main program. A subprogram, when referenced, starts execution
with execution of the first executable statement of that subprogram. Unless a
statement is a GO TO, arithmetic IF, RETURN, or STOP statement or the
terminal statement of a DO, completion of execution of that statement causes
execution of the next following executable statement. The sequence of execution
following execution of any of these statements is described in Section 7. A pro-
gram part may not contain an executable statement that can never be executed.

A program part must contain a first executable statement.

10. INTRA- AND INTERPROGRAM RELATIONSHIPS

10.1 SymBoric NaMES. A symbolic name has been defined to consist of from
one to five alphanumeric characters, the first of which must be alphabetic.
Sequences of characters that are format field descriptors or uniquely identify
certain statement types, e.g. GO TO, READ, etc., are not symbolic names in such
occurrences nor do they form the first characters of symbolic names in these cases.
In a program unit, a symbolic name (perhaps qualified by a subscript) must
identify an element of one (and usually only one) of the following classes:

ClassI  An array and the elements of that array.
Class II A variable.

Class IIT A statement function.

Class IV  An intrinsic function.

Class V  An external function.

Class VI A subroutine.

10.1.1. Restrictions on Class. In the program unit in which a symbolic name in
Class V appears immediately following the word FUNCTION in a FUNCTION
statement, that name must also be in Class II.

327



DICTIONARY FOR COMPUTER LANGUAGES

Once a symbolic name is used in Class V or VI in any unit of an executable
program, no other program unit of that executable program may use that name to
identify an entity of these classes other than the one originally identified.

In a program unit, no symbolic name can be in more than one class except as
noted in the foregoing. There are no restrictions on uses of symbolic names in
different program units of an executable program other than those noted in the
foregoing.

10.1.2. Implications of Mentions in Specification Statements. A symbolic name
is in Class I if it appears as a declarator name and is not in Class III. Only one
such appearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in & COMMON statement is either in Class I or
in Class IT but not Class V (8.3.1.) Only one such appearance for a symbolic name
in a program unit is permitted.

A symbolic name that appears in an EQUIVALENCE statement is either in
Class I or in Class II but not Class V (8.3.1).

10.1.3. Array and Array Element. In a program unit any appearance of a
symbolic name that identifies an array must be immediately followed by a sub-
script, except for the following cases:

1. In the list of an input/output statement.

2. In a list of dummy arguments.

3. In the list of actual arguments in a reference to an external procedure.
4. In a COMMON statement.

Only when an actual argument of an external procedure reference is an array
name may the corresponding dummy argument be an array name. If the actual
argument is an array name the length of the dummy argument array must agree
with the length of the actual argument array.

10.1.4. External Procedures. In: the execution of an executable program, a
procedure subprogram may not be referenced twice without the execution of a
RETURN statement in that procedure having intervened.

10.1.5. Subroutine. A symbolic name is in Class VI if it appears:

1. Immediately following the word SUBROUTINE in a SUBROUTINE state-

ment.
2. Immediately following the word CALL in a CALL statement.

10.1.6. Statement Function. A symbolic name is in Class III in a program unit
if, and only if, it meets all three of the following conditions:

1. It is not in Class I or Class IV.
2. Every appearance of the name is immediately followed by a left parenthesis.
3. A function defining statement is present for that symbolic name.

10.1.7. Intrinsic Function. A symbolic name is in Class IV in a program unit if,
and only if, it meets both of the following conditions:

1. The symbolic name appears in the name column of Table 3.
2. Every appearance of the symbolic name is immediately followed by an
actual argument list enclosed in parentheses.

The use of an intrinsic function in a program unit of an executable program
does not preclude the use of the same symbolic name to identify some other entity
in a different program unit of that executable program.
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10.1.8. External Function. A symbolic name is in Class V if it:

1. Appears immediately following the word FUNCTION in a FUNCTION
statement.

2. Is not in Class I, Class III, Class IV, or Class VI and appears immediately
followed by a left parenthesis on every occurrence. There must be at least one
such appearance in the program unit in which it is so used.

