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. And the LORD said, Behold the people is one, and they have all one language;
and this they begin to do; and now nothing will be restrained from them, which
they have imagined to do.

. Go to, let us go down, and there confound their language, that they may not
understand one another’s speech.

. So the LORD scattered them abroad from thence upon the face of all the earth;
and they left off to build the city.

. Therefore is the name of it called Babel; because the LORD did there confound
the language of all the earth; and from thence did the LORD scatter them
abroad upon the face of all the earth.

Gen. xi1



PREFACE

The primary purpose of this book is to serve as a reference for an overall
view of higher level languages. The book brings together in one place, and
in a consistent fashion, fundamental information on programming lan-
guages, including history, general characteristics, similarities, and differences.

A second purpose of the book is to provide specific basic information
on all the significant, and most of the minor, higher level languages developed
in the United States.

The third purpose of the book is to provide history and perspective for
this particular aspect of the programming field. Comments on both are the
responsibility of the author and are not necessarily accepted by all the people
concerned. Because of the rapidly changing nature of this type of work,
new languages appear daily (literally) and so this book represents a snapshot
of—and an (indirect) explanation of how we arrived at—the situation at
a given point in time, namely the fall of 1967. In a few instances, major
happenings of 1968 which could be inserted into galley or page proofs were
included, but in general the text and bibliography cover the period through
1967.

The most well known language (FORTRAN) is merely one of approxi-
mately /20 languages described in this book. (Of this total, approximately
20 are completely dead or on obsolete computers, about 35 are receiving
very little usage, about 50 are for specialized application areas, and about
15 are widely used and/or implemented.) No major attempt has been made
to include languages which are known or used only within a single organi-
zation. Most of those discussed here have been described in published
literature. However, a few languages discussed only in reports issued by the
developing organization have been included.

vi
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Other purposes are to provide an extensive bibliography of relevant
material, to show various philosophies of language design, to describe a
number of the key factors involved in choosing a language, and to provide
the reader with enough information so that he can decide which languages
he wishes to examine in detail.

It is not the purpose of this book to teach how to program in any of the
languages described, nor is the purpose to provide specific or detailed com-
parisons of related languages, nor is it meant to provide a cookbook for
selecting a language for a particular application. A discussion of implemen-
tation techniques is also outside the scope of this book. Except for a few
special cases, only languages which have been developed in the United States,
and which have been implemented, are described. This restriction applies also
to comments of the type “there has not been anything of this kind done”;
such remarks apply to U.S. work only and might be invalid when consider-
ing other countries. Furthermore, some of these remarks are very time
dependent and because of the rapidly changing nature of the field become
invalid when considering work done after 1967.

Since even the very definition of a programming language is debatable,
it is clear that inclusion or exclusion in the book is based on my view of
the meaning of the phrase pregramming language. This is discussed in
Chapter I. The amount of space given to each language in the book is
usually dependent on both the complexity of the language and the author’s
judgment of its importance (either past, present, or future). Every effort
has been made to ensure that the descriptions are accurate and not mislead-
ing. (See the Acknowledgments.)

The reader is assumed to have had experience, or at least one course,
in programming. In many places, more than this minimum is needed for
full understanding although the basic points should be comprehensible to
readers with little experience.

Although not written as a textbook, this book could be used as the
basic source for course 12 (Programming Languages) in Curriculum 68
as described by the ACM Curriculum Committee on Computer Science.
It might be used for background reading in courses Bl (Introduction to
Computing), 11 (Data Structures), 15 (Compiler Construction), Al (Formal
Languages and Syntactic Analysis), A8 (Large-scale Information Processing
Systems), and A9 (Artificial Intelligence and Heuristic Programming). Since
this book was not available at the time that the committee made its report,
obviously the book could not appear in any of the bibliographies suggested
for the courses.

Chapter I provides a general introduction to the subject of programming
languages, advantages and disadvantages, various classifications, and factors
involved in the choice of a language. Chapters II and III discuss respectively
the functional (i.e., non-technical) and technical characteristics of program-
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ming languages. Most of the language descriptions are based on the outline
and concepts established in those two chapters, and so a careful reading of
Chapters II and 11l is required in order to understand the rest of the book.
This admittedly has the disadvantage of not necessarily being the best way
to describe a specific language, but has the advantage of providing some
consistency throughout the discussions. However, some of the flavor and
style of the individual language descriptions have been allowed to creep in,
and serve as a preview of what would be encountered in a more detailed
study. In a very few instances, minor inexact statements have been made
because the accurate language description would require details beyond the
scope of this book.

The remaining chapters and sections are relatively independent, and
in most cases a specific language description can be read without knowledge
of any other languages. Chapter 1V deals with languages used primarily for
numerical scientific problems. Chapter V discusses those used for business
data processing. Chapter VI discusses the list and string processing languages,
and Chapter VII describes languages used for doing formal algebraic mani-
pulation. Chapter VIII describes languages which can be effectively used in
more than one of the areas covered in the preceding four chapters. Sample
programs for most of the languages in Chapters 1V through VIII have been
included; they are meant solely to illustrate the syntactic style of the lan-
guages, and they are not guaranteed to be either correct or efficient. A few
problems have been coded in several different languages to provide an easy
comparison.

Chapter IX describes about 50 languages which are used in more
specialized application areas. Because greater specific knowledge of those
areas is needed to appreciate the languages, the discussions are very brief
and superficial. The criteria for judging these languages is less stringent
than those used for languages in preceding chapters, so that some of the
languages included are not conceptually very different from older ones which
were deliberately omitted, and they do not necessarily satisfy all the defining
characteristics of Chapter I. The criteria have been reduced to make clear
the great need for specialized languages.

Chapter X discusses a few significant unimplemented concepts. Finally,
Chapter XI contains the author’s personal views on future long range
developments in programming languages.

The philosophy and arrangement of references is described in Appendix
A, which also contains a list of authors of included citations. The beginning
of this Appendix should be read before looking at any of the reference lists.
Appendix B contains a list of each language described in this book, the
meaning of its acronym, a very brief description, and the one or two best
references for it.

The book outline was constructed with great care and is shown com-
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pletely in the Table of Contents. A significant amount of fundamental
information is contained there and it should serve as a basic outline to the
subject as viewed by the author.

The process of preparing this manuscript for printing actually required
the solution of some technical problems in language description, not all of
which I successfully solved. In order to make the reading of the text easier,
it was necessary to settle on a distinctive type style to represent actual words
in a language. Thus, specific statements which would be legal in a program,
such as normal arithmetic and control statements, are writtenas A = B + C
and GO TO HECK. However, in those cases where the format of a state-
ment was being described, it was necessary to distinguish between the fixed
words in the language, and the variable names which are to be supplied by
the programmer. This was settled by writing GO TO statementlabel or
MOVE A TO B where A and B represent variables. However, there is
clearly a difference between the two occurrences of the phrase “GO TO
statement” in the following sentence, and the distinction is handled as
follows: The GO TO statement in FORTRAN is of the form GO TO statement.
More specifically the style used in the book is the following: Fixed words
appearing in a definition of the format of a command, and all words in a
specific example, are set THIS WAY or this way. Words or letters representing
characters to be supplied by the programmer (metalinguistic variables as
described in Chapter II) are set THIS WAY or this way. (Thus the letters 4
and B would be set as A, B if used in an example, and as A, B if used in the
definition of a format.) In a discussion about a statement or a list of state-
ment names, the name of the statement is set THIS WAY or this way. The
use of upper and lower case letters have no significance and are merely
those most commonly used in descriptions of the particular language in-
volved. In ALGOL based languages, the tradition of boldface was used
with the above concepts, resulting in this style or this style. The character
"has been used to represent the prime or apostrophe available on printer
chains or typewriters.

Another problem which exists is the variable size of the characters and
spaces used in setting this book. In input/output media for computers, all
characters require the same amount of space, and there is either a blank
between them, or there is not. To simulate this a specific size space was
used to represent the computer blank character; however, this space could
not always be maintained in programs where vertical alignment of columns
was critical. Thus, in material that represents specific examples, the spacing
is critical and is shown as well as possible; on the other hand, it is essential
to realize that in many languages the presence of one, many, or no spaces
is immaterial and the reader should not conclude that because a space was
present or absent that this is a requirement of the language. The language
description specifies whether or not the blank character is significant.
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While these ideas may appear confusing here, it is hoped that the type
styles will be clear in the text. However, the really careful reader will find
that my scheme breaks down in many minor places, and it is left as an
exercise for the reader to find the actual places and to propose a solution.

The subject of programming languages is quite controversial and even
includes debate on what should be included or excluded. Therefore, this
book reflects the author’s personal opinions to a much larger extent than
would a book on a more stable or well defined area. It should be clearly
understood that the specific views expressed in the text, and the implied
views represented by the selection and arrangement of the languages, are
solely those of the author.

Jean E. Sammet
Cambridge, Massachusetts
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I GENERAL INTRODUCTION

Programming languages have become the major means of communication
between the person with a problem and the digital computer used to help
solve it. In fact, it would be impractical to solve most problems if the com-
puter had to be instructed in machine language. This has come about
because most machines tend to operate in binary, and this is clearly an
unsatisfactory method of communication for humans; hence the primary
interface between the computer user and the computer itself has become
the programming language used. In this context, language has the broadest
possible meaning and includes not only the description of the problem to be
solved but also the needed instructions to the operator or operating system.
It should be noted that throughout this book the terms programming language
and higher level language will be used synonymously, with the former being
my preferred term. In particular, as noted later in this chapter, I do not
consider an assembly language (even a very sophisticated one) to be a pro-
gramming language. This view differs from that held by some people who
maintain that anything in which programs are written is a programming
language.

The main function of this chapter is to motivate the need for program-
ming languages, and to define and characterize them. One section discusses
the advantages and disadvantages of programming languages; however,
in spite of the disadvantages, the net evaluation is that programming
languages are here to stay. Finally, there is a lengthy list of types of program-
ming languages, together with some proposed definitions. This provides
one way of classifying programming languages. Many of these types are
overlapping, i.e., a language can fall into several categories simultaneously.

1



2 GENERAL INTRODUCTION

1.1. MACHINE LANGUAGE PROGRAMMING

Every computer has a specific set of instructions which it can execute once
the instruction is placed into the appropriate part of the machine. The actual
set of symbols which the hardware can interpret for execution is the direct
machine language. Since most computers are designed so that their storage
locations and registers contain binary characters (i.e., bits), the most com-
mon machine language is actually binary. Thus the sequence

011011 000000 000000 000000 000001 000000

might mean place the contents of storage location 64 in the accumulator. To
write one instruction, let alone many of them, in this form is clearly imprac-
tical, and this was recognized very rapidly in the early days of computers.
A partial step to alleviate this problem involved the use of mnemonic codes
to represent the instruction, while the rest of the information was left in
binary. Thus, the sequence

CLA 000000 000000 000000 000001 000000

might have the same meaning as the binary string given earlier. While this
was a partial improvement, it was still far from easy to write even one in-
struction correctly. The next step forward came when the numbers (repre-
senting the storage locations or registers in the computer) were allowed to be
written in decimal form. Thus the sequence CLA 0 0 0 O 64 might have
the same meaning as the earlier strings.

The border line between machine language and symbolic assembly
language is not well defined. Some people would choose to refer to the
format given just above as assembly language. At the present time, it is not
worth debating the merits of either view.

1.2. SYMBOLIC ASSEMBLY LANGUAGE PROGRAMMING

The biggest disadvantage to machine language as described in the previous
section, even in the form CLA 0 O O O 64, was that the insertion or elimina-
tion of a single instruction (or piece of data) caused many—if not all—of
the addresses in other instructions to be incorrect. This situation could be
improved somewhat by a scheme of relative addressing or regional addressing,
in which the program was divided into sections, each of which started in
a fixed location. Addresses within each section were given relative to the
starting location. Thus CLA 0 0 0 0 Ré4 might refer to the é4th location
within the R section of code.

While this was an obvious improvement, it was the development of
completely symbolic notation and addressing for both instructions and
data that freed the programmer from worrying about changing all occur-
rences of R64 to R63. A preliminary step in this direction was the work
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done at MIT on Whirlwind in 1952, and by Rochester [RT53] which used
numeric symbolic addresses. These numbers had no mnemonic or numerical
significance but were merely used as symbols for addresses. The culmination
of this early work was the use of mnemonic symbols for both instructions
and data, thus permitting the user to write CLA TEMP where TEMP stands
for the location in memory of the value of a variable, e.g., temperature.
A whole generation of programmers thus learned to use the IBM 704 by
writing programs in SAP (Symbolic Assembly Program) [XY 56].

1.3. EARLY DEVELOPMENT OF BETTER TOOLS

1.3.1. SpeciFic NEeps To BE MET

The histories of automatic coding, programming languages, and the
development of better tools to assist programmers are almost—but not
completely—synonymous. As noted in the ensuing discussion, virtually all
the significant problems arising in the early days were, or have been, solved
by the increasing development of higher level languages (which are defined
and discussed in Section 1.4). It was not until the existence of second genera-
tion computers (circa 1959) that the speed, cost, and difficulty of manually
changing jobs began to force the development of operating systems; this
latter is probably the one major area that is entirely distinct from program-
ming languages which has had, and is having, a major impact upon the
overall computing community. (Time-sharing is considered to be in the
broad category of operating systems.) One can go even further and say that
the development of operating systems was really to help the installation
managers rather than the individual programmers; the latter seldom see
a direct benefit from the operating system unless it greatly reduces their
turnaround time (which is not always true!). Time-sharing of course attempts
to bring to the programmer of third generation computers the advantages
of the on-line debugging which the user of the first computers usually had.
However, even this inherently nonlanguage development requires con-
sideration of the language with which the user will address the system.

The desirability of having a symbolic code forced the development
of symbolic assembly languages. However, that was not sufficient to meet
the growing demands of programmers. For one thing, programmers wanted
the ability to use other people’s code wherever it was appropriate. This
could not always be done because of differences in notation and lack of
an effective way to link the pieces together. One of the main motivations
for using other people’s code was that certain programs were being written
over and over again. For example, square root and trigonometric routines
were being written by the dozens. In some cases, this proliferation was



4  GENERAL INTRODUCTION

justifiable because one person was interested in saving space and therefore
wrote as short a subroutine as he could, while somebody else wanted to
save as much time as possible and therefore removed loops even at the
expense of using more storage locations. In another case, people had
differing requirements for precision, and this caused another whole set of
routines to be developed with varying degrees of precision. However,
eventually the individual effectiveness of a particular program became less
important and was subjugated to the overall effectiveness of a group of
programmers. Thus there developed the need for effective library facilities
and, in particular, library routines—many of them parameterized—that
could be invoked very easily by a programmer.

Another area where a need rapidly became apparent was in routines
which differed not in concept but only in specific cases or which had many
input parameters, not all of which were numbers. The best example of this
was the early sort routines, which used the same techniques but differed
in the coding because the key might be in the first word of the record or the
fifth or the ninth, and the key might be three characters long or eight, etc.
The early work of F. Holberton [HF54] in developing sort generators for
UNIVAC had a significant impact on this type of problem because she pro-
vided a set of routines which would partially write themselves once given
the necessary input parameters.

Programmers not only wanted the ability to use other people’s code,
but they wanted the capability of easily bringing together small sections
of a program. One of the earliest and most significant efforts along these
lines was the development of the subroutine library for the EDSAC as
represented and described by Wilkes, Wheeler, and Gill [WI51].

Finally, there was an increasing demand for being able to write short-
hands of various kinds. Once people had written sequences of code, they
were interested in finding a shorthand way to write the same or similar in-
formation, and calling the material from the library was not always appro-
priate. In addition, people wanted better and better notation, where they
implicitly defined “better” as “more natural”.

All these needs were attacked by different people in different ways.
In my opinion, Dr. Grace Hopper probably did as much as any other single
person to sell many of these concepts from an administrative and manage-
ment, as well as a technical, point of view. See, for example, Hopper [HP55].

One of the first meetings held to discuss the subject that was then called
automatic programming was sponsored by the Office of Naval Research in
May, 1954 and reported in [DN54]. At that time, a number of interesting
systems were described, some of which are covered in later sections.
Probably the most significant ideas that were mentioned at that early meeting
and that are not covered in this book are the concept of code generation
discussed by Holberton, the editing generator of Waite and Elmore, the
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analytic differentiator of Kahrimanian, and the grandiloquent objective
(not yet achieved) of the universal code described by Gorn; all these are
described in [DN54].

The next significant meeting was the symposium on “Advanced Pro-
gramming Methods for Digital Computers” held under the joint sponsorship
of the Navy Mathematical Computing Advisory Panel and the Office of
Naval Research in June, 1956 [DN56). About the only paper presented at
that meeting which had any significance as far as programming languages
are concerned was the paper by Thompson [TM56] which discussed
OMNICODE. This is sufficiently similar in principle to the PRINT system
discussed in Chapter IV so that it will not be mentioned here (although the
reader should realize that the details are significantly different).

The next meeting of major importance was the symposium on
“Automatic Coding” held in January, 1957 at the Franklin Institute in
Philadelphia [FK57]. The major items covered there were PRINT I, B-0,
IT, and the Matrix Compiler; they are described elsewhere in the book.

1.3.2. BRrIEF HiSTORY OF EARLY EFFORTS

A number of systems were developed in the early years (defined to be
prior to 1957) which made significant contributions to the development of
higher level languages. Chief among these, in approximate chronological
order, are Short Code (UNIVAC), Speedcoding (IBM 701), Laning and
Zierler system (Whirlwind), A-2 and A-3 (UNIVAC), BACAIC (701), and
PRINT (705). These are all described in Chapter 1V, and the references are
given there. The early work of Rutishauser in Switzerland is also mentioned
there, even though this book is only attempting to deal with American
developments.

These systems generally provided some type of mathematically oriented
operation (e.g., addition, computation of sines) and control functions,
together with either fixed or variable operands. In each case, the information
written by the programmer in one line or statement was either interpreted
or was directly equivalent to several lines of actual machine code. However,
most of these systems had a fixed format and, in particular, did not permit
the writing of mathematical expressions in anything resembling natural
notation. Only the Laning and Zierler system and BACAIC had this latter
facility.

Figure I-1 is a list of the automatic programming systems of 1959. Note
that many of them would not be considered programming languages by the
criteria established later in this chapter.

No attempt has been made in this book to include those systems which
contributed strongly to the development of either better symbolic assembly
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Figure I-1. List of automatic programming systems (1959).
Source: Comm. ACM, Vol. 2, No. 5 (May 1959), p. 16. By
permission of Association for Computing Machinery, Inc.
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programs or file-handling techniques. In particular, such systems as PACT
(see papers by Baker [BK56] and others in the same journal, and Steel
[ST57]), BIOR [RR55a}, and SURGE [NMO00] are deliberately excluded.

1.4. DEFINITION OF PROGRAMMING LANGUAGES

1.4.1. DEFINITION PROBLEM

The ASA (now USASI) standard Vocabulary for Information Processing
[AA66b] defines a programming language on page 23 as “A language used
to prepare computer programs”. The IFIP-ICC Glossary [IF66] defines
on page 79 a language as “A general term for a defined set of symbols and
rules or conventions governing the manner and sequence in which the
symbols may be combined into a meaningful communication,” with a note
that “An unambiguous language, intended for expressing programs, is
called a PROGRAMMING LANGUAGE.” This glossary also states that
the term pseudocode has been used in England to denote a programming
language which is not a computer language, but this usage is deprecated by
the IFIP-ICC Glossary.

While these definitions may be true from an overall abstract point of
view, they do not—in my opinion—reflect actual current usage. Furthermore,
neither glossary includes the term higher level language. 1t is intuitively clear
that there is a significant difference between symbolic assembly languages
and the languages which are discussed in this book. However, not only is
there a lack of a specific term for the items in this book but, furthermore,
a symbolic assembly program with a very powerful macro facility can
certainly be made to look very much like what is frequently called a pro-
gramming or higher level language. (See for example the XPOP system of
Halpern [HL64].) For the purposes of this book, and admittedly contrary
to the opinion of many, these two terms will be used interchangeably. One of
the prime differences between assembly and higher level languages is that
to date the latter do not have the capability of modifying themselves at
execution time. In one instance—namely, LISP 1.5 (see Section V1.5)—an
equivalent result can be achieved because the program is represented inter-
nally in the same form and can be acted on as data. However, no language
in this book has the facility for changing, e.g., a GO TO to an IF. The lack of
this capability has not proved much of a handicap and is cited merely because
it is one of the clear-cut distinctions between an assembly language and
a programming language.

Because there is no satisfactory definition, it seems more effective to
try to define a programming language through its characteristics rather
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than by a specific definition. Thus, in my opinion, a programming language
is a set of characters with rules for combining them which have the following
characteristics.

1.4.2. DEFINING CHARACTERISTICS
1. Machine Code Knowledge Is Unnecessary

A programming language requires no knowledge of the machine code
by the user. In other words, the user need only learn the particular program-
ming language and can use this quite independently of his (perhaps non-
existent) knowledge of any particular machine code. Thus he need not learn
about what registers are available on the computer, nor the specific hardware
instructions that are required to activate the computational and logical
processes. In many cases he can also remain ignorant of the internal
representation of numbers; thus he can avoid worrying about whether
numbers are represented internally as binary, hexadecimal, decimal, etc.
However, this should not be interpreted to mean that the user can completely
ignore the actual computer if he wants to obtain maximum (or even reason-
able) effectiveness from it. For example, he may wish to take advantage of
certain machine facilities (e.g., mass storage devices) which are known to
him and which can provide more efficient programs; even more specifically
he obviously cannot use input/output equipment which does not exist on
a particular computer configuration. He might conceivably wish to concern
himself with whether numbers were represented in binary or decimal fashion
because this could affect certain points of computational precision that
might be of concern to him.

In summary, the first characteristic of a programming language is that
the user can write a program without knowing much—if anything—about
the physical characteristics of the machine on which the program is to be
run. This same comment does not apply if he wishes to obtain maximum
efficiency.

A further constraint is that the user should be unable to affect directly
the machine registers and memory. This rules out such ideas as Wirth’s
PL360 [WT68] from being considered a higher level language (nor does he
claim it is).

2. Potential for Conversion to Other Computers
Since the first characteristic states that the user need not know the

details of the particular computer on which his program is to be run, it
follows that a programming language must have some significant amount
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of machine independence. The whole question of compatibility and con-
version is discussed at some length in Section I1.4. It is sufficient to say here
that a major characteristic of a programming language is that there must be
a reasonable potential of having a source program written in that language
run on two computers with different machine codes without rewriting the
source program. Again, we are dealing with both absolute and relative
quantities. In the absolute sense, the program may be able to be moved
from one machine to another with no rewriting. In most programming
languages, some—but often very little—rewriting of the source program is
necessary.

3. Instruction Explosion

When a source program [see the definition in Section 1.4.3(1)] written
in a programming language is translated to the actual machine code, there
is normally more than one machine instruction created for each statement
in the programming language. For example, a statement in a programming
language might be something of the form A = B + C * D or MOVE A TO B.
Normally each of these phrases requires more than one machine instruction
to execute it, and this is the major difference between a symbolic assembly
language and a higher level language. In fact, many compilers actually
translate the source program to a symbolic assembly language.

To be considered a programming language, there should be no need
for the user to write any sequence of machine code. This provision causes
the exclusion of macro assemblers from the category of programming
languages (by assuming that some user must write the machine instructions
for the macro).

4. Problem-Oriented Notation

A programming language must have a notation which is somewhat
closer to the specific problem being solved than is normal machine code.
It usually permits a relatively free format. Thus, for example, the first illustra-
tion given in Section 1.4.2(3) might be translated into a sequence of instruc-
tions such as

CLA C
MPY D
ADD B
STO A

which is clearly less understandable than the programming language form
A =B + C % D. Again, this notational question is a relative one because
what is considered problem-oriented and relatively free in one case might
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be considered quite rigid and unnatural in another. However, as in each of
the preceding discussions, the comparison that is being made is with a sym-
bolic assembly language and not between two types of higher level language.

To fall within the spirit of this concept of problem-oriented notation,
a programming language must not require that each statement type or
executable unit be specifically identified or flagged in a standard terminology
and location. Furthermore, a fixed format, or the existence of a form to be
filled out, is not considered problem-oriented notation. The first of these
requirements rules out the Autocoder series, e.g., [[B6la], from being
considered programming languages. The second rule excludes the class of
report generators, e.g., [[B65d], and decision tables, e.g., [EP66], [KV60],
[UC61]. The exclusion of report generators, and to a lesser extent the exclu-
sion of the Autocoder languages, runs contrary to much of the popular
nomenclature. Very specifically, Report Program Generators (RPG) are
commonly referred to as programming languages. However, I believe my
classification is justified by the rigidness and lack of flexibility of the normal
RPG “programs” which consist primarily of filling in a preprinted form.
This in no way implies any failing or lack of importance of systems of this
type; it merely excludes them from the class of languages considered in this
book.

[.4.3. Basic TERMINOLOGY
1. Source Program

The actual program written in a higher level language is called the
source program. This is the material that is put into the computer by the
user for the purpose of obtaining results. The source program contrasts
with the object program (which does not always exist), defined in the next
paragraph.

2. Object Program

A source program can usually be translated to an object program.
[Note the differences between compiler and interpreter in Sections 1.4.3(3)
and 1.4.3(4) below.] The object program can actually exist in many forms,
depending on the particular system involved. It can exist in pure binary
form, or it could actually exist in a fairly complex symbolic assembly lan-
guage form. The phrase object program, strictly speaking, relates only to the
final binary form that can be executed by the computer, but in common
conversation it is often used to denote the result of translating the source
program at least down to an assembly level.



12 GENERAL INTRODUCTION

3. Compiler

A compiler is a program, not a piece of hardware. A compiler is simply
a program which translates a source program written in a particular pro-
gramming language to an object program which is capable of being run on
a particular computer. A compiler is therefore both language and machine
dependent. The most important characteristic of a compiler is that its output
is a program in some form or another and not an answer of any kind. This
contrasts with the interpreter defined in Section 1.4.3(4). The first completed
compiler seems to be the A-0 system developed by Dr. Grace Hopper and
her staff at Remington Rand in 1952; see [HP53] and [HP53a].

A compiler must perform at least the following functions: Analysis
of the source code, retrieval of appropriate subroutines from a library,
storage allocation, and creation of actual machine code. In current systems,
some or all of these functions (except the first) may actually be performed by
another part of the general operating system (e.g., a loader), but these
functions are conceptually part of the compiling process. Thus the com-
piler acts very much as an executive routine to obtain and combine the
necessary pieces of information to produce a machine-executable program.

The word translator has been in and out of vogue for years as a synonym
for compiler. In my opinion, translator is too general a term to use for the
specific process of turning a source program written in a higher level language
into machine code.

4. Interpreter

An interpreter is a program which executes a source program, usually
on a step-by-step, line-by-line, or unit-by-unit basis. In other words, an
interpreter will usually execute the smallest possible meaningful unit in the
programming language. The output of an interpreter is an actual answer,
i.e., the result of performing the actions designated in the program.

The greatest disadvantage of an interpreter is that certain phases of
work and analysis must be done repeatedly. In particular, the scan of a
statement which is to be executed for varying values of a particular parameter
must take place each time that a new value is to be used. This contrasts with
the compiler, which performs this translation function only once. On the
other hand, the disadvantage to the compiler is that it does not produce
answers; as soon as a change in the program is made, a recompilation must
be made.

The originally clear-cut distinctions between compilers and interpreters
have become quite blurred. Some systems (e.g., QUIKTRAN, see Keller,
Strum, and Yang [KR64]) compile partway, i.e., translate the source program
to some other form and then interpret that information. This is an attempt
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to obtain the advantages of both concepts, while minimizing the disadvan-
tages of both.

5. Automatic Coding

In the very early stages of work in this area, the phrase automatic
programming was used to mean the process of writing the program in some
higher level language. As time went on, it became clear that this encoding
was only part of the entire process of programming since there were phases
of analysis, documentation, debugging, testing, etc. Hence, the term
automatic coding began to apply to the portion of the overall programming
effort that related specifically and only to the process of actually writing
the source program and having it translated to a form where it could be
run on a computer.

6. Automatic Programming

The term automatic programming, which as stated above was originally
used to cover anything to do with higher level languages, is defined on page
10 of the USASI Glossary [AA66b] as “The process of using a computer to
perform some stages of the work involved in preparing a program”. Thus,
automatic coding is a particular subset of automatic programming, which
is as it should be since coding is one of the many facets of programming.

1.4.4. DIFFERENCE BETWEEN PROGRAMMING LANGUAGE AND
APPLICATION PACKAGE

In the past few years there has been an increasing number of special
application packages developed. One of the earliest and most significant of
these was the work done on linear programming. More recent areas involve
type composition [IB0Of], demand deposit accounting [IB0OOe], traffic control
[IB66¢], inventory management [IBOO] and [IB00d]. However, it is impor-
tant to realize that an application package and a programming language
are not the same. An application package tends to be a set of routines which
are heavily parameterized, so that an individual user can supply the specific
information which is needed for his particular direct usage. The information
is often supplied through tables or filling in a form. File formats are usually
specified by the application package. In some cases the execution sequence
of the routines is predetermined, e.g., student scheduling [IB66j]. In others,
the user decides which routines he needs and what the sequence should be,
e.g., bill of material processing [IB66k]. In the latter situation, the user some-
times has to write a control program in an assembly or higher level language
to set up and call the necessary routines. A programming language, on the
other hand, provides flexibility in the way in which information is conveyed
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and, more importantly, provides the tools with which the subroutines or
packages can be built-up. An application package is limited to use in a
narrow area. A programming language usually involves a wider potential
range of applications, although the languages discussed in Chapter I1X are
designed for very specific—and sometimes quite narrow—applications.

1.5. ADVANTAGES AND DISADVANTAGES OF HIGHER LEVEL
LANGUAGES

As with any item, it is impossible to obtain something for nothing; therefore,
there are both advantages and disadvantages to programming languages,
where the alternative is some type of assembly language. It is essential to
realize that the comparison is being made between a symbolic assembly
language (which might but does not necessarily have macros) and some
type of higher level language which has the defining characteristics given
in Section 1.4.2. Furthermore, the comparison is being made between an
assembly and a higher level language of roughly equivalent orders of com-
plexity within their given classes. Thus, in examining the advantages and
disadvantages of a powerful (very simple) programming language, it is
tacitly being compared to a powerful (very simple) assembly language. This
point will be critical in several of the advantages given below. Furthermore,
the programming language must be appropriate to the task; thus a language
with notation well suited to scientific problems is not likely to be much help
in business data processing (although this has actually been done with
FORTRAN; see Robbins [RM62]).

1.5.1. ADVANTAGES
1. Ease of Learning

A very significant advantage to a higher level language is that it is
easier to learn than a machine-oriented language. This is probably the main
place in which the relative aspect referred to above is significant. An extremely
powerful programming language might be harder to learn than an assembly
language with only a dozen instructions. However, given programming and
assembly languages of approximately the same complexity in their relative
classes, the programming language will be easier to learn. This ease of learn-
ing actually has two facets to it. The programming language may itself be
complex, but its ease of learning often comes because the notation is some-
what more related to the problem area than is the machine code—this is
essentially the fourth defining characteristic given on page 10. The second
facet is that more attention can be paid to the language and the logic of the
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program rather than to the idiosyncracies of the physical hardware which
are significant when one deals in machine code.

A further element of comparison in the ease of learning is that learning
a subset of a complex programming language may be, and probably will be,
very much easier than learning a subset of a complex assembly language.
Furthermore, the subset of the programming language will probably be
more useful and powerful than an equivalent subset of the assembly language.
Thus, although some programming languages have extremely thick manuals,
this is because they provide all the very detailed definitions that are needed
for writing compilers and sophisticated programs; the user who does not
wish to learn (or have) all the power available to him need not be bothered
with the full language.

2. Ease of Coding and Understanding

Because the notation is considerably more problem-oriented, the actual
coded program is generally easier to write. This is exemplified not only by
the case of algebraic expressions given on page 10 but by such things as
IF C IS GREATER THAN A+B, GO TO ALPHA OTHERWISE GO TO BETA.
which is easier to write than an equivalent symbolic form which might look
like the following:

CLA A
ADD B (Calculate A+B)
SuB C (Calculate A+B—C)

TRN ALPHA (Transfer control to ALPHA if A+B—C
is less than 0, i.e., if C is greater than A+B)
JMP BETA (Transfer control to BETA)

The other half of the advantage is the ease of understanding the program
once it is written. These two aspects reflect the differences between actually
writing the program and trying to understand an already existing program
(either one’s own or, more likely, someone else’s). The higher level language
is clearly easier to read and understand, as seen from the example above.

In addition, the complexities of today’s large computers make it very
difficult to learn to program them at all, let alone effectively.

3. Ease of Debugging

A problem written in a programming language is generally easier to
debug than one written in a symbolic assembly language, for two major
reasons. First, there tends to be less material written because of the explo-
sion factor given as the third defining characteristic of a programming
language. Thus, in comparison with a program written in assembly language,
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the source program will generally be physically shorter. Since the number of
errors is roughly proportional to the length of the program, obviously there
will be fewer errors. In some cases it might turn out that the program
written in the higher level language was actually longer if measured by the
number of characters actually written. (This happened in the example given
on p. 15.) However, the program is easier to debug because the notation
is so much more natural; more attention can be paid to the logic of the
program with less worry about the details of the machine code. For example,
although there might be more characters involved in writing READ NEXT
RECORD FROM TAPE ALPHA than in REDABC, ALPHA, the former is easier
to understand, particularly when there may be a whole sequence of six-letter
instructions which differ by at most one letter.

4. Ease of Maintaining and Documenting

One of the greatest advantages to a programming language is the fact
that it provides certain documentation automatically because of the nota-
tional advantages; it is also considerably easier to maintain. There are very
few programs which last very long without requiring some changes, and
a combination of reasonably natural notation plus shortness of program
make the higher level language quite advantageous. In addition, one of the
great difficulties in changing a program written in assembly language is to
make sure that a change in one instruction does not have major (and un-
pleasant) ramifications elsewhere. This factor applies not only to the logic
of the change (which must also be considered when dealing with the higher
level language) but, more significantly, to various tricky coding techniques
which might be forgotten by the time the change was made and result in
incorrect code.

5. Ease of Conversion

Since the second defining characteristic of a programming language is
the potential for conversion to other computers, it is not surprising that this
is considered an advantage. Since by now it is clear that programming costs
equal or exceed hardware costs, it is not surprising that the problem of con-
version is a very major one. In many cases, companies have been unable to
acquire new computers because of the enormous cost of converting their
existing programs to the new machines. This has forced the manufacturers
to pay much more attention to compatibility among the computers they
offer to their customers and to provide technically graceful ways of con-
verting programs from one machine to another. However, since programming
languages are relatively machine independent, the ease of conversion be-
comes an extremely important advantage. The various types of conversion,
and their significance, are discussed in Section 11.4.
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6. Reduce Elapsed Time for Problem-Solving

Probably the greatest single overall advantage to a programming
language is that it usually reduces the total amount of elapsed time from
inception of the problem to its solution. This is particularly true for one-
shot problems—problems in which a single or only a small number of cases
need to be run. Higher level languages have cut this elapsed time from
months to weeks in some cases and from days to hours in other cases.
Although sometimes one particular facet of the overall process might be
worse in a higher level language (specifically, the compilation time, discussed
in Section 1.5.2.2), the overall problem solution time is greatly reduced.
This is somewhat less of an advantage for long-term production runs, such
as payroll. In that case, the advantages of ease of maintenance and docu-
menting probably overshadow the elapsed time advantage, although the
latter is still available.

1.5.2. DISADVANTAGES
1. Advantages Do Not Always Exist

There is a subtle point that the advantages stated above do not always
exist in specific cases, and a person might be worse off; however, this would
only tend to arise in a comparison of a complex and powerful programming
language versus a simple assembly language. Thus the programming lan-
guage might be extremely difficult and hard to learn; and unless proper
attention is paid to the compiler and other facets of the overall system, the
other advantages may not themselves accrue. Fortunately, this seldom
occurs.

2. Time Required for Compiling

A very obvious disadvantage to the use of a higher level language is
that the additional process of compilation requires more machine time
than the straight assembly process; the compilation time might, in fact,
require more than the machine time saved from easier debugging. This
additional machine time is most easily observed by recognizing the fact that
a very common compiling technique is to translate the source program to
an assembly language which already exists for the given computer and
letting the standard assembly program create the final object code.
(Naturally techniques have been developed to avoid this particular difficulty,
but they are not always applicable.) Compilation time is a particular dis-
advantage on one-shot problems in which the compilation time sometimes
exceeds the time actually required to produce the answers. Another dis-
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advantage associated with compilation time is the necessity of recompiling
every time a change in the source program is made. However, sometimes
modern assemblers are so complex that they take “longer” than the transla-
tion of an equivalent program in a higher level language.

3. Inefficient Object Code

A disadvantage which significantly affects production runs occurs when
the compiler produces inefficient object code. When a program is to be run
repeatedly, it is important that the final program be efficiently coded be-
cause of the constant repetitive use. The counterargument to this, of course,
is that compilers nowadays generally produce code that is at least as good
as the average programmer, and there are only a limited number of really
expert programmers who can write the most efficient machine code. A
further counterargument is that it is usually possible to take very critical
routines, which are generally quite short and encapsulated, and code them
as efficiently as possible in machine code.

A disadvantage in this area which is sometimes unjustly blamed on the
compiler occurs when the programmer writes inefficient source programs
in the higher level language and obtains inefficient object programs as a
result. Although it is easier to code in a higher level language than in machine
code, there is still a difference between good and poor coding. A program
that has been written inefficiently (e.g., unnecessary control transfers and
extra computations) with respect to the programming language will produce
inefficient object code regardless of how good the compiler is.

4. Difficulties in Debugging Without Learning Machine Language

If a person does not know machine code, and the compiler does not
provide the proper type of diagnostics and debugging tools, the program
may actually be harder to debug than an assembly language program which
the user understands. A person who must look at an octal memory dump
will have a lot more trouble debugging his high level source program than
he would if he had written it in assembly language. Thus a compiler which
does not provide proper attention to this aspect may greatly reduce the
advantages of a higher level language or cause them to disappear entirely.

S. Inability of the Language to Express All Needed Operations

In some problems there are operations to be performed which cannot
be expressed in the programming language, or if they are available, they will
be so awkward as to be almost useless. Thus, to handle individual bits in
a language designed only to manipulate numeric quantities is virtually im-
possible, and certainly inefficient. The user may find himself trapped by
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being unable to do certain manipulations without resorting to machine code.
This usually occurs when he has chosen the language unwisely for his par-
ticular application. However, a more common problem is the poor match
between the older (and more popular) languages and third generation
hardware. For example, a language with no facilities for dealing with random
access memories requires the user to either ignore his equipment or resort
to machine language to deal with it.

1.5.3. OVERALL EVALUATION

In spite of the fact that higher level languages have been with us for
over 10 years, there has been relatively little quantitative or qualitative
analysis of their advantages and disadvantages. One very small study is given
by Shaw [SH66] and some information is given by Nelson et al. [NE65].

In spite of this paucity of definitive information, the current milieu
calls for the use of higher level languages. People who use assembly code
are—if not in an actual minority—considered somewhat archaic or old-fash-
ioned. The fact that there is a tremendous proliferation of languages (as
witnessed by all those described, plus others not even mentioned, in this
book) indicates that we have not yet solved the problem of knowing what
is really needed by the user. Some comments about possible future direc-
tions are given in Chapter XI. However, the net overall evaluation appears
to be that higher level languages have proved their worth and are definitely
here to stay.

1.6. CLASSIFICATIONS OF PROGRAMMING LANGUAGES AND
PROPOSED DEFINITIONS

As indicated earlier, it is very difficult to define a programming language.
However, it is a little easier to propose definitions for classes of programming
languages. The terms to be defined are the following: Procedure-oriented
and nonprocedural; problem-oriented, application-oriented, and special
purpose; problem-defining, problem-describing, and problem-solving;
hardware, publication, and reference. Note that some of these are over-
lapping and that a particular language may fall into more than one of these
categories.

1.6.1. PROCEDURE-ORIENTED LANGUAGE

A procedure-oriented language is one in which the user specifies a set of
executable operations which are to be performed in sequence; the key factor
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here is that these are definitely executable operations, and the sequencing
is already specified by the user. FORTRAN, COBOL, and PL/I are examples.

1.6.2. NONPROCEDURAL LANGUAGE

The term nonprocedural language has been bandied about for years
without any attempt to define it. It is my firm contention that a definition
is not really possible because nonprocedural is actually a relative term mean-
ing that decreasing numbers of specific sequential steps need be provided
by the user as the state of the art improves. The closer the user can come to
stating his problem without specifying the steps for solving it, the more
nonprocedural is the language. Furthermore, there can be an ordered
sequence of steps, each of which is “somewhat nonprocedural,” or a set of
executable operations whose sequence is not specified by the user. Both cases
contribute to “more nonproceduralness”. Thus, before the existence of such
languages as FORTRAN, the statement

Y=A+B*xC-—-F/G

could be considered nonprocedural because it could not be written as one
executable unit and translated by any system. Right now, the sentences
CALCULATE THE SQUARE ROOT OF THE PRIME NUMBERS FROM
7 TO 91 AND PRINT IN THREE COLUMNS and PRINT ALL THE
SALARY CHECKS are nonprocedural because there is no compiler avail-
able that can accept these statements and translate them; the user must
supply the specific steps required. Another type of nonprocedural statement
is a higher level primitive operation, e.g., integration. Note that there is a
fundamental language difference between writing INTEGRATE F(X) FROM A
TO B USING SIMPSON'S RULE and CALL SIMP (F(X), A, B) although the
same subroutine could be used for both. In cases where subroutines do not
exist (as in the earlier two examples), then obviously the detailed steps
must be specified.

As compilers are developed to cope with increasingly complex sentences,
the nature of the term changes. Thus, what is considered nonprocedural
today may well be procedural tomorrow. The best examples of currently
available nonprocedural systems (not really languages) are report generators
and sort generators in which the individual supplies the input and the output
without any specific indication as to the procedures needed.

