HUMAN-COMPUTER INTERACTION, 1985, Volume 1, pp. 133-161
Copyright © 1985, Lawrence Erlbaum Associates, Inc.

Preprogramming Knowledge: A Major
Source of Misconceptions in Novice

Programmers

Jeffrey Bonar
University of Pittsburgh

Elliot Soloway
Yale University

ABSTRACT

We present a process model to explain bugs produced by novices early in a
programming course. The model was motivated by interviews with novice
programmers solving simple programming problems. Our key idea is that
many programming bugs can be explained by novices inappropriately using
their knowledge of step-by-step procedural specifications in natural language.
We view programming bugs as patches generated in response to an impasse
reached by the novice while developing a program. We call such patching strat-
egies bug generators. Several of our bug generators describe how natural language
preprogramming knowledge is used by novices to create patches. Other kinds
of bug generators are also discussed. We describe a representation both for
novice natural language preprogramming knowledge and novice fragmentary
programming knowledge. Using these representations and the bug generators,
we evaluate the model by analyzing four interviews with novice programmers.

This paper is based on Jeffrey Bonar’s doctoral dissertation.

Authors’ present addresses: Jeffrey Bonar, Intelligent Tutoring Systems Group,
Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA
15260; Elliot Soloway, Cognition and Programming Project, Computer Science De-
partment, Yale University, New Haven, CT 06520.

134 BONAR AND SOLOWAY

CONTENTS

1. INTRODUCTION
REPRESENTING NOVICE PROGRAMMING KNOWLEDGE
2.1. SSK: Preprogramming Knowledge
2.2. PK: Fragments of Programming Knowledge
2.3. Functional and Surface Links Between SSK and PK
3. THE PROCGESS OF GENERATING A BUG
4. EVALUATING THE MODEL
4.1. Methodology
4.2. Overview of Protocols Analyzed
5. RESULTS OF THE ANALYSIS
5.1. Expectation 1: Regular and Extensive Use of Plans
5.2. Expectation 2: Bug Generators Plausibly Explain the Bugs
5.3. Expectation 3: SSK/PK Bug Generators Are Critical
6. CONCLUDING REMARKS
APPENDIX: A SAMPLE OF AN ANALYZED PROTOCOL

1. INTRODUCTION

There is a growing literature about bugs! in novice programming
(Anderson, Farrell, & Sauers, 1984; Johnson, Draper, & Soloway, 1982;
Kahney & Eisenstadt, 1982; Shneiderman, 1976; Soloway & Ehrlich, 1984).
In this article, we propose a process model to explain bugs produced in early
phases of an introductory course. We are concerned with the difficulties a nov-
ice has in using basic programming constructs in short programs. In particu-
lar, we focus on the knowledge that novice programmers bring to these early
programming problems. Our key idea is that many novice programming bugs
can be explained as inappropriate use of the knowledge used in writing step-
by-step procedural specifications in natural language.?

'There are two usages for the term bug. We are using it to refer to an error in a person’s
behavior, particularly an error in a computer program he or she has written. Often,
though, bug is used to refer to perturbations in a person’s mental procedure for some
task. In this usage, systematic errors in behavior are explained by the bugs in mental
procedures. This second meaning is used by Brown and VanLehn (1980) and Resnick
(1982) when discussing children’s problems with multicolumn subtraction.

?Throughout, the term natural language will be used to refer to the language in which
step-by-step procedures are written. English, the other obvious choice, was not used be-
cause it unnecessarily implied that the novice programming phenomena discussed here
were limited to English.

PREPROGRAMMING KNOWLEDGE 135

Our model is motivated by patterns of behavior we repeatedly observed in
video-taped interviews of novice programmers solving programming prcb-
lems (see Bonar, 1985, for a complete discussion). In particular, we character-
ize what happens when a novice produces a bug:

While solving a programming problem (writing a program), novices
will encounter some aspect of the problem they don’t understand (an
impasse).

In order to move beyond the impasse, novices cast about for a way to re-
solve the aspect of the problem they don’t understand (a patch). Fre-
quently, that resolution involves an appeal to their knowledge of natural
language step-by-step procedures that would be applicable in a similar
situation.

In implementing the patch, a bug is introduced.

Consider an example from one of our interviews. Subject 13 is working on
the averaging problem (Figure 1). This problem requires the student to read in
a series of numbers, watching for an ending value of 99999 and producing the
average of the numbers read in before the 99999. Producing the average re-
quires the student to accumulate both a sum and count of the numbers read. In
the excerpt of Figure 2, he has just specified the test for a repeat until loop and
is considering how to implement the step after the loop. (Note that the most
straightforward solution to this problem would use a while loop rather than the
repeat until loop. We do not focus on that issue here, but see Soloway, Bonar,
& Ehrlich, 1983.) At this point (beginning of Segment 143), we see the subject
stumbling and apparently searching around. We call this commonly observed
behavior an impasse. At the end of Segment 143, he proposes then as a con-
nective between the loop test and the average computation after the loop. Note
that he is unsure whether this is a correct approach (Segment 144). We describe
this proposed then as a patch to the impasse. He tests this usage by sounding
the phrase to himself (Segment 146), reasoning from Pascal’s if then statement.
Finally, in Segment 148, he uses phrasing from natural language to justify his
usage of the buggy repeat . .. until then At this point, he has written the
then and committed the bug.

Our model draws on the repair theory work of Brown and VanLehn (1980).
They studied impasses in children’s subtraction algorithms and developed a
detailed theory and process model for how bugs arise and are patched (in their
work, they refer to repairs instead of patches). In the more complex domain of
programming, we have developed a model with two important components:

1. We characterize the knowledge that allows a novice to form a bridge be-
tween programming language syntax and semantics and higher level design

136 BONAR AND SOLOWAY

Figure 1. The averaging problem.

Write a program which repeatedly reads in integers until it reads the integer
99999. After seeing 99999, it should print out the CORRECT AVERAGE
without counting the final 99999. Remember, the average of a series of num-
bers is the sum of those numbers divided by how many numbers there are in the
series.

concerns. This is information about how the language constructs are used to
accomplish standard programming tasks. We represent this information as
schemalike structures called programming plans. We discuss the programming
plans for both the introductory programming language Pascal and natural lan-
guage step-by-step procedures.

2. We characterize impasses arising from missing or misapplied program-
ming plans needed in the course of developing a program. We propose that
many bugs arise out of novice strategies for patching an impasse and
continuing a problem solution. We call these strategies bug generators. We focus
on the bug generators that patch an impasse by using the knowledge of how the
problem would be solved with natural language step-by-step procedures. This
knowledge is used to to supply missing programming language knowledge.

The paper is organized as follows. In Section 2, we discuss programming
plans as a representation to describe both the knowledge used to write step-by-
step natural language procedures and the knowledge used to write Pascal pro-
grams. We also describe the relationship between natural language procedure
knowledge and Pascal programming knowledge. Section 3 discusses the proc-
ess of novices resolving impasses with patches characterized by our bug gener-
ators. In Section 4, we present a preliminary evaluation of the model.