10.1.9. Variable. In a program unit, a symbolic name is in Class II if it meets
both of the following conditions:

1. It is not in Class VI.
2. It is never immediately followed by & left parenthesis unless it is immediately
preceded by the word FUNCTION in a FUNCTION statement.

10.2. DEFINITION. There are two levels of definition of numeric values, first-
level definition and second-level definition. The concept of definition on the first
level applies to array elements and variables; that of second-level definition to
integer variables only. These concepts are defined in terms of progression of
execution; and thus, an executable program, complete and in execution, is
assumed in what follows.

There is another variety of definition which refers to when an external pro-
cedure may be referenced, and it will be discussed in the next section.

In what follows, otherwise unqualified use of the terms definition and undefini-
tion (or their alternate forms) as applied to variables and array elements will
imply modification by the phrase ‘“‘on the first level.”

10.2.1. Definition of Procedures. If an executable program contains information
describing an external procedure, such .an external procedure with the applicable
symbolic name is defined for use in that executable program. An external func-
tion reference or subroutine reference (as the case may be) to that symbolic
name may then appear in the executable program, provided that number of
arguments agrees between definition and reference. Other restrictions on agree-
ments are contained in 8.3.1, 8.3.2, 8.4.1, 8.4.2, and 10.1.3.

The basic external functions listed in Section 8.3.3 are always defined and may
be referenced subject to the restrictions alluded to in the foregoing.

A symbolic name in Class III or Class IV is defined for such use.

10.2.2. Associations That Effect Definition. Entities may become associated by :

1. COMMON association.
2. EQUIVALENCE association.
3. Argument substitution.

Multiple association to one or more entities can be the result of combinations of
the foregoing. Any definition or undefinition of one of a set of associated entities
affects the definition or undefinition of each entity of the entire set.

For purposes of definition, in a program unit there is no association between
any two entities both of which appear in COMMON statements. Further, there
is no other association for common and equivalenced entities other than those
stated in 7.2.1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference is an array name, an
array element name, or a variable name, then the discussions in 10.1.3 and 10.2.1
allow an association of dummy arguments with the actual arguments only be-
tween the time of execution of the first executable statement of the procedure and
the inception of execution of the next encountered RETURN statement of that
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procedure. Note specifically that this association can be carried through more
than one level of external procedure reference.

In what follows, variables or array elements associated by the information in
7.2.1.3.1 and 7.2.1.4 will be equivalent if, and only if, they are of the same type.

If an entity of a given type becomes defined, then all associated entities of
different type become undefined at the same time, while all associated entities of
the same type become defined unless otherwise noted.

Association by argument substitution is valid only in the case of identity of
type so the rule in this case is that an entity created by argument substitution is
defined at time of entry if, and only if, the actual argument was defined. If an
entity created by argument substitution becomes defined or undefined (while the
association exists) during execution of a subprogram, then the corresponding
actual entities in all calling program units become defined or undefined ac-
cordingly.

10.2.3. Events that Effect Definition. Any entity is undefined at the time of the
first execution of the first executable statement of the main program. Redefini-
tion of a defined entity is always permissible except for certain integer variables
(7.1.2.8 and 7.1.3.1.1) or certain entities in subprograms (6.4, 8.3.2, and 8.4.2).

Variables and array elements become defined or redefined as follows:

1. Completion of execution of an arithmetic assignment statement causes
definition of the entity which precedes the equals.

2. As execution of an input statement proceeds, each entity, which is assigned a
value of its corresponding type from the input medium, is defined at the time of
such association and associated entities become undefined. Only at the comple-
tion of execution of the statement do associated entities of the same type become
defined.

3. Completion of execution of a DO statement causes definition of the control
variable.

4. Inception of execution of action specified by a DO-implied list causes defini-
tion of the control variable.

Variables and array elements become undefined as follows:

1. At the time a DO is satisfied, the control variable becomes undefined.

2. Completion of execution of action specified by a DO-implied list causes
undefinition of the control variable.

3. When an associated entity of different type becomes defined.

4. When an associated entity of the same type becomes undefined.

10.2.6. Entities Not in Common. An entity not in common is initially undefined.

Such entities once defined by any of the rules previously mentioned, remain
defined until they become undefined.