Specific attempts to raise the level of nonproceduralness in different
ways are discussed by Wilkes [WI64], Rice and Rosen [RI66], Klerer and
May [KL67], and Schlesinger and Sashkin [QL67]. General discussions of
some of the issues are given by Young [YJ65] and Whiteman [WF66].
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1.6.3. PROBLEM-ORIENTED LANGUAGE

The term problem-oriented has been used in many ways by different
people, but it seems that the most effective use of this term is to encompass
any language which is easier for writing solutions to a particular problem
than assembly language would be. Any current programming language
illustrates this; thus, the term problem-oriented is a general catchall phrase.

1.6.4. APPLICATION-ORIENTED LANGUAGE

The term application-oriented seems to apply best to a language which
has facilities and/or notations which are useful primarily for a single applica-
tion area. The best illustrations of this are such things as APT for machine
tool control and COGO for civil engineering applications, both of which
are discussed in Chapter IX. Notice that both of these are of course problem-
oriented languages. On the other hand, FORTRAN and COBOL are
problem-oriented but much less application-oriented than APT or COGO.
Here again, the term is somewhat relative because FORTRAN is suitable
for applications involving numerical mathematics, whereas COBOL is
obviously suited for business data processing and the overlap between these
is relatively small. The wider the application area, the more general the
language must be.

1.6.5. SPECIAL PURPOSE LANGUAGE

A special purpose language is one which is designed to satisfy a single
objective. The objective might involve the application area, the ease of use
for a particular application, or pertain to efficiency of the compiler or the
object code.

1.6.6. PROBLEM-DEFINING LANGUAGE

A problem-defining language is one which literally defines the problem
and may specifically define the desired input and output, but it does not
define the method of transformation. There is a significant difference among
a problem (and its definition), the method (or procedure) used to solve it,
and the language in which this method is stated. The best current illustrations
are report and sort generators, although none of these involves languages
in the sense of Section 1.4.
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[.6.7. PROBLEM-DESCRIBING LANGUAGE

A much more general type of language classification is that referred
to as problem-describing, in which the objective is described only in very
general terms, e.g., CALCULATE PAYROLL. All this does is cite, in the
most general way, the problem which is to be solved but gives no indication
of its detailed characteristics, let alone how to solve it. We are an extremely
long way from this!

1.6.8. PROBLEM-SOLVING LANGUAGE

Finally, a problem-solving language is one which can be used to specify
a complete solution to a problem. Like the term nonprocedural, this is a
relative term which changes as the state of the art changes. All procedure-
oriented languages are problem-solving languages.

1.6.9. REFERENCE LANGUAGE

A reference language is the definitive character set and form of a lan-
guage. It usually has a unique character for each concept or character in the
language, is one-dimensional, and need not be suitable as computer input.
In some cases, English is the reference language; in other cases, a fixed set of
symbols is provided. The concept of having a reference language, as dis-
tinguished from a publication or hardware representation language (dis-
cussed below), was introduced by the ALGOL committee in their first report
[PR58]. In fact, ALGOL is the only language in this book with these three
forms. The reference language need not be particularly easy to read.

1.6.10. PUBLICATION LANGUAGE

A publication language is some well-defined variation of the reference
language which is suitable for publication. It is designed to be suitable for
printing and/or writing; therefore, it would have reasonable rules and
characters for such things as subscripts, exponents, spaces, and Greek
letters. The publication language would normally be the means of com-
munication between people (using printed media). There can be many
publication languages and they can contain different characters, but there
must be a well-defined mapping between the publication and reference
languages. An illustration of this is the use of an up arrow 1 to denote
exponentiation in the ALGOL reference language, but the use of a raised
symbol in the publication language, e.g., A 1 2, becomes A%
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1.6.11. HARDWARE LANGUAGE

A hardware language, sometimes called a hardware representation, is
a mapping of the reference language into a form which is suitable for direct
input to a computer. The number and type of characters used must be that
accepted by the computer involved. A hardware language must have a well-
defined mapping between itself and the reference language, e.g., **x might
be a hardware representation of the t in the reference language.

1.7. FACTORS IN CHOICE OF A LANGUAGE

Assuming that a decision has been made not to use assembly language (see,
e.g., Shaw [SH66)), there is currently no scientific, or even logical, way to
choose the best programming language for a particular situation. Part of
the difficulty stems from the fact that the situation itself is usually defined
poorly, and potential for change in the application area is a factor which
must be taken into consideration. It is definitely not the purpose of this book
to provide all the information needed by a potential user to choose the
programming language most suited for his purposes. However, it is one of
the purposes to supply some of this information and to indicate the factors
which should be considered. The reader is cautioned to be very careful in
applying the items discussed in this section to a particular case. Not all factors
are relevant in all situations, nor are they all equally important. In virtually
all cases, no single language will be ideal for a particular application, let
alone for a particular installation, and probably not for an entire company.

An increasing amount of work is being done to develop some fairly
specific methods for evaluating languages and their compilers. Scientific
evaluations have seldom been made, and documented even less often, and
the few attempts to date seem to be without any quantitative measurements.
Questionnaires and comparisons have been developed by Shaw [SH62] and
Budd [QH66]; although the latter pertains only to FORTRAN and COBOL,
it is quite detailed for those languages. General discussions are given by
Haverty [HV64], Chapin [CZ65], and Schwartz [SC65]. A number of un-
published papers on evaluations for specific military applications also exist.

Some of the terms and/or concepts used below are defined and discussed
in some detail in Chapters Il and 111, particularly the former.

1.7.1. SUITABILITY OF LANGUAGE FOR PROBLEM AREA AND PROJECTED
USERS

The most important factor in the choice of a language is whether it
contains the elements needed to solve the particular class of problems for
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which it is being considered. In the simplest case, a language which provides
good facilities for handling equations may not provide the character handling
and input/output facilities needed to process a payroll. Conversely, a lan-
guage which is foo large, i.e., has many more facilities than are needed,
is not necessarily desirable since the user will be paying a heavy price because
of less efficiency in his specialized area. While these points are fairly obvious
at a gross level, there are other elements in the language suitability issue.
For example, if there is to be much array handling, then the type and amount
of subscripting which is permitted may be significant. Another case might
involve the types of data names which are permitted; for example, if the
application involves inventory and all the stock items are identified by
numbers, then it might be more convenient if these were allowed as names
in the program.

In addition to the capabilities of the language, the type of actual users
must be considered. There is an obvious difference among experienced
programmers, professionals in other fields, novice programmers, open
shop versus closed shop, etc. The amount of formalism or naturalness in
the language relative to the projected users is of vital importance.

In summary, the potential user must first examine the language at a
gross level to see whether it supplies the general capabilities he needs.
Then he must determine whether individual features which might be very
important in a particular situation are available. (See also Section 1.7.7.)
Finally, he must consider the style of the language relative to the intended
users.

1.7.2. AVAILABILITY ON DESIRED COMPUTER

The most obvious question which must be asked (and which is also
raised in Section II.7.1) is whether there is an implementation of the language
on the desired computer (configuration). It is obviously useless to decide
on a superb language for a particular application and then find there is no
way to obtain running programs. Of course in some cases the language may
be deemed so worthwhile that a particular installation would choose to
finance a compiler if there was not one existing already.

If there is a compiler available, then a particular point to watch out for
is the exact computer configuration which it requires. It does not help to
find an excellent language and an efficient compiler if the latter requires
twice as much memory capacity as the installation possesses. Again, in this
case, if other factors warrant it, then there might be justification for obtain-
ing the extra memory.
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1.7.3. HisTorRY AND EVALUATION OF PREVIOUS USE

Once the user has found what he considers a suitable language and
there is a compiler available on his computer, then he should consider the
history of usage of this language. He should investigate such items as the
reactions of previous users, users’ views on its applicability in actual practice,
the efficiency of the implementation (see Section 1.7.4.), its potential for
expansion into other (and probably unforeseen) application areas, ease or
difficulty of training and effectiveness of documentation, and problems of
conversion and compatibility. In short, he should consider the language
based on the practical experience of others with regard to the factors in
Chapter II.

1.7.4. EFFICIENCY OF LANGUAGE IMPLEMENTATION

In choosing a language, it is essential to understand the difference
between a language and a specific implementation of it. However good the
former may be, a very bad compiler may render the language almost useless.
The prospective user must investigate this situation very thoroughly. There
may be elements in the language (some are discussed in Chapter I1I) which
would prevent a good compiler from ever being developed. On the other
hand, the first compilers for a new language almost always tend to be ineffi-
cient and remain that way until better implementation techniques are found
and finances and time permit them to be used. Similarly, a language may
be very difficult to implement on a particular computer (configuration),
although it might have an excellent compiler on another. While this latter
point is obvious in considering small versus large computers, there are other
more subtle points which are relevant (e.g., type of input/output and type
of indexing permitted).

The user who finds a language which is well suited to his purpose may
choose to suffer the (presumably temporary) inconvenience of an inefficient
compiler for the sake of long-range benefits.

1.7.5. CoMPATIBILITY AND GROWTH POTENTIAL

The meaning of compatibility and its applicability to problems in
programming languages is discussed in Section I1.4. The prospective user
must understand what types of compatibility and conversion are available,
and how important they are to him. In addition, the potential use of the
language in new and unforeseen areas must be considered. While this is
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obviously impossible in detail (since it would be self-contradictory to consider
unforeseen areas), some thought can be given to the matter. For example,
a scientific installation might consider whether it might ever be involved
with data processing. A large command and control project might consider
whether the application would grow into other areas. Finally, the language
should be viewed from the point of possible extensions to meet other needs.

In addition to looking ahead, the user may need to look behind if there
are existing applications. The consideration of a new language may involve
problems of compatibility with the old one.

[.7.6. FUNCTIONAL (= NONTECHNICAL CHARACTERISTIC3)

There has tended to be much confusion in the past due to lack of
consideration of the difference between the nontechnical and the technical
characteristics of a programming language. It is my hope that the delineation
of these issues and a detailed discussion of them in two separate chapters
will alleviate this difficulty. It suffices to point out here that the prospective
user must consider the nontechnical characteristics (as discussed in Chapter
II) as carefully as he considers its technical elements in order to arrive at
a proper judgment.

[.7.7. TECHNICAL CHARACTERISTICS

While the nontechnical characteristics of a programming language may
tend to prevent it from being used in a particular application, an affirmative
choice can only be made if the language contains the necessary technical
features. Some relevant factors were mentioned in Section I.7.1. A careful
study of Chapter III should provide a complete checklist to be used against
a specific language. The importance of particular elements in a given situa-
tion is a value judgment to be made by the prospective user.
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I I FUNCTIONAL CHARACTERISTICS
OF PROGRAMMING LANGUAGES

1.1. DESCRIPTION OF THE CONCEPT OF FUNCTIONAL CHARACTERISTICS

This chapter concerns itself with the functional characteristics of program-
ming languages. The term functional characteristics is used to refer to those
aspects of programming languages which are primarily nontechnical and/or
which are not part of the language specifications themselves. The functional
aspects normally relate to economic and political factors and also to those
aspects of compilers which affect the use of the language in a significant
way. The actual elements of the language are considered fechnical charac-
teristics and are described in Chapter III.

Although the primary characteristics of a programming language are
its technical facilities and the way in which they are provided, these are far
from being the only features in determining the use and usability of a lan-
guage. Just as in the case of computer hardware selection there are factors
that transcend the physical characteristics, so there are multitudinous and
interlocking issues which apply to programming languages. For example,
originally the selection of a computer depended primarily on the speed of
individual instructions such as addition, multiplication, etc. After a while,
it became clear that the amount of time required for memory access was very
significant; still later it became apparent that speed of input/output, sizes
of secondary storage units, and the interrelationship of all these hardware
features were very important. Finally it became clear that the selection of hard-
ware depended not only on the hardware itself but on its relationship to the
software; so the concept of thruput became of paramount importance. Thus,
just as the total amount of productive work which could be done using a
particular piece of hardware and its associated software became the prime
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criterion in computer selection, so in the case of programming languages
there are factors beyond the immediate language definition which signifi-
cantly affect its selection and use. It is the function of this chapter to try to
describe these functional characteristics and to indicate their importance.
The items to be discussed include general properties of a language, the pur-
pose of a language, issues of conversion and compatibility, standardization,
types and methods of language definition, and evaluation.

11.2. PROPERTIES OF LANGUAGES

There are a number of language properties which are difficult to define
and which often appear to be subtle aesthetic qualities rather than tangible
characteristics. Although it is not possible to provide rigorous definitions
for these qualities, it is nevertheless worth trying to provide some brief in-
tuitive feel for each of them.

Two properties which may occur either in parallel or at opposite ends
of a scale are generality and/or simplicity. Generality really means a wide
scope, i.e., ability of the language to apply directly and effectively to a wide
class of problems (see Section II.3.1). Simplicity usually refers to ease of
learning, use, and implementation. These properties are at opposite ends
of the spectrum because putting a large number of capabilities into one
language, thus making it general, causes loss of simplicity by requiring many
different facilities to be learned. On the other hand, a very simple language
cannot provide too many facilities because in so doing it will lose that charac-
teristic. It will tend to provide a few very powerful primitives. The only way
in which generality and simplicity can exist together is when the ability to
handle a large number of differing application types is achieved by providing
a simple framework and allowing (and requiring) the user to build up the
larger capabilities that he needs. This is sometimes referred to as the core-
language concept. It is often difficult to separate the concept of generality
from the availability of many special purpose features.

Two properties which are often at opposite ends of a spectrum are suc-
cinctness and naturalness. An example of naturalness might be FIND
THE SQUARE ROOT OF 17 USING NEWTON-RAPHSON ITERATION, whereas
its succinct equivalent might be SQR (17, NR). To a person well trained in
formal notation, the succinct notation may even be more natural. Such a case
clearly arises in comparing the sentence ADD A TO B AND MULTIPLY THAT
RESULT BY C TO PRODUCE D with the equation D = C * (A + B). Both of
these are clearly within current technology. The choice is usually based both
on the type of intended users and the personal choice of the language
designers.

The notational properties of languages play at least as great a role as
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any other characteristic. A language notation can be succinct and/or natural
and/or formal. There is a significant difference between the facilities a lan-
guage provides and the notation by which they are invoked.

Consistency is a property which programming languages should have,
but often cannot. In this instance, consistency means the constant applica-
tion of the same rules in the same way throughout the entire language.
While it may seem both easy and obvious that this can and should be done,
sometimes achieving this objective is not worth the sacrifice. (The change
of optional key words in different divisions of COBOL illustrates such a
case. See Section V.3.)

The property of efficiency is seldom applied to a language, but it is an
appropriate one nevertheless. Unfortunately, the criteria for efficiency are
as widespread as the people who use or implement the language. For example,
efficiency could mean the number of pencil strokes required to write a pro-
gram or the ease of use by novice programmers or a language design which
permitted rapid compilation or the provision of a number of compiler aids
to provide optimal object code. There is no single measure of efficiency,
and the language examiner should be careful of what facet is being measured
in attempting to ascertain the efficiency of the language. It is also essential
to realize that efficiency of a language and a compiler are not the same thing;
the latter usually cannot be achieved without some appropriate language
design, but the best language in the world can have a very inefficient compiler
(see Section 11.7.2).

Another very general property of a language is whether it is easy to write
and/or whether it is easy to read. These are not necessarily coexistent in a
single language, and one may in fact tend to militate against the existence of
the other. Thus a language which is extremely easy to read (e.g., some of the
languages discussed in Section IV.7) might be difficult to prepare for com-
puter input. A related property is whether the average user will be very
error prone. If the language has many specific and strict rules about spacing
and punctuation, there is more of a tendency for error in writing the program.
Finally, while one of the avowed advantages of programming languages
is that they are easier to learn than assembly languages, some higher level
languages may be designed to be very easy to learn while others do not have
that as a characteristic or objective. Being easy to learn is definitely not neces-
sarily the same as being easy to read, write, or avoid errors.

11.3. PURPOSE OF LANGUAGE

In looking at a language, the first and most important characteristic is its
purpose. It is futile and foolhardy to look at languages and complain about
them for not accomplishing some particular task, when their avowed purpose
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was quite different. Defining the design objectives of a programming language
requires specifying the type of applications, the type of language, and the
type of potential user.

I1.3.1. APPLICATION AREA

Generality often breeds inefficiency, just as familiarity breeds contempt.
Thus, a language which is designed to be all things to all people will probably
be less successful than a language with somewhat narrower objectives, unless
the design is very carefully done. We must consider the application area for
which a language is designed; it may be aimed at a very narrow range of
endeavor such as machine tool control, or it may be designed for a wider
class of problems—for example, numerical scientific computations—or it
may be designed to cover the whole gamut of all problems to be run on a
computer. (There are not likely to ever be languages which satisfy the last
objective.) To date, most languages have dealt with application areas such
as numerical scientific computations (e.g., FORTRAN) and then more recent-
ly nonnumerical scientific computations (e.g., FORMAC), business data
processing (e.g., COBOL), simulation (e.g., SIMSCRIPT), or machine tool
control (e.g., APT). Some languages (see Chapter VIII) were designed to be
very wide in scope and encompass several of the items in the preceding list.
However, even in some of these cases—notably JOVIAL and PL/I—the types
of applications envisioned were fairly standard scientific and data processing.

It is essential to distinguish between the basic application area for which
the language was designed and the actual usage to which it may be put.
There are numerous examples of languages which were aimed at coping
with a given class of problems but which eventually were used for many
other things. The best example of this is FORTRAN, which was originally
designed for use in numerical scientific work but has been used for subjects
as widely separated as logical design and payroll writing. The important
factor in viewing the issue of application area is not so much what the lan-
guage has been or can be used for but what it is really designed to be good
at. To the extent that one extends beyond the hard core of the basic objective,
one finds the language may be more general and may be useful to a larger
class of people than originally intended. Any inefficiencies which result from
such extended usage should not be blamed on the language.

The objectives of a language are usually stated in the terminology of
the intended users. Thus COBOL is described as business oriented, although
it is restricted to administrative and financial areas of business. An operations
researcher might expect that COBOL would be useful in solving scientific
problems associated with business planning, whereas COBOL was never
intended for use in that class of problems. The person who is concerned
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with choosing the best language for his problem or his installation is strongly
advised to consider not only the stated objectives but the frame of reference
for the terminology. This can usually be achieved by considering the techni-
cal features in the language.

11.3.2. TYPE OF LANGUAGE

In addition to being concerned with the application area for which
a language is designed, it is necessary to consider the type of language within
the classifications described in Section 1.6. Obviously, a language can fall
into more than one of these categories. In fact, a person interested in cate-
gorizing a language can, in the manner of a Chinese menu, choose one from
each of columns 4, B, and C and choose any number from column D, al-
though there do not exist languages for every possible combination.

A B C D
procedure-oriented  problem-defining hardware problem-oriented
nonprocedural problem-describing publication application-oriented

problem-solving reference special purpose

11.3.3. TYPE oF USER

In designing a language, considerable attention must be given to the
kind of user for whom the language is designed. We can separate two very
broad classes—namely, professional programmers and, in contrast, people
who have a problem to be solved and must program it but consider their
profession to be the field in which the problem arose. If the objective is to
help the latter category (who will be called nonprofessional programmers),
then considerable effort must be made to make the languages easy to learn
and to use. Various tricks and quirks relative to the machine or even relative
to the language itself should be minimized, because the nonprofessional
programmer is more concerned with being able to state his problem easily
than he is with obtaining the maximum efficiency from a particular machine.
For a nonprofessional programmer, the distinction between writing the
program and reading it or using it after it is written is significant. It is well-
known that two of the major problems in administering any activity involving
programming are the need for program maintenance and the troubles arising
from personnel turnover. Thus one objective might be to make it very easy
for nonprofessional programmers (or for that matter, even professional
programmers) to pick up and understand somebody else’s program. For
example, one can envision a situation in which very succinct information
is fed into a compiler and much more elaborate and detailed information
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is put out, so that the program becomes easily understandable to a wide varie-
ty of people. (This has actually been done by developing the Rapidwrite
system for COBOL—see Humby [HY62], [HY63].)

In the case of a language designed for use by a professional programmer,
a major characteristic is to provide maximum capability. In other words,
the programming language can and should aim at relieving the professional
programmer of many annoying details but still provide him with great flexi-
bility. Thus, for example, he should have some very nice way of stating the
beginning and ending points of loops and the increment to be used, but
he may want a large number of ways of specifying or controlling the loops
(e.g., incrementing or decrementing, varying several parameters in one state-
ment). In the case of the nonprofessional programmer, he may be satisfied
with one relatively simple way of handling this particular facility. Similarly,
the professional programmer will almost always want to be able to get at
the machine code. No programming language to date has been designed
so well that the professional programmer has been completely satisfied with
it; there are always things that he wants to do that seem to require resorting
to machine code. This facility does not generally interest the nonprofessional
programmer.

One other feature in considering this distinction between the profes-
sional and the nonprofessional programmer is in the type of debugging aids
that are made available. These are discussed in somewhat more detail in
Sections I[11.5.5.3 and I11.7.5, but it should be pointed out here that a pro-
gramming language which requires a nonprofessional programmer to under-
stand machine language in order to debug his higher level language
program is not much help. Only if the debugging can take place at the source
language level is he really aided. On the other hand, in very tricky cases
the professional programmer may want the ability to get memory dumps
and to examine contents of index registers. This is particularly true if the
language does not provide really good debugging aids.

In attempting to aim a language at a nonprofessional programmer,
one can give strong arguments for making the language as natural as possible.
In other words, if the user is concerned only with solving the problem, he
will presumably prefer to communicate with the computer in the language
which is most natural to him. He is not necessarily concerned with all the fine
points that the professional programmer wishes to be able to control. The
issue of what is meant by natural and how much is desirable and feasible
is a hotly debated one. (See Sammet [SM66b], Halpern [HL66], and Dijkstra
[DJ63] for further discussions of this point.)

An issue of vital concern to the nonprofessional is the amount of
“nonlanguage” material he must learn. Since the compilers are usually
part of an operating or time-sharing system, the user can seldom just “write
his program”. He is often required to worry about such things as control
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cards, form of his object deck, etc. A discussion of these problems is beyond
the scope of this book.

11.3.4. PHYSICAL ENVIRONMENT

A major defining purpose of a language is the physical environment
in which it is to be used. The most significant distinctions existing today
are between batch and on-line systems. However, on-line systems can be
further subdivided into those which are fruly conversational and thus permit
significant man-machine interaction and those which are merely time-sliced
and provide only some additional facilities to an inherently batch-oriented
language. (There are actually many levels of gradation of these concepts.)
There is also a possibility that the language may be intended for use in real-
time situations. The actual size of the computer may be relevant since some
languages are clearly aimed at maximum effectiveness on large computers,
while others may be intended for small machines. The possibility of mul-
tiprocessing configurations could also affect the language.

11.4. CONVERSION AND COMPATIBILITY

Of all the characteristics of programming languages about which there has
been great confusion, the subject of compatibility and its associated factor
of conversion rank very high. These characteristics are of prime importance
from a management point of view, although they may be of very little concern
to the programmer himself. In some cases, the characteristics provide the
deciding factor in determining what languages should be used. The reason for
the importance of compatibility and conversion is easy to understand as
soon as one realizes that the investment in programs for a particular machine
may run into millions of dollars. In particular, by now the costs of program-
ming tend to equal or, in some cases, even exceed the actual cost of the hard-
ware. Thus, it is no light matter to ignore the question of what happens to
the programs if one wants to change machines. Hardware technology does
not stand still and is continually improving. This means that users can gener-
ally improve their economics by obtaining new equipment which permits them
to do the same jobs faster or cheaper, or both. However, the decision to obtain
new machines is usually influenced very strongly by the prior investment in
programming. Thus, if a large amount of money has been invested in pro-
grams which cannot be run on a new machine, it becomes necessary to think
very long and hard before obtaining new equipment, even though the new
machines could certainly do the job faster and cheaper. The timing cycles of
hardware and software development are such that by the time an installation
has its programs running satisfactorily on one machine, the manufacturers
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have usually come up with new and better hardware. There has been a great
deal of misinformation and misunderstanding on what is meant by compat-
ibility and what types of conversions are possible and meaningful. It is
the purpose of this section to try to clarify these issues.

11.4.1. Types oF COMPATIBILITY
1. Machine Independence

The first type of compatibility that people are concerned with is compat-
ibility across machines, i.e., how dependent on a particular machine or class
of machines is a given programming language. Clearly, if the programming
language makes reference to hardware that is unique to a given machine
(e.g., sense lights, backward-reading tapes, and discs), then there is no hope
that a program written in this language can be directly handled on a machine
without these features, unless they are simulated; this is usually prohibitive in
cost. Similarly, if the language—as a language—makes particular use of the
fact that the machine is fixed word length versus variable word length, binary
versus decimal, or has a particular number of bits or characters per word, then
again there is no chance of having the program directly transferable to anoth-
er machine. A partial solution to this problem is to allow the user to state
in his program the precision he requires. (This is done in PL/l.) However,
this is a double-edged sword because the user may pay a heavy penalty
for the inefficiency caused by a precision which is grossly disparate from the
word size, e.g., specifying 11-digit precision on a computer with 10 decimal
digits per word. If the user is aware of these factors, he can make a more
intelligent choice.

Clearly if a language makes use of the hardware characteristics of a
specific computer, programs cannot possibly be directly compatible, i.e.,
directly usable on another machine. There might be exceptions to this but they
would depend on very clever programming on the part of the compilers,
and this has not yet been done. The true definition of machine compatibility
is the ability to take a deck of cards, or whatever other input media is used,
insert it into a different type of computer (i.e., not one “in the same family”),
and have the program run and produce the same answers. Anything less
than that capability is a partial or pseudo type of compatibility. We have not
yet achieved this facility for the languages, let alone for the extra information
required by the operating system.

Two of the machine features which tend to “ruin” compatibility most
are word size and collating sequence; actually both of these could be cor-
rected by the compiler—but at prohibitive cost. The word size affects the
precision and sometimes even the actual results of numeric calculations
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because numbers are usually stored in one or two machine words. Thus,
unless the actual number of characters (or bits) to be used is specified (and
implemented by the compiler), the arithmetic results will differ from machine
to machine whenever the word lengths are different. In many cases this does
not have a practical bad effect, but the potentiality is certainly there. In
the case of the collating sequence, the situation is actually worse because
incorrect results are easily obtained as a result of branches which operate
differently. If the collating sequence on one computer places letters before
numbers, but this is reversed on another machine, then any test of data based
on this sequencing information will produce opposite results in going from
one machine to another. Again, this could be corrected by having the lan-
guage specify the collating sequence and require the compiler to turn out
the correct code, but nobody has yet been willing to do this because of the
tremendous cost at object time.

Other facets of the data base problem, such as wordmarks, fixed versus
variable length words, and general record layouts, cause incompatibility.
This difficulty exists independently of the language characteristics.

2. Compiler Independence

It is clear that when one talks about machine independence, there is
an implied reliance on the ability of compilers to do the same things on dif-
ferent machines. In other words, a statement in the programming language
that causes an addition to be performed must be translated into the proper
instructions on all machines. That is quite obvious; what is not so obvious
is the amount of incompatibility which can actually be engendered by the
compilers themselves even on the same computer. One of the best examples
of this is the situation in which a compiler accepts and correctly handles a
statement which is not really legal in the language, but which is certainly
meaningful to anybody using the language; e.g., one of the early FORTRAN
compilers correctly translated a certain type of implied multiplication. What
happens in cases like these is that people tend to write programs knowing
the characteristics of their particular compiler, and they are in for a rude
shock when the same problem is translated by another compiler.

A second kind of incompatibility caused by compilers is much more
subtle and, therefore, much more difficult to track down. Because of the lack
of precision in defining programming languages, there are often ambiguous
rules relative to the meaning of certain statements in the language, and
every compiler writer must make a decision on how to interpret such state-
ments. This is bad enough, but what makes it even worse is that in many
cases the ambiguity is not even recognized as such. Thus two people looking
at a statement or sequence of statements in the language definition may,
in all good faith and in all clear conscience, come up with two entirely dif-
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ferent views of what is meant. On top of that, neither person may even
recognize that an alternative view is possible, until it is pointed out to him.
This causes the compilers to be incompatible in the sense that two different
compilers may accept the same source statement and not only produce
different object code but, more importantly, cause the source programs to
produce different results. Unfortunately there is no way around this incompat-
ibility until better means of defining languages are developed. It is because
of this problem that many people have taken the view that the only complete
definition of a language is a compiler for the language. My personal view
is that this is so impractical that I prefer the unpleasant alternative of admit-
ting that we do not yet know how to define programming languages rigorous-

ly.
3. Dialects and Language L-Like

One of the most difficult problems in the question of compatibility has
to do with the existence of dialects. A dialect means a minor variation on
a particular language. These variations may exist for any number of reasons.
One group may feel that they can obtain a more efficient compiler if they
simply make a minor change in the rules. An illustration of this involves
naming conventions, whereby the language definition may not require data
names and/or statement labels to start with a letter, but some particular
compiler writer may decide that his efficiency can be improved by an order
of magnitude if he imposes such a restriction. In other cases, minor devia-
tions may occur because one group does not like the actual notation used
by the language designers and substitutes a different one. The most common
reason for dialects is that for any language there is almost always somebody
who feels he can improve the language by making certain additions and/or
changes. A more laudable motive is the creation of modifications to meet
the needs of a particular application. It is important to notice that the diffi-
culty usually arises more from changes than from additions or restrictions,
although the latter two also present problems and are discussed in the next
section.

The phrase language L-like is frequently heard; it usually refers to a
language which is similar in spirit and notation to language L, but differs
from it markedly enough not to be considered a dialect. The deviations usual-
ly involve (1) some changes in notation, (2) some omissions of features
or some restrictions, and (3) some additions. As an illustration, LISP 2
(see Section VIIL.6) is described as being an extended ALGOL-like language.

The prime distinction between being a dialect and being language
L-like is one of degree. If there are only minor variations, then the word
dialect is appropriate. Unfortunately, there is seldom universal agreement on
how minor the variations really are.
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4. Subsetting and Extensions

The issue of subsetting differs significantly from that of the dialects,
in the sense that dialects involve changes, whereas subsets imply incomplete-
ness but presumably no changes. Strictly speaking, a subset is a type of
deviation but usually one that is less severe in its implications for compati-
bility.

A language S is considered a proper subset of a language L if (1) there
are some programs which can be legally written in L which cannot be legally
written in S, (2) all legal S programs are legal L programs, and (3) the results
from a program written in S when executed with an S compiler are the same
as the results obtained from an L compiler on the same machine, except
for those aspects which are implementation dependent. Subsetting obviously
permits upward but not downward compatibility. That is, by definition,
programs written in S must run on L compilers, but the converse is not
true.!

Subsetting may take a number of forms. One is simply the nonability
to handle a certain class of features in the language. For example, if a
language allows both double and single precision, a subset of the language
might not allow double precision. Another form is to omit certain special
cases in a general feature; e.g., the subset might omit double-precision in-
tegers but not double-precision floating points. Another type of subsetting
involves placing additional restrictions that the language itself does not have,
such as requiring data names to begin with a letter, although the language
may not require this.

The primary motivations for subsetting are cost and time. Subsets permit
smaller compilers, which can be developed more cheaply and/or more rapidly.
Furthermore, subsets tend to compile faster.

Problems with regard to compatibility arise when nonnested subsets
exist. In other words, if there are several subsets of a given language, and there
is no hierarchy among them, then there is chaos for the user who tries to move
from one subset compiler to another. Clearly, if the overall language contains
features 4, B, C, and D, and Compiler 1 eliminates feature 4 and Compiler
2 eliminates features A and B, then a hierarchy exists which permits upward
compatibility. On the other hand, if Compiler 1 eliminates feature 4, whereas
Compiler 2 eliminates only feature B, then there is no relationship between
those two compilers. They can only be related back to the main compiler
which is implementing the entire language. Thus, nonnested subsets will
always lead to lack of compatibility among implementations of each other.

One interesting facet of subsetting occurs when the language is imple-
mented by bootstrapping, which means that a translator for a subset of the

! This definition was essentially suggested to me by E.F. Codd.
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language is coded in machine language and the compiler is written in this
subset of the language. This can be done only for certain languages. Some-
times more than one level of subset is required to create the full compiler.

A language E is an extension of a language L if L is a subset of E. Types
of extensions might be the provision of additional facilities, such as new
variable types and commands to handle them or removal of restrictions
(e.g., on the ways in which data names can be defined). If L is the prime
language under consideration, then the existence of its extension, namely
E, is of no concern to the users of L. If F is a proper extension of L, then
the compiler for E should accept legal programs written in L and produce
the correct results. Unfortunately this is seldom true in practice and, after
extending L to produce E, restrictions are usually placed on L programs,
regardless of whether or not they use the additional facilities of the E language
(compiler). This happens because extending a language is seldom easy and
almost always requires some change—albeit minor—in the original language.

A common occurrence is to start with a language L, create a subset
of it (called S), allow some minor deviations (say S’), and then put in some
extensions which are not in L (say S’+). The result is an L-like language.
If $'4 is significantly smaller than L, then it is really an L-like extended
subset and this term will be used throughout this book.

5. Relation to Language Definition

Many of the problems of compatibility are caused by the current in-
ability to define languages in a complete and accurate fashion. A good start
has been made on defining the syntax of the language, but only a little effec-
tive work has been done in defining semantics and virtually no work in defin-
ing pragmatics. These terms will be discussed in more detail later. The crucial
point is that the lack of compatibility across compilers and very often across
machines is related to the fact that the language definition may not have been
completely rigorous or understandable.

11.4.2. EASE OF CONVERSION
1. Based on Compatibility

As indicated earlier, there is great motivation to ease the conversion of
programs from one computer to another. The best way to do this is to main-
tain complete compatibility between a language acceptable to one machine
and the same language handled on another machine. Acceprability can be
achieved by hardware or software or a combination of both (i.e., emulation).
In that case, the conversion problem is negligible. Achieving compatibility
is one of the strongest motives for writing programs in a higher level
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language. Unfortunately, languages tend to change somewhat when imple-
mented on new machines for reasons indicated above, thus reintroducing
the dialect problem. The relevant factor becomes the amount of difficulty
that is involved. If only small changes are necessary to make the program
run on a different machine, then there has been a large amount of compati-
bility preserved and the conversion is very easy. On the other hand, if major
changes and difficulties are encountered, then the conversion is difficuit.
(This is not meant to imply that conversion of programs from one machine
to another is the only factor in changing machines. However, it is the only
aspect under discussion here.?)

2. Ease of SIFTing to Another Language

The term SIFT stands for Share Internal FORTRAN Translator and
was first used in connection with the program to go from FORTRAN II
to FORTRAN 1V on the 709/90/94 (see Allen, Moore, and Rogoway
[AX63]). In the development of FORTRAN 1V, great attempts were made
to make FORTRAN II a proper subset of FORTRAN 1V. However, there
were cases in which this was not possible, either because it would place too
great a restriction on the new version of the language or, in other cases,
because people had taken strong advantage of what the compilers of
FORTRAN Il would do and these nonlanguage facilities were not applicable
to the larger and newer compilers. The term sift became used fairly generally
to refer to the partial translation of one higher level language to another
one which is fairly similar. This normally means the automatic conversion
of equivalent language elements and flagging the others for manual conver-
sion. This is a type of conversion, which again is dependent for its ease on
the amount of sifting which can be done. A particular illustration—namely,
of ALTAC to FORTRAN Il—is described by Olsen [OL65].

3. Ease of Translating to Another Language

In the worst case, one may be faced with the problem of trying to have
one language, which has been implemented for a particular machine, trans-
lated into the form of another language for another machine. It is of course
assumed that such a translation will preserve the high level characteristics
of the original program and will not cause severe degradation of the even-
tually resulting object code. An almost useless translation (from an effici-
ency viewpoint) occurs when a less powerful language is translated on a
statement-by-statement basis to a more powerful one. This has actually
occurred in translating from powerful assembly programs (Autocoder)

2 See Datamation, Vol. 12, No. 6 (June, 1966) for several papers on this subject.
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to COBOL. It is an interesting—and as yet unsolved—problem as to what
general characteristics of languages are needed to permit one to be trans-
lated into the other automatically without severely losing the efficiency of
the original source program. The ease of conversion is dependent upon how
easily—if at all—this translation can be made.

One of the reasons for wanting an effective translation is that the newer
machine may not have available on it a compiler for the earlier language.
A second reason occurs when the installation managers wish to have every-
thing coded in the newer language and, therefore, want to have the old
programs translated automatically.

11.5. STANDARDIZATION

One of the key factors in the definition and use of a programming language
is the role played by standardization. The purpose of this section is to de-
scribe the purposes and problems in standardizing programming languages
and the procedures that are involved and to give a brief status report. More
details about the latter are shown in the individual language descriptions.

I1.5.1. PURPOSES

The basic purpose of standardizing programming languages is to achieve
compatibility, which in turn reduces costs. Compatibility in programming
languages permits savings in training personnel because they do not need
to learn a new language. It also permits savings in documentation because the
number of new manuals that must be written is sharply reduced. Standardiza-
tion also minimizes—although it does not eliminate completely—the problem
of converting to new computers. (This assumes that a standard language
is implemented for a new set of machines.)

Even assuming a language standard exists, there is a management prob-
lem in enforcing the standard. This is not significantly different from the
problem of enforcing any standard or set of conventions in a programming
organization.

11.5.2. PROBLEMS

There are three main problem areas in standardization: Conceptual,
technical, and procedural. It should be recognized that the conceptual and
procedural problems are not unique to programming languages; they apply to
most technology.
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1. Conceptual Problems

The first conceptual problem is one of timing; i.e., when should stan-
dardization of a language take place. Unless this is given careful considera-
tion, it is likely to come too soon or too late. If it is too soon, then the
standardization is premature; it is not clear what is needed, and there is a risk
of standardizing on a number of things that really are not very good. On the
other hand, if standardization is delayed too long, then there are dialects—
admittedly some of them very minor changes—and this in turn creates a num-
ber of vested interests which are reluctant to accept a standard which
deviates from their particular version.

A second conceptual problem is the risk of stifling progress. Somehow
the standardization process must avoid eliminating or preventing technical
progress. This is extremely difficult because there is no easy way of coping
with new and bright ideas if they come in after the standard is established,
or even while it is in the process of being established. An excellent example
of this arose in one subcommittee meeting which suggested a somewhat bet-
ter method for handling the proposed revised ASCII code. Unfortunately,
too much work had already been done by too many people to permit the
change, even though several groups agreed it was an improvement.

2. Technical Problems

The first technical problem in standardization is one of definition.
We do not yet know how to define a programming language rigorously.
No completely formal method exists, even for the purely syntactic defini-
tions, although tremendous strides have been made along these lines. There
are only beginning attempts at defining semantics rigorously, and no effort
has been made toward coping with the problem of pragmatics. (These terms
are defined in Section 11.6.2.) A verbal description is inadequate (although
used) because the English language is ambiguous and it is impossible to spell
out every possible contingency or interpretation. Some people would cope
with this problem by accepting the processor (i.e., the compiler) as the basic
definition of a language. This might work satisfactorily if there were only
one processor per language, but that clearly is not the case. It is certainly
not feasible to say that the first compiler written will be the formal defini-
tion of a language. Even if that were done, or some other compiler were
chosen, there would still arise the problem of requiring everybody to inves-
tigate the details of the compiler coding to find what a particular issue meant.
In some cases this would still not provide a complete definition for the entire
language.

A second technical problem is to try to determine when a compiler (or
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a program) actually meets the standards. Since we do not have a completely
rigorous definition of the language, we clearly do not have a rigorous way
of testing whether or not a given compiler meets that language specification.
Even if we accept the unfeasible alternative that a particular compiler will
define a language, this still does not tell how to determine whether another
compiler actually meets the language specification. The use of test problems
is definitely not the answer because a particular compiler could easily be
designed to meet the test problems but still be very far from the standard.

A third technical problem is to determine how to do maintenance in an
orderly way and still not invalidate the compilers. This is tied in with the prob-
lem of the language definition because most of the maintenance involves
clarifying unclear points. The difficulty that arises here is the one pointed
out in Section 11.4.1.2—namely, two different groups may have implemented
a particular point differently without even realizing that there was another
possible view on what they were doing. Once there is a large amount of money
invested in the implementation, it is very difficult to persuade any one group
to change its view on what should be done. Since in many cases maintenance
also involves extensions, these have to be looked at very carefully in the light
of present implementations. Certain extensions could invalidate all compilers
written for a particular language, even though the extension was extremely
desirable.

A fourth technical problem is the one of subsetting, which was discussed
earlier in Section 11.4.1.4. Since a standard must achieve wide acceptance
in order to fulfill its purpose, a highly complex language may reduce the
number of groups which can implement the standard. On the other hand,
reducing the level of the standard to the smallest computer will lower the
value of the standard considerably. The best solutions for this problem seem
to be controlled subsetting and/or modularity of features.

The last technical problem is the multiplicity of standards for program-
ming languages. It is preposterous at this point and in the near future to
consider standardizing one language for all programming. The best we can
hope for is one language for each major application area and some languages
(e.g., PL/I) which cover more than one application area. However, it is impor-
tant to notice that FORTRAN and ALGOL were both standardized; yet
they covered very similar application areas, namely, the solution of scien-
tific numerical problems. The reason for the two standards was quite simple;
there were large investments in both languages, and neither group was willing
to retreat and disclaim all interest in having its language become standardized.
Thus, there has been a necessary regression from the mythical ideal of one
programming language standard to one for each major application area,
and a further regression to merely standardizing any “suitable” language
to prevent dialects of it from being developed and used.
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3. Procedural Problems

The procedural problems in establishing standards are enormous,
but this is necessary to prevent the promulgation of undesirable standards.
In this context, undesirable merely means not acceptable by virtually all
the groups to whom the standard will apply. The complexity of the pro-
cedures—which have been established to protect the rights of all those in-
volved—of necessity delays the establishment of a standard. This often causes
difficulty to those groups who are at a stage in their technological or manu-
facturing development where they are ready to implement the standard,
but it does not exist officially and may yet be changed.

11.5.3. METHOD OF ESTABLISHING STANDARDS

Most standards are adoptions or rework of existing practices. Some come
into being through a specific committee which does developmental work
and announces at the outset that their result is to be a standard of some
kind. (This was done with COBOL.) Other standards become what are called
de facto standards—i.e., they are so commonly used that by general agreement
and general practice they are a standard, even though no formal mechanism
whatsoever has been used to establish them as such. In most of these cases,
however, although there may be widespread agreement on the basic item,
there are almost always deviations which must be eliminated from an actual
standard. (FORTRAN is an illustration of this situation.) There is a very
formal and specific procedure for establishing official standards, and this
section will discuss this procedure in some detail.