2. REPRESENTING NOVICE PROGRAMMING
KNOWLEDGE

The content and structure of novice knowledge has been studied in several
different domains including physics (Chi, Feltovich, & Glaser, 1981; DiSessa,
1982), geometry (Anderson, Greeno, Kline, & Neves, 1981), algebra (Lewis,
1981; Matz, 1982), and programming (Ehrlich & Soloway, 1983; Rich, 1981;
Soloway, Ehrlich, Bonar, & Greenspan, 1982). A key generalization is that
novices use schemalike structures we call plans. We propose two kinds of plan
knowledge and links between them:

Novice knowledge of step-by-step natural language procedures: We refer
to the set of step-by-step natural language procedure plans that a novice

PREPROGRAMMING KNOWLEDGE 137

Figure 2. Excerpt of transcript for Subject 13. Up to this point, the subject has
written a loop body for the ending value averaging problem. Here he is working on
specifying the test for the loop and the code following the loop. Square brackets en-
close comments we have added.

Subject 13: [reading from problem] After seeing 99999, it should print out the
correct average, so until, ahhh, until ! equals 99999 [he writes until | = 99999].

Interviewer: Okay.

Subject 13: Ahhh, and then [he pauses, reading what he’s written], “repeat, un-
til,” and then I would have, then [writes then]. Can you have a then in the re-
peat until? No, I don’t recall that.

Interviewer: Okay.

Subject 13: [mumbles] if then, while then, repeat until then [louder now],
well, it makes sense. I'm not sure if that’s right, I don’t recall using it before.

Interviewer: How does it make sense?
Subject 13: It makes sense because you are repeating until that [points to until

line] and then [his emphasis] what do you do? Well, then take the average. ...
[after the then he writes Average : = Sum/N]

brings to a programming course as SSK (step-by-step natural language
programming knowledge).

Novice knowledge of the programming language under study: We refer
to these plans as PK (Pascal programming knowledge).

Functional and surface links between the SSK and PK: These links allow
a novice to traverse between the two different sets of knowledge
structures.

In what follows, we describe each of these components in turn.
2.1. SSK: Preprogramming Knowledge

Novices bring a knowledge of standard tasks in step-by-step natural lan-
guage procedures to their introductory programming course. Examples of such
tasks include looping, making choices, and specifying sequences of actions.
We have studied this preprogramming knowledge with problems like the fac-
tory gate problem shown in Figure 3. The problem asks the subject to write a

138 BONAR AND SOLOWAY

Figure 3. The factory gate problem.

Please write a set of explicit instructions to help a junior clerk collect payroll
information for a factory. At the end of the next payday, the clerk will be sitting
in front of the factory gates and has permission to look at employee pay checks.
The clerk is to produce the average salary for the workers who come out of the
door. This average should include only those workers who come out before the
first supervisor comes out, and should not include the supervisor’s salary.

step-by-step natural language procedure for a junior clerk to collect payroll in-
formation from workers coming out of a factory gate. The clerk needs to report
on the average salary for all the workers who leave the gate before the first su-
pervisor leaves the gate. This problem was designed to parallel the averaging
problem.

Figure 4 shows a sample solution to the factory gate problem. This solution
is from one of our subjects before he had taken a programming course, and it il-
lustrates several features of step-by-step natural language procedures. Step 3,
for example, specifies counting with the phrase “add number of”; Step 6
specifies a total with the phrase “add all.” The overall structure of the loop
(Steps 1 to 4) is specified by illustrating how to do the task for the first two
workers followed by the phrase “and so on” (Step 3). Finally, step 4 specifies the
stopping condition for the loop. This condition is phrased as a continuously ac-
tive test, always watching the action of the loop for the exit condition to become
true. (This is sometimes referred to as a demon control structure.) In general,
the novice seems to be using plans for standard tasks such as adding up num-
bers, stopping the loop, and so forth.

When coming into a programming course, novices will have a fairly com-
plete SSK. This is to be expected because SSK is regularly used by most people
to specify simple step-by-step procedures (Bonar, 1985, discusses SSK plans in
detail; see Miller, 1981, for an earlier discussion of some standard features in
step-by-step natural language procedures).

2.2. PK: Fragments of Programming Knowledge

PK represents the knowledge that allows novices to write some parts of a pro-
gram correctly. Besides the obvious information about syntax and semantics,
PK plans also capture the goals and tactics critical to implementing some task
as a program. Qur plans contain several different pieces of information. Con-
sider, for example, the counter variable plan shown in Figure 5 and us
components:

Plans are linked together in a general/specific hierarchy. The counter
variable plan, for example, is a specialization of the running total varia-
ble plan.

PREPROGRAMMING KNOWLEDGE 139

Figure 4. Typical answer for the factory gate problem. This procedure was writ-
ten by Subject 11 before studying Pascal.

Identify worker, check name on list, check wages

Write it down

Wait for next worker, identify next, check name, and so on
When super comes out, stop

Add numbers of workers you’ve written down

Add all the wages

Divide the wages by the number of workers

NO O e N~

Plans contain information about the key roles and aspects of the plan. In
the counter variable plan, we represent this information as slots
describing the plan, its initialization, its update, how it is used, and the
type of the variable.

Plans contain knowledge needed to actually implement a plan in a spe-
cific programming language. With the counter variable plan, there is
specific information about how a counter is implemented in Pascal.

Although a novice’s SSK is relatively complete, his or her PK is fragmentary.
This is to be expected; the novice is just learning about PK. Not only does a
novice have fewer PK plans than would an expert, but the connections between
the PK plans are not as rich.

2.3. Functional and Surface Links Between SSK and PK

Although we have discussed SSK and PK separately, they have many simi-
larities. There are two in particular:

1. Functional similarities exist because both SSK and PK are concerned
with repeated actions, choice between conditions, counting, and so on.

2. Surface similarities exist because the programming language Pascal (like
most others) shares many words with natural language. There are many com-
mon lexical entities in the two plan sets, irrespective of functional similarity of
the plans connected.

We capture these similarities as functional and surface links between the SSK
and PK plan sets. Although we distinguish between these two kinds of links,
novices often do not. For example, the bug in the protocol of Figure 2 shows a
confusion between surface and functional links. We see that the subject is con-
fused about the relationship between the natural language then (indicating a
following step) and the then of Pascal’s if-then-else construct. We say that he is

140 BONAR AND SOLOWAY

Figure 5. Counter variable plan. The double right arrow (a) indicates alink to an-
other (more general) plan. The boxes ((J) indicate slots of the plan.

Counter Variable Plan
SPECIALIZATION OF = Running Total Variable Plan

Description: Counts the occurrences of some specific action.

Initialization: Set to zero.

Update: Adds one to the current value.

How used? Always found within a piece of code that is executed
repeatedly.

Type: Integer values.

0O Ooonoo

Pascal Implementation of Counter Variable Plan

O Indtialization: GV := 0

0 Update: CV := CV + 1

[0 How used? Usually found within a while or repeat loop. Counts are
created by successive increments as the events to be counted occur.

[} Type: integer

using the surface (lexical) link between then and then. Based on this surface
link, he is assuming a functional link that allows him to use then with a natural
language meaning.