If such an entity is in a subprogram, the completion of execution of a RETURN
statement in that subprogram causes all such entities and their associates at that
time to become undefined. In this respect, it should be noted that the association
between dummy arguments and actual arguments is terminated at the inception
of execution of the RETURN statement.

10.2.7. Basic Block. In a program unit, a basic block is a group of one or more
executable statements defined as follows.

The following statements are block terminal statements:

1. DO statement.
2. CALL statement.
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3. GO TO statement of all types.

4. Arithmetic IF statement.

5. STOP statement.

6. RETURN statement.

7. The first executable statement, if it exists, preceding a statement whose
label is mentioned in & GO TO or arithmetic IF statement.

8. An arithmetic statement in which an integer variable precedes the equals.

9. A READ statement with an integer variable in the list.

The following statements are block initial statements:

1. The first executable statement of a program unit.
2. The first executable statement, if it exists, following a block terminal state-
ment.

Every block initial statement defines a basic block. 1f that initial statement is
also a block terminal statement the basic block consists of that one statement.
Otherwise, the basic block consists of the initial statement and all executable
statements that follow until a block terminal statement is encountered. The
terminal statement is included in the basic block.

10.2.7.1. Last Ezxecutable Statement. In a program unit the last executable
statement must be one of the following statements: GO TO statement, arithmetic
IF statement, STOP statement, or RETURN statement.

10.2.8. Second Level Definition. Integer variables must be defined on the second
level when used in subscripts and computed GO TO statements.

Redefinition of an integer entity causes all associated variables to be undefined
on the second level during the execution of the program until the associated inte-
ger variable is explicitly redefined.

Except as just noted, an integer variable is defined on the second level upon
execution of the initial statement of a basic block only if both of the following
conditions apply:

1. The variable is used in a subscript or in a computed GO TO in the basic
block in question.

2. The variable is defined on the first level at the time of execution of the initial
statement in question.

This definition persists until one of the following happens:

1. Completion of execution of the terminal statement of the basic block in

question.
2. The variable in question becomes undefined or receives a new definition on

the first level.

At this time, the variable becomes undefined on the second level.

In addition, the occurrence of an integer variable in the list of an input state-
ment in which that integer variable appears following in a subscript causes that
variable to be defined on the second level. This definition persists until one of the
following happens:

1. Completion of execution of the terminal statement of the basic block contain-

ing the input statement.
2. The variable becomes undefined or receives a new definition on the first level.

An integer variable defined as the control variable of a DO-implied list is defined
on the second level over the range of that DO-implied list and only over that

range.
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10.2.9. Certain Entities in Function Subprograms. If a function subprogram is
referenced more than once with an identical argument list in a single statement,
the execution of that subprogram must yield identical results for those cases
mentioned, no matter what the order of evaluation of the statement.

10.3. DEFINITION REQUIREMENTS FOR USE oF ENTITIES. Any variable refer-
enced in & subscript or a computed GO TO must be defined on the second level
at the time of this use.

Any variable, array element, or function referenced as a primary in an expres-
sion and any subroutine referenced by a CALL statement must be defined at the
time of this use. In the case where an actual argument in the argument list of an
external procedure reference is a variable name or an array element name, this in
itself is not a requirement that the entity be defined at the time of the procedure
reference.

Any variable used as an initial value, terminal value, or incrementation value
of a DO statement or a DO-implied list must be defined at the time of this use.

Any variable used to identify an input/output unit must be defined at the time
of this use.

At the time of execution of a RETURN statement in a function subprogram,
the value of that function must be defined.

At the time of execution of an output statement, every entity whose value is to
be transferred to the output medium must be defined. If the output is under con-
trol of a format specification, a correct association of conversion code with type of
entity is required. The following are the correct associations: I with integer; and
E and F with real.
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