The authority for industrial standardization in the United States is vested
in the United States of America Standards Institute (USASI), which replaced
the American Standards Association (ASA) in August 1966. Obviously
any group, e.g., government, professional societies, and user groups, can
(and does) standardize anything, but USASI is recognized as the central and
official source of activity for any type of industrial standardization in the
United States. Unlike European countries, standardization is a voluntary
process in the United States. Thus, nobody is obligated to obey a standard
just because it exists; whereas, in many European countries, once a standard
exists, it is a government regulation and must be followed. There are a num-
ber of factors which are relevant to the standardization process under USASI
and which are independent of programming language standardization per
se. It is worth noting these, so that the problems and procedures for program-
ming language standardization can be seen in perspective. (A more detailed
description of the procedures is given by Goodstat [GS67] and Steel [ST67].)

The USASI provides an elaborate structure with built-in checks to pre-
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vent “railroading” of anything as a standard; a broad basis of participation
is required both to do the work in establishing the standard as well as to
approve it. A consensus among all interested parties is required before some-
thing is approved as a standard, and a consensus is much more than a mere
majority. If a significant-sized minority objects to a standard, then it is
normally sent back for rework. It is characteristic of USASI in particular
(and most organizations in general) that if they provide an elaborate struc-
ture of the kind just indicated, then of necessity the committee procedures
and regulations will be long and complicated. In addition, there is also an
international standards organization which has different rules from USASI,
and groups in the United States usually wish to satisfy both standards organi-
zations.

The USASI normally asks some group to sponsor work in a particular
area. This is usually a trade association or similar group. In the case of the
computing industry they asked BEMA (Business Equipment Manufacturers
Association) to provide sponsorship. Thus, BEMA established the sectional
committee X3, which in turn established seven technical working commit-
tees as follows: (1) Optical character recognition, (2) coded character
sets and data formats, (3) data transmission, (4) common programming
languages, (5) glossary, (6) problem description and analysis, and (7)
magnetic character recognition.

The charter of X3.4 (which was formed in 1960) is “Standardization of
common programming languages of broad utility through standard methods
of specification, with provision for revision, expansion and improvement,
and for definition and approval of test problems”. At the time of this writing,
X.3.4 has established eight subcommittees. A list of these follows, with
a brief indication of the function and purpose of each subcommittee.

X3.4.1. Language theory. This committee has been dormant for a
long time but was responsible initially for investigating some of the technical
problems associated with standardization.

X3.4.2. Language specifications. This committee is concerned with
miscellaneous activities, which includes deciding what languages are appro-
priate candidates for standardization and the criteria involved. These tasks
are not as easy as they sound due to the need for being concerned with a
large number of vested interests. This committee also has the responsibility
for reviewing an actual proposed language standard for X3.4.

X3.4.3. FORTRAN. This committee defined the standard FORTRANSs
and is responsible for their maintenance.

X3.4.4. COBOL. This committee is responsible for the definition of
the standard COBOL and for its maintenance.
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X3.4.5. ISO|TC97|SC5 secretariat and USA participation. This com-
mittee handles interaction with the international standards organization:
SCS5 is roughly the equivalent of X3.4 at the international level.

X3.4.6. Glossary. This committee is responsible for determining and/or
reviewing glossary items which are particularly relevant to the subject of pro-
gramming languages.

X3.4.7. Machine tool control. This group was actually the latest
formed; it did not come into existence until the latter part of 1964. It is con-
cerned with the development of standards for machine tool control.

X3.4.8. ALGOL. This was actually a sub-subcommittee under X3.4.2
and was eventually formed into a subcommittee in its own right.

The main work of X3.4 has been in deciding what languages to try to
standardize and then actually attempting to do it. Because the maintenance
and definition are different for each language, the procedures need to be dif-
ferent.

Once X3.4 has created a proposed draft standard, it is submitted to the
parent body, X3, which arranges for its publication and wide distribution.
A period of approximately 6 months is then allowed for commentary by any
person or organization whatsoever. Following (and sometimes during)
this period, a ballot is taken according to USASI rules and procedures and,
based on that ballot, either the proposed standard is sent back to the commit-
tee for rework or it is submitted to the Information Processing Systems
Standards Board (IPSSB) for its determination that the proper procedures
were used and a consensus really exists. In almost all cases, IPSSB provides
final approval of the standard. (There is a still higher group, but it is seldom
needed.) Once the standard becomes promulgated, it is then recognized
as an American standard. Again it must be emphasized that adherence to
this standard is completely voluntary on the part of any organization. Experi-
ence to date has shown that such standards do play a very significant role
in the activities of computer manufacturers.

11.5.4. OVERALL STATUS

The descriptions of each language indicate the status of the standardi-
zation for that language and the process that was involved.

11.6. TYPES AND METHODS OF LANGUAGE DEFINITION

Fortunately or unfortunately, language definition is an administrative as
well as a technical issue. Many factors discussed below play an important
role in the creation, development, and usage of the language. These aspects
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tend to be ignored or misunderstood but they play a vital role in the overall
consideration of the language.

I1.6.1. ADMINISTRATIVE
1. Who Designed the Language?

The first administrative question to be asked about any language is:
Who designed the language? Also, how was the group constituted? Who
was the sponsor or directing authority ? What kind of pressures were they
under ? Several languages have been designed by committees, where the com-
mittee consisted of participants from a number of organizations. This is not
necessarily bad since even when a language is designed within one organi-
zation, it is normally designed by more than one person and this group
could also be called a committee. It is not at all clear whether a committee
composed of people from different organizations fares significantly worse
than one formed solely within an organization. The main reason for this
is that current and past language design has been based very much on per-
sonal opinion, rather than just on fact or objectivity. Many of the properties
described in Section 11.2 mean different things to different people, and cer-
tainly the method of applying them is nebulous. Language design is an art,
not a science. Furthermore, as in any endeavor, language designers also
tend to use their past experience even though it is not always applicable to the
current situation. The one factor that pervades intercompany language
design which generally does not affect intracompany work is a number of
political considerations. In particular, an intercompany committee may
have on it people who are under directives from their organization to try
to place into the language those features which are helpful to their equipment
(and possibly harmful to others) and, of course, to prevent the converse
from happening. These are all unfortunate facts of life which must be taken
into account in considering any language.

2. What Were the Objectives of the Language?

In examining any language, it is necessary to know the objectives. Just
as it would be silly to complain that an automobile is not a good device for
crossing an ocean, it is equally foolish to say that a language is a poor one
because it does not satisfy the person examining it. A language designed for
use by nonprogrammers may seem very loquacious or inefficient when viewed
by a professional programmer. Conversely, terminology or techniques that
are useful to a person with considerable programming experience may be
confusing or meaningless to a person who just wants to find answers quickly.

There are two legitimate questions which can be asked about a program-
ming language and its objectives. The most important is: Does the language
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satisfy the objectives? The second is: Were the objectives worthwhile? The
first question is a very good one if it is applied honestly, and the prime cri-
terion of a good language is whether it achieves the goals specified for it.
The question about worthiness of objectives is a dangerous one. Using the
earlier analogy, a device good for crossing an ocean may be a silly idea to
someone who has no interest in moving off dry land. Too many criticisms
of programming languages tend to be made by people who have no knowl-
edge of, or interest in, the problem area; they insist that the objective is bad
when in reality they do not understand or care about it.

3. Who Implemented the Language?

The question of who implemented the language is another adminis-
trative facet which cannot be ignored. If the language is implemented by the
same people who designed it, then there is the greatest chance of success
because the language can be modified as the needs of the implementation
demand. Of course, a poorly conceived implementation design should not
be allowed to ruin the language by forcing unnecessary restrictions. There
are more difficulties when the implementation group differs significantly
from the language group and the latter must be consulted on every change
in the language. Making sure that the right kinds of interactions occur in both
cases is clearly an administrative problem. As mentioned earlier, very often
the definition of a language is not completed until the compiler is completed.

Implementation is normally done either by a group within one company
(usually a computer manufacturer, but sometimes a user with its own lan-
guage) or an outside software group (which is charged with the responsibility
for preparing a compiler for a particular machine or class of machines).
Even here, there are difficulties that depend on whether the implementation
for a given class of machines is under direct control at a low enough organi-
zational level to be effective. Thus, if a company has a class of machines
which are either similar or purportedly compatible in some sense, then the
question of how compatible the compilers are becomes another administra-
tive and management problem.

4. Who Maintains the Language?

The maintenance of a language is not the same as the maintenance of
a compiler or a program. The language maintenance is by far the stickiest
of the administrative problems. In some cases, the group who originally
designed the language retains the responsibility for its maintenance. This
maintenance has many facets, starting from answering the questions of the
implementers who do not understand a particular language specification to
responding to requests for changes on features that are difficult to implement
and, ultimately, making improvements and/or extensions to the language. As
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was true with the question of who designed the language, the maintenance
is sometimes done by an interorganization group and sometimes within
a single organization. However, when the maintenance of the language is
divorced from the implementation, a certain amount of chaos is likely to
arise. This occurs because the implementors usually need an immediate deci-
sion on what a particular point means; those who are maintaining the lan-
guage may not be ready to meet that week to answer the question; yet coding
must continue. Similarly, people who are pressing for improvements and/or
extensions to the language are apt to find a very responsive chord in the
maintenance group, but an unresponsive chord in the implementation group.
The latter will certainly resist improvements to the language if it invalidates
their compilers. Thus, if the maintainers of the language are significantly
separated from the implementers, they may make changes and/or decisions
and/or improvements which seriously affect the implementation. Even
if the two groups coincide, the thorniest of all the administrative problems
is to decide when to allow the language to be significantly improved, at the
cost of much compiler rewriting.

11.6.2. TECHNICAL

The technical issues in language definition are, of course, the very heart
of determining what the language actually is, i.e., what its specifications are.
These issues are often mixed up with the notation (metalanguage) of the
definition, i.e., the actual way in which the language definition is written down
on one hand, and the questions of the rigorousness of the definition of the
syntax, semantics, and pragmatics on the other hand. In my opinion, too
much of the discussion of the actual features and qualities of a language
centers around the way in which the language is defined. While obviously
a poor and unrigorous definition makes it difficult if not impossible to deter-
mine what the language specifications really are, it should be kept in mind
that the language and the means of defining the language are not the same
thing. It is for this reason that the discussion of the technical methods of lan-
guage definition are included in this chapter, even though they are definitely
technical and this chapter is purportedly concerned with nontechnical charac-
teristics of programming languages. I would go even further and say that
many of the nontechnical problems exist because the computing community
has not yet solved satisfactorily the technical problems of defining program-
ming languages rigorously.

1. Syntax, Semantics, and Pragmatics

The three characteristics of a language definition are syntax, semantics,
and pragmatics. (These are discussed specifically by Zemanek [ZE66] and
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were largely the subject matter of the 1964 IFIP working conference, whose
proceedings appear in Steel [ST66a).

By syntax we mean a rigorous statement of what sequences of charac-
ters are considered correct in the language and, ultimately, what character
sequences constitute a (syntactically) legal program. Thus, the syntax could
specify that the sequence A + B is legal; whereas the sequences +AB or
A+B are not allowed. On the other hand, a different language might say
that the second or third (or both) of these was legal; whereas the first was not.
In any case, the syntax simply specifies the legitimate strings in the language.
The meaning of the string is determined by the semantics. Thus, for example,
the string A + B might mean addition if A and B were numbers; whereas
it might mean union if A and B were sets or logical conjunction if A and B
were truth values. Clearly, a single legal string can have a great many mean-
ings; the collection of all these meanings for each legal string is called the
semantics of the language. The pragmatics is the relationship of these strings
and their meanings to the user. Thus, the user himself must understand and
appreciate what is meant by arithmetic, set union, and logical conjunction.
Furthermore, there must be agreement between his intended use of a string
of symbols and its actual semantic interpretation by a compiler.

The following statements appear to be true: (1) There is sometimes a
hazy line between what is syntax and what is semantics; e.g., the rule that
the number of subscripts on a variable in FORTRAN must agree with the
information in the DIMENSION statement can be considered both syntactic
and semantic, although it is primarily syntactic. (2) There is no notation yet
developed which will express completely unambiguously all the syntax of a
programming language, even if there were agreement on what was purely
syntax. (3) Little work has been done on formalizing semantics, although
the work of the IBM groups in Hursley, England and Vienna, Austria has
made a good start on PL/I (see the reference lists at the end of this chapter
and Chapter VIII for numerous reports). (4) Nothing has been done about
formalizing pragmatics. Thus, the problem of rigorously defining a lan-
guage—assuming there is an intuitive idea of what the language should
be—is one in which a large amount of technical work needs to be done.
However, significant work in providing formal notation for syntax has been
done and has helped the language definition problem enormously. See Floyd’s
survey [FL64] and the other items in the list of references at the end of the
chapter.

2. Formalized Notation

Since the English language permits numerous ambiguities, it is desirable
to provide a formal or rigorous method for defining programming languages.
Considerable work has been done to provide such formalism for the syntax,
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but very little work has been done for the semantics; hence, the latter will
therefore not be discussed at all.

A complete discussion of the formalized notations used for describing
programming languages is beyond the scope of this book. However, the basic
principles can be stated rather simply. This whole area is the major interface
point between artificial languages and the work of linguists concerned with
natural languages. Further details can be found in the references in Floyd’s
paper [FL64].

To define a language, some language must be used for writing the defini-
tions. This latter is called a metalanguage. It is a general term which can
include any formal notation or even English itself. Metalanguage is a relative
term since it is itself a language which must be defined, and that requires
a metametalanguage. For the languages discussed in this book, we need only
be concerned about the single level of metalanguage.

The first, and still the most significant, contribution made in this area
was by John Backus in his paper [BS60] describing IAL (later called
ALGOL). After an informal description of the proposed language, Backus
states (page 129) “There must exist a precise description of those sequences
of symbols which constitute legal IAL programs . . . . For every legal program
there must be a precise description of its ‘meaning’, the process or transforma-
tion which it describes, if any . . ..” The second part of this objective has not
yet been carried out completely and successfully, although significant work
is well underway. The prime elements of the metalanguage are the concepts
of a metalinguistic formula or expression composed of metalinguistic vari-
ables (whose values are strings of symbols), a metalinguistic equivalence
symbol, and metalinguistic connectives. The metalinguistic variable (which
is also called a syntactic unit) normally has mnemonic meaning, although
this is not required; thus integer is a metalinguistic variable whose values
are the digits 0, 1,2, 3,4, 5,6, 7, 8, or 9. (Angular brackets < > are a com-
monly used notation for syntactic units.) The most important connectives
are or, concatenation (i.e., adjoining two strings to make one string), choice,
and optional. Not all these connectives are used in each metalanguage;
it is largely a matter of (1) personal choice and (2) structure of the language
being defined, as to which combinations are used. The concepts of recursion
within definitions and repetition of syntactic units are also widely used;
these are illustrated later.

The most common (although by no means the only) combinations of
symbols are those which have been used for the ALGOL 60 report (Naur
[NA60] or [NA63]) and for the COBOL report [US65].° In the former, com-
monly referred to as BNF for Backus Normal Form or Backus-Naur Form,
the metalinguistic symbols and their meanings are

3Citations are given in the reference lists at the ends of Chapters IV and V, respectively.
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Symbol Meaning
= equivalence
< > surround metalinguistic variable
Jjuxtaposition concatenation
| or
In the COBOL report,
Symbol Meaning
small letters metalinguistic variable
Jjuxtaposition concatenation
{ ) choice
[ 1 optional
upper-case letters optional fixed words in language
upper-case letters underlined required fixed words in language

repeat previous syntactic unit

As a simple example using BNF (i.e. the “ALGOL metalanguage”), consider
the definition of an integer. We start by defining a digit by writing

<digit> = 0|1]2]3]|4]|5]6]7]|81]9
<integer> := <digit> | <integer> <digit>

The first line specifies that a metalinguistic variable called digit is one of the
characters 0, 1,2, 3,4,5,6,7,8, or 9. The second line illustrates recursion
as part of the definition because it says that an <integer> is either a <digit>,
or an <integer> followed by a <digit>. A negative integer would be defined
by saying

<negint> = —<integer>
The following are integers (by the definition above):
3 32 0045 000000 2598600002100900

Note that there is no limit stated on the number of digits allowed. From
the definition of negative integer, examples are

-3 —32 —000000 —05290600
but not

—32— —3-2

As a more abstract illustration, suppose

<ab> := (| * | <ab>)| <ab> <d>

<d> :

A|B|C|DJE
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Then the following are legitimate values for <ab>:

( (A

*))) *C

OF) 0/3))

0 %)))ABCDE)ABCDE)

The following are not legitimate values for <ab>:

A AX
A( ABC)
(S *(

) * JE

Using the “COBOL metalanguage,” consider the following abstract
example:

bibble

meger K |
integer AB

} [bull] ...

where integer has the expected meaning, bibble represents a letter, bull
represents a digit, and the three dots . .. indicate repetition of the immedi-
ately preceding syntactic unit, namely, bull, i.e., digits. Note that it is the
syntactic unit which is repeated, not necessarily the individual value of the
unit. Then the following are legitimate values for the metalinguistic expres-
sion above (which is not actually given a name):

3KS5 5KC3333
5B3259 4KAB
2KL 2B

Since the K is not underlined, it is optional. Note that in the first case it is
impossible to tell whether the K has come from the specific K, or from bibble.
In the last case, the B can be from either the bibble or from the AB. A lan-
guage with the characteristic that its strings can be broken apart in only one
way is called uniquely deconcatenable, and the example above defines a lan-
guage which is not uniquely deconcatenable.
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To show the difference between these two examples of metalanguages
more fully, each formula will be written both ways. The first one can be writ-

S0

<partial> = <integer> K <bibble> <bull> | <integer> K <bibble> |
<integer> K A B <bull> | <integer> K AB |
<integer> K B <bull> | <integer> <bibble> <bull> |
<integer> <bibble> | <integer> A B <bull> |
<integer> A B | <integer> B <bull> | <integer> B
<integer> K B

and the second as

<full> 1= <partial> | <full> <bull>

The primary advantage to metalanguages similar to those used in the
ALGOL report is their ability to name a metalinguistic variable and use it
in a formula. The metalanguages similar to those used in the COBOL report
do not have that facility. This often makes it very difficult to define certain
metalinguistic variables. On the other hand, in most cases where any compli-
cated choice is involved, the COBOL approach is simpler. However, the
COBOL approach involves two dimensions, while the ALGOL metalanguage
requires only one. A more detailed discussion of the differences between
the two general approaches is given in Sammet [SM61a]. A discussion of the
problems of two-dimensional syntax is given in Rochester [RT66].

While some readers may feel that such notation introduces undesirable
formalism, it certainly serves to eliminate a number of ambiguities. For
example, the following definition appears on page S of the COMIT Reference
Manual [MT61]:

A name consists of a string of twelve or less characters chosen
from the letters of the alphabet, the numbers, an. period and hyphen in
medial position:

Characters for use in names:

ABC...Z
012...9
. - except as first or last character

The question left unanswered by this definition is whether more than one
period and/or hyphen can appear in a name. Thus, it is not clear whether
or not A.B.C.D and A.B — C are legal names.
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The illustrations of metalanguages above should not be thought to
include all the major concepts. For other ways to define artificial languages,
see Gorn [GO61a] and Floyd [FL64]. However, the two above, and minor
variations of them, have proved to be most useful. They have also given
rise to the whole compilation technique known as syntax-directed compiling.
Very briefly, this is a method whereby languages are defined by providing
tables of their syntax and tables of the operations (e.g., convert to machine
code) which are to be performed on different syntactic units. Among the ear-
liest works along these lines were the independent efforts of Irons [IR61],
Glennie [GC60], and Brooker and Morris [BX62]. An overall description
of the technique of syntax-directed compilation is given by Cheatham and
Sattley [CH64].

In my opinion, if there is ever to be any hope of allowing users to define
their own artificial languages, it will most likely occur through the use of
formal methods of language description and processors which can accept
these definitions and either translate them to running code or interpret them
to produce answers directly.

11.6.3. TYPES OF DOCUMENTATION

It is a truism that a language or a program is only as good as its docu-
mentation. Without written specifications for an artificial language, there
is no language. The real problems exist in determining what type of documen-
tation should exist.

There are essentially four types of documentation for a programming
language. The first is the reference manual containing the exact specifica-
tions, using whatever metalanguage (including English) has been agreed
upon by the language designers. It is in this document that the real technical
troubles usually fall since, as discussed in Section 11.6.2, there are-as yet
no satisfactory techniques for defining programming languages rigorously.

The second type of document is a user’s manual, which can be tutorial
or introductory. Such manuals are usually replete with examples and often
omit many of the trickier points of the language. This usually causes the
individual who wishes to know all about the language to refer to the speci-
fication manual, which may be very difficult to read. In such a case, the tuto-
rial description has served its purpose, namely to allow individuals to learn
to use the language in a reasonable way but not necessarily with all the fine
points. ldeally, the tutorial manual would exist in stages, providing first
the most basic information and then progressing toward the most complex,
so that all points are covered.

The third type of document is written for a specific implementation
and often combines elements of the other two. Although ideally there should
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be no need for a new language description manual for each compiler, in
practice this has turned out to be necessary. Minor differences in implementa-
tion techniques or machines cause differences in such points as numbers
of variables allowed, precision of the arithmetic, special cases not handled,"
etc. Such manuals often contain information on how to write programs
most efficiently for the particular version involved. Sometimes the individual
implementation manuals are based on a more general manual which is as-
sumed to be the basic information. (See, for example, the IBM FORTRAN
manuals listed in the references.)

The fourth type of document is some form of summary or very short
(ideally 1-2 pages) document to be used as a ready reference by thcsc faniliar
with the language and needing only to refresh their memories. (See, for
example, the CPS summary in Section 1V.6.5.)

For a general discussion of the problem of documenting programming
languages and the ways in which seven languages (ALGOL, COBOL,
COMIT, FORTRAN, IPL-V, JOVIAL, NELIAC) were documented,
see the series of articles edited by Yngve and Sammet [YN63a] and their
specific comments [YNG63]. In addition, there is a series of individual language
bulletins which have appeared independently and/or under the auspices
of the ACM SICPLAN Notices. The latter is an informal “news and notices”
bulletin edited by C.J. Shaw and has appeared monthly.

11.7. EVALUATION BASED ON USE

It is characteristic of the computer business that systems are often evaluated
on theory and personal preferences rather than on the basis of practical
usage. This is advantageous if the system is so obviously bad that nobody
ought to even try using it. Unfortunately, nobody has yet devised a fool-
proof way of making such judgments. It is always very easy—and much
more fun—to examine a language in an abstract condition that is independent
of its usage. This tends to relieve people of the problem of obtaining facts
to back up their contentions, and it allows them to operate continuously
in the realm of opinion. However, this is not the most effective way to pro-
ceed. It is essential that work be done to determine valid criteria for evalua-
tion based on wusage, rather than on whim. We need to understand the
advantages and disadvantages of specific systems—evaluated against specific
objectives—so that mistakes can be avoided in the future.

11.7.1. AVAILABILITY ON DIFFERING COMPUTERS

The most obvious question for a prospective user is whether the language
has been implemented for his computer. The answers can range from yes
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to in process now to never will be. Part of the evaluation of a language is its
availability and usage on one or more machines. If it has been widely imple-
mented, then there is more accumulated experience for both users and im-
plementers. There is also strong indication that the language has been used
successfully. If it has been available only on large machines and now is to
be used on a small computer for the first time, then certain new problems
will arise.

As discussed below, the usefulness of the language must be judged
independently of the compilers which implement it.

11.7.2. EVALUATION OF LANGUAGE VERSUS EVALUATION OF COMPILER

There are two ways of looking at a language—one is on paper and the
other is as implemented on a machine. In the first instance, an individual
can examine the language and decide whether or not it is easy for him to solve
his problem using that language. In making such an evaluation, he uses such
criteria as ease of learning, ease of writing, and applicability to his class of
problems. When he attempts to evaluate the implementation, however, he
has other characteristics he must be concerned with, such as rapidity of com-
pilation and effectiveness and efficiency of the object code which is produced.
Unfortunately, there are too many instances in which the evaluation of the
language is based primarily on the evaluation of the compilers. All too often
people say language X is no good, when what they really mean is the compiler
they are using for that language is very poor. Once the compiler is improved,
then their view of the language changes. It is extremely important to separate
these two aspects. (There are cases in which new languages received semi-
permanent black marks because the first compiler(s) for the language was
so bad.)

The two greatest criticisms of compilers are slow compilation and poor
object code. The latter can be considered bad because of slow running time
or large storage requirements or both. Secondary objections can be raised
about the diagnostics at compile or object time or both, inadequate listings
from the compiler, unavailability of load-and-go (i.e., compile and immedi-
ately execute), and poor debugging facilities. The language should not be
deemed poor unless it can be shown that its features would permanently
cause one or more of these faults. (This point is discussed in Section 111.7.)

11.7.3. USAGE RELATIVE TO OBJECTIVES

The most important factor in evaluating a language is to compare its
achievements against its objectives. It is therefore necessary that the objec-
tives of the language be well understood before the language design begins.
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It is equally essential that prospective users understand the avowed objectives
of the language so that they do not try to use a language for the wrong pur-
pose. Unfortunately, the purposes are seldom clearly stated. Either they
are not realized when the language development is started or the designers
try to claim too much for the language or else they try to claim a more sell-
able set of objectives than are actually intended or implemented. It is cer-
tainly fair to consider whether the objectives are worthwhile, but it is not
fair to complain about a language for not meeting some objective that was
never intended.

There are cases in which languages have been known to exceed their
objectives. One way in which this can occur is when a language becomes
useful outside its primary application area. The widespread use of
FORTRAN for a variety of problems that are not numerical scientific
makes it the outstanding example of this additional factor.

11.7.4. ADVANTAGES

Only after a language has been in use for a while can its advantages
be ascertained. The first thing to determine is whether or not it met its objec-
tives. If so, then the language can be considered to be successful. (The ques-
tion of whether the objectives were worthwhile is a separate issue and should
not be combined with the evaluation of the language.) However, there are
two other possible advantages which might exist. The first is that the language
may exceed its objectives by being useful for areas which were not originally
intended or by being particularly easy to implement or to learn (if these
were not part of the original objectives). A second advantage may occur if the
language has certain special features which turn out to be very valuable and
can be used in other areas. The concept of list processing is a good illustra-
tion of this; the basic list processing languages (IPL-V and LISP—see Chap-
ter VI) showed the value of list processing so successfully that it became
important for inclusion in newer languages (e.g., PL/I).

The most important thing to realize is that the full advantages (see Sec-
tion 1.5.1) of a language cannot be determined without actually using it on
a computer. This is not true about the disadvantages, which can often be
found before going near a computer. Those advantages which can be ascer-
tained without actually using a machine are the ease in learning, ease in
coding in, documentation it provides, and ease in transferring a program
from one person to the next.

11.7.5. DISADVANTAGES

Obviously, the most important disadvantage to a particular language
is that it does not meet its objectives. This can sometimes be determined before



REFERENCEs 61

actually running on a computer, but there must be some honest attempt
to try using the language. For example, if one objective of the language is
to make it easy for nonprogrammers to use it, then a failure of this aspect
can be determined after appropriate training and attempts at program
writing. Similarly, if efficient compilation is an objective, the implementers
may discover the disadvantages very early in their work.

One important thing to keep in mind is that one cannot measure the
disadvantages of a language in a vacuum; one must consider them in the light
of the objectives. If the purpose of the language is to solve numerical scien-
tific problems, then one cannot say that the language has disadvantages
because it cannot do formal differentiation or integration.

The main disadvantages that can be discovered without actually using
a computer are that it fails to have the advantages cited in Section I11.7.4
and it is not possible to express all the needed operations in the language.

11.7.6. MISTAKES TO BE AVOIDED IN THE FUTURE

Only after the language has been in use for a considerable period of time
can one determine what mistakes have been made. These mistakes might
be in the actual design objectives, in the sense that they were either too nar-
row or too broad and, therefore, incapable of achievement; or the mistakes
might be involved with the relationship between the language and the imple-
mentation; or it may be that the language was not suitably designed to meet
its objectives. Again, all these factors can be determined only after actual
usage.
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I I I TECHNICAL CHARACTERISTICS
OF PROGRAMMING LANGUAGES

lil.1. DESCRIPTION OF CONCEPT OF TECHNICAL FEATURES

III.1.1. INTRODUCTION

In Chapter II there was a discussion of those characteristics of program-
ming languages which were distinct from the detailed specifications of the
language itself. Many of those factors were avowedly nontechnical, including
economic and political aspects. This chapter is devoted to a discussion of the
fundamental technical characteristics in programming languages. The main
functions of this chapter are (1) to describe briefly most—if not all—of the
salient features that are likely to be present in the common types of pro-
gramming languages and (2) to provide a consistent framework for discus-
sion of individual languages. It must be emphasized that not all languages
have all the features mentioned here, nor is this list absolutely complete;
however, it should definitely serve as a checklist for comparing and describ-
ing the languages. There does not appear to be any really major attempt at
such a classification anywhere in the literature. Some superficial attempts at
a breakdown into a few broad categories are given by Perlis [PR65] and
Raphael [RA66]. A questionnaire, which contains many of the points listed
in this chapter, and was, in fact, a starting point for the development here
and in Chapter II, was developed by C. J. Shaw [SH62]. The (unpublished)
questionnaire developed by the ACM SICSAM Subcommittee on Language
Comparison in developing its report by Raphael ez al. [RA67] also provides
a gross way of dividing the major language elements.

65
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II1.1.2. MAJOR PARTS OF LANGUAGE

In considering a programming language, there are seven major compo-
nent parts. These are not mutually exclusive, nor is this the only possible
way of dividing a language into its elements. For purposes of this book,
however, this particular set of categories seems to be the most useful. The
categories are (1) the data and its description, (2) operators, (3) commands,
(4) declarations, (5) compiler directives, (6) delimiters, and (7) program
structure. Each of these will now be described from an overall point of view
to show how they interrelate. Details will be given in later sections.

1. Data and Its Description

The purpose of a program is to accomplish some type of computation,
where computation is not limited to numerical calculations. The elements on
which the computation is to be performed are called the data. This might
consist of numerical quantities, lists of names and addresses, mathematical
formulas, or just an arbitrary string of characters. The data might even be
generated completely internally from the program. In most cases there arises
the need for the concept of data variables whose values are to be determined
during the execution of the program. Because of the multiplicity of data
types which can be used, there is a need for descriptions of them. The
methods of describing the data vary considerably, ranging from implicit
assumptions to specific declarations [see Section I11.1.2 (4)].

2. Operators

The use of operators is one of the ways of combining or acting on data
elements. Operators generally fall into the computational, relational, or
logical category, although there are other miscellaneous possibilities, e.g.,
find first element on a list and find third bit. The distinction between operators
and commands is not clear-cut; the most common difference is that operators
generally appear in expressions and do not themselves necessarily cause
permanent results (e.g., writing IF A = B + C does not create a result B + C),
while commands precede a set of parameters and cause direct execution.

The common computational operators are addition, subtraction, multi-
plication, division, and exponentiation. These can be represented by any
symbols chosen by the language designers, including specific words. Thus,
one language might permit the user to write A + B, while another requires
A PLUS B. The relational operators, €.g., GREATER THAN, EQUAL TO, LESS
THAN, and varying combinations of these, are commonly used to compare
arithmetic quantities but the result is (at least implicitly) a logical value.
Common operators for logical data (data which can have only the values
TRUE and FALSE) are AND, OR, NOT. Operators need not necessarily be
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written between variables; when they are, then the notation is called infix;
when they appear before or after the variables, the notation is called prefix
or postfix (=suffix), respectively.

3. Commands

The heart of a language is the set of executable actions that can be
performed on the data elements. Each command performs a specific task
as specified by the language designers, e.g., assign a new value to a variable
or transfer control to another command. The major types of commands are
described in some detail in Section III.5. In some cases the commands in a
particular language are defined through a specific set of formation rules but
usually the individual commands are listed along with syntactic rules on how
to specify the data they are to operate on.

4. Declarations

Under Section II1.1.2.1 it was pointed out that data elements had to
be described so that the system would know on what it was working. One
technique of providing this information is through the use of explicit decla-
rations. These declarations do not cause action to be taken directly at object
time, but rather they supply information to the compiler. One simple but
common illustration is the controlling of arithmetic precision by including
somewhere in the program an indication that double-precision arithmetic is
to be performed on certain variables. Declarations can take the form of
separate statements; they can be associated with the commands themselves,
or they can simply be associated with a description of the variable. For
example, one could write

DOUBLE PRECISION X, Y, Z
or
Z = X + Y (DOUBLE)
or
X(DOUBLE), Y(DOUBLE), Z(DOUBLE)

The concept is the vital issue here and not the exact form in which the
information is conveyed. Declarations can also be used to convey information
about storage requirements or even about equipment (e.g., equating a sense

switch with a variable).
In some cases, declarations provide information about what is to be
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done and leave it to the compiler to figure out how to do it, e.g., some of the
pattern-matching statements in COMIT and SNOBOL. Further discussion
on declarations is given in Section 111.3.1.1.

Declarations are a special case of a more general concept called compiler
directives, but they are sufficiently important to warrant this separate dis-
cussion.

5. Compiler Directives

The parts of the language which are directly associated with executable
object code are the commands and the data. There are numerous cases,
however, in which it is not possible for the compiler to translate such material
without having more information. This latter is normally supplied through
compiler directives, of which the declarations described above are a special
case. Other types of information which might be supplied to a compiler
relate to the environment in which the system is being used, to specific input/
output facilities, or to efficiency criteria, etc.

6. Delimiters

The delimiters are a part of the language which serves only the syntactic
purpose of helping define the various other parts of the language. The
delimiters might include such things as punctuation marks, blanks, or even
key words. They can be token separators (e.g., + in A+B) or terminators
for larger units (e.g., . in GO TO ALPHA.). This is discussed further in Section
111.2.4.2.

7. Program Structure

Assuming that the language contains the six elements discussed above,
there must be a meaningful way of combining these to produce some desired
action. The way in which this is done is the program structure. This concept
involves the rules needed for combining sets of commands and the data on
which they operate. It also provides rules for building larger programs from
smaller ones. This is discussed in more detail in Section III.3.

11l.2. FORM OF LANGUAGE

There is a difference between the form of the language and the form of the
program written in the language; the latter is discussed in Section II1.3. The
form of the language can be considered to consist of the following major
constituents: (1) The character set, (2) the basic elements (=tokens), (3) iden-
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tifier definition, and (4) definition and usage of other basic elements. The
identifier definition is logically a part of the general usage of the basic
elements, but it has been shown as a separate topic because of its importance.

I11.2.1. CHARACTER SET

The fundamental constituent (although fundamental only in a trivial
way) of a programming language is the character set which it uses. There may
actually be three character sets, corresponding to the publication, hardware,
and reference languages described in Section 1.6. Depending on the particular
language involved, one or more of these may be involved. The readability of
the language, as well as many other features, is heavily dependent on the
character set used. For example, if there is a <, i.e., a less than sign in the
character set, then this eliminates the necessity (although not necessarily the
desirability) of having a string of letters to represent this operator. Con-
versely, and more likely to occur, the absence of specific characters for
relational operators forces the use of some representation for them. This is
usually done by using some appropriate letter string, e.g., LESS THAN or
AT ..

The character set for the language is not necessarily the same as that
allowed for the data. The latter can be much larger (or smaller, although this
is less likely). The program can therefore operate on more characters than
are available for actually writing the program.

Character sets for computer input are obviously constrained by the
hardware available and, as a result, the most common classes are those which
use the 47 (or 48) characters of the key punch and those which use the
characters on a typewriter. There is no single standard set for either class,
however, since the hardware can provide certain choices. For example, two
common sets on the IBM 026 key punch are the “FORTRAN character set”,
which includes the following in addition to the letters and digits:

+ — = /) (., $ ="' blank

and the “commercial set”, which uses the following nonalphanumeric
characters:

& . — $ x , % /] # @ blank

One way of extending a limited character set is by means of an escape
character. In this case, one specific character is used for this purpose and no
other. When the escape character precedes other characters, they take on a
second meaning. Thus, for example, if the dollar sign were an escape char-
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acter, then A $+ B might mean A is greater than B, whereas A + B has
the normal arithmetic meaning. In some cases, concatenation of operators
is used even without an escape character to denote a single operator
(which really should be a single character), e.g., >= means =, i.e., greater
than or equal to.

As of this writing, there is not enough widespread use of the typewriter
for any definite character set to emerge as the most common, although the
PL/I set is quite likely to do so. The probable increasing use of ASCII will
also begin to have a significant effect on the choice of character set for a
programming language.

Although language design can proceed without a fixed determination of
the character set, 1 consider it undesirable. There is a significant difference
between designing a language from a hardware language rather than from
a reference language. (See Sections 1.6.9 and 1.6.11.) The former usually
imposes many more constraints than the latter. In general, if one starts with
the reference language and then specifies the hardware language later, the
result will be quite different than if one starts with the hardware language
at the beginning. In my opinion, it is much better to work directly from the
hardware language because in that way the maximum effectiveness for the
given physical character set is achieved. The effect of the character set is
most heavily shown in the rules for naming, the choice of operators with or
without word equivalents, and the punctuation (rules) used. It is obviously
desirable—although equally obviously not technically essential—that char-
acters retain their normal meaning when there is one. Thus, it would be
ineffective to have a plus sign + mean equality and have an equal sign =
mean greater than.

111.2.2. TyPes OoF BAsiC ELEMENTS (=TOKENS)

The word fokens is used to refer to the basic elements in the language.
In this context, the elements are atomic, i.e., they have no possible further
subdivisions. The definition of token depends on the language; in one case
it might be a single character, while in another it could be a sequence of
characters surrounded by spaces. While the 7ypes of tokens and many
specific ones are system-defined, some individual instances of tokens (e.g.,
names) can be user-defined. In the latter case, there are restrictions imposed
by the system.

1. System- Defined

The system tokens are the graphic operators, the key words, and the
graphic punctuation symbols. The graphic operators are those characters
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which are in the character set for the language and which have a defined
semantic meaning as an operator. The most common occurrences of these are
the +, —, %, and / signs. For those character sets containing them, the
>, <, =, and combinations of them are normally used to designate the
relational operators. The key words are those which have fixed meaning in
the language. They may be used as commands, operators, compiler directives,
delimiters, or punctuation. Finally, the punctuation characters are defined
by the system from among the available graphics. The punctuation characters
(whether individual graphics or key words) serve as delimiters.

2. User-Defined and Restrictions

There are categories of tokens which the user defines (or, more precisely,
creates in his program) within the restrictions imposed upon him by the
language designer. The most important of these are the identifiers, but the
existence of constants, literals, and comments also must be discussed.

For any program, the concepts of data and variables exist in some form.
As mentioned earlier, the data may consist of numerical quantities, alpha-
betic quantities, strings of characters, or anything else permitted by the
language. This data, however, must be able to be referred to in some general
way. This is done by giving it a name, and the name is more rigorously called
an identifier. Similarly, the concept of a variable—i.e., a quantity whose value
changes during the program—exists, and it must be named or identified. There
is a significant difference between an identifier and the item it is naming.
The identifier may refer primarily to a storage location or to a whole hier-
archy of data elements or to a formal variable which never receives any value.
It may also refer to elements of the program structure. Possible ways of
defining such identifiers are discussed in Section I11.2.3.

Most programs require the use of some fixed quantities during the
course of the computation. The quantities are most usually numbers, although
they can also be logical, or character string, constants. A constant is one of
the user-defined basic elements in a programming language. In this case,
the term user-defined means that the programmer decides which values to use.
However, he is bound by the restrictions of the language, which may allow
some kinds of constants but not others. For example, he might be able to use
fixed point numbers but not floating point numbers. He might be allowed
numeric constants but not logical constants. The most common restrictions
are on the size of the constants; these rules tend to reflect the computer(s)
on which the programming language is expected to be used. The presence or
absence of a decimal point is significant in some languages, i.e., 2. is not
necessarily treated the same as 2in 2. + 2 * A,

A special type of constant is known as a literal. A number of cases arise
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in which one wishes to use the string ABC to mean a data name (i.e., an
identifier for an element of data). In this case it simply represents a location
somewhere which contains information which is desired. On the other hand
there are many times when one wishes to use the string ABC to mean exactly
itself. This latter usage is the meaning of the word literal. In other words, a
literal is a string of characters which represents itself and not something else.
Thus there is a difference between the number 23 and the literal 23; the latter
has no numeric significance. The problem in the language design arises in
specifying the means of identifying literals. This is discussed in Section
111.2.4.6.

Since one of the advantages of a programming language is to provide
better documentation of the task being performed, it is essential that there
be a means of providing comments in the program. Comments are one of the
possible types of user-defined tokens. Most programming languages provide
a method by which the user can intersperse comments into his program.
These must have appropriate flagging so that the compiler will not attempt
to translate them.

111.2.3. IDENTIFIER DEFINITION

1. Types of Identifiers

There are two major types of identifiers: Data names and program unit
labels. The former can be individual data elements or records or files or
aggregates of data. The latter are more commonly called statement names
or statement labels, but these terms are misleading because the language may
not have statements or it may be able to name several different parts of the
program. A program unit label may itself be treated as data in certain types
of commands and may also be used to identify nonexecutable parts of the
program (e.g., declarations).

2. Formation Rules

There are a number of different ways in which data and/or statement
names can be created. For example, it is possible to specify that data names
can consist only of alphabetic characters, numeric characters, a single
alphabetic character, or alphabetic and numeric characters in any sequence.
Other common alternatives include allowing letters and numerals to be
intermingled providing the first character is a letter, and/or placing a limit
on the number of characters. Finally, it is possible to allow punctuation
marks or other characters as part of data names and statement labels, with
or without specific restrictions to go with them. (However, the use of a
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hyphen or its equivalent is intuitively reasonable, whereas the use of semi-
colons in the middle of a word is not.)