Another example from the protocols illustrates confusion between surface
and functional links associated with the word while. In natural language, while
is typically used as a continuously active test, as in: “while the highway stays
along the coast, keep following it north.” This kind of control structure is unu-
sual in a programming language. More typical is a construct in which the loop
condition gets tested once per loop iteration (e.g., the while loop in Pascal).
The surface link between the two kinds of “while” allows a novice to infer simi-
lar semantics. One of our subjects even inferred a semantics for a continuously
active test in the Pascal while loop: “every time | the variable tested in the while
condition] is assigned a new value, the machine needs to check that value. . . .”

3. THE PROCESS OF GENERATING A BUG

Because novice programming knowledge is fragmentary, by definition there
must be gaps in that knowledge. Thus, in writing a program, a novice will en-
counter such a gap and be at what we have called an impasse. In order to bridge
these gaps, the novice uses patches. By their very nature, these patches are
likely to be incorrect. For this reason, we call the processes that create these

PREPROGRAMMING KNOWLEDGE 141

patches bug generators. We argue that the bug generators draw on inappropri-
ate or incorrect knowledge, such as from SSK.

Consider a detailed example of some bug generators. Subject 13 wrote Sum
: = 0 + | as part of a running total update inside a loop body for the averaging
problem (see his code in Figure 6). He has identified | as the variable to receive
new values, entered by the user. He has also identified Sum as the variable to
hold the running total. Although there are a number of problems with this
code, we focus on a single bug. (In the Appendix we show a detailed excerpt
from Subject 13’s protocol. That excerpt shows Subject 13 actually writing this
code and attempts to analyze all the bugs that appear there.) In the protocol,
Subject 13 points to this line and says “it reads the sum.” The only Read state-
ment Subject 13 has used has no arguments and is above the loop along with a
Readin. What, then, does the subject mean by “reading the sum”? Our bug
analysis describes several relevant bug generators and is shown in Figure 7.

The impasse in this case is that Subject 13 did not know how to implement a
read operation for an input new value variable in Pascal. A correct Pascal im-
plementation uses an explicit Read(l) in each iteration of the loop. Three plau-
sible explanations, each based on a different bug generator and one based on a
slip interpretation, are shown for the bug. (The reason for multiple explana-
tions is discussed later.)

The first bug generator plausibly explaining this bug is the programming lan-
guage used as it if were natural language (PL used as NL) bug generator. This bug
generator operates on a specific plan or plans, using surface links between SSK
and PK versions of the plan. Even though they are surface links, the novice
treats them as functional links, assuming that the natural language semantics
can be used for programming language constructs. The programming lan-
guage construct is given similar semantics to the parallel natural language
construct. In the example with Subject 13, the PL used as NL bug generator
operates on the input new value variable plan. Getting a new value for the in-
put new value variable has been implemented implicitly, which we claim is
typical of the natural language implementation.

This claim about natural language implementation derives from our studies
of SSK using problems like the factory gate problem of Figure 3. In those stud-
ies, we found that getting data was often implemented implicitly. For exam-
ple, in Line 1 of Subject 11’s answer to the factory gate problem (Figure 4), he
says: “1. Identify worker, check name on list, check wages.” Here, we claim,
getting the input value (the worker) has been done implicitly. Note that this
operation is not always implicit. In Line 3 of the same factory gate procedure,
for example, the subject says: “3. Wait for next worker, identify next, check
name, and so on.” In this case, we say that getting the input value has been
done explicitly with the phrase: “Wait for next worker”

The second explanation for the bug in Figure 7 uses the programming language
interpreted as natural language (PL interpreted as NL) bug generator operating on the

142 BONAR AND SOLOWAY

Figure 6. Subject 13’s first attempt at the loop for the averaging problem. Line
numbers are referred to in the protocol shown in the Appendix. N is the counter
variable, Sum is the running total variable, and | is the input new value variable.

N:=0; (1)
Sum := 0; (2)
repeat (3
Sum =0+ 1 (4)
N:=1 (5)
Sum :=I +1 (8)
N:=2 (7)
until (8)

Read statement written above the loop. In this case, the subject is seen to be in-
terpreting the Read as if it were a declaration statement. (There is support for
this explanation in that the subject discussed the Read statement while dis-
cussing other declarations.) The patch was to interpret the Read as if it were
natural language. We claim that in natural language one can declare that
reading will be done and have that reading be implicit in the rest of the step-by-
step procedure.

This claim about natural language again derives from our studies of SSK.
This notion of an input declaration comes from a natural language implemen-
tation strategy where the subject uses an early step in the procedure to describe
how new data values are retrieved. In later steps, new input values are referred
to implicitly. For example, one of our subjects working on the factory gate
problem used the lines: “Each worker will be coming out of the gate in turn.
Write down the value of each paycheck”

Note that the distinction between the PL used as NL bug generator and the
PL interpreted as NL bug generator is fine. In the PL interpreted as NL bug
generator, the novice uses a programming language construct to implement a
natural language plan: a Read used as a declaration that reading will occur
into a certain variable. In the PL used as NL bug generator, on the other hand,
the novice uses programming language constructs as if they had their natural
language meanings or omits programming language constructs that would not
be needed in natural language: the implicit Read(l) every time a data value is
needed.

The third explanation for the bug in Figure 7 uses the one variable assumed to
have multiple roles (multirole variable) bug generator. In this interpretation, the
subject patches an impasse about getting new values in the loop by collapsing
the purpose for two different variables. In particular, he has collapsed the run-
ning total to be accumulated with the new value to be read from a user. In this
interpretation, he thinks that the running total happens automatically when a
new value is read from the user. The subject understands the statement Sum

PREPROGRAMMING KNOWLEDGE 143

Figure 7. Bug analysis showing the operation of bug generators. The hands point-
ing right (g3) indicate each different plausible bug generator explanation for the
bug.

BUG: “It reads the sum”: Sum:= 0 + |
The subject should be saying something like “it reads in a value which is
added into the sum.”
B PL used as NL on input new value variable
The read operation is done implicitly whenever a value is needed.
§ PL interpreted as NL on Pascal — Read/ReadIn
Here the subject is treating Read; ReadIn pair as if it was declaring
that reading is to be done, and the results of the read will be used
with sum.
B»> Multirole variable on running total variable, input new value
variable
The subject is using the variable sum as if it will automatically get
a new value added in whenever that new value is read.
B> Shp
Just slipped and forgot to say “. . . a value which is added. . . .

»

:= 0 + | to mean that the variable Sum gets the value of | added in every time a
new value of | gets Read. This bug generator derives from the flexibility of a
natural language noun phrase. A noun phrase can have several different as-
pects, normally disambiguated by context. In the multirole variable interpre-
tation of our example, the noun phrase “the sum” has the two aspects accumu-
lated so far and made up of values read. Rosnick (1982) has found a similar
collapsing of variable roles in algebra students solving word problems.

The fourth explanation is a slip bug generator explanation. It says that the
subject simply spoke sloppily and clearly understands that a Read(l) statement
must appear elsewhere.

From the example in Figure 7, we see that it is possible to produce plausible
explanations for a bug based on patches from two or more bug generators. If
several different patches produce the same result, there is no systematic way to
choose between the different possible bug generators. In fact, it is reasonable
that novices can construct a patch using several bug generators that suggest
similar approaches. Given the current methodology, however, we have no way
to relate the novice programmer’s behavior to possible interactions between
plausible bug generator explanations.