One of the key features that must be decided in the formation of rules
for identifiers is whether there is any difference between the rules for a
variable name (i.e., the name of a piece of data) and the program unit label
(called statement label for short). Some languages use the same rules for
both, whereas others provide for some distinguishing characteristic between
them. In any case, clearly one name cannot be used to represent two different
items at the same time unless it is always clear from context which is meant.
An interesting problem in establishing rules for naming variables is con-
nected to the method of representing multiplication. In ordinary algebra, we
write xy and mean the product of two variables. However, in a programming
language, if data names have more than a single letter, it becomes very
difficult, or logically impossible, to distinguish between the product of two
variables and a single data name with two letters. Thus, most programming
languages which allow more than a single letter for the variable name are
forced into providing a specific operator (usually the asterisk) to indicate
multiplication. Conversely, if the language is to permit multiplication by
merely indicating juxtaposition, then it usually restricts names to a single
letter. Some of these problems could be handled by appropriate use of blanks,
but it is usually not worth the trouble.

3. Use of Reserved Words

A language can contain key words which are merely character strings
having a specific meaning in the language. Some, all, or none of these may
be defined as reserved words, which are forbidden for use as either data names
and/or statement labels, or their beginnings. For example, FORTRAN has
no reserved words, although it does have key words (e.g., DO, DIMENSION).
On the other hand, all the key words in COBOL (e.g., PERFORM, RECORD,
READ) are reserved words and cannot be used as either data names or
statement labels. Most key words in PL/I are not reserved. The advantage of
refusing to allow the programmer to use key words for naming variables or
statements is that the scanning of the source program becomes considerably
easier. The disadvantage of disallowing reserved words for the use of the
programmer is that he must always have in front of him a list of these
reserved words and make sure that he does not use them. Furthermore, if
he is choosing a language for use in an existing installation, he must make
sure that the words he has already used for his files do not conflict with
reserved words in the language. In some cases, there is even a more severe
restriction which says that a data name or statement label cannot start with
any letters which coincide with one of the reserved words. It can become
even more confusing when, as in the case of COBOL, reserved words vary
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from division to division (see Section V.3) and the user must keep this in
mind. In PL/I there are built-in function names which have specialized
rules. This is one of the characteristics that is very significant as far as imple-
mentation efficiency is concerned, but it is at the expense of the user’s
convenience.

Some reserved words may be used as noise words (see Section 111.2.4.5).

4. Data Names for Aggregates (Subscripts, Qualification)

In most practical problems, data is grouped together into some mean-
ingful form of aggregate. The most common types of aggregates are sets of
items of the same type, normally called arrays, and sets of items of distinct
types grouped together into some type of hierarchy, normally called hier-
archical or structured data. 1t is logical to have arrays of hierarchies or hier-
archies containing arrays as elements.

There are many cases in which one wishes to give a single name to a list
of elements and then refer to an individual element in this by a subscripr. In
other words, one might have a list called A with 12 elements in it; then it is
normal to want to refer to these as Ay, Ay, ..., Aj2. To do this in a program-
ming language, it is necessary to introduce the concept of subscripts as part
of the data name. Because almost all the input is in one dimension, the
subscripts can seldom be written below the line as done in normal mathe-
matical notation; some other notation must be used and this fact usually
becomes a significant problem in language design. (This is one of the key
places in which the publication language will differ from the hardware
language, as discussed in Section 1.6.) Once we have established the principle
of desiring to refer to an element in a list by its position designator, then
there arises the question of a two-dimensional array; this is normally coped
with by allowing two subscripts. Similarly, the position of an element in an
N-dimensional array is denoted by N subscripts. The most common notation
for this is the use of parentheses adjacent to the variable name, e.g., A(3,2)
would refer to the item in the third column and second row or in the third
row and second column of a two-dimensional array. One of the key points
in a language design is the number of subscripts which will be allowed. From
a language point of view, there is usually no reason to impose any limit,
but restrictions are placed for implementation reasons.

An additional characteristic of subscripts is the amount of flexibility
used in defining them. For example, a language could permit only constants
but this would be rather pointless. An almost equally severe restriction is to
permit only a fixed point variable to specify the value of the subscript. The
next most flexible rule is to allow arithmetic expressions involving addition
and multiplication of fixed point variables. From there, generality can be
increased to allowing any combination of fixed point variables (with rules
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required for division) and, finally, to allowing any combination of variables,
including floating point, Boolean, or anything else for which some rule can
be specified that will end with an integer. This latter allows statements such
as [F A = 5 THEN 3 ELSE 7 to be used as subscripts in some languages,
e.g., ALGOL. A fairly common practice is to allow any arithmetic expres-
sions, including floating point numbers, and then to truncate the result to
produce the integer which is needed to obtain the position in the array.
Other design questions involve the allowed range (i.e., negative or zero, as
well as positive) and whether or not subscripts can themselves be subscripted
and, if so, in what form and to what depth.

Hierarchical data occurs when a particular data item has subitems to
which names should be given. Alternatively, there may be data items which
can be grouped into a larger unit which can then be named by an identifier.
Consider a complete name and address as an illustration. Suppose this is
of the form JOHN DOE, 7777 OCTAL ROAD, CITY, STATE, ZIPCODE.
Depending upon the purpose, we might wish to reference just the name, any
single one of the other items, the city and state, or any combination of these
fields. Suppose that we could assign a name to each piece and to each meaning-
ful group of pieces. Then we might have something of the following form:

A) NAME—AND—ADDRESS
B) NAME
C) ADDRESS
D) STREET
E) AREA
F) CITY
G) STATE

H) ZIPCODE

This is really a representation of the tree and data layout shown in Figure
I1I-1. In another file, we might also have a data item called AREA, and the
problem becomes one of specifying which occurrence of the name (and
corresponding data) is meant. The technique which is used for this is nor-
mally called qualification. By this is meant the usage of enough names in the
hierarchy to uniquely identify the desired data name. In a fairly common
case, suppose that the NAME—AND—ADDRESS data item appears in both an
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Figure III-1. Example of tree and data layout.

INPUT file and an OQUTPUT file. Then in order to uniquely identify which was
meant, it would be necessary to say NAME—AND—ADDRESS IN INPUT. Simi-
larly, if the AREA was used as a data name in several items, it would be
necessary to use some higher level name to identify it. For example, if AREA
also appeared in a data element called SALES—RECORD, then the user would
write AREA IN SALES—RECORD or AREA IN NAME—AND—ADDRESS to iden-
tify the one he wanted. The actual notation used to specify this qualification
differs in each language. These additional names can be attached at the
beginning or the end of the relevant data name and are then called prefixes
or suffixes, respectively. Various notational devices which are used to indi-
cate these are periods, hyphens, specific key words (e.g., IN as used above),
etc. A variety of rules can be used for the identification, ranging from the
most severe which says all names up to and including the topmost one which
gives uniqueness must be shown, to the most liberal which says you need only
show enough to make it clear to the compiler which piece of data you are
referencing.

Various combinations of subscripting and qualification are permitted
in those languages which allow both individually.
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I11.2.4. DEFINITION AND USAGE OF OTHER BASIC ELEMENTS

Assuming the basic elements (=tokens) of the language as described
above, these can be combined or used in numerous ways. This section
discusses a number of the factors in both the syntax and the semantics of
these combinations.

1. Operators

The operators in a language are one of the two categories which can
cause things to be done (the other being the commands). Operators provide
means of combining or relating data types; hence they can be defined as
connectives for variables. Thus, for arithmetic quantities, the ordinary arith-
metic operations are essential and the relational operators, such as GREATER
THAN and EQUAL TO, are fairly standard in any language which permits
comparison of arithmetic quantities. (Note that the use of relational operators
with arithmetic variables does not yield an arithmetic result.) Operators are
also defined for nonarithmetic data types. For example, Boolean (i.c.,
logical) variables are often combined by logical operators such as AND, NOT,
and OR; while DIFFERENTIATION is an operation performed on formal expres-
sions. It is important to note that operators may be represented by symbols,
such as + and =, or by any legal combination of other characters in the
language, e.g., PLUS and EQUALS. As mentioned before, it would certainly
be possible to attach nonnormal meanings to operators but this would be of
value only when the normal meanings were not needed at all. In some cases,
normal operator functions are actually represented as commands; e.g., instead
of writing A + B, one writes ADD A TO B. In the first case, the + is
considered an operator, while in the second the ADD is considered a com-
mand. However, the distinction between operators and commands is not
clear-cut. The former tend to indicate actions which need to be performed,
while the latter specify actions which must be performed. Thus, A + B
implies that an addition will take place while ADD A TO B requires it to
take place. There are counterexamples to both these conceptual definitions.

2. Delimiters

The concept of delimiter was mentioned in Section II1.1.2.6. In this
context it is merely necessary to note that a delimiter can be any combi-
nation of tokens that the language designers feel desirable. For example, a
delimiter can be a key word, a particular punctuation symbol, a blank, or
varying combinations of these. The prime purpose of the delimiter is to
define the beginning and/or end of elements in the language. Thus, a
delimiter might be needed to define the end of an identifier, the beginning of
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some unit in the program, or the beginning and end of a literal. In some
cases the delimiter exists as a concept rather than a specific entity since the
termination of one element might be determined only by the beginning of
another, e.g., the end of a paragraph in COBOL is identified by the occurrence
of the beginning of another paragraph.

3. Use and Meaning of Punctuation

The word punctuation in English usually refers to the use of characters
such as commas, semicolons, periods, hyphens, and parentheses. For our
purposes here, we shall limit attention to the first three, although many of
the points to be made are valid or relevant independently of how many
characters are specifically classified as being punctuation characters. In many
cases, punctuation characters are used as delimiters.

Because many of the languages attempt to make things natural (or at
least not unnatural) for the user, a period or semicolon is often used to end
a sentence or statement (see Sections 111.3.1 and II1.3.2). It is essential to
notice that an end of statement marker is not required in the case of fixed
format input (discussed in Section II1.2.5) because the beginning of a new
card (which does not have a continuation mark on it) is an automatic termi-
nation of the previous statement. Thus the problem of statement termination
really becomes an issue only in the case of continuous string input or where
one wants to permit a second statement to begin on the same line (or card)
as the ending of the first statement.

Another area in which punctuation is needed is in listing a string of
parameters; normal English usage requires commas between them and this
concept is followed in almost all programming languages. For example, if
one wants to print the three characters A, B, and C, a very natural notation
would be PRINT A, B, C. The use of commas in a situation like this is
intricately tied in with the use of significant blanks. (See Section 111.2.4.4.)
Thus, if blanks are considered significant, then a space between the A and
the B is sufficient to denote that these are two different names. On the other
hand, if the blanks are not significant, then some marker must be used to
indicate that AB is not the name. Thus, the nonuse of significant blanks forces
more punctuation than would be necessary if blanks are critical. It should
be noted that even where blanks are critical, punctuation is still required in
certain cases.

The most common uses of punctuation in a programming language are
the use of the period or some similar character (often a dollar sign is used)
to indicate the end of some level of executable unit and the use of a comma
or some other mark to separate items in a list. The next most significant
usage occurs with a semicolon which is often used to delimit other executable
subunits. Sometimes the semicolon and the period play different roles, in
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the sense that the semicolon is used for an end of statement mark, while the
period is not used for punctuation. The reason for the latter is that the actual
period mark is required in numbers, e.g., 3.14159. In some cases where a
significant difference exists between 2. and 2 there is a problem if 2. appears
at the end of the unit that the period terminates. Since obviously a period
should be used with numbers, great care must be given to the syntactic rules
for embedding periods in the language.

Other punctuation marks are sometimes used for more specialized pur-
poses; the most prevalent is the use of parentheses in mathematical formulas
where the normal rules of mathematical notation apply. Problems arise, how-
ever, when parentheses are also used to designate subscripts (which is done in
almost all languages) and also to represent functions. It is not obvious
whether F(l) represents the function F with the parameter I, the variable F
with the subscript |, or even the variable F multiplied by the variable I.

4. Significance of Blanks

The blank or space character usually plays a special role in program-
ming languages, even if in a negative sense. One characteristic of the word
formation rules is whether or not blanks are significant. Being significant
means that ABB and AB are not the same thing (where § means the blank
character). The advantage to having blanks be nonsignificant is that the user
does not have to worry at all about where he puts them. This presumed
advantage tends to be more than counterbalanced by the double virtues of
providing an extra character to use for technical purposes and permitting a
person’s natural tendency to use blanks as separators to be indulged. Thus,
since English is written with a blank space following (but not within) each
word, it is quite natural to require a blank at the end of a word in an arti-
ficial language. However, there tend to be special rules for blanks near
operators. Thus it might be legal or illegal to write A§ + BB, or it might not
matter.

5. Use of Noise Words

The term noise words refers to character strings which can be inserted
or omitted in a program at the user’s option without changing the meaning
of the program. There are several different rules which can be established
within this general principle. For example, the most flexible rule (it is not
used in any language in this book except COLASL—see Section 1V.7.2) is
that between any two fixed words there can be any number of arbitrary words.
The prime difficulty with such a general rule is the difficulty (or potential
impossibility) of distinguishing noise words from legitimate names. A much
more restricted (but far more reasonable) rule which does exist is that certain
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fixed words may be present or absent in certain fixed places; this was done
in COBOL, for the express purpose of improving readability. For example,
in the sentence READ PAYROLL RECORD INTO INPUT—AREA, the word
RECORD is a noise word and can be omitted. Between these extremes there
are a number of possibilities.

Noise words are often key words. They can also be reserved words so
that the programmer is restricted from using them as identifiers.

6. Literals

Obviously, there must be some way of indicating whether ABC is a name
or the three-letter string (i.e., literal). It might appear at first glance that this
could be determined from context. In some cases this is possible, but in many
other cases it is not. For example, if we write PRINT ABC, then the compiler
is at a loss to know whether we want the three-letter string ABC printed out
or the quantity whose name is ABC. Thus it is necessary to put some kind of
a marker around the literals. This can be done in a variety of ways: One
way is to take some single character from the character set and designate
this as a beginning and ending delimiter for a literal. If, for example, one
chooses the dollar sign, $, then writing $ABC$ would designate the literal
string of characters. Another alternative (which is practical only if there is
an extremely large character set) is to choose two characters, one of which is
used to designate the beginning and the other, the end of the literal. The
prime advantage to this second method is that it makes it easier to solve the
problem of how to represent the literal delimiter as a literal. If one uses $
for the beginning and end of a literal, then one might require that $$$ be
written to designate the literal $ itself. Thus $AB$$CD$ is really two literals,
AB and CD, while $AB$$$CD$ is the string AB$CD. Another alternative to
representing the literal delimiter itself is to choose a particular fixed word,
such as QUOTE, to designate the literal value. Actually, any fixed word, or
pair of them, could be used as literal delimiters instead of characters, but this
is less convenient for the user and still requires rules for terminating the
literal or embedding the terminal character in the string. Still another possible
way of delimiting literals is to have one character to mark the beginning and
then a count of the number of literal characters following. This is a poor
choice because the user frequently miscounts the length of his literal if it is
more than a few characters. There are various other techniques which can be
used.

I11.2.5. Type oF INpPUT FOrRM USED

There are several ways in which to consider the amount of form required
in a particular programming language. The word form in this case means
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both the way in which legitimate sequences of characters are placed on the
input media and the philosophy associated with the types of sequences which
are used.

|. Physical Input Form

Physical input can be in one or two dimensions. The latter means that
syntactic significance is given to more than one physical line simultaneously,
e.g., the use of subscripts and/or superscripts as in A;3. Because the most
common input media for program preparation are punched cards and paper
tape, all programming languages using that type of standard hardware have
a one-dimensional string form as input.' (Note that since paper tape is pre-
pared through the use of a typewriter, the direct use of a regular keyboard
does not change the basic principles involved.) There are languages, however,
which permit two-dimensional input through the use of special hardware;
they are described in Section IV.7.

Once we assume a single dimension, then the primary distinction is
between fixed format and a continuous string. The term fixed format is a
relative one since programming languages vary in their requirements. They
run the gamut from a continuous string (e.g., PL/I) to some requirements
about card columns (e.g., FORTRAN).

Since many of the earlier programming languages assumed the use of
punched cards for input, it is quite natural that they took some advantage of
the fixed columns to represent specific items. The advantage to using fixed
columns is that the compiler need not scan every single character to find the
one that is wanted. Thus, if there is a requirement that a statement label
should start in a particular column, it is not necessary to continue scanning
until you find something that looks like the beginning of a statement label.
In the case of higher level languages, information often extends over more
than one card. For that reason, it is convenient to permit early columns in
the card to contain some kind of symbol to indicate that the current card is
a continuation of a previous one. Space can then be left for specific commands
or, more likely, for a label, followed by specific commands and the operands.
One of the significant differences between the format on a punch card for a
higher level language and for an assembly program is that the latter usually
has a fairly restricted amount of space and format allowed for the operands,
whereas the higher level language usually permits them to be written con-
tinuously following the command.

Assuming continuous string input (which of course can be punched on
cards), it is necessary to scan every character to reach any future one, and the
meaning of symbols can only be determined from context. Thus, the string

' The MAC-360 system which appeared too late for a thorough discussion is an
exception to this. See Section 1V.7.6
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ABC can be determined to be either a statement label or the name of a
variable (or something else) only by seeing what precedes and what follows it.
Delimiters (including punctuation) play a much more important role in a
continuous type of format because new statements can often be recognized
only as coming immediately after the end of a statement and not on a new
card or fixed location.

Techniques more suitable to punched cards can be used for paper tape
(by using tabs) and vice versa. The important point is the continuity versus
fixed format aspect of the input string rather than the physical media being
used.

Graphic display devices with input by light pen or keyboard have not
yet become a significant input media, although they undoubtedly will become
so. They may require new developments in specifying the physical form of a
program.

2. Conceptual Form

The conceptual form of the language is completely independent of the
input media. At the extremes are the concepts of an “English-like” language
(e.g., COBOL) versus a highly symbolic one (e.g., LISP). A number of
arguments pro and con can be given for both of these views. At one extreme,
a language can be designed to be as close to natural English (for the com-
mands allowed) as the designers can make it and still be able to implement it.
COBOL was an early attempt to follow this philosophy. At the other extreme
is the philosophy that a programming language should be as succinct and
formal (not necessarily natural) as possible for the class of problems it
handles. No really good illustration of this exists among the fairly common
languages, although LISP 1.5 has some of this flavor. This latter viewpoint
is often expressed by proponents of ALGOL (although ALGOL programs
are not difficult to read after a little training). A formal notation is not
necessarily harder to read or write than a more natural notation; the deci-
sion on ease of use is almost entirely a matter of personal taste.

Obviously, the physical input form of the language must be based on the
conceptual form, and certain combinations are inherently meaningless. For
example, it would be impractical to design a language which is “English-like”
and then use a rigid input format.

The definition of the conceptual form of a language is really rather
intuitive and is being left to the reader to formulate after consideration of
the languages in this book.

111.3. STRUCTURE OF PROGRAM

The previous section discussed a number of items relative to the form of the
language, in particular, those items which are very significant in determining
what strings are legal, such as rules for naming and punctuation. This section
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involves a similar type of discussion, but from the point of view of units and
subunits of a program. In other words, merely a long list of syntactically
correct character sequences is not going to necessarily produce a meaningful
program, and all languages have types of subunits which must be combined
properly. For that reason, this section discusses in some detail the types of
subunits that are permitted and their characteristics. The characteristics are
mentioned briefly where appropriate with the subunit description, with a
full discussion given in Section I11.3.2.

II1.3.1. TYPES OF SUBUNITS

There are a number of different types of subunits which go into making
a complete program, and there are two ways in which a discussion like this
can be handled: One is to define a program and then successively work down
until the smallest unit is defined; the alternative is to define smaller units
and work upward until a program is defined. The latter seems to be a little
easier to cope with in terms of normal understanding and will be done here.
With the exception of the declarations and comments, all the subunits are
executable, i.e., they will directly cause some action to take place at object
time. It is important to realize that the subunits discussed represent concepts,
not detailed ways in which they are handled. Those are discussed with each
of the languages. Furthermore, not all these subunits appear in every lan-
guage.

1. Nonexecutable: Declarations and Compiler Directives

There are many instances in which information must be given to the
compiler to permit it to compile correct code or, in some cases, to compile
more efficient code. This information is nonexecutable and is usually—but not
always—given explicitly as declarations. In some cases, the information is
given explicitly or implicitly as part of an executable unit. Declarations are
used primarily to supply information about variables or data; common
examples are the dimensions for a particular variable, fixed or floating point,
the arithmetic precision desired in a calculation, etc. More generally, decla-
rations usually indicate which characteristics a variable has from among those
listed in Section II1.4, or they supply information about storage allocation
or interaction with the environment. The category compiler directive includes
declarations; in addition, some languages make a subtle distinction by
including some things in the former category but not the latter.

2. Smallest Executable Unit

The smallest executable unit (SEU) is a general name for what is usually
a single command and its operands. There must always be a clear-cut way
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of determining its end, either through the use of a special symbol or through
the syntax of the command. A SEU might be something of the form

Y =3
or
Z=AxX+B
or of the form

PERFORM ALPHA THROUGH BETA FOR Y VARYING FROM
1 TO 17 IN STEPS OF 2

The most common word used for SEU’s is statement. A sequence of these
statements can be used to make up a program. Note that the SEU cannot
necessarily be given a name. Furthermore, SEU does not refer to the smallest
unit for which the compiler turns out code since in the executable unit
Y = A % X + B itis necessary for the computer to do two arithmetic oper-
ations and a store operation.

There are a number of different types of commands which can be used
as SEU’s, and these are discussed in Section I11.5.

3. Sets of Smallest Executable Units

One SEU by itself will not accomplish very much, unless it is being used
in an on-line desk calculator system (e.g., QUIKTRAN). Hence it is neces-
sary to be able to group these together in a way which permits assigning a
name for identification and cross-reference purposes and which permits them
to be treated as a single unit in other ways. There are a number of ways of
doing this; for example, in ALGOL there are blocks, in COBOL there are
paragraphs and sections, and in PL/I there are several other levels of com-
bining. The use of the same term, e.g., block or compound statement, in dif-
ferent languages does not mean that they are defined or used the same way
since there is no standardization at all for these ideas. A block, however,
is the name usually given to a sequence of executable units which can be
treated as a single nameable executable unit. That is, it can be referenced
from a control transfer statement; it can be used as a single statement in the
range of a loop; or it can be used as a single statement wherever a single
statement is valid in the language. A block normally has some kind of
designator to indicate its beginning and end; the words BEGIN and END are,
in fact, often used. A block often contains declarations about the variables
used in the block. The main function of a block is to permit the handling as
a unit of a number of individual statements. The word block is sometimes
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used for other items and, conversely, is not always used for the concept
above.

It is also possible to combine SEU’s to create a subunit which has fewer
properties than those normally associated with a block, e.g., a sentence in
COBOL. In such a case, the ability to name the subunit is usually the first
characteristic to be eliminated.

4. Loops

A common and essential part of a programming language is the capa-
bility of repeating a certain sequence of executable units for more than one
value of a particular parameter (or set of parameters). This concept is called
a loop and has four constituents: Range, the value(s) of the parameter(s),
the terminating condition for the loop, and the place to which control is
transferred when the execution of the loop is finished. The first three elements
are normally in one statement (which is of course an executable unit), but
they need not be. Any language with a conditional statement of the form
IF ... THEN can be used to write a loop, although many statements will be
required in this case. The range is simply the set of statements which are to
be repeated for the differing values of the parameter(s). Depending on the
particular language, these may be sets of contiguous statements immediately
following the loop statement, they may be widely scattered statements con-
nected by control or conditional transfers, or they may be contiguous sets
of statements elsewhere in the program. In some cases, the range of a loop
may consist of one or more sets of subroutines. Regardless of how the range
is determined, there must always be a way to designate the beginning, ending,
and intervening values for the loop parameter(s). This point is discussed
more fully in Section IIL.5.3.

5. Functions, Subroutines, and Procedures

It was discovered many years ago that it was inefficient and very diffi-
cult to check out a very large number of statements as a single unit. Further-
more, it was very wasteful to have many people writing the same routines
over and over again, and this occurred very frequently with commonly
needed computations, e.g., finding sin x or finding the roots of a polynomial.
Thus was born the idea of a subroutine, which is simply a self-contained set
of statements to perform a particular task. Although some subroutines are
independent of the values of any input parameters, most are written to
perform their task for the particularly supplied value(s). Thus, a subroutine
may have zero, one, or many input values and one or many results. (It could
conceivably have none, but this usually would be indicated by an error
condition, which is a form of result.) Most large programs are built up from
a series of subroutines.
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The special case of a subroutine which has a single result is usually
called a function. Routines for computing the elementary mathematical func-
tions (e.g., sine, cosine, exponential, logarithm) are usually included in
languages designed for solving mathematical problems. Because there is only
a single item as a result, functions can usually occur in the same places as
numbers or variables. Thus, Y = A + SIN(B) * C would normally cause
the actual value of the sine of B to be multiplied by C. An alternative—but
obviously more inconvenient—way of doing this is to write

Z = SIN(B)

Y=A+Zx*xC

Although there is usually a real choice between using open or closed
subroutines in assembly languages, most subroutines used in programming
languages are closed. The lack of macros in most programming languages
discourages the use of open subroutines.

I consider procedures to be the same as subroutines, but some people
feel there is a subtle difference, in which the procedure is a more meaningful
unit than the subroutine. This is primarily a historical difference, with the
problem of parameter passage (see Section I11.3.2.3) and declarations more
closely associated with the use of the word procedure than with subroutine.
In any case, the terms subroutine, procedure, and even function are relative
because what may be a complete program in one case is merely part of a
program (i.e., a subroutine) in another. For example, the code to invert a
matrix might be the entire program in one instance but merely part of a more
complicated program in another case. In modern languages, a program is
usually written as a procedure.

There is a significant difference between the use of (commonly called
invoking) the function, subroutine, or procedure and the information which
defines the function, subroutine, or procedure. The definition is usually
written as a self-contained unit, called the body, outside the main control
flow of the program and invoked from within the program. The process of
invoking requires supplying parameters (unless the function, subroutine, or
procedure does not allow them).

6. Comments

Although it may seem strange to include a category called comments
with all the other subunits in this section, it is an item which must be con-
sidered. Since one of the key problems in programming is to provide adequate
documentation of programs, any means to assist in this is worthwhile. A
device which exists in virtually all programming languages is a specific way
of indicating comments which are meaningful to people but not to the
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compiler. This is most often done by specifying some delimiter(s) for the
beginning (and end) of the comments. When the compiler encounters these
flags, it knows that it should ignore the following material until the beginning
of the next subunit which requires compiler action. This permits the user to
write anything which will be helpful to him or others.

The liberal use of comments, together with the problem-oriented nota-
tion should supply most of the documentation for a particular program.

7. Interaction with the Operating System and Environment

In modern computers, an operating system is quite common, and the
compiler must operate under it. It is therefore often—but not always—neces-
sary for the user to be able to communicate with the operating system in
order to obtain or put out data, to know when parts of his problem are
finished, to take advantage of the specific hardware that might be involved,
etc. Thus, there are potentially in the language a number of statements or
subunits which have to do with the operating system. Included among these
are procedures for recovery from tape errors or other computer malfunctions,
where the programmer feels he can recover or he wishes to take specific
action based on a particular error message.

The types of things which may (or must) be written to provide inter-
action with the operating system and the environment may actually take the
form of a number of the subunits previously discussed. For example, they
could be declarations, which really provide information to the operating
system rather than the compiler but which must be translated by the compiler
to provide the proper interface. Alternatively, they can be executable state-
ments which are called into action by either the compiled object code or by
the operating system. In fact, for very large and complex operating systems,
it is necessary to create a special language to provide the necessary interface
between the user and his program on one hand and the operating system and
hardware on the other. This point is carried to its extreme limits in the case
of the control statements and operations in a time-sharing system. In such a
situation, the language by which the user communicates with the system
tends to be more important or more complicated than the language he uses
to solve his problem. (See Section 1X.3.6.)

8. Inclusion of Other Languages

It is an unfortunate fact that very few programming languages are so
self-sufficient that the user does not wish he had some capability from another
language available to him. In some instances, the language does provide the
ability for the usertoinsert—directly orindirectly—a differentform of language.
This must be preceded by some kind of declaration which informs the
compiler that it must switch out of its present scanning mode and bring in
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some other mechanisms. If this were not done, then the compiler would have
to scan and translate statements of which it had no knowledge.

One of the key types of languages which users like to be able to inter-
mingle with their higher level language programs is machine language. At
the very minimum they wish to insert machine-language subroutines which
already exist; even more importantly, they would like to be able to include
machine instructions in the midst of the higher level language code. (This is
particularly important for small sections which should be coded as efficiently
as possible.) However, there is a significant difference between being able to
invoke a machine language subroutine which already exists, and the inclusion
of machine language in line. The former requires the user to make sure that
the interface of information about variables is handled properly, whereas
the latter requires the compiler to do it. Relatively few languages include
this facility (which is really a requirement on the compiler). The earliest (and
in fact the only) publicly available language to require this facility in great
generality was MATH-MATIC [RR60]. (A version of FORTRAN with
this facility, namely FORTRAN 111, was distributed for use on the 704.)

The facility to invoke a subroutine which has been coded in another
language is definitely not considered an instance of being able to include
another language.

9. Complete Program (Including Sequencing Rules)

A complete program is usually created by combining any or all the
preceding subunits according to specified rules. Whether this produces the
answers desired by the user is a pragmatic question.

The legal ways of sequencing and concatenating executable units of
various kinds, and combining these with the declarations, must be defined for
each language. There are a few common practices, however, and almost all
these are imposed to make the implementation easier; very few have any
inherent meaning for the language or the program itself. For example, decla-
rations are sometimes required to precede the items which they are describing.
In other cases, all the declarations must be together and must be labeled as
such. In still other cases, all the subroutines or equivalent subunits must fol-
low the main part of the program. Thus, the issue of intermingling executable
and nonexecutable subunits is a significant characteristic in the overall form
of the program.

111.3.2. CHARACTERISTICS OF SUBUNITS

Some types of subunits have characteristics which have a significant
effect on programs written in the language. Not all these characteristics are
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meaningful for each type of subunit; with the description of each character-
istic, the units it applies to are indicated.

1. Methods of Delimiting

All subunits—without exception—must have some way of indicating
their beginning and end, although in some cases the only way of determining
the end of one unit is by recognizing the beginning of another unit. In the
cases of single executable units or declarations, this is usually controlled
either by fixed format (see Section 111.2.5) or by the syntax of the individual
unit. It is in a situation like this that the concept of reserved words intro-
duced in Section 111.2.3.3 becomes particularly significant. Thus, if there is
a declaration with an unlimited number of parameters following it (e.g.,
FIXED A, B, C, D ...), then there must be either a specific way of termi-
nating the list (e.g., using a period) or else a way of determining the begin-
ning of the next statement. This beginning can be defined in a number of
ways, but it is most commonly done by using a reserved word (e.g.,
COMPLEX G, H, ...).

In larger subunits, special symbols or words are introduced. A very
common way of ending smallest executable units (defined in Section 111.3.1.2.)
is by either semicolons or periods. Sequences of executable units are often
delimited by key words at the beginning and end.

In addition to delimiting the actual subunit itself, there must be a
method of specifying the name of the subunit; the name sometimes performs
a delimiting function, but it also presents other syntactic problems. Methods
of handling these things will be seen in the individual languages.

Another facet of the delimiting problem is the scope issue. This involves
a determination of what characteristics of variables or other program infor-
mation is relevant in different parts of the program. (See Section 111.4.5.)

2. Recursive

A subunit is said to be recursive if it can be used in, or referenced from,
itself. This means that if subroutine XYZ is invoked, say by writing

CALL XYZ, (parameter list)

then subroutine XYZ will be said to be recursive if CALL XYZ, (parameter list)
can appear within the XYZ subroutine itself or in another routine which is
invoked from XYZ, although normally with a different set of parameters.
This particular characteristic is extremely important because some problems
require this kind of capability and others are stated most easily by using
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recursion. To clarify what is meant by recursion, the following example of
the factorial is the most easily undersood:

SUBROUTINE FACTORIAL (N)

FACTORIAL 1 = 1

IF N > 1, FACTORIAL N = N % FACTORIAL (N — 1)
END SUBROUTINE

In this case, the FACTORIAL subroutine is called repeatedly from within
itself to find the value of N!. Note that writing SQRT(SQRT(X)) is not an
example of recursion, because the normal ways of writing square root rou-
tines do not require the routine to call itself. The term recursive is applied
only to those subunits for which there are parameters involved. Thus, func-
tions, subroutines, and procedures can be considered as being recursive.

3. Parameter Passage and Differing Types

The basic nature and concept of functions, subroutines, and procedures
require that they have parameters. In other words, these subunits are sets of
commands whose objective is to produce specified results for each set of
inputs. The inputs can be simple (e.g., an identifier) or complicated (e.g., an
expression or an invocation of a function). The invocation of a subroutine
(or function or procedure) requires that the values of the variables for which
the subunit is to be executed be supplied. (This process is called passing the
parameters.) The variables which appear in the subunit itself are usually
called formal parameters. The word value in this case is somewhat misleading
because there are three primary types of parameter passage which exist. The
first is referred to as call by value, the second is the call by name, and as the
third has no standard terminology, I use call by location. (This is the same
as the call by simple name proposed by Strachey and Wilkes [SQ61] and is
the one used in FORTRAN.) While the concept of location does not appear
in programming languages as such, the rules given for handling the parameter
passage use this implementation factor directly or indirectly as part of the
language definition. In the call by value case, the actual value of each param-
eter called by value is assigned to the corresponding formal parameter
at the time of invocation. In the call by name case, the name of the particular
parameter involved is inserted into the code of the subunit before executing
it. In those languages for which the input parameter can be an expression,
the distinction is more significant; the call by value causes the expression to
be evaluated before entering the subunit, whereas in the call by name case
the occurrence of the parameter in the subroutine is replaced by the code to
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evaluate the expression (or by a call to a subroutine to perform the evalu-
ation). The call by location applies only to a single variable and not to an
expression; in this instance the occurrence of the parameter in the subroutine
is replaced by the code to access the location, thus permitting the subroutine
to destroy constants by storing over them.

As an illustration of these concepts, consider the following example
(assuming there is no concept of global or local variables in the language):
Suppose we have a subroutine called INC with an input parameter S and an
output parameter R. Suppose that the body of the subroutine consists only
of the two statements:

A =4
R=S +1

Assume that the subroutine is invoked by writing CALL INC (S, R), where
S and R represent the input and output parameters, respectively. Then

A=3
CALL INC (A + 1, B)

will give B the value 5 in the call by value case, and the value 6 in the call by
name case. The reason for this is that in the call by value, the expression
A + 1 is computed (yielding 4) before entering the subroutine, and so
B = 4 + 1 = 5. However, in the call by name case, the subroutine actu-
ally becomes

A =4
R=A+1+1
Hence the result is 6. In both these cases, the original value of A prior to
invoking the subroutine (namely 3) is preserved.
Any reader who studies this matter further and then wants to test his
understanding of the concepts should see Weil [WL65].
To show the call by location case, suppose the subroutine is called

ADDONE and has a single formal parameter R used for both input and
output, and it has the body

R=R+1
Then if we write

A =3
CALL ADDONE (A)
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the result is that the value of A has been reset to 4. The same thing happens
in the call by name case. However, in call by value, the assignment of the
result is only to the formal parameter R and there is no change in A.

4. Embedding

Embedding (sometimes called phrase substitution) means that one or
more subunits can be inserted in, or used as part of, another subunit. Looking
at the same idea from another angle, this means that within a given subunit
other subunits can be identified which may be of the same or different types.
One of the most common examples of this is the inclusion of statements
within IF ... THEN ... ELSE ... sentences. Thus, we can write IF A = B
THEN X =: Y ELSE X =: Y + Z and the relatively simple executable units
X =: Yand X =: Y + Z and the relation A = B are all embedded in the
larger unit. In this case, not everything shown is executed because a branch is
definitely indicated here; in other cases, everything shown is executed.
Embedding can also occur when declarations are included in larger units.
A common case of embedding is the inclusion of functions in place of
variables in statements like Y = A + COS B. Subroutines often contain
other subroutines, sometimes going down many layers. A more interesting
case that is seldom allowed (although it is permitted in ALGOL 60) is the
inclusion of conditional statements for arithmetic variables. For example, the
sentence A = 4 + (IF X = Y THEN 5 ELSE 8) assigns the value 9 to A if
X = Y and the value 12to Aif X # Y.

It is clear that only certain types of subunits can be embedded in others.
Thus, the examples given above are perfectly reasonable, as in the situation
in which A = B + LOG (IF A = B THEN C ELSE D). A case which is
intuitively unreasonable, however, is A = B + PRINT XYZ. The rules for
embedding always exist in the language definition, although they may be
hard to identify as such. This issue is related to the problem of the sequence
in which executable units are carried out. The main difference is that embed-
ding implies (and requires) an immediate replacement of a variable by a more
complex unit, whereas sequencing involves the order in which parts of the
program can be written.

111.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM

The key features of a programming language are the types of data it can
handle and the ways in which it can operate on that data. The major aspects
are the specific types and characteristics of data variables, the types of data
units either in the machine or in the language which are available relative to
the commands in the language, the types of arithmetic which are permitted,
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how expressions are created and evaluated, and how data elements are
defined relative to the whole program. This section discusses all these poinis.

111.4.1. TypPES OF DATA VARIABLES AND CONSTANTS

There are a number of different types of data variables, and each
requires (or permits) different types of computation and operations to be
performed upon them. More specifically, certain types of executable state-
ments can meaningfully operate only on certain types of data variables.

1. Arithmetic

The first and most obvious type of data variable is the real (i.e., not
complex) arithmetic, sometimes called numeric. The data name represents a
number; therefore, to say that A + B = C where A and B are numbers
means that C will be a number. The types of arithmetic that can be performed,
however, are discussed in Section 111.4.3.

Every programming language has rules about the size of constants and
the ways in which they can be written in the program. These will not be
described for each language.

2. Logical (= Boolean)

The second most common type of data variable is the logical (=Boolean)
variable; this is simply a variable which can take on only two values, normally
designated as true or false. These are usually represented in the machine by
0 and 1, 0 and non-0, or any other two distinct numbers. Boolean variables
are usually the direct or indirect operand of an /F clause; see Section 111.5.3.2.

3. Character

A character data type is really one which is nonnumeric. The two most
important special cases of character data types are alphanumeric (where the
data consists of letters and/or numbers) and bit (where the only elements are
0 and 1). The former is usually introduced into languages which are con-
cerned with handling data processing applications to provide a data type that
excludes characters other than letters and numbers.

4. Complex

Some languages permit complex numbers and variables. In such cases,
the complex number is made up of a real and an imaginary component.
Presumably, although it is not logically necessary, a language which allowed
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the representation of complex numbers would automatically perform arith-
metic on them. (See Section 111.4.3.4.) This is not required, however, and a
language might permit the user to declare certain variables as complex so as
to allow the proper amount of storage for them and then require the user to
do the arithmetic himself.

5. Formal (= Algebraic)

A type of data variable is the formal or algebraic which stands only for
itself or for an expression, such as Z or A2 + B2 where these are not
numeric. A formal data variable has no value in either the numeric or logical
sense. The operations performed on it are usually those related either to
string handling, or more usually to formal mathematics or algebraic manipu-
lation. Languages emphasizing this data type are discussed in Chapter VII.

6. String

Strings and lists are types of data variables which represent similar but
somewhat different concepts. A string is a type of data variable that consists
of one or more characters concatenated, and it will be operated on as such,
e.g., ABC or JOHN Y. DOE. Depending on the intended purpose, either the
individual characters have meaning and the whole unit does not or vice versa.
Among the operations to be performed on strings are concatenation, decon-
catenation, and replacement. The special case in which the string consists
only of bits is significant because this can usually be interpreted as some
type of logical variable and operated on accordingly.

7. List or Pointer

A list or pointer data variable conveys information either directly or
indirectly—about the location of another data item. A list variable is definitely
not the same as a string. A string can be represented internally in a computer
as a list but this does not change the conceptual view of the string. Opera-
tions on lists include adding and deleting elements and pushing down and
popping up. The pointer variable itself is a specific data type.

8. Hierarchical

A data type that is actually the superstructure or concatenation of a
number of other data variables is called hierarchical (see Section 111.2.3.4).
Looking from the top down, a hierarchical variable is one which has identi-
fiable subparts, each of which might be of a different data type. The simplest
example is the zip code, which consists of three codes concatenated. In
that illustration the subordinate variables are all the same data type, but



llL.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 95

this is not essential to the concept. For example, the complete identification
of a person in a payroll file might consist of his name, address, and social
security number. In this case, some of the subordinate data variables are
alphabetic, while others are purely numeric.

The operations performed on hierarchical data variables are usually
limited to movements within storage and to operation on the subunits that
is appropriate to their type.

9. Others

While individual languages may introduce other variable types, they
are not sufficiently general to justify their inclusion here.

10. Combinations of Variable and Constant Types

A number of the types above can be combined to form new variable
types. The most common are expressions, vectors, arrays, records, and files.

A string of variables, all of the same data type, is called a vector. A
sequence of vectors is called a marrix. Note that the elements of the vector
or array can be of any type; theoretically they need not all be of the same
type but, practically speaking, they usually are. The operations which can
be performed on vectors and arrays are normally the same ones which are
performed on their individual elements, except that they are applied to the
larger set.

Combinations of arithmetic, logical, or formal variables, together with
appropriate operators, are called arithmetic, logical, or formal expressions.
Some of the issues involved in defining the rules for creating these expres-
sions are given in Section 111.4.4.

111.4.2. AccessiBLE DATA UNITS

The commands in a language may operate on, and the declarations
may describe, different data units. There are two main aspects of this data
unit consideration: One is the essential hardware of the machine itself,
and the other is the set of variable types allowed in the language.

1. Hardware Data Units

The main issue is which of the subunits of data which exist in a particular
computer are accessible to some or all the commands in a programming lan-
guage. The criteria for inclusion or exclusion usually involve implementation,
efficiency, and compatibility. If it were not for these problems, it would not
matter whether a variable occupied a single bit, a character, or a full word.
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In a binary machine, obviously there are some machine instructions
which are able to access and operate on individual bits. This is particularly
useful for logical operations in which there are only two values of the
variable. The problem arises when the programming language tries to
include commands which operate on individual bits without also sinking
to what would essentially be the level of machine instructions. One way of
handling this is through the use of declarations and implementation tech-
niques. In such a situation, a variable is defined as occupying (or requiring)
a certain number of bits. The command specifies only the variable, without
regard to its internal representation; the compiler must bridge the gap by
turning out the necessary machine instructions to manipulate the bit(s).

On binary and character, as well as fixed and variable, word length
machines, there is a basic unit size which contains a single character. On
some machines there- may be several such units to represent different types
of characters. For example, to represent 63 characters, obviously 6 bits are
needed; alternatively, one can save space (at the cost of time and other
complexity) by allowing different amounts of space for the representation
of letters and numbers. The programming language might cope with these
various possibilities. As in the case of the bits, it is often more effectively
handled by allowing the commands to operate solely on a variable and
letting the compiler take care of obtaining the right information from
storage.

On a fixed word length machine, most machine instructions deal either
with the complete word or with specifically defined subsets of the word.
These latter often contain addresses of storage locations or various registers.
Obviously the commands in a programming language are not basically
concerned with such subdivisions. Some languages, however, have been
specifically designed around certain machine word structures and their
associated hardware (most noticeably LISP), but they have been success-
fully implemented on very different types of computers.

In summary, a language which permits the user the ability to access
any bit in the machine is clearly more flexible than one which permits him
to access only words. On the other hand, he is paying a very heavy penalty
for this capability because he must supply much more information about
his data.

One of the biggest disadvantages to allowing programming language
commands direct access to bits or even larger units is the difficulty of main-
taining machine independence. This problem arises in trying to switch pro-
grams and their associated data structures from one machine to another.
If the commands have been designed to be independent of the specific data
unit, then there will be relatively little difficulty in the executable portion
of the program, but significant changes are probably needed in either the
declarations or the file layout or, most likely, both.
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2. Language Data Units

Section [11.4.1 discussed a number of different variable types that can
exist in a programming language. There is a strong interaction between the
existence (and relative importance) of these data types and the actual execut-
able commands which exist. For example, it would be inconsistent to permit
logical variables if there were no command (or operator) capable of rec-
ognizing truth or falsity and acting on this recognition. Similarly, having
strings as a legitimate data type would be relatively useless unless there
were commands to operate on them. (However, strings can actually serve
a useful purpose without special commands, by being used for printouts.)
Thus, for each variable type there should be one or more commands which
permit that type as an operand; conversely, each command must clearly
specify which of the allowable variable types in the language are legitimate
operands of the command.

Referencing of arrays and hierarchies is normally handled by sub-
scripting and qualification rather than by specific commands.

111.4.3. TYPES OF ARITHMETIC

There are a number of types of arithmetic which are available in pro-
gramming languages. The significant point is what arithmetic is provided
by the language and not what happens to be available in the hardware.
The two most common types of arithmetic (both in the language and the
hardware) are of course fixed point and floating point. There is no require-
ment that the arithmetic available in the programming language must also
be available in the hardware; conversely, the programming language may
not make use of all the hardware available, e.g., COBOL does not provide
floating point capability in the language, even though many machines have
that facility (and some implementations have provided it). The only require-
ment for permitting varying kinds of arithmetic in the language is that the
user have some method of specifying in his source program what type of
arithmetic he wants performed. This is usually done through the use of
declarations or sometimes through a combination of declarations and com-
mands. It is better to specify the type of arithmetic desired solely by the use
of declarations since this permits one to have an ADD or COMPUTE command
which is independent of the data type. Thus, the most common way of
handling this matter is to have a specific declaration in which a variable
is defined to be of the desired arithmetic type. However, by doing it this way
there becomes a need to establish rules for what forms of intermingling of
arithmetic data types are permitted in one command. This point is discussed
in Sections 111.4.4 and HLS5.1.
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1. Integer, Fixed Point, Mixed Number

In considering the various types of arithmetic, the simplest and most
obvious is the integer arithmetic, which means exactly what it says: Namely,
the addition of the integers 2 and 3 yields exactly 5. Integer arithmetic is
needed to give complete accuracy, particularly in counting. Unfortunately,
on a binary computer if one adds 0.1 to itself 10 times, the result is not
necessarily the number 1; it might be 0.99999 or 1.0001, depending on
the machine and the conversion programs that have been written. It is clear
that there are a number of cases in which the exact arithmetic is needed.
On the other hand, integers clearly do not suffice for most scientific prob-
lems and so floating point numbers are used.

Although the terms fixed point and integer are often used interchange-
ably, this is not really accurate. The term fixed point is actually a more
general one and can be used for numbers which are not actually integers
because they require a decimal point, but they are not floating point numbers
because they are not in exponent-mantissa form. Thus, the addition of 3.2
and 4.6 to produce 7.8 can be considered fixed point. The distinction is
between the ways in which the numbers are represented internally; a more
accurate description of the concept just cited is the phrase mixed number
arithmetic. Few computers permit this type of arithmetic because the radix
point is usually at the left or right end of the word. Hence, it is usually
a capability provided by the programming language itself.

2. Floating Point

Floating point numbers are used to eliminate the need for scaling
and/or to provide for the use of a wide range of numbers. Through the use
of the so-called scientific notation, both large and small numbers can be
contained in a single word (although with some loss of precision in the
fractional part). This is done through the use of an exponent and mantissa;
thus, the number 3.14159 is represented as 0.314159 x 10, or 31.4159 x 107"
Depending on the machine, there are differing ways of representing floating
point numbers, but they all reduce to separating the number into two parts,
one representing an exponent of a fixed quantity (usually 2 or 10, depending
on whether the machine is binary or decimal) and the other representing
the decimal part of the number. The programming language itself does not
usually distinguish between the actual representation; this is handled by the
compiler in translating to machine code.

3. Rational

Rational arithmetic is a relatively newer concept in practical program-
ming usage than either integer or fixed or floating point. Rational arithmetic
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means the ability to take two numbers of the form A/B and C/D and add
them to produce the result (AD + BC)/BD. The need for this arises particu-
larly in scientific problems, where one wishes to do very precise arithmetic
of this kind. For example, in most implementations of programming lan-
guages, if one computes 4 + 1 in fixed point or integer mode, the result
may well be 0 or 1, depending on whether the language specifies or the
compiler chooses to truncate or round up the result. In floating point form,
the result would clearly be 0.66667, whereas the real answer that is desired
is 2. Since no machine known to me has this capability built into the hard-
ware, it must be supplied by the compiler.

4. Complex Numbers

While it would be possible for the programmer to handle complex
arithmetic by separating the real and imaginary parts, he would certainly
prefer not to have to do this. Through the use of declarations, or some
other similar technique, the compiler becomes aware of the fact that a
particular variable is a complex number; the compiler then becomes re-
sponsible for doing the arithmetic on the real and imaginary parts separately.
Obviously, there is a potential storage allocation problem here because it is
no longer possible for the variable to be contained in one machine word.

5. Double or Multiple Precision

Regardless of the amount of arithmetic precision inherent in a given
computer, there are always problems requiring more. As a result, many
languages (and compilers) include the capability for double, higher, or
variable precision. (The fact that a particular compiler might provide
variable precision arithmetic does not make it a language feature.) The
actual precision is obviously a relative concept because double precision
on one computer may be a single or triple precision on another computer.
This is a problem that has not been satisfactorily solved with regard to
compatibility. It is very easy—and has been done frequently—to include
declarations, or even to modify commands as necessary, to notify the
compiler that additional precision is desired. However, if this source program
is run on another computer, the arithmetic results may be quite different.
(See Section 11.4.)

6. Logical
The arithmetic performed on logical variables obeys the rules of logic

(with the most common precedence rules described in Section 111.4.4.4),
and produces a logical quantity as a result.
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7. Other

Although | do not share the view, some people consider operations
on strings to be a form of arithmetic. Common operations include concate-
nation and deconcatenation, counting the number of characters, searching
for a pattern, and transforming the string.

While no other types of arithmetic seem to be present in programming
languages, there is always the possibility for such.

8. Higher Level Data Units

Languages that include vectors and arrays sometimes include special
commands, or permit modification of regular commands, to allow arith-
metic on these higher level data units. In most cases this simply means
performing the indicated arithmetic on each element in the vector or the
array. When the language permits data hierarchies, then there are some-
times commands which can be applied to the hierarchy, with the actual
action being performed on all the subunits in the hierarchy.

[11.4.4. RULES ON CREATION AND EVALUATION OF ARITHMETIC AND
LoGicAL EXPRESSIONS

Because of the variety of types of arithmetic and types of data variables,
there are a number of rules about the creation and evaluation of arithmetic
and logical expressions which must be made. The word mode is used to
apply to both the type of data variable and also to the types of arithmetic.
The first set of rules is needed to specify how much intermingling of dif-
ferent types of arithmetic is to be permitted; the second issue involves rules
for converting numbers and data types from one form to another; the third
problem involves rules for precision. Finally, precedence rules for operators
and sequencing rules for evaluation are needed.

1. Intermingling Rules

In early versions of some languages it was not legal to add an integer
and a floating point number; this is called the mixed mode case. This re-
striction still holds in a number of cases (e.g., FORTRAN), but it has been
removed in more recent languages (e.g., PL/I). Similarly, there are often
rules preventing the use in a single arithmetic expression of variables re-
quiring different precision. There is nothing inherently logical in these
restrictions, and they are usually imposed just to make the implementation
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easier and/or to avoid specifying the rules described in Sections II1.4.4.2
and I11.4.4.3. A problem does exist, however, if one tries to add arithmetic,
Boolean, and formal variables together; it is not at all obvious what form
the result should take. Thus, in any programming language a decision must
be made as to what types of intermingling are permitted and what conversion
rules will be applied to such combinations. Obviously, it is impossible to
establish intermingling rules without simultaneously specifying the meaning
of the combinations.

2. Conversion Rules

Once it has been determined what types of data variables can be inter-
mingled, it is necessary to determine what kinds of rules are involved in
such intermingling. Conversely, in order to say it is legal to add an integer
and a floating point number or an arithmetic and a Boolean variable, it is
necessary to specify the rules used to determine the result. Thus, if one adds
3 and 2.5, the answer could be either 5, 5.5, or 6, depending on whether one
wanted an integer value rounded up or down, a floating point value, or a
fixed point noninteger. Normally when floating point and integer numbers
are added, the result is floating point because the precision from the integer
calculation has already been lost and the floating point number itself may
be too large to fit into an integer format. (It is often, but not always, true
that if variables of a single type, such as floating point or logical, are com-
bined, then the result would be of the same type.)

If one tries to add arithmetic and logical variables, then there is another
problem because it is hard to define what variable type the results should
be. As indicated earlier, logical variables normally take on one of two
specific machine values; therefore, it is certainly possible to produce a
number as the result of adding an arithmetic and Boolean data variable;
however, this is a fairly meaningless number. Interestingly enough, use of
this concept with arithmetic multiplication can be both meaningful and
useful if the values 0 and 1 are used to represent the logical variables
internally. If A is an arithmetic variable and L is a logical variable, then
A x L will be either 0 or A, depending on the truth value of L.

Other conversion rules are not so obvious. For example, if one tries
to add a logical and a formal variable, what is the result? Similarly, com-
bining strings and other types of variables produce very many questions.
There are numerous rules of thumb and arbitrary guidelines but no very
definitive way of determining what the result should be, aside from the
wishes of the language designers. In cases where one mode includes another,
there is usually automatic conversion to the more general case, e.g.,
integer — rational — floating point, or arithmetic = formal.
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3. Precision and Computation Rules for Various Modes

Once it has been established what variable types can be combined and
what type of variable will be produced as a result, there are still a number
of rules which must be specified. Unless the rules are carefully defined, each
compiler will produce a different answer for variables of differing kinds.
Thus, if we have A =B + C * D + E / F, where B is single-precision
fixed, C is double-precision floating point, D is a logical variable with a
numerical representation, and E and F are rational numbers, there must be
precision rules as to how to do the arithmetic. The language with the most
flexibility on this point is PL/I; it therefore has the most complicated rules.

4. Precedence and Sequencing Rules

There is a normal precedence rule for the five arithmetic operators,
namely exponentiation, then multiplication and division, and then addition
and subtraction. (Cases involving minus signs and exponents sometimes
require special definitions.) This means that the expression A+BxxCxD—E
is interpreted as A+(BxxC)xD—E. Naturally these precedence rules can
be overridden by the use of parentheses for grouping purposes. Thus al-
though 3 4+ 4 x 5 is evaluated as 23, the expression (3 + 4) X 5 yields the
result 35. However, implicit multiplication (shown by juxtaposition, e.g.,
AB) is seldom allowed unless data names are restricted to single letters.
It is either impossible or difficult (requiring other complicated rules) to
distinguish between the data name AB and the product of variables A and B.
Furthermore, the precedence rules are insufficient to deal with an expression
of the form A/BxC. The normal sequencing rule is left to right; thus,
A/BxC is evaluated as (A/B)*C, subject to whatever conversion and preci-
sion rules have been defined. Without some sequencing rule, the user would
probably obtain different numeric results from different compilers even when
using the same computer. (This happens even when all these rules are spelled
out because of differences in conversion routines.)

The most common precedence rule for logical variables is to apply first
the unary NOT operator, then the AND, and last the OR. Thus X AND NOT
Y OR Z is evaluated as (X AND (NOT Y)) OR Z.

In expressions containing both arithmetic and logical operators, the
latter are normally evaluated first.

It should be assumed that all languages obey the precedence rules given
above unless stated otherwise.

Since expressions can usually contain functions, and these might have
parameters called by location, there is a possibility that the value of a
variable in an expression might change while the expression was being
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calculated; e.g., if A + DBL(A) + A is to be calculated and DBL(A) doubles
the value of A, it is unclear what value of A is being used where. This (and
some related confusing situations) is often referred to as the side effects
problem.

111.4.5. ScoPE OF DATA

The problem of determining the scope (i.e., the meaning in different
portions of a program) of data is a very complex one. In its simplest occur-
rence, the same data name might be used in a subroutine and also in the
main program. This is usually handled in a simple way by specifying that
any variable used in a subroutine body is protected from the rest of the
program; i.e., it has no meaning outside its use as a formal parameter in
the subroutine. However, there are times when it is desirable to use the
same variable in a subroutine and in the main program or in two or more
subroutines. The technique of COMMON used in FORTRAN helped solve
this problem. However, with the advent of the block structure in ALGOL,
the problem became much more complex. When the main program itself
is broken down into smaller subunits which can be nested, then the scope
of the type and value of a variable must be clearly defined. Thus if we have
executable subunits A, B, C, D, E arranged in the overall program as follows,

and a variable V is defined prior to starting the execution of A, then what
happens to it in B and C, and how does this affect its value when entering
D? Suppose there is an occurrence of V in one of these subunits; what rules
or restrictions on this should exist? Inherently there are two concepts which
are needed: Local and global. In the former case, a variable is considered
defined only within the specific subunit in which it is declared; the variable
has the same value and characteristics in any smaller subunits unless it is
redeclared. Furthermore, if a local variable is referenced outside the unit
in which it is defined, this will be an error since it is undefined (unless it is
redeclared). The intuitive definition of global is that the variable has the same
characteristics and means the same thing each time it is used in the entire
program. Readers who are interested in pursuing the details and ramifica-
tions of these points should see the Revised ALGOL 60 report [NA63] and
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the PL/I manual [IB66b] since these are the main languages in which this is
an issue.

I11.5. EXECUTABLE STATEMENT TYPES

The two main components of a programming language are the data types
and the executable statements permitted. Depending on the view of the
person involved, one of these can be considered the main facet of the
language and the other the secondary, or they can be considered equally
important. The view that the data types allowed are the major factor is
expressed by Perlis [PR65). 1 hold the alternative view—namely that the
most important factor of a programming language is the list of commands
that it can perform. Probably the most reasonable view is that this is a
“chicken and egg” situation and both components are equally necessary.

This section provides a categorization of the multiplicity of executable
statement types which are relatively commonly used. Obviously, all lan-
guages omit certain specific ones. The exact details are discussed under the
individual languages.

Executable statements are sometimes referred to as imperatives as con-
trasted with the declaratives which supply information about data or aspects
of the program.

H1.5.1. ASSIGNMENT

Assignment statements have the function of assigning a name to the
result of some operation—usually but not always an arithmetic computation.
The operation that is involved may be as fundamental as renaming or doing
basic arithmetic or as uncommon as differentiation or concatenating strings.
In some types of assignment statements, the results are capable of being
assigned to many variables; i.e., a single result can be given several dif-
ferent names.

There are two classes of rules that are needed in connection with the
assignment statement, and they affect the way in which the operation is
carried out. One involves the actual method of specifying the action to be
performed and the other involves the rules which are needed in converting
a result into a form which the name of the result requires.

It is unfortunate that the most common notation used for the assign-
ment statement is the equal sign, =, although some languages (e.g., ALGOL)
do use a separate symbol. In virtually every case, the = is used to mean
that the value of the expression on the right-hand side is to be assigned
the name on the left-hand side. This results in such mathematically un-
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pleasant statements as| = | + 1, where the meaning is that some variable
| is to have the quantity 1 added to it and the result is to be given the
name |. This naturally causes the original value of | to disappear.

1. Methods of Specifying Computation

In some languages the indicated computation on the right-hand side
is controlled by the data types involved (see Section 111.4.1), the arithmetic
performed on them, and the operators and/or commands involved, as well
as the rules on conversions and modes (see Section 111.4.4). Thus, the assign-
ment statement A = B + C is meaningless until we know all the data types
involved, not just those on the right-hand side. If A, B, and C are numbers,
then the action and result are obviously numeric, although there are problems
of precision, mode, etc. However, if B and C are strings, then the operation
indicated by + might be concatenation. The actual result is based on con-
version rules (discussed in the next section).

In contrast to the principle of using just data types to indicate com-
putation, it is possible to specify other desired actions. In this case, it is
an actual command which is being used on the right-hand side, and this
command falls into another category. For example, in FORMAC one
writes LET A = SUBST X*x2 + Y#*%2, (X, Y+1). Here the actual assign-
ment is caused by the LET ... = and the SUBST or equivalent command is the
operation being performed.

2. Conversion Rules for Results

Most of the previous discussions have pertained to variables which are
in one arithmetic statement. However, it is perfectly possible—and often
necessary from the problem solution viewpoint—to provide entirely different
types of variables on the two sides of the assignment sign. It is necessary to
consider conversion rules across the assignment sign. In other words, if we
write Z = X + Y x A, then once the right-hand side is computed it is
necessary to specify the value of the left-hand side. It might seem obvious
that the value of Z should be exactly the same as the computed value of
X + Y % A, but this is not always desired. The differences can vary from as
little as the arithmetic mode (e.g., fixed point on one side, floating point on the
other) to the very significant difference of having a string on one side and a
number on the other. In the example of A = B + C given earlier, it might
be assumed that B and C were strings to be concatenated, and it is still per-
fectly possible for A to be numeric. The conversion rule involved might
require that the string on the right-hand side be converted to its equivalent
numeric value; obviously, in order to do this, the right-hand side would
have to be capable of being converted to a numeric quantity. For example,
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the string 4527 is, but the string A3+,45 is not unless some special inter-
pretation is given, which of course can be done.

111.5.2. ALPHANUMERIC DATA HANDLING

Most data processing applications involve the use of alphanumeric
(often abbreviated as alphameric) data. The primary types of manipulations
on this data are editing (which has many facets), converting, and sorting.
The form of the data may be the same here as in Section 111.5.4, but the
operations to be performed (i.e., the commands) are significantly different.

1. Editing Statements

The term editing covers a number of areas and applies primarily to the
preparation of data for use outside the computer. In the simplest case,
it may involve actions as basic as zero suppression or insertion of dollar
signs where needed. This type of editing involves primarily a single variable
or piece of data. At the other extreme, we can consider report generation
as a form of editing. In this case, many pieces of data are being examined,
possibly changed in format, and moved around to prepare them in a par-
ticular form relative to a printed page. Even arithmetic computation may
be involved for the purpose of obtaining totals on a report.

Depending on the language, the various facets of editing may be called
into play by a direct command; more often editing is accomplished through
the implicit invocation of the necessary routines through another command
and/or through data descriptions.

2. Conversion Statements

The use of conversion—at least in this context—is primarily an internal
matter. There is often a need for data to be transformed from binary to
EBCDIC or from purely numeric form to alphanumeric form. As with the
editing, this can be accomplished through direct commands or through data
declarations combined with other commands. Thus the statement MOVE
A TO B in early specifications of COBOL called for A to be converted to the
form specified for B and stored there.

3. Sorting Statements

Sorting is seldom thought of as a command in a programming language,
but it does exist in at least one—namely COBOL—and was considered for
inclusion in PL/I. Most sort routines are run as independent programs by
using a proper set of control cards. However, the disadvantage to that pro-
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cess is that the user may wish to perform actions on his files either before
the sorting takes place or after, or both. If there is a sorting command
as an integral part of the language, then the other mechanisms of the
language can be used prior to and after the execution of the sort command.
This concept is really the reverse of the situation where some sort generators
permit hand-coded routines to be included in the sort package.

111.5.3. SEQUENCE CONTROL AND DECISION MAKING

All programming languages must have statements to change the se-
quence of control of execution and also to make certain decisions with alter-
native choices based on the result. If this were not true, it would be
impossible to stop most of the operations which were started and it would
be impossible to have any branches in a program. Sequence control state-
ments are usually conditional and unconditional transfers, where the latter
can be considered to include procedure calls. Decision making facilities
can take many forms; the most significant are the conditional statements,
the loop control statements, and the error condition statements.

1. Control Transfer Statements

For each language there is a normal flow of control which specifies what
the next executable unit is. This is usually, but definitely not always (e.g.,
COMIT), the next statement in sequence. Naturally there must be a way
of changing this normal flow of control.

The simplest type of control transfer is the unconditional jump, in which
the next statement to be executed is specifically named rather than auto-
matically being the next one in sequence. The conditional jump is based
on some choice or test being made. The conditional jump statement is really
just the simplest type of conditional statement, normally consisting only
of a test and a new location to transfer control to, e.g., IF A > B GO TO
ALPHA ; if the condition is not satisfied, then the next statement in sequence
is executed. The invocation of a subroutine is a special type of control
transfer which provides an unconditional jump and also some type of
automatic return jump to the next executable unit in sequence after the
subroutine call.

There are also switch-control statements which the programmer can
use to cause control to transfer to one of a number of possibilities depending
on existing or prior conditions. The choices can be made in elementary or
complex ways, depending on the language, but all have the objective of
specifying (at object time) the place to which control should be transferred.
The most common is the computed GOTO, which usually is of the form
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GOTO (81, S2, - - -, S»), J where the value of J designates which S is used
(e.g., J = 2 means control is transferred to S,).

2. Conditional Statements

Although the purpose of a conditional statement is to permit alter-
native actions to occur, there are many forms of conditional statements
and they do not always cause a control transfer. In fact, a significant aspect
in judging the power of a programming language is the strength and flexi-
bility of the conditional statements which it contains. Conditional state-
ments usually start with some key words, such as IF or WHEN, followed by
some condition which is to be tested and an action to be taken if the con-
dition is satisfied. Thus, for example, a very common type of statement is
to say “IF A IS LESS THAN B do something and/or transfer control some-
where”. The power of the conditional statement depends on its two different
parts: One is the amount of flexibility in the condition that can be stated
(and tested) and the second is the amount of nesting of conditionals and/or
other statement types which is permitted. An example of a complicated
condition which can be tested is A > B + C AND B = SIN(X) OR
X =Y % Z AND A = B = C. Obviously, precedence rules are needed to
control the evaluation of the truth value of such an expression. (See Section
I11.4.4.) In considering the amount of nesting permitted, note that the
simplest sentence form is

IF condition THEN statement ELSE statement

(The case of IF condition GOTO is too trivial to discuss.) In other words,
a test is supplied and, depending on its result, either of two statements is
selected. If either (or both) of the statements can themselves be conditional
statements, or contain more than one command, then increased power
and flexibility is obtained. For example, the single sentence (written in
separate lines for clarity)

IFA>B+ CORC = SINX)

THEN IF X < Y THEN PUT Z = A + C
ELSE PERFORM ALPHA THRU BETA
ELSEIF A>B — C

THEN Z = A — C

ELSE Z = A C



II.5. EXECUTABLE STATEMENT TYPEs 109

permits the user to state a variety of conditions and actions in one sentence.
Obviously, rules of matching clauses, precedence, and existence of key words
must all be specified very carefully. A discussion of this problem and existing
and proposed solutions is given by Abrahams [AH66].

The situation in which a conditional statement can appear as part of
an expression was discussed in Section 1I1.3.2.4 in connection with
embedding.

3. Loop Control Statements

One of the most powerful things in a programming language is its
ability to state easily that a loop is to be executed. There are four parts to
a loop control statement. One is the range of the loop; this indicates just
which statements are to be executed under its control. A second part is
the set of parameters which are to vary to actually create the loop; for
each parameter, there are a set of values which that parameter will assume.
These may be either individually stated values or, more commonly, a
sequence of numbers with a constant increment, i.e., an initial value with
a fixed increment to reach a final value. It is possible to have one or many
parameters in a loop control statement, and they can vary simultaneously
or sequentially. A third major feature is the termination criterion which
specifies a rule for determining when the loop is ended. This is usually
based on reaching the last set of values of all the parameters, but a loop
can also be terminated when a particular condition (which may be stated
independently of the parameters) is reached. The final part of the loop
control statement is the specification of where control should be transferred
after the loop is finished. In some cases it will be to the statement imme-
diately under the loop control statement itself; in others it will be following
the range of the loop; in still others it will be to some place designated by
the loop control statement itself. One of the important facets of the range
of the loop is to determine whether transfers within or outside that range
are permitted and under what circumstances. In particular, if a control
transfer out of the range of the loop is permitted before the loop is finished,
then there must be a whole set of rules on what has happened to the param-
eters and what will happen in the future to the component parts of the
loop control statement.

Finally, a significant characteristic is what type of nesting of loop
control statements is permitted; i.e., can a loop control statement be within
the range of another loop control statement? Usually, such nesting is per-
mitted provided it is total; i.e., the range of the second loop is completely
contained within the range of the first.

Language specifications sometimes tend to be somewhat vague in
specifying all the necessary information needed in connection with a loop
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control statement. This is less likely to happen nowadays, but it is interesting
to note a few of the problem areas because they exist in some earlier manuals
and languages. For example, an often unspecified rule is whether or not the
range must be executed at least once if the termination criterion is already
satisfied at the time the loop-control statement is given. This could easily
happen if a variable J was to vary from 1 to 10 until K was greater than
50, and K was greater than 50 when the loop was supposed to start. The
results will differ markedly, depending on the implementation, unless the
rule is stated very clearly. Another common case is lack of precision on the
termination criteria. This is particularly prevalent on a binary computer,
where a variable is supposed to vary from 0.1 to 1 in steps of 0.1. Depending
on the conversion technique used (let alone any other implementation-
dependent factors), the range might be executed 9, 10, or 11 times unless the
criterion is stated very explicitly. A third disastrous example occurs when
it is unclear whether the parameter is to equal or exceed the final value to
terminate the execution of the range.

A loop control statement can almost always be written in terms of
other statements in the language (i.e., using IF ... THEN and assignment
statements). Hence one technique sometimes used in the language design
is to define the meaning of the loop control statement in terms of other
more basic statements. By doing this, virtually all ambiguities (about the
loop control statement) can be eliminated.

4. Error Condition Statements

There are two major types of error condition statements which can be
included in programming languages. One refers to the errors which may be
caused by the data or committed by the programmer (and which he can
test for), and the other involves errors which may be committed by the
hardware (although in theory this never happens). Some of the types of
errors which the programmer might make or be responsible for correcting
are such things as overflow when it is not expected, trying to store a number
in a field which is too small to contain it, incorrect data, or getting into
a loop and not getting out. In some languages, direct testing statements can
be written at the place in the program the user thinks an error might occur.
In other cases, he may provide somewhere in his program a command that
says “if such an error occurs, then do the following”. In this latter
situation, the generated code will cause an automatic interruption of the
normal sequence and transfer control to the “corrective action” that the
programmer has specified. In still other cases, the programmer may simply
request that a flag be set when some condition occurs, and he retains the
option of testing for it whenever he feels it is necessary.

There are certain machine errors which could occur (most notably
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in the input/output area) for which the programmer would like to test
or provide corrective action. In some languages he can do this directly,
although usually this is a function of the compiler and/or the operating
system.

111.5.4. SymBoLiC DATA HANDLING

A whole class of commands can be subsumed under the general category
of symbolic data handling. These commands deal with algebraic expressions,
lists, strings, or general patterns. Some commands may deal with more than
one of these items. These commands can in turn be used or embedded in
other commands, particularly the assignment statements.

1. Algebraic Expression Manipulation Statements

It was shown in Section I11.4.1.5 that one of the possible types of data
variables was a formal (= algebraic) one, which in turn leads to the pos-
sibility of algebraic expressions. Therefore, it is necessary to have certain
kinds of statements for the manipulation of formulas and/or expressions.
Among the most common of these manipulations are the abilities to sub-
stitute for a particular variable either another expression or a number, to
differentiate, and to apply the distributive law to remove parentheses.
Other types of statements which might be desired are the abilities to match
expressions, integrate, to find the greatest common divisor of two expres-
sions, etc. From a purely syntactic view, these facilities can be provided
in a number of ways, e.g., as statements, as functions, or through inter-
pretation of the data description. Thus, writing Y = (A—B)*(A+B) will
have a very different meaning if A, B, and Y are formal variables rather than
numbers and no new command is needed. On the other hand, differentiation
requires a specific executable concept to be named; it might be defined as a
function, an operator, or a command. The methods of handling these facili-
ties depend highly on the personal taste of the language designers. (See
Chapter VIL.)

2. List-Handling Statements

Normally list-handling statements appear primarily in list processing
languages, although there are a few exceptions to this. In any case, the types
of statements that are normally involved are those which add to the begin-
ning or the end of a list, insert information in the middle of a list, delete
information, and create and delete common sublists. Sometimes these
statements are interrelated with storage allocation statements. As in Section
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I11.5.4.1, these facilities can be provided in different ways, with executable
statements as one of the most likely.

3. String-Handling Statements

In languages which have strings, sets of statements (or some other
syntactic form) are needed to cope with them. Among the more common
types of operations involved are concatenating and deconcatenating strings,
inserting strings between others, and removal and deletion of portions of
a string.

4. Pattern-Handling Statements

Some languages provide the ability to scan a string of text for patterns.
This is extremely valuable in a wide variety of applications such as language
translation, formula manipulation, and even compilation itself. The most
common type of statement is one which specifies a pattern to be found
and then demands some action to be taken after finding the pattern. Thus,
a statement might require that all occurrences of the pattern AB2CD (where
2 represents any arbitrary string) be replaced by the string THEN. Pattern-
handling statements tend to be intermingled with string-handling statements
because the normal reason for searching for a particular pattern is to do
something to it or with it after it has been found.

IT1.5.5. INTERACTION WITH OPERATING SYSTEM AND/OR EQUIPMENT

No programming language can be used in a vacuum, and the user,
compiler, and language must all interact with each other and with the
physical and operating environment which exists. Thus, any language which
is actually to be run on a computer and produce results of some kind must
have some type of input/output statements. In order to make use of pro-
grams already in existence, there is a need for library referencing facilities.
Debugging statements which aid the programmer can be officially part of
the language, but they serve only a secondary purpose. The language must
provide—or the compiler must handle automatically—storage and segmen-
tation allocation facilities. Finally, some languages must— or do— provide
facilities for interacting with the operating system and/or with special
machine features which exist. (Obviously, these latter preclude the possi-
bility of the language being machine independent.)

Each language must have a means of terminating the execution of
the program either by stopping the computer or by giving control to the
operating system. Note that this is an executable command based on the
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program logic and it differs from whatever symbol is used to indicate the
physical end of the program as input to the compiler.

1. Input/Output Statements

The input/output statements are those commands which relate to
getting data in and out of the computer. They fall into a variety of classes.
One of the important distinctions is the difference between a physical unit
of information on some storage media such as tape and a logical unit of
information which may bear little or no relation to the physical unit.

The input/output statements usually refer to the logical unit, where
the compiler (and/or operating system) has the responsibility for making
the necessary information available from the physical units. Thus, one of
the characteristics of good input/output statements is that they are either
relatively or completely independent of the physical media that is being used.
In other words, it should not really matter whether information is coming
in from punch cards, paper tape, magnetic tape, disk, or drum. Of necessity,
this goal cannot always be achieved, particularly if random access is
required; but it is a desirable one to strive for because when the physical
medium is changed, the program need not be.

The input/output statements usually, but not always, include separate
facilities for initiating actions (e.g., checking or writing labels) on some
external media and then asking for (or writing) some fixed amount of data.
The amount of data being called for may be controlled by the programmer
or by the data itself. In the first case, the user may specify how much infor-
mation is to be brought in, whereas in the latter the data itself contains
some kind of a delimiter and the input command is told to bring in enough
information until the delimiter is reached.

2. Library Reference Statements

In the earlier discussion on subroutines it was pointed out that one
of the reasons for the heavy development of subroutine libraries was to
permit people to make use of work done by others. This benefit can and
should accrue in the use of higher level languages, but this can only be
accomplished by including appropriate statements in the language. Essen-
tially, two facilities are needed—one to store a program in the library and
the other to bring it from the library when needed. (The former capability
is not usually included in the language itself.) In the case of programs or
subroutines with no input parameters, the task is fairly simple; but when
there are variables which must be assigned in order to use the routine,
then there arise language (and implementation) problems of parameter
transmittal. One characteristic of the language that affects the implemen-
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tation significantly is whether or not the library routines are stored in their
original (i.e., higher level language coded) form or in a translated form.
(In the latter case, sometimes programs originally written in assembly lan-
guage can be included in the library.) Depending upon these and other
factors, the subroutines may be brought in at compile or object time.

There is also a need for library facilities for languages with complicated
data descriptions. These facilities may be provided in the same way as for
the subroutines.

3. Debugging Statements

Although one of the avowed purposes of higher level languages is to
minimize the debugging problem, it is paradoxical that sometimes pro-
gramming languages actually increase this problem. The reason is that the
user of a higher level language tends not to know machine language and
the higher level language often fails to provide him with information which
is vital to his debugging in a form which he can understand. Thus, if a
FORTRAN program stops and the only thing the user receives is a core
dump, he may be completely unable to find his error. Fortunately, better
language (and implementation) techniques are being developed to aid this
problem. See for example the survey by Evans and Darley [EV66].

There are specific debugging statements which can be included as an
integral part of the language. There is a difference between debugging
statements in the language and debugging facilities provided by the compiler.
Foremost among the former are various traces and snapshots. The user can
include in his program statements which allow him to obtain printouts
(in a form he understands) of various variables at specified times in his
program. In other cases he is allowed to declare that he wants a trace with
varying degrees of detail. In still other cases, he may ask for a dump of
his variables, but with the proper names associated. One other technique
sometimes used is to tie various debugging statements in with tests for
error conditions (as mentioned in Section I11.5.3.4).

It is essential to realize that even though a language may not contain
any debugging statements, a particular compiler might provide such facilities.

4. Storage and Segmentation Allocation Statements

Because so very much of the problem in getting particular applications
run on computers is involved with storage allocation, it is often necessary
to provide information about storage requirements directly in the source
program. Most of these actually exist as declarations rather than specific
executable commands. However, there are other statements which control
the amount of storage that is used, eliminate information from storage,
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indicate what things must be saved and what can be disposed of, etc. While
these statements appear in some mathematical or data processing pro-
gramming languages, they are absolutely essential to any list processing
language. In some of the latter there are commands which provide control
of the garbage collection (i.e., handling of the free list).

Information about overlays and program segments which can be stored
individually is usually provided through declarations rather than as execut-
able commands.

5. Operating System and Machine Feature Statements

Because of the increasing importance and complexity of operating
systems, the compilers for programming languages are being interwoven
more and more with the operating system. Whereas previously the same
subroutine might be called into storage separately for each program, now
this can be handled by the operating system to minimize storage require-
ments. While most of these aspects continue to be primarily implementation
problems rather than direct language problems, there is nevertheless a
carry-over into the language itself. Thus, the user often must know whether
or not the data he wants can be made available by the operating system,
whether a program which is being handled on another processor is ready,
or how much longer he has on the machine, etc. He must also be able to
time certain actions so that he can control the results if the process appar-
ently takes too long. Another illustration of possible interaction with the
operating system or machine itself is the language specifications which
involve overflow and underflow, or attempts to divide by zero. Finally, the
STOP (or its equivalent) statement, which indicates termination of a program,
i$ included in this category.

I11.5.6. OTHERS

There are statements in some languages which do not fall into any of
these categories, but they are not general enough to warrant discussion here.

111.6. DECLARATIONS AND NONEXECUTABLE STATEMENTS

As indicated in several earlier sections, there are a great many situations
in which information either can or should be supplied to the compiler.
In some cases, this is necessary for the logic of the situation, whereas in
others it helps significantly with the implementation, resulting in better
object code. The most important statements of these types are those which
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describe or declare information about data items, files, data formats, storage
allocation, and the hardware or operating system environment.

II1.6.1. DATA DESCRIPTION

Section 111.4 discussed a wide variety of data types and sizes which are
used in programming languages and a number of different ways of operating
upon the data. In order for each executable command to perform its task,
it must have all the information about the data which is logically required.
Thus, for example, if numbers are stored in binary and are to have arith-
metic performed upon them, the machine instructions needed will be rather
different than if the numbers are stored in a character form. The primary
method for doing this is to supply data declarations or descriptions which
provide all the needed characteristics of the data. Thus, numeric data for
mathematical problems will normally be characterized as being fixed or
floating point; real or complex; single, double, or multiple precision; etc.
With the exception of the precision, the amount of space occupied by each
type of data is usually considered standard for a particular language or at
least for a specific compiler. On the other hand, business applications
require data which has more widely varying characteristics. In the first place,
it is both alphabetic and numeric, and different parts require different sizes
and internal formats. For example, a person’s name in a payroll file may
take a large number of characters, whereas a mark to indicate whether the
person is male or female is clearly going to take the smallest possible unit
which can be represented in the machine. Because of the need for this wide
variety of type and size of data, it is essential that the compiler find out
just how the data is being stored so that the appropriate machine language
commands can be generated to handle it. All this information must be
provided in the data description declarations either directly or indirectly.
In a few cases the compiler will make a determination. In addition, it is
characteristic of business as well as other types of applications that the
data is usually in some type of hierarchical form. Again a payroll file is an
excellent illustration because one can consider that a person’s address
consists of a street location, followed by a town, a state, and a zip code.
Clearly, the entire address consists of all four of those items, whereas one
might be concerned with only the zip code, the state and zip code, the
town, or almost any other combination of these fields. For that reason,
it is essential that the compiler knows what type of hierarchy has been used
for the data so that it knows what machine instructions to generate.

Languages containing strings, lists, and/or arrays whose size is deter-
mined at object time must contain enough descriptions to permit com-
pilation.
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One of the key problems with regard to any complex data description
is whether the information is being described in its internal representation
(for a particular computer) or whether it is being described as it appears
in a logical fashion on some external media. Thus, if the identification
number for a person in a large organization is six characters, this is quite
independent of the internal representation; the question of whether it is
stored internally in character or binary form is essential information for
the compiler but irrelevant for the user. Various compromises for this issue
have been devised and will be described in the relevant languages.

One interesting philosophical point in creating the data declarations is
where and how they are to be grouped. The earliest viewpoint—exemplified
by FORTRAN—is that all data with a given characteristic should be shown
together, e.g., DOUBLE PRECISION X, Y, Z and REAL X, Y, Z. A more
recent view—exemplified by PL/I—is that all the declarations for a particular
variable could be shown together, e.g., X, DOUBLE PRECISION, REAL, Y,
DOUBLE PRECISION, REAL. (This is not the actual notation for PL/I or any
other language.) This matter appears to be based considerably on personal
taste and implementation techniques.

The requirement for data declarations is double-edged, in the sense
that, applied as stated above, every variable would need to have a com-
plete set of descriptions associated with it. Thus, each variable in a mathe-
matical problem would have to be defined as being SINGLE or DOUBLE
PRECISION, REAL or FLOATING, etc. This is undesirable because it requires
far too much writing on the part of the user. Hence, the concept of default
declarations has existed for some time (although there is a counterargument
which says that errors are prevented by requiring the complete information
to be written by the user). The concept simply means that associated with
certain types of variables are certain characteristics, and these will be auto-
matically assumed by the compiler unless some other information is specif-
ically supplied. An early illustration of this is the fact that in FORTRAN
any variable beginning with one of the letters I, J, K, L, M, N was automat-
ically assumed to be an integer unless it was specifically declared as floating
point.

I11.6.2. FILE DESCRIPTION

A file description usually applies to external and logical characteristics
of large amounts of data and how this is connected with the physical hard-
ware units which are being used. For example, the same logical file may be
stored on tape and disks in entirely different ways. This type of information
must normally be made available to the compiler to avoid object time
inefficiencies.
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Among the characteristics usually included in a file description are the
names of the different logical records it contains, information about the
header and trailer blocks, and relation between logical and physical records.
Descriptions of the format play a key role in query languages (see Section
1X.3.2).

111.6.3. FORMAT DESCRIPTION

In order to put out data, the user may definitely wish to have control
over the format in which it appears. For example, if he wishes numbers to
appear in three columns, he must be able to have a way of specifying this.
Similarly, if he is using the computer to write a payroll check, it is essential
that the amount is placed onto the right part on the check or else the check
will be invalid. Thus, there needs to be a number of statements to the com-
piler which actually describe the format of the data which is to be put out.
Similarly, information which is on some external media may have a format
which the compiler must know about in order to be able to interpret the
information coming in. When this formatting of output data is carried to
a very high degree of complexity, it actually becomes a report generator.

Format descriptions often supply page and line controls, as well as
the information necessary to permit the editing and converting discussed
in Section I11.5.2.

The details of the format descriptions available in each language will
not be given as they require far too much space.

[11.6.4. STORAGE ALLOCATION

It was noted in Section 111.5.5.4 that much of the control of storage
allocation was done through the use of declarations rather than through
executable commands. One prime example of this is the declarations which
supply information about the dimensions of a data array; usually they give
the number of dimensions and the maximum number of elements in each
dimension. The compiler needs this information to allocate storage at either
compile time (if the dimensions are fixed) or at object time (if the dimen-
sions are allowed to vary).