Notice that we describe each bug generator in the example in terms of the
plans active at the time of the impasse. We view bug generators as procedures
that use one or more active plans to create a patch. We have categorized the
bug generators based on how they use the active plans. We describe each of
these three categories, with examples of each.

144 BONAR AND SOLOWAY

SSK Confounds PK. With these bug generators, the novice uses an SSK ver-
sion of an active plan to confound the PK version of that plan.

PL used as NL (programming language used as natural language) bug gen-
erators use a programming language construct because it has the same words as
a phrase used in the natural language implementation of an active plan. For
example, in Figure 7, Subject 13 may have used the programming construct
read as implying an implicit read operation to be executed whenever needed.
In natural language, data are often retrieved in this way.

PL interpreted as NL (programming language interpreted as natural lan-
guage) bug generators interpret a programming language construct as if it
were a phrase used in a natural language implementation of the plan on which
it is operating. In Figure 2, for example, Subject 13 seems to have interpreted
then from Pascal as the phrase then in natural language.

Multirole variable (multiple roles for a variable) bug generators use a single
variable for multiple roles from current active plans. This bug is designed to
capture that aspect of natural language where a single noun phrase can have
several different referents depending on context. For example, in natural lan-
guage we can talk about “the sum of the wages” and “the count of the wages.”
Similarly, one of our subjects seems to have used the same variable to stand for
both a running total variable (summing input values) and the counter variable
(counting those input values). (In the excerpt, | is the variable that holds the in-
put values and N is the multirole counter variable and running total variable:
“I want to get a statement that is going to be clear that we're going to add the
numbers, each number entered, we’ll have the tally of the, number of integers
entered . . . ahhh, N equals, ahmmm integer.” [Writes: N:= 1].)

NL construct (new programming language construct from natural lan-
guage) bug generators invent a new programming construct based on a natural
language implementation of the parameter plan. For example, one of our sub-
jects wrote the following line: New : = next New; to indicate that the next value
is needed for the new value variable.

Generic name (variables named generically) bug generators use generic
names for parts of the program or variables. These names are based on com-
mon programming language implementation strategies. Program elements
are named on the basis of how we talk about them when describing the pro-
gram. For example, our subjects would talk about the input new value variable
as “the variable holding the integers read in” and give that variable the name
integer.

Intra-PK. These bug generators use incorrect or incomplete PK versions of
the active plan to patch an impasse. Patching occurs by using knowledge
within PK.

Trace (statements ordered in execution order) bug generators order the pro-
gram as if it is an execution trace. For example, one of our subjects produced
the following code for the body of the averaging problem (Sum is the running
tota] variable, | is the new value variable, and N is the counter variable):

PREPROGRAMMING KNOWLEDGE 145

Sum:=0 + |
N:=1
Sum:=1| + |
N:=2

Overgeneralize (programminng language overgeneralization) bug genera-
tors allow a subject to overgeneralize from one Pascal implementation plan to
another. For example, subjects often will initialize all variables whether this is
needed or not.

In tactically similar (tactical similarity) bug generators, the subject fails to
distinguish between plans that do similar things but are implemented differ-
ently. For example, subjects will use the assignment operator to give a value to
Pascal constants or in association with a read statement.

Other Confounds PK. With these bug generators, the novice uses knowledge
from other (i.e., not SSK or PK) domains to confound the PK version of the ac-
tive plan.

Other domain (knowledge from other domains) bug generators use an un-
derstanding from a domain such as mathematics. For example, one of our sub-
Jjects assumed that the variable | will always increment implicitly, much like
the i used in mathematical notation for a series.

OS confound (operating system confound) bug generators confound a com-
mand or operation from the operating system with a programming language
construct. For example, one of our subjects used an editor command within his
program.

Our bug descriptions also include a slip as a plausible explanation. A slip re-
fers to a random error produced while the novice is distracted, a speech slip, or
a typographical error.

4. EVALUATING THE MODEL

This section presents a preliminary evaluation of our model. In particular,
we present evidence that a significant portion of novice bugs can be explained
by the SSK confounds PK bug generators. Our data are taken from a detailed
analysis of four protocols selected from a body of interviews originally con-
ducted to explore novice programming cognition. In the selected protocols, we
present the same introductory programming problem to four different novice
programmers, all in the fourth to sixth week of an introductory programming
course.

4.1. Methodology

In our interviews, we present introductory programming students with a
Pascal programming problem. Subjects are instructed to think aloud as they
develop a solution to this problem. Protocols of these sessions were then ana-

146 BONAR AND SOLOWAY

lyzed with standard techniques used to study novice understanding of physics
(Chi et al., 1981), algebra (Clement, 1982), children’s arithmetic (Resnick,
1982), and other domains. We have also drawn on methodologies developed
by Newell and Simon (1972) and discussions of methodological issues arising
from the use of verbal reports as data (Ericsson & Simon, 1980; Ginsberg,
Kossan, Schwartz, & Swanson, 1981).

Our analysis of the protocols has two steps: the plan analysis and the bug
analysis. In the plan analysis, we relate the relatively abstract plan descrip-
tions to the actual utterances and programs produced by the novice. In addi-
tion, because our claim is that novices use both SSK and PK while program-
ming, we need to know whether the novice has used an SSK or PK imple-
mentation of each plan. In order to make the distinctions between SSK and PK
versions of each plan, we have developed a series of criteria for each. The crite-
ria specify those subject utterances we use to justify a claim that a certain plan
is in use.

The criteria for SSK plans are based on our analysis of a study in which 34
subjects were given problems like the factory gate problem (Figure 3). Each of
these problems required the use of specific plans. A subject’s response required
some implementation for each of these plans. Each plan implementation found
(including the case of not explicitly using the plan) is represented on the list of
criteria for that plan. These lists of criteria represent the strategies we know to
be used in implementing each plan. The criteria for PK plans are based on our
own Introspection about the implementation strategies for PK plans.

Consider the example of plan analysis and use of criteria in Figure 8. In that
plan analysis, we claim that Subject 6 has used both an SSK and PK version of
the results variable plan. In Segment 173, she is discussing her implementa-
tion of the results variable. In the first part of the segment, she describes the
implementation without any reference to how the count and sum are accumu-
lated. This satisfies a criterion for an SSK version of the plan. Later in the seg-
ment, she goes into detail about the accumulation of the count and sum, satis-
fying a criterion for a PK version of the plan. We call each such piece of
evidence (i.e., satisfaction of a criterion) an evidence item.

An example in Figure 9 illustrates how subtle the plan analysis can get. In
the plan analysis, we claim that Subject 11 has used both an SSK and PK ver-
sion of the counter variable plan in a single sentence (Segment 112). Evidence
for the SSK version is the phrase “counting the numbers of integers that come
through.” Evidence for the PK version is the phrase “imnplementing by ones.”
These evidence items suggest that the novice is using both the SSK and PK ver-
sions of the plan within the same sentence. The difference is based on how the
counting operation is viewed. “Counting the number of integers that come
through” indicates that the subject intends an operation that counts the ele-
ments of a set that has been completely acquired before the count starts. On the
other hand, “incrementing by ones” both uses programming jargon (“incre-
menting”) and indicates an operation that counts each element, one at a time.

PREPROGRAMMING KNOWLEDGE 147

Figure8. Protocol segment with claimed use of both an SSK and PK version of the
results variable plan.

Subject 6: . . . what I'll want to be doing at the end is dividing the sum by the
total of numbers to find an average, so I'll always have to keep track of both.
So, after each number is read in, I will have, I will be keeping track at that
same time as the calculation is made of the count and of the sum, so at any one
point where the sentinel’s read in, I will have both figures available to read in
an average.

PLAN: Result variable
Evidence: Natural language
“. . . dividing the sum by the total of numbers to find an aver-
age, ...
Evidence: Pascal
“after each number is read in, . . . I will be keeping track . . . of

the count and of the sum . . .”

Counts of evidence items are used in our quantitative summaries (presented
later) to represent overall plan activity. Note that a plan instance with several
evidence items actually counts once for each evidence item. We would count
two evidence items in our example of Figure 9, one for an SSK version of the
plan and one for a PXK version.

In the bug analysis, we show how errors made by a novice can be plausibly
explained as bug generators operating on currently active plans. We analyze
each piece of buggy behavior in a separate bug annotation. In Figure 7, we
showed an example of such an annotation. After briefly describing the bug, the
annotation describes the bug generators and plans that plausibly explain the
bugs.

The bug generator set used in our bug analysis was developed after an exam-
ination of the first protocol presented here. That bug generator set was then
used to analyze the other three protocols. In this way, we provide a minimal
test of the explanatory power of a chosen set.

4.2. Overview of Protocols Analyzed

Before presenting a detailed analysis of the subjects’ performance, we pres-
ent an overview of each subject’s work on the averaging problem. These pro-
grams and descriptions provide a context for the data that follow.

Interview 1. Subject 13’s final program is shown in Figure 10. There are a
number of things wrong with this program, but most critical is his peculiar
loop body. Notice that within the loop body, Sum (the running total variable)
is first set to 0 (Line 1) and then to | + Next I (I is the input new value variable)
(Line 2), while N (the counter variable) is set to 1 (Line 3) and then 2 (Line 4).

148 BONAR AND SOLOWAY

Figure9. Protocol segment with claimed use of both an SSK and PK version of the
counter variable plan.

Subject 11: . . . I want it simply incrementing by ones, it’s counting the num-
ber of integers that come through, . . .

PLAN: Counter
Evidence: Natural language
“counting the number of integers . . .
Evidence: Pascal
“incrementing by ones”

»

The subject seems to be implementing the loop with the following natural lan-
guage strategy: Show an example of the first few steps and assume that the
other iterations will happen correctly (he actually shows the first two steps). In
the Appendix, we show an analyzed excerpt from Protocol 1.

Interview 2. Subject 6's final program 1s shown in Figure 11. It is almost cor-
rect. His problem is that there is no READ inside the loop. In the protocol, he
convinces himself that he needs a READ above the loop (Line 1) to make the
WHILE test make sense (Line 2), but never thinks to put a second READ inside
the loop also. At one point, he uneasily states that each test of NEWNUM in the
WHILE statement (Line 2) will know to read a new value for that iteration.

Interview 3. Subject 11’s final program is shown in Figure 12. Her program is
almost completely correct. Like Subject 6, her bugs are related to reading new
values inside the loop. She recognized that some sort of Read was required in-
side the loop and even realized that it had to come after the Count increment
(Line 1) and Total update (Line 2). The Read () below the loop (Line 3) was
originally, and correctly, put at the bottom of the loop body. In the protocol,
she argues that leaving it there would cause the program to read a new value
before the previous value read is processed. She uneasily moved Read (I) out to
its current position outside the loop (Line 3) and settled on Readin (Line 4) at
the bottom of the loop to express, as she put it, “the right amount of reading.”

Interview 4. Subject 12’s final program is shown in Figure 13. This program is
almost correct. Its bug involves the first value READ (before the start of the
loop) (Line 1). She reads in a starting value, but then sets NUM (the input new
value variable) to 0 (Line 2), losing that starting value. From the protocol, it
seems that she does this because she wanted to initialize all variables used in-
side the loop to 0.

Figure 14 contains overview statistics for the four protocols analyzed. Inter-
views lasted between 23 and 45 min. It is not clear why Subjects 2 and 4 took
nearly twice as long as did Subjects 1 and 3. Time spent on the problem does
not correlate with plan usage or with number of bugs.

PREPROGRAMMING KNOWLEDGE 149

Figure 10. Final program for Subject 13 working on the averaging problem. Num-
bers on the right mark lines discussed in the text.

Prograa Average (Imput/, Output);
Var
N, Sum : Integers
Average : Real;
Const : Sentinel
Begin (» Average of the integers entered)
Writeln ('Enter series of integers to be averaged');
Writeln (Integers will be Averaged when you
enter the Integer 99999);
Read;
Readln;
Sentinel := 99999;
N :=0;

Sum := 0 (1)
(3)
(2)
(4)

3
[
—t
+
)
4
-

until I = 99999

then Average = Sum/N
Writeln (’Average’:= 0);
END.

Figure 11. Final program for Subject 6 working on the averaging problem. Num-
bers on the right mark lines discussed in the text.

PROGRAM AVERAGE (INPUT/, OUTPUT);
CONST
SENT = 99099;
VAR
NEWNUM, COUNT, SUM, AVE : INTEGER;
BEGIN
COUNT :=
SUM := 0;
READLN;
READ (NEWNUX) ; (1)
WHILE NEWNUM <> SENT (2

0;

COUNT := COUNT + 1;
END;
IF COUNT <> 0
THEN AVE := SUM DIV COUNT
WRITELN (°AVERAGE = '), AVE:8:2;
ERD.

Figure 12. Final program for Subject 11 working on the averaging problem. Num-
bers on the right mark lines discussed in the text.

Const,
Sentinel = 99999,
Var
I, Count, total, AVG : Integers;
Begin
Count := 0;
Total := 0;
¥riteln (’Enter integer’);
Readln;
Read (integer);
While I <> 98999 Do

Begin
Count := Count + 1; (1)
Total := Total + I (2)
Readln (4)
End
Read (I) (3)

Avg := Total Div Count
Writeln (‘Avg is ', Avg:0)

Figure 13. Final program for Subject 12 working on the averaging problem. Num-
bers on the right mark lines discussed in the text.

PROGRAM SUMUP (INPUT/,OUTPUT);
CONST
SENTINEL = 99999
VAR
NUM1, SUM, AVERAGE, COUNT : INTEGER;
BEGIN
WRITELN (awuuxmwmzmmn.)
(*FINISHED THEN ENTER 00890 . . . °);

READ (NUM); (1)

(2
lHILE IUI <> SERTINEL DO
BEGIN
SUN := NUM + SUN;
COUNT := COUNT + 1;
READLN;
READ (NUN)
END;
AVERAGE := SUM DIV COUNT;
WRITELN (’AVERAGE IS, ® AVERAGE : 0):
END.

150

PREPROGRAMMING KNOWLEDGE 151

Figure 14. Summary statistics for the four protocols analyzed. “Bugs” refers to the
number of bugs found in the protocol.

Protocol Number

1 2 3 4

Subject number 13 6 11 12

Duration (minutes) 32 45 23 45

Plan evidence items 159 177 104 107
SSK Plans 43 50 16 16
PK Plans 116 127 88 91

Plan evidence 5.0 3.9 4.5 2.4
items/minute

Bugs 32 19 11 10

5. RESULTS OF THE ANALYSIS

We present our analysis based on three expectations derived from our model
of novice programming bugs.