Control of segmentation is usually done through declarations, either by
indicating the appropriate places to segment a program that was too long
to fit in storage directly or by indicating parts of the program which can be
considered segments to overlay others.
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111.6.5. ENVIRONMENT OR OPERATING SYSTEM DESCRIPTIONS

It is perfectly possible to have a language describe the environment
(hardware or software) in which it is to be run. This would allow the user
to indicate for a particular program just what machine (configuration) he
wanted it to run on. Ideally he could be allowed to compile on one machine
for another. There is a significant difference, however, between having the
language facility to describe a different object machine and having a com-
piler which will create code for it! Because of the increased importance of
operating systems, and the sometimes hazy line between them and the
hardware, descriptions involving the operating system are possible and/or
needed. There are also situations in which information about data is supplied
to permit (or require) the operating system to take action.

The only programming languages which have included this information
in any significant way are COBOL, which provides a description of the
environment and some information about the operating system, and PL/I,
which deals heavily with the operating system.

111.6.6. PROCEDURE, SUBROUTINE, FUNCTION DECLARATIONS

In Section I11.5.3.1 it was noted that the invoking or usage of proce-
dures, subroutines, and functions was a particular type of control transfer.
The executable part of the program contains only CALL (or whatever
equivalent word is used) together with the necessary parameters. However,
the body of the procedure, subroutine, or function must be given some-
where in the program. This is really a form of declaration, since the
procedure, etc., is not executed where it is written. In other words, it is neces-
sary to have some type of heading which indicates that the following piece
of program is a procedure, etc.; this heading must also convey the required
information about the parameters. These parameters are usually referred
to as dummy arguments or formal parameters since they will be replaced when
the procedure is actually invoked. This is then normally followed by the
body of the procedure, subroutine, or function itself. Although the body
is composed of executable code (together with any necessary declarations),
it is never executed unless it is invoked from the program itself.

111.6.7. COMPILER DIRECTIVES

As mentioned earlier, compiler directives exist for several purposes:
One is to improve the efficiency of either the compilation process itself or



120  TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES

the object code that is turned out; another is sheer logical necessity, in the
sense that the compiler cannot obtain the information any other way;
a third is to cause action not to take place, as with comment statements
included in a source program. These directives generally pertain to action
that the compiler is to take when a certain situation is encountered at com-
pilation time or to produce code to take care of these situations if they
exist at execution time. One example of a compiler directive is some kind
of a flag indicating that a macro is about to be used and must be handled
separately. Another is an indication that the next part of the source program
is written in another language.

I11.6.8. OTHERS

As with the executable statements, there are other types of declarations
in specific languages, but none are significant enough to justify discussion
here.

11.7. STRUCTURE OF LANGUAGE AND COMPILER INTERACTION

This section attempts to describe certain characteristics of the language
which relate to its overall structure and its interaction with the compiler.
Some of these points are not considered to be 100 percent technical and
were noted in Chapter II; however, they require either restatement or further
amplification in this particular context. Other factors affecting implementa-
tion have already been mentioned briefly when they were particularly
significant.

I11.7.1. SELF-MODIFICATION OF PROGRAMS

Probably the greatest single difference between a program coded in
either assembly language or machine language, and one coded in a higher
level language, is the fact that the former usually has the ability to modify
itself, whereas the latter does not. Thus, in a machine code or assembly
language, one can normally modify either the operator or the operand and
thus include in the program the code to change an instruction which used
to be ADD 509 into one which says SUBTRACT 604.

There is no higher level language known to me which has this char-
acteristic. However, a similar effect can sometimes be achieved by having
the programs look like data to themselves. Only a very few languages permit
this, LISP being the main one. In my opinion, this is desirable from the
user’s point of view, although it does sometimes seriously limit the efficiency
of the compiler that can be written for that particular language.
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I11.7.2. SELF-EXTENSION OF THE LANGUAGE

Since most languages are never quite as good as their designers intend
them to be, there is always a desire on the part of the user to extend the
language in a number of directions. These directions include the definition
of new terminology in a program at the user’s option, the need to extend
capabilities—both data types and commands—and the wish to be able to
abbreviate frequently used program strings. Note that there is a significant
difference between the mere existence of a subroutine and an actual (although
temporary because it lasts only for the program involved) extension of the
language. The latter allows considerable user control over the format of
what is written, whereas the subroutine does not. Subroutines which provide
additional facilities (e.g., matrix-handling operations) are not considered
language extensions if they are invoked through the normal subroutine
calling mechanism.

The degree to which a language can be extended within the framework
of the language itself, without having the compiler modified, is a measure
of the self-extendability of the language. The most common way of handling
this is through macros, which can be similar to those used in assembly
programs. The only languages which attempted to provide any capabilities
along these lines are COBOL and PL/I, and only the (macro) facility in PL/I
has been implemented. (There was a DEFINE verb in COBOL for a long time
but it was never implemented and was finally removed from the language.)
A very simple type of self-extension occurs in languages which permit the
user to name and define functions in a source program and use them in
expressions as if they were system-defined. Most languages used for scien-
tific problems have this capability.

Several suggestions for ways to provide macro facilities have been
proposed but not necessarily implemented; see, e.g., the references at the
end of the chapter. One of the earliest discussions of this subject was given
by Mcliroy [ML60].2

111.7.3. ABILITY TO WRITE THE COMPILER FOR A LANGUAGE IN THAT
LANGUAGE

The concept of judging a language (even partially) by its ability to be
used for writing its own compiler is one which I feel has been greatly over-
rated. The writing of a compiler is a particular type of computing appli-
cation. (See Section [X.2.5.) Some languages are well-designed for that

2 The interest in macros and/or self-extension of higher level languages has grown
significautly during the time period in which this book was written. The concept is more
important and further developed than the brief discussion here would seem to indicate.
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particular application, whereas others are not. Of course, it is desirable
to permit a compiler to be written in the language it is compiling because
this is an excellent way of testing it. By writing the compiler for a language
in that language and then passing it through itself, there might be a better
chance of checking out the compiler than trying any large number of arti-
ficially constructed programs. However, it seems completely unreasonable
to expect that a language which is very suitable for writing scientific appli-
cations or for doing simulation should also be capable of writing a compiler
for the language. Even if it can be done logically, it may lead to poor object
code (although this is often the fault of the compiler design).

If a language can be used to write its own compiler, this is an aaditional
bonus, but no language should be criticized for not having that capability
(unless, of course, that was its avowed purpose).

II1.7.4. EFFECT OF LANGUAGE DESIGN ON IMPLEMENTATION EFFICIENCY

Complaints about a language are really very often complaints about
the compiler. (This was discussed in more detail in Section II1.7.2.) This is
a two-way street, however, in the sense that the type of design criteria that
go into the language can have a serious impact on the efficiency of the
implementation. Thus, it is possible to design a language for which it is
virtually impossible to create an efficient implementation. Conversely, it is
possible to design a language in such a way as to increase the efficiency of
the compilation; the characteristics affecting the compilation may be major
or minor facets of the language itself.

1. Compile Time Versus Object Time Efficiency

The decision of whether a compiler is to be most efficient at compilation
time or to produce optimal object code is one which can usually be made
technically by the implementer, although it must be made administratively
by those people responsible for determining the ultimate method of usage.
In particular, there is a major difference between a university (or possibly
a scientific) installation which expects many small jobs, each to be run
only once or twice, and an organization concerned with business data
processing (or even scientific) production runs. Certain features in the lan-
guage may tend to encourage compile time versus object time efficiency or
vice versa. Generally speaking, the more special cases, flexibility, and power
the language has, the less efficient will be the compilation process; however,
sometimes these are introduced for the express purpose of permitting the
creation of good object code.

There is invariably a tradeoff between compilation and object time
efficiency, simply because it takes time to create efficient object code. In
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other words, if the compiler scans the object code produced to eliminate
redundant instructions, then computer (compilation) time will be needed
to accomplish this task.

There do not seem to be any language facilities which can be used to
make the compilation process more efficient and simultaneously cause
production of efficient object code. The converse is not true. Specific features
which provide information to make it possible for a compiler to create
efficient object code often require additional compilation time. An early
example of an attempt at this was the FREQUENCY statement in the first
FORTRAN (see [IB56] in Section 1V.3); it was later dropped because it was
found not to be worth the trouble it cost. In other cases there is no particular
language feature provided but the compiler attempts to produce very good
object code from specific parts of the language. The best examples of this
are storage allocation and loop control. These obviously require compila-
tion time.

2. Generality Versus Restrictions

As mentioned before, the greater the size, flexibility, and power of the
language, the harder it will be to compile. From this, one might draw the
conclusion that it would help the implementation to impose more restric-
tions. Unfortunately, this does not always work, particularly if the restric-
tions are imposed on top of some features providing great generality.
For example, a language that permits names of any length causes certain
problems in table design; this difficulty is compounded if the language says
that certain types of names, e.g., statement labels, must be no more than
six characters long. The generality causes a problem with the storage alloca-
tion at compile time but the restriction tends to slow down the scanning and
processing because it involves a special case. A second problem arises from
this type of situation if the compiler actually checks to make sure that the
restriction is obeyed. (See Section III.7.5 for a discussion of error checking
at compilation time.)

In many situations, restrictions permit more rapid compilation. For
example, difficulties in scanning individual sequences of characters can be
greatly reduced by putting restrictions on naming conventions. If a language
is designed so that a data name can contain only alphabetic characters,
then the compilation may be much more efficient than if the name can
contain any characters. Even if one wants to permit numbers as part of
the data name, then the restriction of saying that the first character must
be a letter helps the compiler because when it encounters a digit, it knows
that it should look for a numerical quantity rather than considering this
as the potential beginning of a data name.

A restriction on the use of reserved words (see Section I11.2.3.3) is
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another facet that improves compiler efficiency in the scanning. The term
reserved words usually means the concept that a certain number of words in
the language are fixed and cannot be used for data names or statement labels.
In some languages there are fixed words but they can also be used for data
names; this requires a great deal more investigation by the compiler of the
context in which the word is used. All kinds of variations or further restric-
tions can be placed on this concept, even going so far as to say that no data
name can begin with letters which might look like a reserved word.

3. Specific Features with Significant Effect

As an example of a minor characteristic of a language which has a
great impact on compiler efficiency, one can consider the placement of
declarations. If there is a rule that declarations about a variable must
precede the first use of the variable, then the compiler might be able to
generate good code on the first pass.

The issue of recursion is another one which has a severe effect on the
efficiency of the implementation, but primarily it affects the object code.
If procedures are allowed to be recursive but are not required to be defined
as such, then the compiler is required to turn out code which will provide
for all procedures to be recursive. This produces inefficient object code for
those procedures which are not recursive. Thus, the inclusion of a declara-
tion stating that a procedure or a subroutine is recursive permits the com-
piler to provide the mechanism only for those particular subroutines rather
than for all of them.

4. Storage Allocation Requirements

For languages with large amounts of data to handle or for any language
on a small machine, the storage allocation problem is a critical one. For
this reason, any information which can be given to the compiler is helpful.
Types of useful information include possible segmentation points, portions
of the program which can be overlaid, and maximum expected size of
variable-sized data and arrays.

5. Possibility for Providing Choice of Tradeoffs

Some features in a language provide the user directly or indirectly with
some choice of tradeoff between compile and object time efficiencies. In most
cases this occurs by default; i.e., if a user does not include some feature
which improves his object time efficiency, he may (but does not always)
save compile time. However, a more interesting situation would arise if the
language contained definite provisions for the user to specify what type of
efficiency he most desired.
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111.7.5. DEBUGGING AIDS AND ERROR CHECKING

The line between debugging aids as part of the language and as part
of the compiler is sometimes unclear. We must also distinguish between
debugging at compile time and at object time. Some languages include
statements which assist debugging at object time, such as on error condition
statements which cause automatic transfers at object time under certain
circumstances. In other cases the languages provide specific statements
requesting traces of previously executed statements in order to obtain
information. These kinds of debugging aids which are specifically inserted
into the language are rather different from certain debugging aids and error
checking which may be provided by the compiler itself. For example, a good
compiler will normally do a great deal of error checking when scanning the
source program. The simplest and most common type of error, at least in
a large class of problems, is mismatched parentheses. A good compiler—and
even in many cases a mediocre compiler—will specify that parentheses are
mismatched. A good compiler will then attempt to indicate where the
difficulty is most likely to be. Other ways in which a compiler can aid
debugging are to list statement labels which are never referenced or give cross-
references of statements which refer to data names.

There is a difference between debugging aids which exist in the language
and are primarily for the purpose of handling object time errors and those
checks which the compiler itself performs primarily to find syntactic (or
even semantic) errors in the source code. A type of error which may be
considered either syntactic or semantic is to have a number of subscripts
associated with a variable which differs from the dimension declaration
(or its equivalent). Most compilers will detect such errors at compile time
and provide an error message to this effect. Far fewer compilers will insert
checks into the object code to see that the maximum value of the subscript
does not exceed the specified limit. One of the tradeoffs to be decided is
how many of these object time error checks will be inserted, considering
the amount of computer time they require. Ideally the user should decide;
PL/I actually permits him to do so in many cases.

111.8. OTHER FEATURES NOT INCLUDED

Although this chapter attempts to list all the significant technical character-
istics of programming languages, it cannot possibly list everything. Any
particular features a certain language has that have not fallen in the cate-
gories above will be discussed under the particular language description,
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Iv LANGUAGES FOR
NUMERICAL SCIENTIFIC PROBLEMS

IV.1. SCOPE OF CHAPTER

The scope of this chapter is almost self-evident. All the languages noted
here had their objectives either directly as, or deeply rooted in, the solution
of scientific problems by numerical techniques, using a digital computer.
These problems tended to be characterized by small requirements for
input/output and vast amounts of computation. Matrix inversion or the
evaluation of mathematical formulas for regularly changing sets of values
of the variables are prime examples of this. Such problems contrast with
the data processing problems which tend to have much input/output but
relatively little calculation. This distinction has become considerably less
clear over the past years, but it still has some validity and certainly did
at the time these languages were developed.

The availability of computers, and reasonable languages to use on them,
helped make a major field out of numerical analysis. Prior to the advent
of computers, relatively few people were familiar with the subject; with
the existence of proper equipment, and the apparent inability of such equip-
ment to handle problems analytically, numerical analysis techniques devel-
oped and flourished, virtually causing analytic solutions to disappear from
practical working situations. Attempts to reverse this trend are described
in Chapter VII.

IV.2. LANGUAGES OF HISTORICAL INTEREST ONLY

It is quite natural that most of the early work in language development,
both in quantity and significant quality, was concerned with handling
numerical scientific problems. The relative standardization and simplicity
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of mathematical notation—particularly in the writing of expressions—made
it very natural for people to try to input this directly into a computer.
The first two very early systems—namely SHORT CODE (UNIVAC) and
Speedcoding (IBM 701)—did not make any attempts at this. It was Laning
and Zierler at M.I.T. (on Whirlwind) who seem to have developed the first
system in the United States which would allow a fairly natural mathematical
expression as direct input to a computer. The work of Rutishauser in Switzer-
land had a similar motivation and is discussed below. The A-2 and A-3
systems provided scientific facilities on a data processing machine (UNIVAC),
while PRINT did the same on the 705. The BACAIC system on the 701 was
another—although less effective—early attempt to permit some type of
mathematical notation as computer input.

These very early and primitive systems were followed by a number of
others which were more widely used but did not survive, either for technical
inadequacies or because of the exigencies of the marketplace. However,
each contributed something to either the need at the time or to the tech-
nology, so they are worth discussing.

Since this book is defined to cover basically only developments in the
United States, there is no listing of the early work which was done in
Europe. Anything purporting to be a history of programming languages,
however, would be incomplete if it did not at least mention the early work
of Heinz Rutishauser of the Swiss Federal Institute of Technology, Zurich,
Switzerland. As early as 1952, he described methods for allowing the input
of mathematical expressions in a fairly natural form to a computer. Further-
more, Rutishauser described a system for translating them, i.e., a compiler,
as contrasted with the interpretive system of Laning and Zierler. The
early compiling work done in the United States by Dr. Grace Hopper
initially involved very artificial pseudocodes rather than mathematical
notation. In addition to permitting mathematical expressions as input,
Rutishauser also allowed loop-control statements which look very
much like the ones which eventually became commonly used, e.g.,
for k = 1 (1) 10.

IV.2.1. VERY EARLY SYSTEMS
1. SHORT CODE

The earliest document that I have seen which purports to describe
a higher-level language (relative to that point in time) was the October,
1952 description of the SHORT CODE for UNIVAC [RR52] suggested by
Dr. John Mauchly in 1949 and programmed by R. Logan, W. Schmitt,
and A. Tonik. It was originally coded for the BINAC by W. Schmitt. In
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[RRS2] it is stated (in the preface) that Dr. Mauchly’s “suggestion was,
in effect, to have a program which would accept algebraic equations as
originally written . . . ”. While SHORT CODE did not achieve that goal (nor
has any other system except those discussed in Section IV.7), it was a remark-
able objective for that point in time.

The basic principle involved was to use a 2-character code to designate
either an operation or a variable and to use six of these codes at a time
(because the UNIVAC had a 12-character word). Thus the problem of
evaluating the equation A = B + C was written as

00 SO 03 S1 07 S2

where S0, S1, S2 represent the quantities A, B, C, respectively, and 03 and 07
stand for the operations of equality and addition, respectively; the 00 was
the line number. Admittedly this looks primitive by today’s standards, but
then so does the hardware of 1952!

There were about 30 operations provided, including such things as
floating point arithmetic operations, bracket indicators for evaluation of
expressions, finding integral roots, tests of size, mathematical functions,
and input/output operations. The system was interpretive.

The value of this system is in its objective, not in its execution, although
the programmed floating point was an enormous help to the user.

2. Speedcoding

Work on the Speedcoding System for the IBM 701 was started in
January, 1953 under the supervision of John Backus and the general direc-
tion of John Sheldon. Those who worked on the project were H. Herrick,
D. Quarles, S. Skillman, J. Pulos, and L. Siegel. The first official manual
[IB53] was dated September, 1953.

The basic principle of Speedcoding was to create two sets of operations,
designated OPI] and OP2; the first category contained three addresses,
while the second contained only one. These operations were not part of the
hardware, and were selected for their utility to the mathematician. The card
format permitted one of each operation type, as well as a location field, in
a single card. Thus

523 SUBAB 100 200 300 TRPL 500

shows an instruction in location 523 which subtracts the absolute value of
the contents of 200 from the value in 100 and puts the result in 300; then
it tests to find the sign of the result in 300 and transfers to 500 if it is positive.

There were about 45 OPI operations, including 10 arithmetic operations,
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5 mathematical functions, and about 35 input/output instructions. (The
large number of the latter is necessary because each tape number required
a separate instruction.) The arithmetic was done in programmed floating
point.

The OP2 operations included testing, address modification, and control
transfer instructions and, in particular, programmed index registers.

The system was interpretive.

3. Laning and Zierler System

An interpretive algebraic coding system was developed by J. H. Laning
and W. Zierler in 1952 and 1953 at M.L.T. on the Whirlwind Computer
[LA54]. It appears to be the first system in the United States to permit the
user to write his mathematical expressions in a notation resembling normal
format. Variables were represented by single letters, and thus multiplication
could be indicated by juxtaposition rather than a specific operator. Paper
tape on a Flexowriter was used, and upper-case numbers appeared as ex-
ponents, thus making it possible to write a = b2 The user wrote his assign-
ment statements in a very natural form, e.g.,

¢=0.0053(a—y)/2ay,
y=35y,

Such statements could be numbered.

Normal precedence rules were used in evaluating the expression, so
that a + bc was handled correctly as a + (bc). Both numerical and sym-
bolic subscripts were permitted; the former were denoted by a vertical bar
(which existed on the Flexowriter), followed by a superscript number; e.g.,
u|3 represented u;. Symbolic subscripts used the vertical bar and the letter;
e.g., v|j represented v;. Floating point arithmetic was programmed.

Both unconditional and conditional control transfers were permitted.
The former is designated by SP n where n is the equation number. Writing
CP n caused a transfer to n if the previously computed quantity was negative.
A switch control could be used by writing SP x where x represents a vari-
able; control was transferred to the equation whose number was the value
of x. Closed subroutines could be executed by writing SR n.

Although there were no loop control statements originally, they
apparently were added later.

Loops could be controlled either by sequences of values or by fixed
increments; e.g.,

g|N=1,1.2,1.4,1.6,1.8,2,3,4,5,
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are both equivalent. The flexibility of the second form has not yet appeared
in any significant programming language since then.

Over 20 common mathematical functions were available in a library,
and they were invoked by writing F with a superscript identification number.

A PRINT statement and a STOP performed the obvious functions.

The rules of arithmetic, conversion, etc., were controlled by the CS
system in use on Whirlwind at the time (see Adams and Laning [AD54]).

There was also a routine to solve differential equations.

This is truly an impressive system and, in my opinion, probably the
most significant of all the early work.

4. A-2 and A-3

Although Remington Rand had the earliest automatic coding systems
which were really compilers (namely A-0 and A-1), the first one to really
receive extensive usage (starting in 1955) was A-2 [RR55]. It was developed
by F. M. Delaney, M. H. Harper, M. Koss, J. E. McGarvey, and R. K.
Ridgeway under the direction of Dr. Grace Hopper.

A-2 was a three-address code, specifically tailored to the 12-character
word of UNIVAC. Thus it provided such instructions as

ADD A B C

AAL x1 del x lim x
1CN # opn #
2CN = opn #

where the first instruction meant add the values of the variables A and B and
call the result C; the second meant increase x1 by del x and if the result was
less than lim x, then go to the address (i.e., opn #) designated in the 1CN
line; if it equaled lim x, then go to the 2CN address. The arithmetic was done
in programmed floating point.

A-3 (also called ARITH-MATIC) was an improvement of, but not
completely compatible with, A-2. It also provided a number of additional
facilities which were not in A-2. However, A-3 never received much usage
as such because it was made available at the same time as the AT-3 (later
called MATH-MATIC) system, which was the Remington Rand conceptual
equivalent of FORTRAN. (See Section 1V.2.2.1.) The MATH-MATIC
source program was translated to A-3 as an intermediate language, and
this was then in turn translated to machine code. However, for those opera-
tions which could not conveniently be performed using MATH-MATIC,
the user actually could write A-3 code in his MATH-MATIC program and
have the linkage and translation performed correctly and automatically.
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5. BACAIC

An interesting system called the Boeing Airplane Company Algebraic
Interpretive Coding System (BACAIC) for the IBM 701 is described in
a report by M. Grems and R. Porter [GRS55] dated July, 1955. It permitted
the writing of mathematical expressions in a fairly natural notation, except
that no constants could be included; they had to be replaced by something
of the form Ki, for i an integer. Multiplication was indicated by a centered
dot, and an assignment statement by an asterisk at the right. Thus,

BeB—K4eA-Co*xD

caused the assignment to the variable D of the value of the expression
B2 — K4+A+C. A complete list of the symbols for writing expressions is
given in Figure IV-1. Note that a modified form of square brackets rather
than parentheses was available on their key punch machine. It was not
only permitted but required to number expressions and refer to them by

Symbols How Used Explanation
A thruz A+ B Refer to all parameters by the letters A thru Z, (except
K).
K1 thru K99 Kl + 8 Refer to all constants by a K-number.
1 thru 50 14+ B Refer to the value (computed or estimated) of an

expression by its expression number. An arbitrary
limit of the number of expressions is 50.

[or$ [A + 8 Front bracket for a term.

Jor, A + B] Back bracket for a term.

+ X+Y Addition.

- X —Y Subtraction.

. XY Multiplication.

/ X/Y Division.

SIN SIN A Sine of angle A. A is in radians.

Ccos COS A Cosine of angle A. A is in radians.

ASN ASN A Arcsine A, where the angle will be in radians.
ACN ACN A Arccosine A, where the angle will be in radians.
EXP EXP X (e)*, exponential to the X.

LOG LOG X The natural logarithm of X.

PWR X PWR N (X)N, the quantity X raised to the power N.

SRT SRT X ~/X, the square root of the quantity X.

SQR SQR [X + Y] The quantity following this symbol is squared.
* A—BxY A substitution symbol. Compute the quantity on the

left side of the symbol %, and substitute it for the
constant or expression number on the right side.

Figure IV-1. List of BACAIC facilities.
Source: Grems and Porter [GRS55], p. 6.
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that number in other statements. Thus WHN A GRT B USE 6 meant that
if the value of A was greater than or equal to the value of B, then expression
number 6 was computed next. Otherwise, the expression that followed was
computed.

Logically unnecessary parentheses could be excluded; thus the expres-
sion A + B « C was handled correctly. They even allowed multiple assign-
ment statements, such as

A+B*xS*xTxU

which meant assign the value of A + B to S, T, and U. This particular facility
did not appear again in any major language until ALGOL 60.

6. PRINT

PRINT, which stands for PRe-edited INTerpretive system, was designed
to meet the scientific computing needs of those people with an IBM 705.
It was an interpretive system, which simulated floating point instructions.
Coding was started at IBM in February, 1956, and the first customer tried
the system in July, 1956; thus it was actually completed before FORTRAN.

PRINT provided a series of operation codes with variable fields, such
as RPT n +—i +—j +—k which performed the next instruction n times,
indexing its first, second, and third address by i, j, and k word lengths,
respectively. The general form of the command was

OpCode Variable Field

where the variable field contained one to four variables, depending on the
Op Code. The operations provided included the arithmetic ones, a few
mathematical functions, testing, and input/output commands; these could
all be indexed. Operations which could not be indexed included tests, index
commands, and some input/output.

The main reason for including any mention of PRINT is the fact that
it was the other significant attempt (besides A-2 and A-3) to provide facilities
to handle scientific problems on a machine designed for use in data processing
applications.

1V.2.2. MoRE WIDELY USED SYSTEMS

For differing reasons, the systems discussed in this section received
much wider use than those previously mentioned. Although none of them
survived, they all helped the development of programming languages.
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1. MATH-MATIC (AT-3)

Because of the logical sequence of material in the chapter, the informa-
tion on the MATH-MATIC system will actually precede that of
FORTRAN. However, a number of the comments to be made about
MATH-MATIC will assume some knowledge of FORTRAN. Therefore the
reader who is completely unacquainted with FORTRAN is advised to read
Section 1V.3 before trying to understand this particular system.

The work on MATH-MATIC, which was originally known as AT-3,
was started around 1955 by a group at Remington Rand UNIVAC in the
department under Dr. Grace Hopper. A preliminary manual for the MATH-
MATIC system (Ash et al. [AS57]) was available in April, 1957. It was
prepared by a group under the technical direction of C. Katz, with key
participants being R. Ash, E. Broadwin, V. DellaValle, M. Greene, A. Jenny
and L. Yu. The objective of this system was exactly the same as that of
FORTRAN, namely to reduce the time and effort required to solve numer-
ical scientific problems. This system was designed for use on the UNIVAC
I, whose two major characteristics that affect this system are that it had
no floating point arithmetic and only a 1000-word memory. It will be shown
that these played a major role in the development of the system.

A list of the acceptable statements is given in Fig. IV-2. There were
a number of the elementary mathematical functions available. A modified
Unityper (which was the device used to prepare magnetic tape for input)
had a keyboard which provided numerical superscripts which could be used
as exponents. However, variable exponents had to be designated using the
POW operator.

Data names could be subscripted, and the subscript could involve the
four basic arithmetic operations; the limitation on the number of subscripts
was dependent on the size of the UNIVAC word: The subscripted variable
name, including the parentheses and the subscripts themselves, could not
exceed 12 characters. Since UNIVAC was a fixed point machine, the floating
point arithmetic had to be done by subroutines, and each number required
two words of memory. (This obviously tended to have a catastrophic effect
on an already small memory.)

Like any other system, this survived an evolutionary process so that
some of the items shown in Fig. IV-2 were not in the original version.
Even the early package was surprisingly strong however, and contained
a number of features which did not find their way into other languages
until considerably later. Among the more interesting or unusual commands
in MATH-MATIC were the following: The EXECUTE statement; the flexi-
bility of the IF statement, since any number of IF clauses could be included;
the facility for having the range of the loop specified by the loop control
statement itself, and the ability to have several variables varying within



CONTROL SENTENCES

(n) CONTAIN X(m,n) .
(n) CONTAIN X(m,n,p) .

(n) EXECUTE SENTENCE F .
(n) EXECUTE SENTENCES F THRU L .

(n) IF X > Y JUMP TO SENTENCE F .

(n) IF X < Y JUMP TO SENTENCE F .
(n) IF X = Y JUMP TO SENTENCE F .
(n) IF X > = Y JUMP TO SENTENCE F IF V < W JUMP TO SENTENCE G .

(n) IF X < Y JUMP TO SENTENCE F IF V = W JUMP
TO SENTENCE G IF P > Q JUMP TO SENTENCE H .

(n) IGNORE .

(n) JUMP TO SENTENCE F .
(n) PRINT-OUT ABC ... N.
(n) SET TO number A B C .
(n) STOP .

(n) TYPE-IN ABC ... N.

(n) VARY X Xg (Xi) Xt SENTENCES F THRU L .

(n) VARY X Xo (Xi) Xt Y Yo (Yi) Yi SENTENCES F THRU L .

(n) VARY X Xo (Xi) Xt Y Yo (Yi) Y1 Z Zg (Zi) Zi SENTENCES F THRU L .

(n) VARY X Xo X1 X2 . .. Xn SENTENCES F THRU L .

(n) VARY XY X Xo Yo Zg X1 Y1 Z) X2 Y2 Z2 ... Xn Yn Zn SENTENCES F THRU L .
INPUT/OUTPUT SENTENCES

(n) WRITE-LABEL X . . . X FOR SENTENCE F .

(n) TITLE FOR SENTENCE F X . . . X .

(n) TITLE FOR SENTENCE F X . . . X HEADINGS A ... AB...BC...C.

(n) HEADINGS FOR SENTENCE FA ... AB...BC...C.

(n) CHECK-LABEL X . . . X FOR SENTENCE F .

(n) CHECK-COUNT SENTENCE F IF EXCEED X . . . X JUMP TO SENTENCE L .

(n) READ A B C .

(n) READ-ITEM X(m,p) LABEL X . . . X .

(n) READ A B C IF SENTINEL RESET AND JUMP TO SENTENCE F LABEL X . . . X .

(n) READ A B C IF SENTINEL REWIND AND JUMP TO SENTENCE F LABEL X ... X .

(n) PRE-READ A B C .

(n) READ-ARRAY X(I.J) .

(n) WRITE AB C .

(n) WRITE-ITEM X(m,n,p) .

(n) WRITE EDIT X Y Z .

(n) WRITE-ITEM EDIT X(m,p) .

(n) WRITE CONVERT TO n DECIMAL X Y Z .

(n) WRITE-ITEM CONVERT TO n DECIMALS A(m,p) .

(n) WRITE CONVERT X Y Z .

(n) WRITE-ARRAY CONVERT TO n DECIMALS X(m,n,p) .

(n) CLOSE-INPUT SENTENCE F .
(n) CLOSE-INPUT AND REWIND SENTENCE F .

(n) CLOSE-OUTPUT SENTENCE F .

Figure IV-2. MATH-MATIC commands. The assignment statement and
mathematical operators are not included in the figure. Note that the Input/
Output sentences include only commands involving tape. Other 1/O com-
mands are included under control sentences. The (n) represents the statement
number.

Source: [RR60], extracts from pp. 16-34.
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the loop control statement. All these facilities were later picked up in one
way or another in either COBOL or ALGOL.

There are two unusual features of MATH-MATIC which are very
important but which have not really been supported in any major language
since then. The first is the ability to handle lower level languages in line.
MATH-MATIC was able to accept and handle statements written in both
UNIVAC machine code (commonly called C-10) and also in A-3, which
was a three-address intermediate language with its own compiler. (See
Section 1V.2.1.4). The user could use the same variables in all three languages
(subject to some reasonable conventions) simply by listing these variable
names in a dictionary.

In my opinion, the most interesting feature of MATH-MATIC was
its implementation of automatic segmentation; this is a facility that appears
not to have been implemented since then, although a great many people have
talked about it and made claims that they were trying to do it but say they
have been prevented because of the difficulty. The MATH-MATIC system
provided completely automatic segmentation, in the sense that any object
program which was too large to fit in one memory load would automatically
have inserted into the object code (by the compiler) the necessary control
transfers and input/output statements to reload memory as many times
as necessary. Thus the compiler created an object program which brought
into memory that part of the program which was to be executed next. This
in itself is not very difficult to do, but it is naturally quite inefficient. The
MATH-MATIC system went still further, by examining the code for loops
and attempting to put them into a single segment. Thus, if the normal
segmentation caused part of a loop to be in one memory segment and
part in another, the compiler would create a shorter segment preceding
the loop and put the loop all in one segment. Obviously if the number
of statements within a loop could not fit into one memory load, the
compiler could not do much about it; but in that case it looked to see if
there was a subloop within the larger one and, if so, it would put that into
a single memory segment.

It is interesting to speculate whether if this system had been implemented
on a machine with fewer limitations than UNIVAC or with wider market
acceptance such as the IBM 704 or 705, it would not have become the major
language that FORTRAN became.

2. UNICODE

The UNICODE system was developed at Remington Rand UNIVAC
around 1957-1958 for the 1103A and 1105. In many ways it is a hybrid
language, falling somewhere between MATH-MATIC and FORTRAN.
It tends to look very much like MATH-MATIC because it was obviously
to Remington Rand’s advantage to have their two scientific languages be
the same; on the other hand, the 1103A and the 1105 were obviously machines
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much better suited to the solution of scientific problems than the UNIVAC
was. In addition, from a timing point of view, UNICODE was able to pick
up some of the facilities of FORTRAN which are of value. A list of the allow-
able statements is shown in Fig. 1V-3.

COMPUTE X .
X=A .
VARY X P(Q)R SENTENCES N THRU M THEN JUMP TO K .

VARY X P(Q)R SENTENCE N .
VARY X P(Q)R WITH Y S(T)U SENTENCES N THRU M .

JUMP TO SENTENCE K .

IF X=Y JUMP TO SENTENCE K .
IF X NOT=Y JUMP TO SENTENCE K .
IF X<Y JUMP TO SENTENCE K .
IF X>Y JUMP TO SENTENCE K, IF X<=Y JUMP TO SENTENCE M .
IF X<Y JUMP TO SENTENCE K, IF X=Y JUMP TO SENTENCE M,
IF X>Y JUMP TO SENTENCE N .
IF X>=Y JUMP TO SENTENCE K .

RESUME K .

LIST X(1,J), TAPE L, ((Title)) .
LIST F(X,Y,Z,T), X, Y, Z, T, TAPE L, ((Title)), (Column Heading),
(Col. Hdg), (Col. Hdg), (Col. Hdg), (Col. Hdg) .

TYPE X(1J), Y, ---, F(X), Z .

READ A .
READ A, IF END OF DATA, JUMP TO SENTENCE K .

STOP .
END OF TAPE .
DIMENSION X(- == -), Y(- <= = =y <), ===, Zl- =) .

Figure IV-3. List of UNICODE instructions. The assignment statement and
mathematical operators are not included in the figure.
Source: [RRS59], p. 60 (slightly modified).

One of the concepts from FORTRAN that UNICODE adopted was
that variables beginning with the letters I, J, K, L, or M were fixed point and
all others were floating point. They could have up to four subscripts. In both
UNICODE and MATH-MATIC it was possible to have a numerical super-
script because the modified Unityper allowed them. However, variable
exponents had to be designated by the operator POW. Similarly, the modified
Unityper allowed the relational symbols >, <, and =.

Because of its somewhat hybrid nature, UNICODE cannot be said to
have contributed anything significant to the improvement of scientific
languages since it introduced no new concepts of its own.
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3. IT, FORTRANSIT, and GAT

The IT (Internal Translator) system was developed for the IBM 650
by A. J. Perlis, J. W. Smith, and H. V. Zoeren, based on a version developed
for the Datatron by these people and M. Koschman, J. Chipps, and S. Orgel
at Purdue University. The system is described by Perlis ez al. [PR57] and
[PR57a]. IT was designed primarily to handle numerical scientific problems.
It had two enormous shortcomings: One was the hardware language, which
was forced on the designers by the 650, and the other was the scanning
technique used, which forced unnatural (and essentially incorrect) evaluation
of mathematical expressions. In spite of these difficulties, however, IT was
a significant step in compiler development. Most importantly, IT showed
that an algebraic language could be implemented on a small machine (2000
words) with a small effort; it required only about two man-years to develop.
This language was the forerunner of several others (e.g., RUNCIBLE,
GATE, CORREGATE, and GAT which is discussed later) which had
more reasonable hardware and used better compiling techniques. Thus
a major contribution of IT was to inspire some aspects of compiler research
at Case Institute of Technology and the University of Michigan. In terms of
other work being done at that time, it is worth contrasting the notation
for IT with that used for MATH-MATIC (see Section IV.2.2.1), which was
far more natural and also ran on a machine with limited storage (originally
UNIVAC I, with 1000 words). However, MATH-MATIC had the advantage
of a reasonable character set and magnetic tapes for external storage, thus
placing it in the FORTRAN category.

In current terminology, the reference language consisted of the digits
and letters, punctuation characters and operators, and some other symbols;
the hardware representation is the single letter shown in the right-hand
column:

Symbol Name Representation

( Left parenthesis

) Right parenthesis
Decimal point
Substitution
Relational equality
Greater than

Greater than or equal
Addition

Subtraction
Multiplication
Division

General exponentiation
Comma

Quotes

Type

Finish

~NX1+NVNViH?T:

o
]
°

'ﬂ—iox-vox;wi<cNt—=ut-
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Floating point variables were represented by Yi...In, which means
the subscripted variable Yiii...n, e.g., Y3, Y147, Yl26. The letter C could
be used in place of Y for floating point variables, thus giving the programmer
two mnemonic classes of variables. Fixed point variables were represented
by lll...In, e.g., 13, 1126. These variables were used primarily as indices.
Limited subscripting and mixed mode arithmetic were permitted.

Subroutines were considered operands and represented as
"n E, vl, v2, ..., vi" which means the subroutine number n which is a
function of the variables v1, v2, ..., vj, €.g., "21E, "42E, Y1 + Y2"" would
represent logio(sin(Y1+Y2)) if subroutines 21 and 42 represented the loga-
rithm and sine routines, respectively.

Each statement must be numbered using an integer less than 626 (the
reason for this particular value is unknown to me), but the execution se-
quence is determined by the physical ordering and not by these numbers.

Statement types allowed included assignment; unconditional control
transfers, where the address could be assigned or computed; conditional
transfers involving relations between operands but not expressions (i.e.,
parentheses around all pairs were required), e.g., the statement numbered k

k:GI3IF(YI +Y2) =09

would cause the statement with the identifier value of I3 to be executed if
Y1 + Y2 = 9. But,

k: GIBIFYl +Y2=29

is illegal. Additional statements included a halt, an input statement
(READ), and an output statement of the form

k: TviTv2T v3Tv4

which has the effect of punching out a single card containing the names and
current values of the (up to four) variables. A conditional output statement
was provided.

Loop control was written as

k:j, vl v2, v3, v4

where the range was down through statement j, with the parameter vi
varying from v2 to v4 in increments of v3. A subroutine call was accomplished
by writing

k: "nE, ..."

The compilation technique used involved a right to left scan with no
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hierarchy of operators, except for parentheses. Thus the expression
Y1 X Y2 + Y3 was translated as Y1 x (Y2+Y3).

The greatest difficulty with IT was that each nonalphanumeric character
was represented as a single letter, as shown above. This caused such com-
pletely unreadable programs as

1 READ F
2 Y2 Z OJ F
3 4K 11K 11K M1K 1K F
4 Y2 Z CIT Y1 X Y2 F
5 H FF

which is to evaluate the polynomial

10

par
whose actual reference language version is
1: READ
2: Y2 <« 0
3: 4, 11, 11, -1, 1,
4: Y2 « CI1 + Y1 x Y2
5: H

It has always been my contention that, from the user’s viewpoint, the diffi-
culties of the hardware representation completely outweighed any advan-
tages gained by the fundamental concepts in the language, which were
quite reasonable considering the machine involved and the year in which
the language was developed. On the other hand, IT was an early example
of the implementation of a programming language for scientific problems
on a small machine, and a number of students and scientists at the cited
universities made effective use of it. (Although the developers naturally
claim otherwise, it is not obvious to me that these same users would not
have had equivalent success with the 650 SOAP (Symbolic Optimum Assem-
bly Program).)

The FORTRANSIT system was developed (apparently) to have the
best of both worlds, namely FORTRAN and IT. FORTRANSIT was
merely a very simple subset of FORTRAN which the user could write;
this was translated into IT, which in turn was translated to the SOAP
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assembler on the 650, and then to machine code. The FORTRAN statements
acceptable to FORTRANSIT were

a=b (arithmetic statement)
GO TO n

GO TO (my, ma, ..., m3), i
IF (@) m, nz, n3

PAUSE

STOP

DO ni = m, ma

DO ni = m;, m2, ms3
CONTINUE

READ n, list

PUNCH n, list

DIMENSION V, V, V, ...

Certain restrictions and extensions of FORTRAN were imposed and
permitted (respectively). For example, names could be only five characters
instead of six and there were no built-in functions. On the other hand,
mixed mode expressions were permitted, with a note of caution that they
would be evaluated in floating point and would be incompatible for FOR-
TRAN on the 704.

GAT was a system developed at the University of Michigan by R.
Graham and B. Arden, who described it in [GMO00]. GAT was based
strongly on IT, but it managed to overcome the strongest disadvantage of
the latter by having a 650 which permitted additional characters rather than
just letters and digits. It used a different implementation technique than
IT did, so arithmetic expressions were evaluated normally. Many of these
techniques were used in the development of MAD (see Section 1V.5.2).

Some of the features which were put into GAT and which were not
fundamentally part of IT were the ability to handle alphanumeric strings
of five or less letters by enclosing them within $ delimiters, additional letters
used for fixed and floating point variables, correct mathematical handling
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of arithmetic expressions which were not parenthesized, DIMENSION state-
ment, and use of function calls as operands within an expression.

GAT was also implemented for the 1105 and used at the University
of North Carolina.

Extensions of GAT, called GATE and CORREGATE, were developed.

4. ALGOL 58

Although by now ALGOL 58 is a “language of historical interest only”,
its historical and technical development played such a major role in the
creation of ALGOL 60 that it has been discussed within the general ALGOL
description. See Section 1V.4.1.1.