5.1. Expectation 1: Regular and Extensive Use of Plans

We have claimed that novices use both SSK and PK represented as plans. If
this is the case, plan usage should be pervasive: The first expectation is that
novices show a regular and pervasive use of plans. Novices should make use of
both SSK and PK plans.

Figure 14 contains the statistics relevant to this expectation. There were 104
plan evidence items in the protocol with the fewest plan evidence items (Proto-
col 3). This protocol averaged 4.5 plan evidence items per minute. The proto-
col with the most evidence items had 177, averaging 3.9 plan evidence items
per minute. Although there is no base line, it seem fair to say that our subjects
did use plans pervasively.

In Figure 15, we show the plan evidence item counts broken down by type of
plan (with SSK and PK lumped together). From this fine-grained breakdown,
we see that all subjects used every type of plan. More intriguing, however, is
that this breakdown permits an interesting speculation. Consider the follow-
ing data about several different plans:

152 BONAR AND SOLOWAY

Figure 15. Plan evidence items for the analyzed protocols.

Protocol Number

1 2 3 4
Sentinel 9 (5%) 8 (4%) 4 (%) 11 (10%)
Loop 20 (13%) 13 (7%) 9 (9%) 1 (1%)
Counter 29 (18%) 21 (12%) 18 (17%) 12 (11%)
Arithmetic sum 21 (13%) 38 (21%) 13 (13%) 15 (14%)
Result 23 (14%) 18 (10%) 9 (9%) 12 (11%)
New value 11 (7%) 13 (I%) 16 (15%) 16 (15%)
Input 18 (11%) 21 (12%) 15 (14%) 8 (1%)
New value loop 9 (6%) 35 (19%) 14 (13%) 23 (21%)
Result output 10 (6%) 6 (%) 0 (0%) 1 (1%)
Instructional output 7 (%) 0 (0% 3 (3%) 0 (0%)
Prompt output 2 (%) 1 (%) 3 (3%) 8 (I%)
Tllegal filter 0 (%) 3 Q%) 0 (0%) 0 (0%)
Total 159 (100%) 177 (100%) 104 (100%) 107 (100%)

New value controlled loop plan: In Protocol 1, where the subject’s loop
was very far from correct, the count is quite low, accounting for only 6%
of the plan evidence items. Other subjects, whose loops were fairly close
to correct, had higher counts, ranging between 13% and 21% of all plan
evidence items.

Sentinel variable plan: All subjects had little trouble with this plan and
all had relatively low plan evidence item counts, ranging between 4%
and 10% of all plan evidence items.

Input new value variable plan and input plan: These plans gave all sub-
jects a great deal of trouble. Plan evidence items counts (for the two to-
gether) range between 18% and 33 % of all plan evidence items.

From these and similar observations, it appears that plan activity is highest on
those plans that a novice almost knows (i.e., those plans where the novice has a
fairly good idea of what is needed, but does not have all aspects correct).

PREPROGRAMMING KNOWLEDGE 153

Figure 16. Bug generator statistics for the analyzed protocols. “Bugs explained”
refers to the number of bugs that can be explained by one or more bug generators
developed from the analysis of Protocol 1. “Total explanations” refers to the num-
ber of plausible, nonslip bug generator explanations. “Explanations/bug” refers to
the average number of plausible, nonslip explanations per bug.

Protocol Number

1 2 3 4

Bugs found 32 19 11 10
Bugs explained - 19 11 10
Total explanations 55 27 15 15
Explanations/bug 1.7 14 14 15

5.2. Expectation 2: Bug Generators Plausibly Explain the Bugs

The second expectation is that the bug generator set presented here can plau-
sibly explain most errors found in the protocols. The data relevant to this ex-
pectation appear in the bugs explained line of Figure 16. As discussed earlier,
the bug generator set was developed based on the analysis of Protocol 1. The
data indicate that one or more bug generators from that set can plausibly ex-
plain each of the bugs found in Protocols 2, 3, and 4.

It is important that the bug generators actually do discriminate between the
bugs. In our data, this would mean that there are relatively few plausible ex-
planations per bug. Figure 16 shows the total number of plausible explana-
tions in each protocol and the mean number of plausible explanations per bug.
These data indicate that although multiple bug generators may be responsible
for some bugs, on the average less than two bug generators can plausibly ex-
plain each bug.

The plausible bug generator explanations summarized in Figure 16 do not
include cases where the bug was plausibly explained as a slip. These data are
summarized in Figure 17. First, notice that all but two bugs had a plausible
nonslip explanation. That is, almost every bug detected in the analysis can be
plausibly explained as a bug generator operating on plans. Second, notice that
slips can plausibly explain between 34% and 58% of the bugs (depending on
the protocol). Most likely, a much smaller percentage are actually slips.
Though there are many bugs that can plausibly be interpreted as slips, many of
these slip interpretations become less likely when the bug is examined in the
context of the whole protocol. That is, subjects often return to a bug and explic-
itly discuss it. It is unlikely that a slip would stand up to such repeat scrutiny.

154 BONAR AND SOLOWAY

Figure 17. Slip versus nonslip bug generator statistics.

Protocol Number

1 2 3 4
Bugs plausibly explained 32(100%) 18(95%) 10(91%) 10(100%)
by nonslip bug generators
Bugs plausibly explained 11 (34%) 11(38%) 5(45%) 5 (50%)

by slip bug generators

5.3. Expectation 3: SSK/PK Bug Generators Are Critical

In our model, we propose that the intrusion of SSK plays an important role
in novice programming bugs. The third expectation is that when novices en-
counter an impasse in a developing programming solution, they usually use
SSK confounds PK bug generators to patch and continue. The analysis pre-
sented here contains two kinds of evidence for this expectation.

First, SSK confounds PK bug generators embody the process whereby nov-
ices use SSK knowledge to reason about their programs. As can be seen in the
SSK/PK total line of Figure 18, SSK confounds PK bug generators plausibly
explained 60%, 67 %, 67 %, and 47 % of the bugs found in Protocols 1 to 4, re-
spectively. That is, for Protocols 1 to 3, SSK confounds PK bug generators can
explain 60 % or more of the bugs. Protocol 4 had the lowest (47 %) coverage by
SSK confounds PK bug generators but also had the least buggy protocol.

Second, the subjects had between 10 and 32 bugs. Notice that in terms of
bugs, there seem to be two groups in the protocols: Protocols 1 and 2 have more
bugs than Protocols 3 and 4. We refer to these as the “buggy group” and the “less
buggy group,” respectively. Referring to Figure 19, we see that the buggy
group had higher ratios of SSK to PK plan evidence items than the less buggy
group. The ratios were .37 and .39 for the buggy group protocols and .18 for
both protocols of the less buggy group. This is consistent with the notion that a
more error prone and less advanced novice is doing more reasoning from SSK
plans.

6. CONCLUDING REMARKS

In the preceding section, we presented an analysis of four protocols of novice
programmers. From that analysis we provide data to support our model of nov-
ice programmer bugs. Specifically, we present evidence that:

Plans, both SSK and PK, are pervasive in the work of novice
programmers.