IV.3 FORTRAN

1V.3.1. HistTory oF FORTRAN DEVELOPMENT

The history of the development of FORTRAN is almost equivalent to,
or certainly parallels, the overall development of programming. It is not
my intention to give a complete description of either; hence this section
will describe only the main highlights of FORTRAN development.

The earliest significant document that seems to exist is one marked
“PRELIMINARY REPORT, Specifications for the IBM Mathematical
FORmula TRANslating System, FORTRAN”, dated November 10, 1954
and issued by the Programming Research Group, Applied Science Division,
of IBM. The first sentence of this report states “The 1BM Mathematical
Formula Translating System or briefly, FORTRAN, will comprise a large
set of programs to enable the IBM 704 to accept a concise formulation of a
problem in terms of a mathematical notation and to produce automatically
a high-speed 704 program for the solution of the problem.” It is interesting
to note that the authors (who are not identified in the document) felt a need
to justify such a development. They devoted several pages to a discussion
of the advantages of such a system. They cited primarily the virtual elimina-
tion of coding and debugging, reduction in elapsed time, doubling of machine
output, and the feasibility of investigating mathematical models.

The first manual for FORTRAN was the reference manual [[B56].
A primer [IB57] was issued later. The first page of the reference manual
listed the working committee as the following people, all of whom worked
for IBM except those designated otherwise: J. W. Backus, R. J. Beeber,
S. Best, R. Goldberg, H. L. Herrick, R. A. Hughes (University of California,
Radiation Laboratory), L. B. Mitchell, R. A. Nelson, R. Nutt (United
Aircraft Corporation), D. Sayre, P. B. Sheridan, H. Stern, and I. Ziller.
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The leader of this effort was John Backus, who thus deserves a major share
of the credit for the initial development of what has become the most widely
used higher level language in the world.

The 704 FORTRAN system was issued early in 1957 by the Program-
ming Research Department of IBM. As far as professional presentation is
concerned, the first paper appears to be the one given at the 1957 Western
Joint Computer Conference by Backus et al. [BS57]. It is interesting to
compare the preliminary specifications of November, 1954 and the finally
issued manual of October, 1956. There is surprisingly little difference,
although some interesting changes occurred. The preliminary specifications
only allowed for names with one or two letters but defined function names
as an alphabetic character followed by two or more characters. Then there
were three significant deletions from the preliminary specifications: (1)
Mixed number expressions were allowed, and these did not reappear until
ALGOL, nor within the FORTRAN family itself except for FORTRANSIT
(see Section IV.2.2.3), and then much later in FORMAC (see Section VII. 3).
(2) The DO statement allowed the range to be explicitly stated as a pair of
statement numbers. (3) The IF statement allowed a comparison between two
variables, rather than merely a test against zero. The list of FORTRAN state-
ments in this first system is given in Fig. IV-4. Note that a considerable
number of these statements are heavily machine dependent; in particular,
those relating to the sense switches, the overflows and divide check, and of
course the references to tape and drum.

Although FORTRAN is considered quite commonplace now, it was
not readily or easily accepted at that time. Customers raised many objections,
foremost among them was that the compiler probably could not turn out
object code as good as their best programmers. A significant selling campaign
to push the advantages of such systems was underway at that time, with the
spearhead being carried for the numerical scientific languages (i.e.,
FORTRAN) by IBM and for the “English-language-like” business data
processing languages by Remington Rand (and Dr. Grace Hopper in
particular).

In June, 1958 a new version of FORTRAN with significant language
additions was released as FORTRAN II for the 704 [IB58]. A summary list
of the FORTRAN II statements is given in Fig. IV-5. From a technical
point of view, the following are the most significant additions of FORTRAN
II to FORTRAN 1I: The subroutine concept exemplified by the
SUBROUTINE, CALL, and RETURN statements and the FUNCTION statement;
the COMMON statement was added to provide communication between
subroutines; the END statement was added to avoid putting an end of file
mark to indicate the end of the program; also, the use of subprograms
permitted the linkage to assembly-coded programs (i.e., SAP).



Statement
a=5

GO TO n
GO TO n, (n1, n2, . . .
ASSIGN i TO n

GO TO (nj1, n2, . .

, Nm)

., Pm), i

IF (@) n1, n2,n3

SENSE LIGHT i
IF (SENSE LIGHT i) nj, n2
IF (SENSE SWITCH i) n1, n2

IF ACCUMULATOR OVERFLOW ni, n2
IF QUOTIENT OVERFLOW nj, n2

IF DIVIDE CHECK nj, n2

PAUSE or PAUSE n
STOP or STOP n

DO ni = m;,m2or DO ni = mj,my, m3
CONTINUE

FORMAT (Specification)
READ n, list

READ INPUT TAPE i, n, list
PUNCH n, list

PRINT n, list

WRITE OUTPUT TAPE i, n, list
READ TAPE i, list

READ DRUM i, j, list
WRITE TAPE i, list

WRITE DRUM i, j, list

END FILE i

REWIND i

BACKSPACE i

DIMENSION v, v, v, . . .

Normal Sequencing
Next executable statement

Statement n

Statement last assigned
Next executable statement
Statement n;

Statement nj;, n2,n3 as o less than, =,
greater than 0
Next executable statement
Statement n1, n2 as Sense Light i ON or OFF
> * as Sense Switch i DOWN

or

or UP

Statement nj, n2 as Accumulator Overflow
trigger ON or OFF

Statement nj, n2 as MQ Overflow trigger ON
or OFF

Statement nj, n2 as Divide Check trigger ON
or OFF

Next executable statement
Terminates program
Next executable statement

i3] 11 L1

Not executed
Next executable statement

» L1 E2]
”» 2 *»
»» ’» EL)
L) i1 ”»

”» 2 i3]

Not executed

EQUIVALENCE (g,b,c, ...), (d.e.f,
FREQUENCY n (ij,...), mikJ,...), . . . » »

) 11 113
s e e .

Figure IV-4. Table of FORTRAN 1 statements for the IBM 704. The
spacing is not significant.

Source: [IB56}, p. 50. Reprinted by permission from The FORTRAN Auto-
matic Coding System for the IBM 704 EDPM. © 1956 by International
Business Machines Corporation.
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FORTRAN systems for the 709 and 650 were officially released late in
1958. In 1960, FORTRANS for the 1620 and 7070 were released, and in
1962 FORTRAN IV was released on the 7030 (STRETCH).! The first
apparent implementation of FORTRAN (using that name) by a manufac-
turer other than IBM was the version of FORTRAN I for the UNIVAC
Solid State 80 which apparently was run as early as January, 1961.2 Later
that year, an augmented version of FORTRAN II was developed for the
Remington Rand LARC by Computer Sciences Corporation.® Although
not using the name FORTRAN, the ALTAC system developed for the
Philco 2000 was an extended FORTRAN II running even earlier, in April,
1960.* By 1963 virtually all manufacturers had either delivered or committed

Input|/Output statements
FORMAT (specification)

a=b READ n, list

READ INPUT TAPE i, n, list

Arithmetic statements (arithmetic
formulas and function .definitions)

Control statements

GO TO n

GO TO n, (n1, n2, . . ., nm)
ASSIGN i TO n

GO TO (ny1, n2, . . ., nm), i

IF (a) n1, n2, n3

SENSE LIGHT i

IF (SENSE LIGHT i) ny, n2

IF (SENSE SWITCH i) n1, n2

IF ACCUMULATOR OVERFLOW nj, n2
IF QUOTIENT OVERFLOW nj, n2
IF DIVIDE CHECK nj, n2

PAUSE or PAUSE n

STOP or STOP n

DO n i=mj, m2 or DO n i=mj, m2, m3

CONTINUE

CALL name (argument list)
RETURN

END (i1, i2, i3, i4, is)

PUNCH n, list

PRINT n, list

WRITE OUTPUT TAPE i, n, list
READ TAPE i, list

READ DRUM i, j, list

WRITE TAPE i, list

WRITE DRUM i, j, list

END FILE i

REWIND i

BACKSPACE i

Specification statements

DIMENSION v, v, v, . . .
EQUIVALENCE (g, b, ¢, . . .),
(d, e f ..., ...

FREQUENCY n(i, j, . . .), mk, I, ...), ...

SUBROUTINE name (argument list)
FUNCTION name (argument list)
COMMON gq, b, ¢, . . .

Figure IV-5. Summary of FORTRAN II statements. The spacing is not

significant.

Source: [IB58], pp. 59-60. Reprinted by permission from FORTRAN II for
the IBM 704 Data Processing System. © 1958 by International Business

Machines Corporation.

! Heising [HE63], p. 85.
2 [CC63], p. 96.
3 [CC63], p. 96.
4 [CC63], p. 96.
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themselves to producing some version of FORTRAN. Oswald [0S64] cites
the existence of 43 FORTRAN compilers and compares 16 of them. Obvi-
ously many more have been written since then.

Because of the widespread use of FORTRAN, several things happened
(understandably due to naivety and lack of foresight with respect to com-
patibility and growth problems). The methods of implementation differed
not only between manufacturers but within the same manufacturer (i.e., the
same features were handled differently even on IBM machines). It is im-
portant to note that the differences being referenced here are those which
have—or at least potentially could have—some effect on the user; the signifi-
cant concern is not the fact that different techniques of implementation
create different types of efficiencies or inefficiencies but merely with the kind
of differences which can happen in the end result. For example, different com-
pilers handled the DO loop quite differently on a drop through the first
time and sometimes even produced different values of the variable at the
end of the execution of the DO loop. This is not very surprising since this
type of specification was never written, or for that matter never intended
to be written, into the language itself. A second effect of the widespread
usage was that many people and groups found themselves wishing for improve-
ments and changes. “The SHARE FORTRAN Commiittee . . . went on record
in March 1961 as favoring a new FORTRAN language which did not con-
tain all of FORTRAN II as a subset.”> A FORTRAN III was developed
by I. Ziller of IBM and used internally; its main characteristics were the
addition of a Boolean algebraic statement, various devices to handle
alphabetic information, an external capability to pass subprograms as argu-
ments, and the inclusion of machine language instructions in line. It should
be emphasized that this latter differs significantly from the ability to call
a subroutine which happens to have been written in an assembly code.
Because of the timing and other considerations, some of these features found
their way as additions to FORTRAN II, others appeared in FORTRAN
IV, and some others never were considered further. (The in-line machine coding
facility was released in one version but later dropped because it was felt
that this would completely ruin attempts at compatibility, and furthermore
the differences between the 704 and the 709 played havoc with that particular
feature.)

A gradual series of improvements or extensions were made to the 709/90
FORTRAN, including the provision of such facilities as double-precision
and complex arithmetic.

In an attempt to stem some of the confusion arising from the multitude of
implementations, IBM issued a General Information Manual on FORTRAN
in 1961 [IB61]. It included a list of the available FORTRAN statements,

5 Allen, Moore, and Rogoway [AX63], p. 46.
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together with an indication of which machines the statements were being
implemented on. This is shown as Fig. IV-6. Several things are worth
noting from that manual: First, an attempt was made to indicate the differ-
ences in facilities provided by the various implementations, of which this
table gives only partial information; secondly, the 1401 version which was
released later is not included (probably the most significant aspect of the
1401 version is the fact that a reasonable version of FORTRAN was actually
put onto such a small machine); a third very interesting fact is that neither
[IB61] nor, for that matter, quite a few other manuals used the phrase
FORTRAN II in their title, even though that is what they actually were. In
other words, FORTRAN II was issued so relatively soon after FORTRAN
I that the distinction rapidly became blurred and to some extent was even
dropped, although it was clear in Program Library references.

During this entire period of time, FORTRAN was becoming more and
more widely used. In some sense, its introduction caused a partial revolution
in the way in which computer installations were run because it became not
only possible but quite practical to have engineers, scientists, and other
people actually programming their own problems without the intermediary
of a professional programmer. Thus the conflict of the open versus closed
shop became a very heated one, often centering around the use of FORTRAN
as the key illustration for both sides. This should not be interpreted as saying
that all people with scientific numerical problems to solve immediately sat
down to learn FORTRAN; this is clearly not true but such a significant
number of them did that it has had a major impact on the entire computer
industry. One of the subsidiary side effects of FORTRAN was the intro-
duction of the FORTRAN Monitor System [IB60]. This made the computer
installation much more efficient by requiring less operator intervention for
the running of the vast number of FORTRAN (as well as machine language)
programs.

As stated earlier, SHARE went on record as favoring an improved
version of FORTRAN; in 1962 a preliminary bulletin was issued to describe
what eventually became known as FORTRAN 1V, which would run under
IBSYS-IBJOB on the IBM 7090/94. A number of significant features were
added to FORTRAN II, including the following: Type statements
(LOGICAL, DOUBLE PRECISION, COMPLEX, REAL, INTEGER, and EXTERNAL),
logical expression as argument of an |F, function and subroutine names
passed as arguments in references to other functions and subprograms, and
DATA and BLOCK DATA. Some of these facilities were available in specific
implementations of FORTRAN II but they only became official parts of
the language in FORTRAN IV. Dropped from FORTRAN II were the
machine dependent statements involving sense lights and switches, overflows,
and the use of the words TAPE and DRUM in connection with the READ and
WRITE statements. The FREQUENCY statement which had been included



COMMON

650

650 FORTRANSIT

1620

705

Basic 7070/7074

7070/7074

704

709/7090

ACCEPT n, list

ACCEPT TAPE n, list

ASSIGN i TO n

BACKSPACE i

CALL NAME (a7, a2, . . ., apn)
COMMON (a7, a2, . . ., ap)
CONTINUE

DIMENSION vy, v2, . . ., vp
DO n i=mj, m2, m3
END (I1, I2, 13, 14, I5)
END FILE i
EQUIVALENCE (o, b, ¢,
FORMAT (s7, s2, . . ., sn)

o), (de f, ...

FREQUENCY n(i, j, - - ‘),nm(k, |

FUNCTION name (a7, a2, . . ., an)
GO TO n

GO TO n, (n1, n2, . . ., Nm)

GO TO (ny, n2, . .. ,nm), i

IF ACCUMULATOR OVERFLOW nj, n2
IF DIVIDE CHECK nj, n2

IF QUOTIENT OVERFLOW nj, n2

IF (a) ni1, n2, n3

IF (SENSE LIGHT i) nj, n2

IF (SENSE SWITCH i) njy, n2

PAUSE n

PRINT n, list

PUNCH n, list

PUNCH TAPE n, list

READ n, list

READ DRUM i, j, list

READ INPUT TAPE i, n, list

READ TAPE i, list

RETURN

REWIND i

SENSE LIGHT i

STOP n

SUBROUTINE name (a7, a2, . . ., an)
TYPE n, list

WRITE DRUM i, j, list

WRITE OUTPUT TAPE i, n, list
WRITE TAPE i list
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. I are not permitted.

I; are optional and may be ignored.
May be included but will be ignored.

. The n is not permitted.
. The n is optional and may be ignored.
. The n is optional and is ignored.

Figure IV-6. List of FORTRAN statements implemented on IBM computers,

circa 1961.

Source: [[B61], p. 65. Reprinted by permission from FORTRAN (General
Information Manual). © 1961 by International Business Machines Corpora-

tion.
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to provide information useful for object time optimization was also dropped.
FORTRAN 1V was definitely not a compatible extension of FORTRAN II.
One of the interesting results of this FORTRAN IV creation was the
development of the SIFT program (discussed in more detail in Section
11.4.2.2).

In May, 1962, the ASA X3.4.3 (=FORTRAN) Committee to develop
an American Standard FORTRAN was formed and eventually produced
two standards, known officially as FORTRAN and Basic FORTRAN,
which correspond roughly to FORTRAN 1V and FORTRAN 1I, respec-
tively. (However, Basic FORTRAN is a proper subset of FORTRAN.) This
will be discussed in more detail in Section 1V.3.2 but it is essential to realize
that FORTRAN—and in fact two of them—have the distinction of being the
first programming languages that were actually standardized through the
normal procedures of the USASI (then called the American Standards Asso-
ciation).

1V.3.2. FuncTiONAL CHARACTERISTICS OF ASA (USASI) FORTRAN
AND Basic FORTRAN

It is actually rather difficult to characterize FORTRANS® according to
the language properties that were discussed in Section II.2. FORTRAN
is not very general, but that is not an entirely accurate statement considering
some of the projects which have been accomplished using FORTRAN.
Similarly, FORTRAN has fairly natural notation for algebraic expressions
but tends toward succinctness in most other aspects. It is fairly consistent
internally but has nothing particular in the language to cause or prevent
great efficiency. It is easy to read and write and easy to learn, but its use is
somewhat error prone. '

The original objective in the first FORTRAN manual is worth quoting,
both for historical interest and because it is still essentially valid today:

The FORTRAN language is intended to be capable of expressing any
problem of numerical computation. In particular, it deals easily with
problems containing large sets of formulae and many variables and it
permits any variable to have up to three independent subscripts.
However, for problems in which machine words have a logical
rather than a numerical meaning it is less satisfactory, and it may fail
entirely to express some such problems. Nevertheless many logical
operations not directly expressible in the FORTRAN language can be
obtained by making use of provisions for incorporating library routines.”

6 It should be clear, in the ensuing text, when FORTRAN is being used in a very
general sense and when it refers specifically to a single language standard.

7 [IB56], pp. 2-3. Reprinted by permission from The FORTRAN Automatic Coding
System for the IBM 704 EDPM (Programmer’s Reference Manual). © 1956 by Inter-
national Business Machines Corporation.
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SAMPLE PROGRAM—FORTRAN

Problem: Construct a subroutine with parameters A and B such that 4 and
B are integers and 2 < A < B. For every odd integer K with 4 << K < B, com-
pute f(K) = (3K + sin (K))¥? if K is a prime, and f(K) = (4K + cos (K))? if K
is not a prime. For each K, print K, the value of f(K), and the word PRIME or
NONPRIME as the case may be.

Assume there exists a subroutine or function PRIME(K) which determines
whether or not K is a prime, and assume that library routines for square root,
sine, and cosine are available.

Program:

SUBROUTINE PROBLEM (A, B)
INTEGER A, B
J = 2%(A/2) + 1
DO 10K = J, 8B, 2
T=K
IF (PRIME(K) .EQ. 1) GO TO 2
E = SQRT (4.%T + COS(T))
WRITE (1, 5) K, E
GO TO 10
2 E = SQRT (3.xT + SIN(T))
WRITE (1, 6) K, E
CONTINUE
FORMAT (l6, F8.2, 4X, 8H NONPRIME)
FORMAT (I6, F8.2, 4X, 5H PRIME)
RETURN
END

—
oo

From the quotation above, it is clear that FORTRAN staked out a
claim to handling problems in numerical computation. It has actually turned
out to be used for a wide variety of other things, as discussed later, but its
primary objective started and remains as the effective solution of numerical
scientific problems. Of the classifications given in Section 1.6, FORTRAN
is definitely procedure-oriented, problem-oriented, and problem-solving;
it is simultaneously a hardware, publication, and reference language; i.e.,
itis defined in a manner which makes it immediately acceptable as a hardware
input language, and there are no other versions. Although not stated any-
where explicitly, it was clearly aimed at helping the nonprogrammer, i.e., the
engineer or scientist. It was designed as a batch system—which is hardly
surprising considering the time at which it was done!

When the first work on FORTRAN was accomplished in 1954ff, there
was no real thought of making the language machine independent. This is
clearly exemplified by the statements shown in Figure IV-4, which include
references to sense lights, sense switches, accumulator, etc. By the time that
FORTRAN IV was developed, however, these machine dependent charac-
teristics were eliminated specifically to help in achieving such an objective.
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With reference to the two standards, the languages are relatively machine
independent. The major exceptions are the actual precision of the arithmetic
which is being done (and which of course depends completely—in the prac-
tical world—on the size of the machine word) and some of the input/output
statements.

The situation is also fairly good relative to compiler independence.
The standard contains rigid rules about some of the normally tricky areas,
e.g., ordering of array elements and special cases with DO loops.

In discussing the question of dialects, we must distinguish between
dialects of the standards and dialects which have existed as a historical tradi-
tion. The former, by definition, should be either eliminated entirely or cer-
tainly minimized since that is definitely the purpose of the standard. For
several reasons the existence of dialects has actually been somewhat less of
a problem than with other languages, most notably ALGOL. First, within
IBM it was possible to control the language specifications and so no dialects
in the sense of language deviations really appeared (although there were
differences based on implementation); secondly, the major reason that other
manufacturers implemented FORTRAN was to permit their customers to
transfer FORTRAN programs originally written for IBM equipment, so of
course the manufacturers would go to great lengths to avoid dialects; thirdly,
dialects would defeat the purpose of the standard; a fourth reason is that
since FORTRAN was designed for direct input on a computer, there have
not been transliteration problems nor any particular reasons to deviate from
that set of specifications. These comments about dialects, however, do not
apply at all when considering extensions. Historically, the greatest deviations
among FORTRAN systems were extensions rather than dialects. As stated
above, other manufacturers were highly motivated to retain the exact IBM
FORTRAN notation for their customers; on the other hand, they were
competitively motivated to provide additional features beyond those avail-
able in IBM compilers. Thus whole classes of particular implementations
added new features of one kind or another and in a few cases FORTRAN
IT was extended to include some of the features of FORTRAN IV but in
a compatible fashion. In some cases, extensions to the standards are being
implemented. Probably the greatest difficulty in obtaining compatibility
stems from implementation of slightly different sets of features; this is a
chronic problem with all languages, although the COBOL standard has been
created in a way which will recognize and define this problem. (See Section
V.5.3.2.) Discussions of some of these issues are given by Heising [HE64a],
McCracken [MR65], Oswald [0S64], and Wright [WR66).

As part of the subsetting characteristics, it should be noted that I have
no first-hand (or even reliable second-hand) knowledge of FORTRAN
being used to bootstrap its own compiler. What has been done in a few cases
was to add some character and string-handling subroutines (coded in
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machine language) to FORTRAN and use these together with FORTRAN
to do some bootstrapping. By defining extensions to FORTRAN, it can
compile itself; but FORTRAN itself does not contain the necessary
character-handling facilities to obtain even moderate efficiency.

Interestingly enough, in spite of the much more rigorous definition of
ALGOL, there seems to have actually been less incompatibility in FOR-
TRAN based on misunderstanding of the language definition. Most of the
incompatibilities in FORTRAN have stemmed from idiosyncracies of
individual compilers. Both FORTRAN standards have been written in
straight narrative prose, without any attempt at formalization.

In a preprint, Rosen [RO61] describes a few of the problems in con-
verting from FORTRAN on the 704 to ALTAC on the Philco 2000. He says
there “To the best of my knowledge this is the first time that a compiler has
assumed the major burden of transition from a large scale computer of one
manufacturer to an even larger scale computer of another manufacturer.”®
I also believe that this is certainly one of the first, if not the first, serious and
practical attempt at doing this. (In December, 1960, two COBOL programs
were run on UNIVAC II and the RCA 501, with only minor changes re-
quired. This was a demonstration, however, rather than a practical attempt
to do this on a large scale. See Section V.3.2 for further discussion of this.)
Rosen describes some of the incompatibilities that actually arose as follows:
Some which were based on idiosyncracies of the 704 FORTRAN compiler,
e.g., handling negative integers; differences among the subroutines, e.g.,
attempting to find the square root of a negative number; permission (or
lack thereof) of entering FORMAT statements at object time; differences
caused by the primary use of on-line card readers and printers in the 704
versus off-line equipment with ALTAC; and larger range of exponents in
the 2000 which affected the E conversion and the FORMAT statements.
More recent work in this area is described by Olsen [OL65]. It seems to me
that a number of these problems still remain, even with the existence of the
standard. Nevertheless, in spite of this, there have undoubtedly been more
FORTRAN programs converted to run from one machine to another than
all other languages put together.

The word SIFT, standing for Share Internal FORTRAN Translator,
has become a somewhat generic term, as indicated in Section I1.4.2. However,
its original usage was the program which would do some translation between
FORTRAN II and FORTRAN IV described in Allen, Moore, and Rogoway
[AX63]. As those authors point out, most of the incompatibilities between
FORTRAN II and FORTRAN IV could be resolved by simple translitera-
tion. There were three areas, however, which required more analysis: The
EQUIVALENCE - COMMON interaction, double-precision and complex arith-

8 Rosen [RO61], p. 2B-2(1).
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metic declarations, and Boolean statements. SIFT was a program primarily
written in FORTRAN which would provide the necessary changes in
a FORTRAN II program to make it work correctly as a FORTRAN IV
program. It apparently worked successfully as a practical tool.

Various attempts have been made to translate FORTRAN to other
languages but the tendency has been more toward the other way; in other
words, because FORTRAN had been so popular and implemented on so
many other machines, there is much more of a need to translate other
languages to FORTRAN than vice versa. In particular, a number of
ALGOL programs have been hand-translated to FORTRAN in order to
test them when no ALGOL compiler was available. The most outstanding
example of translating FORTRAN was to MAD (see Section 1V.5.2),
using a program called MADTRAN. This was done to take advantage of
the fast MAD compiler.

FORTRAN has the distinction of being the first programming language
to be standardized through the normal ASA (now USASI) procedures. For
that reason, it is worth describing in some detail just how this was accom-
plished. The following material is taken intact from the writeup by W. P.
Heising [HE64] which appeared preceding the publication of the proposed
FORTRAN and Basic FORTRAN specifications [CC64].

The American Standards Association (ASA) Sectional Committee X3
for Computers and Information Processing was established in 1960 under
the sponsorship of the Business Equipment Manufacturers Association.
ASA X3 in turn established an X3.4 Sectional Subcommittee to work in
the area of common programming language standards. On May 17, 1962,
X3.4 established by resolution a working group, X3.4.3-FORTRAN to
develop American Standard FORTRAN proposals.

RESOLVED:
That X3.4 form a FORTRAN Working Group, to be known as X3.4.3-
FORTRAN, with the

Scope. To develop proposed standards of FORTRAN language.

Organization. Shall contain a Policy Committee and a Technical
Committee. The Policy Committee will be responsible to X3.4 for the
Working Group’s mission being accomplished. It will determine general
policy, such as language content, and direct the Technical Committee.

Policy Committee Membership. Will be determined by the X3.4
Steering Committee subject to written guidelines which may be amended
later and including the following:

a. For each FORTRAN implementation in active development or
use, one sponsor voting representative and one user voting repre-
sentative are authorized.

b. A representative who is inactive may be dropped.
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c. Associate members, not entitled to vote but entitled to participate
in discussion, are authorized.

Technical Committee. Will develop proposed standards of FOR-
TRAN language under the Policy Committee direction. The Technical
Committee will conduct investigations and make reports to the Policy
Committee.

On June 25, 1962 invitations to an organizational meeting of X3.4.3
were sent to manufacturers and user groups who might be interested in
participating in the development of FORTRAN standards. The first
meeting was held August 13-14, 1962 in New York City. X3.4.3 decided
to proceed because (1) FORTRAN standardization was needed, and
(2) a sufficiently wide representation of interested persons was partici-
pating.

A resolution on objectives was adopted unanimously on August 14,
1962.

“The objective of the X3.4.3 Working Group of ASA is to produce
a document or documents which will define the ASA Standard or Stan-
dards for the FORTRAN language. The resulting standard language will
be clearly and recognizably related to that language, with its variations,
which has been called FORTRAN in the past. The criteria used to con-
sider and evaluate various language elements will include (not in order
of importance):

. Ease of use by humans,

. Compatibility with past FORTRAN use,
. Scope of application,

. Potential for extension,

. Facility of implementation, i.e., compilation and execution effi-
ciency.

“The FORTRAN standard will facilitate machine-to-machine transfer
of programs written in ASA Standard FORTRAN. The Standard will
serve as a reference document both for users who wish to achieve this
objective and for manufacturers whose programming products will make
it possible. The content and method of presentation of the standard will
recognize this purpose.”

It was the consensus of the group that (1) there was a definite
interest in developing a standard corresponding to what is popularly
known as FORTRAN 1V, and (2) there was interest in developing for
small and intermediate computers a FORTRAN standard near the power
of FORTRAN 11, however suitably modified to be compatible with the
associated FORTRAN 1V. Accordingly, two Technical Committees,
designated X3.4.3-1V and X3.4.3-II, respectively, were established to
create drafts. Most of the detailed work in developing drafts has been
done by technical committees.

The X3.4.3-11 Technical Committee completed and approved a draft
in May, 1963. A Technical Fact Finding Committee was appointed and
reported in August, 1964 on a comparison of the X3.4.3-II approved
draft and an approved working draft of the X3.4.3-1V Technical Com-
mittee. This brought to light stylistic, terminological, and content differ-

o Qa0 g W
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ences and conflicts. In April, 1964 the X3.4.3-IV Technical Committee
completed a draft of FORTRAN. In June, 1964 X3.4.3 received and
compared the two drafts and (1) resolved conflicts in content, and
(2) resolved the conflicting style and terminology. This was accomplished
by recasting the X3.4.3-II document to reflect the style of the X3.4.3-1V
document while retaining the original content. To reduce confusion,
X3.4.3 decided to call the languages Basic FORTRAN and FORTRAN.®

The standards were approved March 7, 1966 and became ASA Stan-
dards X3.9-1966 [AA66] (=FORTRAN) and X3.10-1966 [AA66a] (=Basic
FORTRAN). Within a year after approval, significant questions of inter-
pretation had arisen, and so the X3.4.3 Committee had to be reactivated
to deal with them.

An international standard was accepted for most practical purposes
in October, 1965 but its final official approval has been delayed by adminis-
trative problems and errors. It added another subset (based on the ECMA
work) to the two existing levels.

As indicated under the history, FORTRAN was initially designed by
a group of individuals (who were listed earlier), most of whom worked for
IBM; the objectives of the language were also stated earlier. The initial
implementation of the language was done by the people who designed it,
and they also did much of the implementation of FORTRAN II. Since then,
an enormous number of people have become involved, both in and outside
IBM. FORTRANS have been implemented by a large number of different
people in IBM, by most computer manufacturers, and by virtually every
independent software house. The maintenance of the language (prior to the
standard) was done for IBM by various groups and for those outside of
IBM in no central place. As indicated earlier, however, most manufacturers
attempted to follow the IBM specifications.

FORTRAN was initially defined simply through the use of English
prose and examples. When it came time to define the standards, those who
were most heavily involved and had the strongest influence had no interest
in using any type of formalized notation. Thus both standards have been
written in narrative English with formats shown where appropriate. Some
attempts (e.g., Rabinowitz [RN62] and Burkhardt [BU65]) have been made
to provide a formal definition of FORTRAN but these are of necessity
somewhat incomplete. Since here we are defining the characteristics of the
Standard FORTRAN:S, there is only one form of documentation, namely
[AA66] and [AA66a]. Readers who are interested in obtaining a somewhat
better understanding about the documentation of the earlier IBM versions
are referred to Heising’s article [HE63].

Some version of FORTRAN has been made available on virtually every

9 Heising [HE64], p. 590. By permission of Association for Computing Machinery,
Inc.
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computer ever made—see [CC63] for a list in 1963. Fortunately, by now
FORTRAN has been clearly evaluated on the basis of its language facilities
rather than on the basis of its compilers. The obvious advantages to
FORTRAN are its practical effectiveness for solving numerical scientific
problems and its subsequent widespread use with reasonable compatibility
and conversion facilities. Its largest disadvantages stem from attempts to
use it outside of the realm for which it was intended, namely for any type of
alphanumeric data handling. (Even there it has occasionally succeeded—see,
e.g., Fimple [FP64] and Robbins [RM62].) Thus, FORTRAN’s largest
disadvantages actually stem from its popularity; since so many people are
used to it and like to program in it, they would like to use it for everything
and when it does not supply their needs, it is (unjustly) criticized. The biggest
disadvantage to FORTRAN is that it could not truly be extended in any
type of clean way to provide the additional facilities that the state of the
art now permits. Thus, although the original hope, when the development of
(the now-called) PL/I was started, was to extend FORTRAN 1V to provide
the facilities that were needed, this rapidly turned out to be impossible.
In other words, both Basic FORTRAN and FORTRAN suffer from the
fact that they are based on a language developed in 1954 which did not have
all the facilities that were desired 10 years later. What is perhaps most amaz-
ing is that, although it was developed in 1954, FORTRAN (in various forms)
is still quite acceptable and widely used.

History and more recent developments have taught us some of the
mistakes to avoid in the future.

IV.3.3. TecHNICAL FEATURES OF ASA (USASI) Basic FORTRAN

The character set used in Basic FORTRAN (as defined in [AA66a])
consists of the 26 capital letters, the 10 digits, and the following 10 symbols:

+ - % /) (= ., blank

Octal digits are used in the STOP and PAUSE statements.

A data name consists of a letter followed by zero to four alphanumeric
characters. Statement labels consist of from one to four digits. There are no
reserved words so that any string of characters (subject to the definition
above) can be used as a data name. One or two subscripts are allowed on
data names; they are shown in parentheses, separated by commas, e.g.,
X(l, J), and they can be of the form (constant * variable) * constant.
There are no nonnumeric literals permitted except in the FORMAT statement.

The only operators are the five arithmetic ones, where a double asterisk
denotes exponentiation. There are no delimiters. The only punctuation is
a comma, which is simply used to separate lists of items and, of course,
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the parentheses, which are used in specified places. Blanks have no sig-
nificance except in a few special cases. There are no noise words permitted.

The input form is highly card-oriented. The actual standard refers to
the significant unit of a line, which is a string of 72 characters containing
character positions called columns. A statement label can only be placed
in columns 1 to 5. The statement appears in columns 7 to 72. The physical
format permits continuation lines so that a statement can consist of an
initial line optionally followed by up to five ordered continuation lines.
A continuation line is any line that has a character other than zero or blank
in column 6 and does not contain the character C in column 1.

The language is not highly formalized nor is it strongly English-like.

Basic FORTRAN has a number of declarations which are described
later. The smallest executable unit is a single statement. In the sense used
in Section II1.3.1, there are no groups of smallest executable units. Loops
are handled by the DO statement or by the tests in an JF statement.

There are actually four categories of procedures defined in Basic
FORTRAN: Statement, intrinsic, and external functions; and external
subroutines. The first three are normally called functions or function proce-
dures. The statement function is defined internal to the program unit in
which it is referenced and consists of a single statement of the form
F(a;, @2,...,a,) = E where F is the function name, E is an expression,
and the q; are the dummy arguments. This statement function must precede
the first executable statement of the program unit and must follow the
declarations. Aside from the dummy arguments, the expression E can only
contain constants, variables, references to intrinsic functions and previously
defined statement functions, and external functions. Intrinsic functions are
the specific functions of absolute value, float, fix, and transfer of sign. An
external function is defined externally to the program that references it.

Comments are designated by having the letter C in column 1. There is
no interaction with the operating system or the environment specified in
the Basic FORTRAN standard. There is no provision for direct inclusion
of machine language but external procedures can be written in other
languages.

All language units (i.e., declarations and executable units) are assumed
to start with an “initial line” which requires a zero or blank in column 6.
A statement or declaration can have up to five ordered continuation lines.
There is no definitive end of a unit—rather it is determined by recognizing
the beginning of the next unit. There is no type of recursion permitted.
Parameters are called by location. Functions can be embedded into assign-
ment statements but that is the only type of embedding permitted.

Declarations must precede statement function definitions, which must
precede the executable statements. The former must be in the order
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DIMENSION, COMMON, EQUIVALENCE. A complete program consists of
an initial line, any number of statements, and an END line.

There is no provision for recursion in the language. A programming
technique to achieve some of this effect is described by Ayers [AY63].

The only data type permitted is arithmetic, and this can be either
integer or real (i.e., floating point). The type of a variable is determined by
its name; any name beginning with one of the letters I, J, K, L, M, or N,
denotes an INTEGER type; while all others imply type REAL. The executable
commands are able to access only the variables, and it is generally assumed
that these will take up a single machine word.

The only arithmetic done is integer or floating point. Use of real and
integer variables (or constants) in the same expression is not permitted;
thus there is no need for any conversion rules. The standard specifically
disclaims all intent to specify precision or range of numerical quantities;
however, there are some rules indicating sequence of evaluations.

The scope of a data name is the entire program, except that dummy
arguments with names duplicating others can be used in function and
subroutine definitions. There is often a need to use the same variable,
however, in several subroutines or in the main program and a subroutine.
In order to accomplish this, the COMMON declaration is used. This has the
form COMMON a;, aa, ..., a, where each q; is a data name. For each
given COMMON statement, the items on this list are declared to be in
COMMON storage and thus accessible by any part of the program, including
all subroutines.

There is exactly one assignment statement, of the form v=e where v is
a variable name and e is an arithmetic expression. Conversion is automatically
performed if the v and e are of different types; if e is real, the result is trun-
cated to create the necessary integer; while if e is integer, then it is floated.
For example, the statements

=35
A I+ 2

would cause A to be assigned the value 7 in floating point form.

There are no character data-handling statements.

The normal flow of control is to the next physical statement in sequence.
Thus the statement numbers provide labels only and have no inherent
meaning.

The primary unconditional control transfer statement is the GO TO
statement, which can be either unconditional of the form GO TO k, where
k is a statement label, or can be a switch control. The latter is called a com-
puted GO TO statement and is of the form GO TO (k;, k2, . - ., ka), i Where
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k; is a statement name and i is an integer. In this case, it is assumed that j has
been computed independently; and if it has the value j, then control is
unconditionally transferred to k;. Thus, writing J=3 followed by GO TO
(17, 20, 2, 5), J would cause control to be transferred to statement
label 2.

Subroutines are invoked by writing CALL s(a;, a2, ..., a,) or CALL s
where s is the name of a subroutine and the o’s are actual arguments. These
arguments can be variables, names of arrays, a single element in an array,
or an expression. They must agree in order, number, and type with the
corresponding dummy arguments. However, the subroutine can actually
define or redefine one or more of these arguments, so as to return results,
which can have the net effect of destroying the original value that existed
before calling the subroutine. This is essentially the call by location discussed
in Section I11.3.2.3. A subroutine has its logical end marked by a RETURN
statement, which causes control to return to the next executable statement
after the CALL.

The CONTINUE statement only causes continuation of the normal
execution sequence. It is used as the last statement in the range of a DO loop
to permit alternate paths within the range to terminate at the end of the
range.

The only conditional statement is the arithmetic IF, which is of the form
IF (e) ki, ka2, ks where e is an arithmetic expression and the k’s are state-
ment names. Control is transferred to k;, kj, or ks as the value of e is less
than zero, zero, or greater than zero, respectively. For example,

A=35
B=A-7
IF (B) 9, 15, 20

causes control to go to statement 9.

The loop control in Basic FORTRAN is handled by the DO statement
which is of the form DO n i = n;, n2, n3 where the , n; can be omitted
if it is equal to the integer 1. The range of the DO consists of the sequence
of statements physically following the DO, through and including the state-
ment with the label n. There is a single parameter, namely the one designated
as i, which is varied by assigning it first value n; and incrementing by n; after
control reaches statement n. The loop is considered finished only when the
parameter exceeds the value designated by n,. The terminal statement cannot
be a GO TO of any form nor an IF, RETURN, STOP, PAUSE, or DO statement.
It is permitted to leave the range of the DO statement by executing a control
transfer of some kind; in this case the parameter is defined and is equal to
the most recent value obtained. It is not legal, however, to cause control
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to be passed into the range of the DO from outside its range. It is legal to
have a DO statement nested within another DO statement; in fact, they
can have the same range, which then causes the net effect of looping on
several parameters in succession. Overlapping of ranges is not allowed.
For example, the program

DO7 M =29 2
A(M) =M %2
DO 4 J) =1, 100
4 B(J, M) =J+ M
7 CM+1)=3%xM

would cause B(1,2), B(2,2), B(3,2),..., B(100,2), B(1,4), B(24),...,
B(100,4),..., B(1,8), B(2,8), ..., B(100,8) to be assigned the values
3,4,5,...,102, 5,6, ..., 104, ..., 9, 10, ..., 108 respectively. Fur-
thermore, A(2)=4, A(4)=16, A(6)=36, A(8)=64 and C(3)=6, C(5)=12,
C(7)=18, and C(9)=24 would be assigned. It would be illegal to have the
statement numbers 4 and 7 interchanged because then the ranges would be
overlapping.

There are two types of input/output statements: The READ and WRITE
statements, and the auxiliary input/output statements, namely BACKSPACE,
REWIND, and END FILE. The READ and WRITE statements themselves can
involve either formatted or unformatted records. The formatted READ
statement is one of the forms READ (u, f)k or READ (u, f) where k is a list
(defined below). The formatted WRITE has an identical format, except for
using the word WRITE, of course. In both cases, the information is con-
verted as specified by the FORMAT declaration (identified by the label f)
described under declarations. The unformatted READ is one of the forms
READ (u)k, where the k can be omitted. In this case, the next record is read
from the input unit and if there is a list of names, the values read are assigned
to the sequence of elements specified by the list. The unformatted WRITE
must have a list associated with it; otherwise there would be no way of
knowing what information was to be put out. The list specifies names of
variables and array elements and can be a simple list, e.g., a, b, ¢, a simple
list enclosed in parentheses, e.g., (a, b, ¢), a DO implied list, or two lists
separated by a comma. A DO implied list is a list followed by a comma and
then followed by something of the form i = m;, ms, ms; where the m; are
defined the same as in the DO statement; if ms is omitted, it is assumed
to be 1. The range of this DO specification is the set of names preceding it
and the elements are specified for each cycle of the implied DO. Thus
(A, B, | = 1, 3) means A;, B;, Ay, By, As, B

The REWIND statement causes the specified unit to be positioned at its
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initial point; the BACKSPACE causes backspacing to the preceding record
of the specified unit (if it is already positioned at its initial point, the state-
ment has no effect); the END FILE statement causes an end of file record
to be put on the specified unit.

A FORTRAN processor is required to provide two different types of
library functions, called intrinsic and basic external functions. They are
shown in Figs. IV-7 and IV-8, respectively. Each can be used in an arith-
metic expression, where the types must agree. Other than these fixed func-
tions, there is no provision for library references except through the
mechanism of subroutines.

There are no specific debugging or storage-allocating statements in
FORTRAN, although there are some declarations relating to storage. There

Number Type of:
of Symbolic
Intrinsic Function Definition Arguments Name Argument  Function
Absolute value |a] 1 ABS Real Real
1ABS Integer Integer

Float Conversion from integer 1 FLOAT Integer Real

to real
Fix Conversion from real 1 IFIX Real Integer

to integer
Transfer of sign Sign of a, times | a, | 2 SIGN Real Real

ISIGN Integer Integer

Figure IV-7. List of intrinsic functions in Basic FORTRAN.
Source: [AA66a], p. 19.