PREPROGRAMMING KNOWLEDGE 155

Figure 18. The number of bugs plausibly explained by each nonslip bug genera-
tor, plus the percentage of plausible explanations by the specified bug generator out
of all possible nonslip explanations. Each bug can have several explanations. Slip
data are presented in Figure 17.

Protocol Number

1 2 3 4

SSK Confounds PK:

PL used as NL 10 (18%) 6 (22%) 1 (%) 1(7%)
NL interprets PL 11 (20%) 10 (37%) 7 (47%) 3 (20%)
Multirole 8 (15%) 1 (4%) 1 (1%) 3 (20%)
NL construct 2 (%) 0 (0%) 0 (0%) 0 (0%)
Generic name 2 (4%) 1 (%) 1 (7%) 0 (0%)
Total 33 (60%) 18 (67%) 10 (67%) 7 (47%)
Intra-PK:

Trace 10 (18%) 5 (19%) 1 (%) 1 (I%)
Overgeneralize 4 %)y 1 (4%) 2 (13%) 3 (20%)
Similar 4 (T%) 1 (4%) 2 (13%) 3 (20%)
Total 18 (32%) 7 (26%) 5 (33%) 7 (47%)
Other Confounds PK:

Other domain 3 6% 2 (%) 0 (0%) 1 (%)
OS confound 1 (2%) 0 ©O%) 0 0% 0 (0%)
Total + TRy 2 (%) 0 (0%) 1 (7%)
Total 55 (100%) 27 (100%) 15 (100%) 15 (100%)

Our bug generator set, developed after studying only one protocol, can
plausibly explain the novice bugs observed in the other protocols.

Most important, SSK plays an important role in the bugs of novice pro-
grammers. Bug generators that describe the confounds between SSK and
PK can plausibly explain a substantial number of bugs in each of the pro-
tocols. In addition, the SSK to PK plan ratio was higher for those novices
with buggier protocols.

156 BONAR AND SOLOWAY

Figure 19. PK to SSK plan usage ratios support the importance of $8K in under-
standing buggy programs.

Protocol Number

1 2 3 4
Plan Evidence Items 159 177 104 107
SSK plans 43 50 16 16
PK plans 116 127 88 91
Ratio: PK to SSK .37 39 .18 .18

There are several next steps planned for this work. Currently, our bug anal-
ysis does not provide data to support our specific set of bug generators, nor does
it provide‘the ability to recognize which of the plausible bug generators actu-
ally contribute to the bug. We would like to develop the theory that makes this
more specific: Are there ways to detect exactly which bug generator(s) is (are)
responsible? This will require a more formal definition of each bug generator
along with a more constrained set of interviews. In these interviews, subjects
will be put in specific situations where bugs are very likely. For example, sub-
jects might be given a problem statement and a skeleton program missing a key
section. Such interviews would be accompanied by probes to detect the use of
certain bug generators and plans. We plan to focus particularly on the input
new value variable plan’s use within a loop, an area of difficulty for all our sub-
jects. In general, correctly updating within the loop seems to be difficult for
our subjects and amenable to more constrained study.

We are planning to explore the use of SSK plans in better understanding the
intentions of novice programmers. We are beginning the development of a
curriculum organized around common programming plans. Each program-
ming plan would be introduced by examining the SSK version. The SSK plans
allow us to understand and direct the students in their basic approach to the
problem solution. With the SSK plan providing a connection to something the
student already knows, we then introduce the PK version of the plan and actual
code. By making a clear distinction between the SSK and PK versions, we
should be able to avoid many of the errors discussed in this article.

We have presented a process model of bugs for novice programmers early in
a programming course. In developing our model, we have focused on the
knowledge used by a novice programmer. In particular, our model is based on
the role of natural language step-by-step procedural knowledge in understand-
ing these bugs. Although our model is just a start toward understanding the
source of novice bugs, it indicates how critical novice preprogramming knowl-
edge is likely to be in a more complete theory.

PREPROGRAMMING KNOWLEDGE 157

Acknowledgments. The authors wish to thank the referees for their valuable com-
ments and careful reading.

Support. This work was supported by the National Science Foundation under NSF
Grant MCS-8302382. Currently, the first author is supported by the Office of Naval
Research under Contract Numbers N00014-83-6-0148 and N00014-83-K-0655. Any
opinions, findings, conclusions, or recommendations expressed in this report are those
of the authors and do not necessarily reflect the views of the U.S. government.

REFERENCES

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cogn:-
tive Science, 8, 87-129.

Anderson, J. R., Greeno, J. G., Kline, P. J., & Neves, D. M. (1981). Acquisition of
problem-solving skill. In J. R. Anderson (Ed.), Cognitive skills and their acquisition
(pp- 191-230). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Bonar, J. G. (1985). Understanding the bugs of novice programmers. Unpublished doctoral
dissertation. University of Massachusetts, Amherst.

Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in pro-
cedural skills. Cognitive Science, 4, 379-426.

Chi, M. T., Feltovich, P., & Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Clement, J. (1982, January). Students’ preconceptions in introductory mechanics.
American Journal of Physics, 50, 66-71.

DiSessa, A. A. (1982). Unlearning Aristotelian physics. Cognitive Science, 6, 37-76.

Ehrlich, K., & Soloway, E. M. (1983). An empirical investigation of the tacit knowl-
edge in programming. In J. Thomas & M. L. Schneider (Eds.), Human factors in com-
puter systems. Norwood, NJ: Ablex.

Ericsson, K. A., & Simon, H. (1980). Verbal reports as data. Psychological Review, 87,
215-251.

Ginsberg, H. P., Kossan, N., Schwartz, R., & Swanson, D. (1981). Protocol methods
in research on mathematical thinking. In H. P. Ginsberg (Ed.), Development of mathe-
matical thinking (pp. 7-47). London: Academic.

Johnson, W. L., Draper, S., & Soloway, E. M. (1982). Classifying bugs is a tricky busi-
ness. In Proceedings of the Seventh Annual NASA/Goddard Workshop on Software Engineering.

Kahney, H., & Eisenstadt, M. (1982). Programmers’ mental models of their program-
ming tasks: The interaction of real-world knowledge and programming knowledge.
Proceedings of the Fourth Annual Conference of the Cognitive Science Society, pp. 143-145.

Lewis, C. (1981). Skill in algebra. In J. R. Anderson (Ed.), Cognitive skills and their ac-
quisition (pp. 85-110). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Matz, M. (1982). Towards a process model for high school algebra errors. In D.
Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems (pp. 25-50). London:
Academic.

Miller, L. A. (1981). Natural language programming: Styles, strategies, and contrasts.
IBM Systems Journal, 20, 184-215.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

158 BONAR AND SOLOWAY

Resnick, L. B. (1982). Syntax and semantics in learning to subtract. In T. Carpenter, J.
Moser, & T. Romberg (Eds.), Addition and subtraction: A cognitive perspective
(pp. 136-155). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Rich, C. (1981). Inspection methods in programming (Tech. Rep. No. AI-TR-604).
Cambridge: MIT, MIT Artificial Intelligence Laboratory.

Rosnick, P. (1982). Student conceptions of semantically laden letters in algebra. Amherst: Uni-
versity of Massachusetts, Cognitive Development Project.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior. Interna-
tional Journal of Computer and Information Sciences, 5, 123-143.

Soloway, E. M., Bonar, J. G., & Ehrlich, K. (1983). Cognitive strategies and looping
constructs: An empirical study. Communications of the Association for Computing Machin-
ery, 26 (11), 853-860.

Soloway, E. M., & Ehrlich, K. (1984). Empirical studies of programming knowledge.
IEEE Transactions of Software Engineering, SE-10, 595-609.

Soloway, E. M., Ehrlich, K., Bonar, J. G., & Greenspan, J. (1982). What do novices
know about programming? In A. Badre & B. Shneiderman (Eds.), Directions in human
computer interaction (pp. 27-54). Norwood, NJ: Ablex.

HCI Editorial Record. First manuscript received November 7, 1984. Revision re-
ceived April 26, 1985. Accepted by John Seely Brown. Final manuscript received May
3, 1985. — Editor

APPENDIX: A SAMPLE OF AN ANALYZED PROTOCOL

This appendix contains a short segment from a fully analyzed protocol. This
segment is taken from Protocol 1 in the set of four protocols analyzed in depth
and discussed in Section 5 of the text.

The subject of this segment is working on the averaging problem. At the
point we pick up the protocol, he is coding the loop. The following transcript is
annotated with the plan analysis and the bug analysis. In the course of the pro-
tocol, the subject will write the code shown in Figure 6. The subject’s basic
problem is that he does not understand how variables are used to process values
inside the loop. As we see in the protocol, the subject clearly understands that
the loop body must accumulate a running total in the variable Sum and a count
in the variable N. He also understands that the variable { will hold new values
read from the user. Explanations for the peculiar code in the loop body are pre-
sented in the bug analysis annotations with the actual transcript segment.

The transcript uses the following notational conventions:

Square brackets (e.g., []) enclose explanatory comments we have added
to the text.

Programming font (e.g., N := 1) is used to indicate code that the subject
actually wrote during the protocol.

PREPROGRAMMING KNOWLEDGE 159

Plan annotations are set off from the protocol text with horizontal lines
and labeled “PLAN:”. These annotations mark those places where we
claim the subject has used a plan. The annotation describes our evidence
for that claim. See Section 4.1 for a detailed discussion of the plan
annotations.

Bug annotations are set off from the protocol text with horizontal lines
and labeled “BUG:”. These annotations mark those places where the sub-
ject has a bug. The annotation provides a general explanation of the bug
and describes the bug generators that could plausibly explain that bug.
Each plausible bug generator explanation is marked with a hand point-
ing right (g). See Section 4.1 for a detailed discussion of the bug
annotations.

Here is the protocol segment:
Subject 13: Ummm, ummm, well I think it’s, ahh, it’s [N := |, eventually
changed to N : = 1, eventually put on Line 5] not right I don’t think, but I, I'm
gonna leave it that way for the moment.
Interviewer: Okay, fine.
Subject 13: And then integer [the way the subject refers to the variable I], or

rather, sum equals integer, ahm, equals zero plus integer [Writes: Sum := 0
+ |, eventually put on Line 4], and the number equals the integer, ahhh,

PLAN: Arithmetic sum variable
Evidence: P3 — Running total assignment to Sum in loop.

BUG: Arithmetic sum set to current new value variable

There will be no running sum operation because the arithmetic sum,

Sum, always gets the value of the current new value variable, .

B Trace on arithmetic sum variable
The subject is reasoning about the execution behavior of the arith-
metic sum variable. He recognizes that on the loops first iteration,
Sum will be given the value O + | and then writes that.

Interviewer: Why don’t you tell me what you are thinking?

Subject 13: Well, I'm thinking that [points to N : = 1, eventually changed to N
:= 1 and eventually put on Line 5] should go after [points to Sum := 0 + 1,
eventually put on Line 4] because the sum is going to be zero plus the integer
and then the number is going to be, ahh, number equals 1.

160 BONAR AND SOLOWAY

Interviewer: Ah huh.

Subject 13: [Crosses off N : = 1] And then number equals one {Writes: N:= 1
on Line 5].

PLAN: Counter variable
Evidence: N7 — Counting to N done after operation.

BUG: Counter needs to go after the arithmetic sum

The increment of the counter variable, N, needs to be done after the

update of the arithmetic sum variable, Sum.

B PL interpreted as NL on counter variable
In our study of natural language step-by-step procedures, we found
that the counting operation is usually specified after the operation
to be counted. Also, in one of our interviews, the subject suggested
that if counting happened before the operation to be counted, there
was a chance that the count would be 1 too high. Here the subject is
applying that convention to Pascal.

Interviewer: Okay.

Subject 13: And then, and then sum equals integer plus integer [Writes: Sum
:= | + | on Line 6], and number equals 1. Ahhh.

PLAN: Arithmetic sum variable
Evidence: P3— Running total assignment to Sum in loop.

BUG: Arithmetic sum set to current new value variable

There will be no running sum operation because the arithmetic sum

variable, Sum, always gets twice the value of the current new value

variable 1.

P Trace on arithmetic sum variable
The subject is reasoning about the execution behavior of the arith-
metic sum variable. He recognizes that on the loops second itera-
tion, Sum will be given the value | + | and then writes that.

I® Multirole variable on new value variable
The subject is allowing the new value variable to take two roles: its
“sum so far” and its next value. Note that later in the transcript, he
will add next as a keyword in front of the second |.

Interviewer: What are you thinking now?

Subject 13: Number equals 2 [Writes: N: = 2on Line 7] and it would go on, it
would repeat, that, if [the loop body] continues to repeat {sweeping motions]

PREPROGRAMMING KNOWLEDGE 161

this [points to the 2 on Line 7] will increase. I'm assuming for the moment that
this is sufficient input.

PLAN: Counter variable
Evidence: P3 — Increment counter variable N inside the loop

PLAN: Indefinite Loop
Evidence: N1—“Continues”
Evidence: N2 —“this will repeat until . . .”

BUG: Says counter variable will increase, but it won’t

Says that the counter variable, N, will increase based on the N := 1

and N : = 2 inside the loop.

PL interpreted as NL on Pascal —repeat, indefinite loop

The subject is expecting the loop to work like loops in natural language.
There, it is common to specify a loop by giving one or two cases of the itera-
tion and assumning that the person reading will know how to generalize.
Notice below () he says that Sum : = 0 + | (Line 4) is the “first format
of that,” referring to the action performed for each value of the new
value variable.

Interviewer: Okay, “sufficient input™

Subject 13: Input to [pause] so that the computer will know that, for each
[pause] for each integer entered, you add 1, you add the integer to the sum
[points to Sum := 0 + | on Line 4}, and that this is the first format of that, zero
plus integer, N equals 1, sum equals integer plus integer, number = 2 [“next”
motion with hand], until [pause] [Writes: until].

PLAN: Indefinite loop
Evidence: N3 —“foreach . . .”

PLAN: Counter variable
Evidence: P3 —Increment counter N inside the loop

PLAN: Arithmetic sum variable
Evidence: P3 — Update arithmetic sum, Sum, inside the loop

This concludes the example protocol analysis.

Copyright © 2002 EBSCO Publishing