Number Type of:
of Symbolic
Basic External Function Definition  Arguments  Name Argument  Function
Exponential es 1 EXP Real Real
Natural logarithm log, (a) 1 ALOG Real Real
Trigonometric sine sin (@) 1 SIN Real Real
Trigonometric cosine cos (a) 1 CO’S Real Real
Hyperbolic tangent tanh (a) 1 TANH Real Real
Square root (a)'2 1 SQRT Real Real
Arctangent arctan (a) 1 ATAN Real Real

Figure IV-8. List of basic external functions in Basic FORTRAN.
Source: [AA66a], p. 20.
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are two statements which involve interaction with the operating system.
The first is the STOP statement, which may be followed by an octal digit
string containing from one to four digits; execution of this statement causes
termination of the execution of the program. The second executable state-
ment in this category is the PAUSE, which also can be followed by an octal
digit string; the execution of the PAUSE statement causes the program to
stop temporarily but execution must be resumable; the decision to do this
is not under the control of the program itself but rather under the control
of the operating system or the operator. If execution is resumed without
otherwise changing the state of the processor, then the normal execution
sequence is continued.

There are no data or file descriptions. There is a complicated FORMAT
description which is used in conjunction with the READ and WRITE commands.
This provides information on the form of the data, e.g., use of exponents,
number of decimal places, and number and width of columns.

Storage allocation is partially controlled by the DIMENSION, COMMON,
and EQUIVALENCE statements. The DIMENSION statement is of the form
DIMENSION v(i) or DIMENSION v(i,j) where v is a data name and
i and j are the maximum values that the subscript of that variable can
assume, and any number of variables can be listed, e.g., DIMENSION A(10),
C(5,9), M(2,8). Interestingly enough, the (Basic)c FORTRAN standard
actually specifies the way arrays are to be stored by defining their subscript
values as follows: Assuming dimensions 4 and E, then subscript (x, y) has
the value x + A(y — 1), considering the array as a linear string.

The EQUIV ALENCE statement has the form EQUIVALENCE (k;), (k2), ...,
(k.) where each k; is a list of the form a;, a3, ..., a, where each q;is a data
name. The EQUIVALENCE statement is used to permit sharing of storage by
two or more variables (or arrays). Thus each element in a given list is as-
signed the same part of storage by the compiler. When two variables share
storage because of the EQUIVALENCE statement, the names cannot both
appear in COMMON statements in the same program unit. It is important
to note that the primary difference between EQUIVALENCE and COMMON
is that the former permits several variables to share the same storage loca-
tion, whereas the latter simply makes the designated variables accessible
to all parts of the program.

There are different ways of declaring the four types of procedures
which are permitted. The simplest is the statement function, which is defined
internally to the program unit in which it is referenced. It is defined by a
single statement of the form f(a;, as,...,a,) = e, where f is the function
name, e is an expression, and the ¢; are dummy arguments. Note that since
statement function definitions must precede the first executable statement
in the program, it is logically possible to distinguish this from an ordinary
assignment statement.
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An external function is written as FUNCTION f(ai, a2, ..., a,) Where
f is the name of the function and the q; are dummy arguments. This is then
followed by the code for the procedure, which must contain the function
name as a variable name, and at least one RETURN statement. The value of
the former at the time of execution of any RETURN statement is the value
of the function.

An external subroutine is defined similarly by writing SUBROUTINE
s(a;, @2, ..., a,) or SUBROUTINE s. The name of the subroutine cannot be
used in the body of the subroutine.

Basic FORTRAN does not permit any self-modification of the program
nor any self-extension of the language. There are no specific compiler
directives.

With regard to the ability to write a compiler for FORTRAN (any
level) in FORTRAN (any level), this is utterly impractical to do because
FORTRAN has no facilities for handling parts of words or for doing
character manipulation. However, some people have written subroutine
packages to do these things, and then used FORTRAN for the rest of the
work and for the logic. For example, the SIFT program described earlier
was written primarily in FORTRAN.

FORTRAN is a language which has tended to sacrifice compile time
efficiency in order to obtain object time efficiency. An early illustration of
this (which has long since disappeared) was the FREQUENCY statement that
appeared in FORTRAN I and II; this was dropped in FORTRAN 1V and
in the creation of Basic FORTRAN. This statement required a tremendous
amount of analysis at compile time and it did not yield enough benefits at
object time. FORTRAN has no restrictions on naming of variables and
simultaneously does not have any significant blanks; these facts make com-
pilation quite inefficient in some cases (the former is the more significant
problem). For example, if the compiler encounters something of the form
DO 5 J = 7 it cannot tell whether that is an assignment statement or really
a DO loop; in fact, this is only determined by the presence or absence of
a comma after the number following the equal sign. In spite of this, several
compilers which concentrated on rapid compilation have been written e.g.,
Rosen, Spurgeon, and Donnelly [RO65] and Schantz, et al. [SY67].

"There are no debugging aids or error checking required in the language.

Actually, there has been no opportunity to use Basic FORTRAN
outside its primary application area because it is relatively new. Earlier
versions of FORTRAN (often with special machine language coded sub-
routine packages) have been used, however, for just about anything that
one would care to name, e.g., list processing, polynomial handling, data
processing, and phases of compiler writing. (See, respectively, the work de-
scribed by Weizenbaum [WZ63] and Sakoda [SA65], Fowler and MacMasters
[FH64], Robbins [RM62], Allen, Moore, and Rogoway [AX63].) Thus there
is no doubt about FORTRAN’s versatility, whether forced or inherent, in
the language.
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Comments about the distinction between Basic FORTRAN and
FORTRAN are given in the next section.

1V.3.4. TecunicaL FEATURES OF ASA (USASI) FORTRAN

It should be explicitly understood that all the characteristics and
properties of Basic FORTRAN apply also to FORTRAN unless specifically
stated otherwise. A discussion and summary of the restrictions on Basic
FORTRAN are at the end of this section.

The $ is added to the character set as a currency symbol.

Data names can have six characters and three subscripts instead of
two. Statement labels can have five digits. The first significant addition to
FORTRAN is the set of relational and logical operators as follows:

.LT. Less than

.LE. Less than or equal to
EQ. Equal to

-NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
.OR. Logical disjunction

-AND. Logical conjunction
NOT. Logical negation

Since there are now relational operators, they are used between two
arithmetic expressions to produce the values frue or false for Boolean
(logical) variables. In this case, either arithmetic expression may be of type
real or double-precision, or both arithmetic expressions may be of type
integer. (See the description of new data types below.)

The restriction on the sequence of the declarations which exists in
Basic FORTRAN is removed here.

In addition to the four types of arguments for procedures permitted
in Basic FORTRAN, one can also use the name of an external procedure
and a Hollerith constant; the latter is an exception to the rule requiring
agreement of type. If an actual argument is an external function or sub-
routine name, the corresponding dummy argument must be used as an ex-
ternal function or subroutine name, respectively.

The most significant additions to Basic FORTRAN are in the area
of data variables and the arithmetic performed upon them. Boolean (logical),
complex, and Hollerith (i.e., alphanumeric) variables are permitted in
FORTRAN. As a result, complex and Boolean arithmetic are performed.
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In addition, “double-precision” floating point variables and constants are
permitted; hence double-precision arithmetic is done. However, this is not
required to be twice the precision of floating point but merely greater.
There is no relaxation on the rules of not permitting integers and real vari-
ables in the same expression. However, real numbers can be combined with
double-precision or complex numbers, with either of the latter resulting.

Boolean arithmetic is done in the normal manner by using the operators
OR, AND, and NOT, resulting in a logical variable.

More flexibility on scope of variables is permitted since it is possible
in a COMMON statement to have a block name assigned to a set of variables
which are to be in a COMMON block. This block name is defined locally
only for the variables it is associated with and has no meaning other than
that. Hence the same block name can appear more than once in a COMMON
statement.

In FORTRAN there are now three types of assignment statements:
arithmetic, logical, and go to. The first is the same as in Basic FORTRAN,
except that more complicated conversion rules for the results are required;
these are shown in Fig. IV-9. The logical assignment statement is of the
form v=e, where v is a logical variable and e is a logical expression; the
right-hand side is evaluated and its value assigned to the logical variable v.
The go to assignment statement is of the form ASSIGN k TO i, where
k is a statement name and i is an integer variable name. The net effect of
this statement occurs only for subsequent execution of any assigned
go to statement (which is a new and additional type of control transfer
added in FORTRAN). An assigned go to statement is of the form
GO TO i, (ki, k2, ..., k,) where i is a variable of type integer and the k;
are statement labels. The effect of this is to cause the transfer of control to
that variable k; which has the exact value that has been assigned to i. Thus
if we wrote ASSIGN 17 TO M and then somewhat later executed GO TO M,
(15, 902, 17, 21), there would be an unconditional transfer to statement 17.

A logical IF statement has been added and it is of the form IF(e)s where
e is a logical expression and s is any executable statement except a DO
statement or another logical IF statement. If the value of e is zrue, then s is
executed; if e is false, then s is executed as if it were a CONTINUE statement.

Further flexibility on transfers back into a DO nest are permitted in
FORTRAN. For details, see Section 7.1.2.8 of the FORTRAN standard
[AA66].

There are more functions provided in the library.

One of the primary additions to FORTRAN is the type statements,
which are of the form tv;, va, ..., v, Where t is one of the following:
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL and each
v is the name of a variable, an array, a function, or an array declaration.
Most significant of all, type statements can be used to override the implicit
typing (i.e., variables beginning with the letters I, J, K, L, M, or N are
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If v Type Is And e Type Is The Assignment Rule Is
Integer Integer Assign
Integer Real Fix & assign
Integer Double precision Fix & assign
Integer Complex P
Real Integer Float & assign
Real Real Assign
Real Double precision DP evaluate & real assign
Real Complex P
Double precision Integer DP float & assign
Double precision Real DP evaluate & assign
Double precision Double precision Assign
Double precision Complex P
Complex Integer P
Complex Real P
Complex Double precision P
Complex Complex Assign

1.

P means prohibited combination.

2. Assign means transmit the resulting value, without change, to the entity.

3.

~N N

Real Assign means transmit to the entity as much precision of the most significant
part of the resulting value as a real datum can contain.

. DP Evaluate means evaluate the expression according to the rules of 6.1 (or any

more precise rules) then DP Float.

. Fix means truncate any fractional part of the result and transform that value to

the form of an integer datum.

. Float means transform the value to the form of a real datum.
. DP Float means transform the value to the form of a double precision datum,

retaining in the process as much of the precision of the value as a double precision
datum can contain.

Figure IV-9. Rules for assignment of e to vin FORTRAN.
Source: [AA66], p. 13.

integers, while the others are real). The array declaration is of the form
v(i), where (i) itself represents the subscript and can be composed of one,
two, or three expressions. Thus the type statement can also include the
DIMENSION information, e.g., LOGICAL | (3, 5). The DIMENSION statement
(or the equivalent information which can appear in a type statement or in
a COMMON statement) is more flexible. An array with an integer variable
name can appear in a subroutine; the variable names are called adjustable
dimensions. The dummy argument list of the subroutine must contain these
two items. Values of the actual dimensions must be defined prior to calling
the subroutine and cannot be redefined during the execution of the sub-
routine.
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The COMMON statement permits the naming of different blocks and
is of the form COMMON/x;/a;/. . ./x,/a, Where each x; is a symbolic name
or empty and each q; is a nonempty list of variable names, array names, or
array declarations.

An EXTERNAL statement is of the form EXTERNAL v;, va, ..., v, Where
each v; is an EXTERNAL procedure name. The basic purpose of an EXTERNAL
procedure is to write in languages other than that of the standard. If an
EXTERNAL procedure name is used as an argument to another EXTERNAL
procedure, it must appear in an EXTERNAL statement program unit in which
it is so used.

A FUNCTION declaration is of the form + FUNCTION f (a;, a2, ..., a,)
where t is one of the type declarations. ‘

A data initialization statement has been provided and is of the form
DATA k;/di/, k2/d2/, ..., k./d, where each k; is a list containing data
names and each d; is a list of constants, any of which may be preceded by
i*, where | is an integer constant and means that the constant is to be
specified j times. The purpose of the data initialization statement is to define
initial values of variables or array elements. There must be a one-to-one
correspondence between the list of specified items and the constants,

A statement of the form BLOCK DATA can appear as the first statement
of subroutines that are called block data subroutines and that are used to
enter initial values into elements of labeled common blocks. This special
subroutine contains only type statements and EQUIVALENCE, DATA,
DIMENSION, and COMMON statements. If any entity of a given common
block is being given an initial value in such a subroutine, a complete set of
specification statements for the entire block must be included, even though
some of the elements of the block do not appear in DATA statements. Initial
values may be entered into more than one block in a single subroutine.

The following list is taken directly from Appendix C of USA Standard
FORTRAN [AA66];'° it summarizes the principal differences between the
two Standards:

USA Standard Basic FORTRAN (as compared to USA Standard
FORTRAN) has:

1. A maximum of five continuation cards (instead of 19 continua-
tion cards).

2. A maximum of five characters in a symbolic name (rather than
six).

3. Neither logical type, logical nor relational expressions, logical
IF statement, nor “L” format descriptor.

4. No “$” in its character set.

5. Neither complex type, double precision type, type-statement,

10 USA Standard FORTRAN [AAG66], p. 35.
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double precision and complex constants and expressions, nor
“D” and “G” format descriptors.

6. No EXTERNAL statement.
. No 3-dimensional arrays, subscripts.

8. A prohibition on FUNCTION subprograms, in that they may
not define nor redefine any of their arguments nor any entity
in common.

9. No array declarator permitted in a COMMON statement.

10. No labeled common blocks.

11. No ASSIGN nor assigned GO TO statements.

12. No DATA statement nor BLOCK DATA programs.

13. A maximum of four (rather than five) octal digits in the PAUSE
statement.

14. No print carriage control for formatted output records.

15. No Hollerith datum nor the “A” format descriptor and therefore
no FORMAT can be read in during execution.

16. No provisions in a FORMAT statement for (a) scale factor,
(b) data exponent on input for “F” descriptor, (c) second level
parentheses.

17. A restriction on external functions that they may not alter
variables in common or variables associated with common via
an EQUIVALENCE statement.

18. A requirement that all DIMENSION statements must precede
all COMMON statements, which must in turn precede all
EQUIVALENCE statements.

19. A statement label may contain only 4 digits rather than 5.

~

1V.3.5. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY

FORTRAN has probably had more significant impact on computing
than any other single development. However, the most significant con-
tribution made by FORTRAN is its usage rather than its technology.
Because it was designed so early, better ways have been found to do almost
everything that is currently in FORTRAN. Lest this be considered too
cynical an attitude, the most important technological contributions seem
to be (1) the development of a language which could be used on available
hardware, (2) the use of EQUIVALENCE statements to give the programmer
some control over storage allocation, (3) the nondependence on blanks
(which might also be considered a hindrance), and finally (4) the relative
ease of learning the language and its palatability to a large group of people.
In addition to these, considerable thought was given to the possibilities of
compiler optimization of object code, and the language design showed it.
For example, the inclusion of the FREQUENCY statement to facilitate flow
analysis, the fixed limitation on the number of subscripts, and the various
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concerns with storage allocation all contributed to potential compiler
efficiency. The fact that the first two of these examples became unimportant
is not a reflection on the value of the initial technological contribution.

1V.3.6. SIGNIFICANT EXTENSIONS OF FORTRAN

Because FORTRAN is the most widely used language, it is not sur-
prising that people have extended it for use in areas other than that for
which it was originally intended. Some of these extensions are minor in
concept and character, while others are far-reaching in both practical usage
and implication. It should be emphasized that what is being considered here
are specific extensions of the language and not of facilities which can be
handled through the use of subroutines (which included things as different
as character handling, list processing, recursion, and packages for doing
data processing. Specific citations for these were given in Section 1V.3.3).

The only items being included here are actual language extensions to
FORTRAN. There are surprisingly few of these, primarily because most
of the additions were made as subroutine packages. In some of these cases
the extensions were implemented by writing a preprocessor to translate the
additional statements to FORTRAN (e.g., proposal writing language and
FORMAC); while in other cases new translators have been written (e.g.,
QUIKTRAN).

1. Proposal Writing Language

A rather unusual extension to FORTRAN is the proposal writing
language developed by Carleton, Lego, and Suarez [CT64). They have added
the 12 statements shown in Fig. IV-10 to FORTRAN II as it existed for
the IBM 704 in 1959. All FORTRAN statements are used, except for the
STOP which is modified somewhat to control the termination of the proposal
writing process. The system is implemented by a preprocessor which con-
verts all new statements to CALLs to appropriate subroutines.

Many of the statements are self-explanatory, in particular LEFT MARGIN,
RIGHT MARGIN, TABULATE, SINGLE SPACE, DOUBLE SPACE, RESTORE PAPER,
and END PARAGRAPH. The meanings of the others are as follows:

ALPHABETIC INPUT causes the computer to read from card format,
searching for as many alphabetic variables as are named in the list.
The m characters of Hollerith information is interpreted by having the
characters within the set of parentheses inserted into the text immediately
following the material previously prepared for printing. A similar result
occurs when using ALPHABETIC INSERT, except that in this case the state-
ment provides the names of variables whose values are inserted into the
text. The NUMERIC INSERT causes the insertion of the value of the
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ALPHABETIC INPUT list of olphabetic variable names

RIGHT MARGIN m

LEFT MARGIN m

TABULATE m

SINGLE SPACE

DOUBLE SPACE

RESTORE PAPER

ALPHABETIC INSERT alphabetic variable

(m characters of Hollerith information)

NUMERIC INSERT FORTRAN variable, constant or expression,
Conversion type, n FIGURES, COLUMN m

PARAGRAPH n, list of variables

END PARAGRAPH

PREPARE PARAGRAPH n, list of arguments

STOP

Figure IV-10. List of statements in Proposal Writing Language.
Source: Extracts from Carleton, Lego, and Suarez [CT64].

FORTRAN variable, constant, or expression into the current line of the
proposal. The numbers can be converted to integers or to the FORTRAN E
type floating point format. The optional clause n FIGURES specifies the
number of digits desired to the right of the decimal point and the COLUMN
can be used to line up a decimal point under previous numbers.

The PARAGRAPH statement allows the user to define a subprogram;
the latter is generally used to produce a single paragraph of text describing
individual items such as motors. The n is simply the identification number
for the subprogram, and the list of variables provides the parameters.
However, information cannot be passed back to the main program from a
paragraph subprogram.

The PREPARE PARAGRAPH serves to invoke the subprogram and add its
text to the body of the proposal, with the appropriate substitutions made
for the parameters.

The STOP statement initiates a completion phase of the proposal writing
system.

A simple illustration of a program written in this language is given in
Fig. IV-11.

2. FORMAC (cross-reference only)

A significant extension of FORTRAN to do formal algebraic man-
ipulation on the computer is FORMAC.It is described in detail in Section
VIL3.
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ALPHABETIC INPUT DESCPT, INPUT3, BETA

RIGHT MARGIN 72

LEFT MARGIN 15

TABULATE 40

SINGLE SPACE

DOUBLE SPACE

RESTORE PAPER

(DC, SERIES WOUND)

ALPHABETIC INSERT DESCPT

NUMERIC INSERT HP, DECIMAL, 2 FIGURES, COLUMN 14
PARAGRAPH 7, ID, COMNT, XC

END PARAGRAPH

PREPARE PARAGRAPH 7, ITEMNO+1, DESCPT, X+Y
STOP

Figure IV-11. Program in Proposal Writing Language.
Source: Carleton, Lego, and Suarez [CT64], p. 460.

3. QUIKTRAN (cross-reference only)

An on-line version of FORTRAN was developed, initially for the
IBM 7040. The primary extensions were in the area of the control functions
for the time-sharing system and debugging facilities for the user. The overall
features of the system and the debugging facilities are described in Section
1v.6.3.

4. GRAF (cross-reference only)

An extension of FORTRAN to handle graphics is defined in GRAF.
A new data type called a display variable is added, and various commands
and declarations are defined which apply to this. GRAF is described in
Chapter 1X.3.3.1.

5. DSL/90 (cross-reference only)
An extension of FORTRAN to simulate block diagrams is defined in
DSL/90. See Section 1X.2.4.5.

IV.4. ALGOL

IV.4.1. HisTORY
1. ALGOL 58

There are two major nontechnical firsts contributed to the computing
community by ALGOL: (1) It was the first major language to be designed
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by a committee of people from different organizations, and (2) this committee
was in fact international. (The PACT system was designed by an intercom-
pany committee, but it is not considered either major or up to the level of
the programming languages in this book. References are given in Chapter 1.)

The following is a description of the creation of what was originally
called IAL (International Algebraic Language) and subsequently became
known as ALGOL 58 (ALGOrithmic Language). It is quoted directly from
the report by Perlis and Samelson [PR58].!! Although this report was defined
as preliminary and the committee anticipated preparing a more complete
description of the language for publication, they never did (until the ALGOL
60 report). However, the ALGOL 58 (nee IAL) report spawned a number
of significant languages and implementation technique developments.

In 1955, as a result of the Darmstadt meeting on electronic com-
puters, the GAMM (association for applied mathematics and mechanics),
Germany, set up a committee on programming (Programmierungsaus-
schuss). Later a subcommittee began to work on formula translation and
on the construction of a translator, and a considerable amount of work
was done in this direction.

A conference attended by representatives of the USE, SHARE, and
DUO organizations and the Association for Computing Machinery
(ACM) was held in Los Angeles on 9 and 10 May 1957 for the purpose
of examining ways and means for facilitating exchange of all types of
computing information. Among other things, these conferees felt that a
single universal computer language would be very desirable. Indeed, the
successful exchange of programs within various organizations such as
USE and SHARE had proved to be very valuable to computer instal-
lations. They accordingly recommended that the ACM appoint a com-
mittee to study and recommend action toward a universal programming
language.

By Oct 1957 the GAMM group, aware of the existence of many
programming languages, concluded that rather than present still another
formula language, an effort should be made toward unification. Conse-
quently, on 19 Oct 1957, a letter was written to Prof. John W. Carr III,
president of the ACM. The letter suggested that a joint conference of
representatives of the GAMM and ACM be held in order to fix upon a
common formula language in the form of a recommendation.

An ACM Ad-Hoc committee was then established by Dr. Carr, which
represented computer users, computer manufacturers, and universities.
This committee held three meetings starting on 24 Jan 1958 and discussed
many technical details of programming language. The language that
evolved from these meetings was oriented more towards problem language
than toward computer language and was based on several existing pro-
gramming systems. On 18 April 1958 the committee appointed a sub-
committee to prepare a report giving the technical specifications of a
proposed language.

A comparison of the ACM committee proposal with a similar pro-
posal prepared by the GAMM group (presented at the above-mentioned

11 Perlis and Samelson [PR58], pp. 8-9. By permission of Association for Computing
Machinery, Inc.
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ACM Ad-Hoc committee meeting of 18 April 1958) indicated many
common features. Indeed, the GAMM group had planned on its own
initiative to use English words wherever needed. The GAMM proposal
represented a great deal of work in its planning and the proposed language
was expected to find wide acceptance. On the other hand the ACM
proposal was based on experience with several successful, working
problem oriented languages.

Both the GAMM and ACM committees felt that because of the
similarities of their proposals there was an excellent opportunity for
arriving at a unified language. They felt that a joint working session
would be very profitable and accordingly arranged for a conference
in Switzerland to be attended by four members from the GAMM group
and four members from the ACM committee. The meeting was held in
Zurich, Switzerland, from 27 May to 2 June 1958 and attended by
F. L. Bauer, H. Bottenbruch, H. Rutishauser, and K. Samelson from
the GAMM committee and by J. W. Backus, C. Katz, A.J. Perlis, and
J. H. Wegstein for the ACM Committee.

It was agreed that the contents of the two proposals should form the
agenda of the meeting, and the following objectives were agreed upon:

I. The new language should be as close as possible to standard
mathematical notation and be readable with little further
explanation.

11. It should be possible to use it for the description of computing
processing in publications.

IIl. The new language should be mechanically translatable into
machine programs.

Although not stated explicitly in the report, it was intended by the
designers that the language should be a standard. The publication of the IAL
report created a significant stir in the computing community. A number of
groups in Europe started to implement it and found a number of omissions,
ambiguities, etc. A few implementations were started in the United States
but only one really became successful and widely used—namely the Bur-
roughs version for the 220, known as BALGOL [QG61]. (See comments on
usage in Forest [FS61].) A large series of dialects and derivatives began to
spring up, e.g., CLIP, JOVIAL, MAD, and NELIAC; these are discussed
in other sections. Springer-Verlag (a publishing firm) announced a plan to
publish a series of books on numerical computation in which all the algo-
rithms would be written in ALGOL. (However, they did not release any-
thing until the fall of 1967, and that volume dealt only with the definition and
translation of ALGOL 60.) SHARE announced support of IAL (ALGOL)
and formed a working committee.

Articles and correspondence by individuals and committees appeared,
indicating areas of difficulty. See, e.g., Green [GT59), Kanner [KF59], Irons
and Acton [IR59], and the SHARE committee report [CC59]. In March,
1959 the first issue of the ALGOL Bulletin was issued at Regnecentralen,
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Copenhagen, with Peter Naur as the editor. The impetus for this bulletin
came from a meeting held in Copenhagen in November, 1958, where about
forty interested people from several European countries held an informal
meeting to discuss implementation. A group was formed to implement
ALGOL for several machines, with agreement to be reached on everything
down to and including the paper tape code used; this later became known
as the ALCOR (ALgol COnverteR) group. The ALGOL Bulletin was ini-
tially used for communication primarily by Europeans, while Americans
sent their comments to the ACM Communications for publication. This
bulletin continues, although it stopped for 2 years after Naur’s resignation;
it was revived in 1964 by IFIP with Fraser Duncan as editor. The ALGOL
Bulletin serves as a very effective means of communication among people
strongly interested in ALGOL.

Among the more intriguing technical features of ALGOL 58 were its
essential simplicity; the introduction of the concept of three levels of lan-
guage, namely a reference language, a publication language, and hardware
representations; the begin . .. end delimiters for creating a single (com-
pound) statement from simpler ones; the flexibility of the procedure
declaration and the do statement for copying procedures with data name
replacement allowed; and the provision for empty parameter positions in
procedure declarations. While ALGOL 58 is not an exact subset of ALGOL
60, the only items of significance which are in the former but not the latter
are the do which was removed as a concept (although the word was used
for something else) and the empty parameter positions. Because of this major
carry-over, specific technical description of ALGOL 58 is not necessary.

The avowed purpose of ALGOL 58 was “to describe computational
processes”. For this reason, there were no input/output facilities provided,
and this situation was not remedied in the ALGOL 60 report.

2. ALGOL 60

At the UNESCO sponsored International Conference on Information
Processing held in Paris in June, 1959, several noteworthy events occurred.
There was an open discussion of the weaknesses of ALGOL, and the now
famous paper by John Backus [BS60] appeared. This paper presented a formal
method of defining syntax—Ilater referred to as Backus Normal Form (BNF)—
and gave the proposed definition for ALGOL, using this technique. Although
the paper created some excitement, its full significance for language definition
and interface point with computational linguistics became obvious only later.
That paper marked the beginning of a more rigorous approach to program-
ming languages and is one of the major landmarks in the field.

It was agreed that there should be an international meeting in January,
1960 for improving the language and preparing a final report. At a European
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ALGOL conference in Paris in November, 1959, the following people were
selected to attend the January, 1960 conference: F. L. Bauer, P. Naur, H.
Rutishauser, K. Samelson, B. Vauquois, A. van Wijngaarden, and M.
Woodger. They represented the following organizations: Association
Francaise de Calcul, British Computer Society, Gesellschaft fiir Angewandte
Mathematik und Mechanik, and Nederlands Rekenmachine Genootschap.
The seven individuals held a final preparatory meeting at Mainz in December,
1959.

In the United States, the ACM Committee on Programming Languages
met in November, 1959 to consider all the comments on ALGOL which
had been sent to the ACM Communications. See for example the items cited
earlier and those given in [CC6la). The following representatives were
selected to attend the January, 1960 conference and they held a final pre-
paratory meeting in Boston in December, 1959: J. W. Backus, J. Green,
C. Katz, J. McCarthy, A. J. Perlis, J. H. Wegstein, and W. Turanski (killed
just prior to the January, 1960 conference).

The 13 representatives from Denmark, England, France, Germany,
Holland, Switzerland, and the United States met in Paris from January 11 to
16, 1960. Prior to that meeting, P. Naur had prepared a completely new
draft report from (1) the preliminary report, (2) recommendations, and (3)
Backus’ notation. The committee strove for agreement on each item of the
draft report, and the “Report on the Algorithmic Language ALGOL 60~
[NA60] “represents the union of the Committee’s concepts and the inter-
section of its agreements.”'?

Thus, IAL became ALGOL, which became ALGOL 58, and eventually
disappeared into ALGOL 60, which was a substantial improvement over
ALGOL 58, although still retaining much of the flavor of the original version.

In February, 1960 an “Algorithms” section appeared in the ACM
Communications. For a few months the ALGOL 58 language was used, but
from the time of the issuance of the ALGOL 60 report that language was
used. Although FORTRAN has been much more widely used in the United
States than ALGOL, it was not until September, 1966 that algorithms written
in FORTRAN were considered acceptable for publication in this section.
(By the end of 1967 no FORTRAN algorithms had been published.) The
section itself has proved to be a useful catalog of a number of procedures
and techniques, many of which have been tried on computers and certified
as being correct (or had the errors indicated). In 1966 the ACM collected
them and issued a notebook [AC66] which is updated periodically. It is inter-
esting to note that in many cases the only practical method of computer
checking available was to write a FORTRAN program to correspond to the
ALGOL algorithm and check that; this situation occurred (and still does)

12 Naur [NA60], p. 299.
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because relatively few installations in the United States have ALGOL
compilers.

3. Revised ALGOL 60

During the early part of 1960, an informal working group on ALGOL
existed in the United States primarily for the purpose of discussing imple-
mentation techniques. This group was greatly enlarged and organized itself
as an ACM ALGOL Maintenance Group. This committee contained about
60 members from 28 organizations and concerned itself with interpretation
and the philosophical (and technical) issues of changes to the ALGOL 60
report. Most of its work was done by mail, and the results were also com-
municated through the ALGOL Bulletin.

At the same time, considerable work on implementation was being done
in Europe. This served to highlight ambiguities and develop new implementa-
tion techniques. Few compilers attempted to implement the entire language;
in fact, the battle as to who had implemented more, or at least more efficiently,
became a favorite game of ALGOLers.

In January, 1962 a rather detailed questionnaire was included in ALGOL
Bulletin No. 14. Its purpose was to solicit opinions on a number of technical
ambiguities and also on the philosophy of specific proposed extensions and
subsets.

On April 2 to 3, 1962, the following authors of the ALGOL 60 report
were present at a meeting in Rome: F. L. Bauer, J. Green, C. Katz, R. Kogon
(representing J. W. Backus), P. Naur, K. Samelson, J. H. Wegstein, A. van
Wijngaarden, and M. Woodger. Also present were W. L. van der Poel (as
an observer) and the following people as advisors: R. Franciotti, P. Z.
Ingerman, P. Landin, M. Paul, G. Seegmiiller, and R. E. Utman. The
purpose of the meeting was to correct known errors, attempt to eliminate
apparent ambiguities, and to provide other needed clarification of the ALGOL
60 report. There was no consideration of extensions. The results of the ques-
tionnaire in ALGOL Bulletin No. 14 were used as a guide.

There were two main results from this meeting: First, the issuance of
“Revised Report on the Algorithmic Language ALGOL 60” (Naur [NA63])
and, secondly, the transferal by the authors of any collective responsibility
they might have had with respect to the development, specification, and
refinement of the ALGOL language to the IFIP Working Group on ALGOL
(WG 2.1). The revised (i.e., Rome) report was reviewed by IFIP TC 2
(Technical Committee on Programming Languages) in August, 1962 and was
approved by the IFIP Council. The (Rome) report itself completely incor-
porated the ALGOL 60 Report, with only an editor’s footnote to indicate
the places in which the new report differed from the 1960 one. In addition,
the Rome report contained a brief description of the April, 1962 conference
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(edited by M. Woodger), indicating that there were still five areas which re-
quired further study.

The ALGOL Bulletin continues to be used for discussions of ALGOL
60 (revised), although the attention of WG 2.1 has been devoted more
toward various extensions of ALGOL.

4. ALGOL 6X

For years the ALGOL community has heard about the possibility of a
new version of ALGOL, presumably to be issued during the 1960’s and
hence known as ALGOL 6X. In the spring of 1968, a draft report describ-
ing ALGOL 68 (van Wijngaarden [VW68]) was issued. Its short and long
range fate are unknown.

1V.4.2. FUNCTIONAL CHARACTERISTICS OF REVISED ALGOL 60—
PRrROPOSED ISO STANDARD

ALGOL is a moderately general language with as much succinctness
and similarity with mathematics as is reasonable. It is internally consistent
and has a general “cleanliness.” It is easy to read and write (except for some
of the very subtle points). It is easy to learn and is not particularly error
prone.

SAMPLE PROGRAM—ALGOL 60

Problem: Construct a subroutine with parameters A and B such that 4 and
B are integers and 2 < A < B. For every odd integer K with 4 << K < B, compute
f(K) = (3K + sin (K))'? if K is a prime, and f(K) = (4K + cos (K))2 if K is
not a prime. For each K, print K, the value of f(K), and the word PRIME or
NONPRIME as the case may be.

Assume there exists a subroutine or function PRIME (K) which determines
whether or not K is a prime, and assume that library routines for square root,
sine, and cosine are available.

Program:
procedure problem (q, b);
value ¢, b; integer aq, b, k;
begin integer k: real e;
for k:=2 X (a/2) + 1 step 2 until b do
begin
e:= if prime (k) then sqrt(3 X k + sin(k))
else sqrt(4 X k + cos(k));
if prime (k) then putlist(k, e, ' prime’)
else putlist(k, e, 'nonprime’)
end
end
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The stated purpose of the language is to describe computational pro-
cesses. It has also turned out to be very useful for teaching an introduction
to the concepts of computational processes. It is definitely a problem-solving
language and uses the concept of all three language types: Publication,
reference, and hardware. In fact ALGOL was the first language to introduce
this trichotomy and the only one in this book to use these distinctions. Since
the primary objective of the language is to state algorithms, somewhat less
attention was paid to the definition of the proposed user; any person with
a computational process to describe who wishes a computer-oriented higher
level language can use ALGOL with varying degrees of effectiveness. It is
definitely designed for use in a batch environment.

ALGOL provides a significant amount of compatibility through the use
of its reference language. Conversions to a particular machine tend to be
completely incompatible because of differences in the hardware representa-
tion. There is also a problem about arithmetic precision because no specifica-
tions are given relative to the amount to be carried in any computation, and
there is no provision for double-precision arithmetic. Like any other higher
level language, ALGOL is compiler dependent for those areas in which the
language specifications are somewhat unclear and also for those areas in
which the result is left undefined in the language specifications. However,
the user should only employ these at his own risk.

ALGOL has probably spawned more major outgrowths and fewer
major dialects than any other language. This is partly because some of the
“dialect deviations” really show up in the hardware representation and
partly because of the historical development described earlier. There were
several significant outgrowths from ALGOL 58 (primarily MAD, NELIAC,
and JOVIAL which are described elsewhere). It is my firm contention that
these are not dialects of ALGOL in any reasonable meaning of the word.
They were motivated by ALGOL 58 but differ so markedly from it (and of
course from ALGOL 60) that they should not be called dialects any more
than PL/I is a dialect of ALGOL 60. There has been amazingly little of the
minor kind of dialect, and the dialects have been caused almost entirely
because of the problem of hardware representation.

It is in the area of subsetting prior to the existence of the proposed
standard that the major differences exist. Virtually no two implementations
handled the same subset of the language. The criterion for excluding features
usually was based on machine limitations or compiler design, which makes
certain features hard to handle, or the desire for great efficiency of either
object code or compilation time. The varying subsets in general were not
nested. The major features that have been omitted from a significant number
of compilers are recursive procedures, integer labels, and own variables.
These subsets also have extensions for input/output, most differing from
each other.
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The four major subsets which have been defined over a period of time are
SMALGOL, the ALCOR, IFIP, and ECMA subsets. These are defined,
respectively, in [CC61b], [CC63a, CC64d], [CC64c], and [CC63b]. There are
three subsets defined in the ISO standard: Levels 1 and 2 are the ECMA
subsets with and without recursion, respectively, while level 3 is the IFIP
subset. Each subset is wholly contained within the one of next higher num-
ber.

Some early ALGOL compilers have been partially bootstrapped, but
it would be logically impossible to do this completely because of the lack of
input/output facilities in the language. In some cases, procedures for character
handling and input/output were coded in machine language and these were
used with ALGOL to accomplish bootstrapping.

Because of the essential simplicity of ALGOL, and more importantly
because of the formalism of the syntactic definitions, there has been less of
a problem of compatibility based on incomplete language definition than
in some other languages. This does not mean that the language interpretation
problem is nonexistent, as a wide variety of correspondence in the ALGOL
Bulletin and elsewhere proves otherwise.

The problem of converting an ALGOL program from one machine to
another is basically a problem in different hardware representations, as well
as normal difficulties accruing from machine and compiler differences. There
have been no significant attempts at translating ALGOL programs to
another language, except by hand to FORTRAN primarily for the purpose
of checking out algorithms.

Because ALGOL was created by an international committee and, in
fact, has received wider usage and attention in Europe than in the United
States, it is only natural that the standardization effort in the United States
would subordinate itself to that of the international organization, ISO. The
basic policy adopted by X3.4 was to wait until an international standard was
developed and then to see whether or not this was appropriate as an American
standard. However, the X3.4.2 (and then X3.4.8) subcommittees of X3.4
contributed to the ISO standard in several ways. They proposed solutions
of the issues left unresolved by the Rome meeting and took strong positions
on the necessity for a subset and for input/output. The ACM Programming
Languages Committee sponsored the committee to produce a specific pro-
posal for standard input/output (see [CC64a]). This was adopted, along with
the independent IFIP proposal [CC64b]. The international standard was
accepted for most practical purposes in October, 1965, but its final official
approval has been delayed by administrative problems and errors.

The designers of the language were indicated in the historical section.
The essential sponsorship for this effort came from professional computer
societies in the United States and Europe. This contrasted with COBOL,
where the development was by an American committee, heavily dominated
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by computer manufacturers initially, under essentially Department of
Defense sponsorship. As stated earlier, the basic objective of ALGOL was
to allow the specification of computational processes. For this reason, very
little concern was given to the problem of inputting the language directly
to a computer. The greatest concession to this problem was in the recognition
of the concept of a hardware language. However, a direct translation of the
reference language character set was far beyond any existing or even pro-
posed equipment available at the time that the language was defined. Hence
various techniques had to be devised to permit the definition of a hardware
language on punched card and paper tape equipment.

There have been a large number of implementations of significant and
small subsets of the language. No up-to-date list of these is available. (See
[CC63] for an early list.) By the end of 1967 there was no implementation of the
standard known to me. The maintenance of the language has been traced in the
historical development and currently resides with IFIP Working Group 2.1.

It is in the area of the technical definition of the language that ALGOL
shines. This is the first language in which the syntax was defined with a formal
notation, and this has given rise to a number of very significant developments,
in particular the syntax-directed compilers. While many people interested
in the problems of language definitions thoroughly appreciated the formal
notation used in the ALGOL report, a significantly large class of people
who were only concerned with using the language found the notation dif-
ficult to read. Thus, the very value of the formal definition contributed to
a lesser usage of the language simply because it discouraged people. This
unfortunate situation is being remedied over a period of time. It must be
noted that even with the formalism of the syntax, there were a few incon-
sistencies, errors, and ambiguities, and of course the semantics were no
better defined for ALGOL than for any other language. Interestingly enough,
no formal definition of a program appeared in the 1960 version, although
an informal definition was given. This omission was corrected in the revised
report.

There are five major types of documentation that have existed. The
first is the set of official reports (Naur [NA60] and [NA63]). The second is
the ALGOL Bulletin, which is completely informal and extremely valuable.
The third are various attempts at pointing out ambiguities and/or clarifying
them; see some of the references at the end of the chapter. Fourth, there
have been a number of proposals for extensions and/or changes, e.g., Strachey
and Wilkes [SQ61], Haynam [HN65] and several by Wirth. The last two
categories appear primarily in the ALGOL Bulletin andfor ACM Communica-
tions. Finally, a number of descriptive or tutorial articles have appeared,
e.g., Schwarz [QN62] and Bottenbruch [BH62], as well as several books,
e.g., Baumann et al. [BN64]. A general discussion of ALGOL documenta-
tion appears in Naur [NA63a). A number of references not specifically cited
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in the text—although by no means a complete list—is given at end of the
chapter.

In my opinion, the evaluation of ALGOL has taken somewhat the
opposite course from many other languages. The problem that exists in
many other situations is that the faults of the compiler are blamed on the
language. In the case of ALGOL, very often faults of the language are
actually blamed on the compiler. Praise for the language has been much
higher than praise for the compiler, although the latter has generally tended
to be fairly good, particularly as better implementation techniques were
gradually developed.

ALGOL was defined as being primarily useful in the area of numerical
mathematics and certain logical processes and it has certainly proved its
use in these areas, but not outside these areas. Since the phrase logical
processes covers a number of widely different areas, e.g., sorting and com-
piling, ALGOL has actually been used to specify solutions to many differing
types of problems. However, because the input/output facilities were not
defined for many years after the basic language, ALGOL in its pure definition
was not a computer usable language. "

The primary advantage to ALGOL seems to be its universality and the
effectiveness for stating a very wide class of algorithms for numerical
mathematics and for some logical processes (e.g., sorting). It has also proved
valuable as a method of teaching basic computing processes. The primary
disadvantages are its lack of ability to handle alphanumeric data or com-
plicated data structures and the (at least initial) lack of input/output specifica-
tions. It was originally argued by devotees of ALGOL that the programmer
is free to write his own input/output procedures; while this is true, he is also
free to write in assembly language all the other features that might happen
to be in ALGOL and so this seems to be a very specious argument. The
primary mistakes to be avoided in the future are in fact the two disadvantages
just cited, namely the lack of adequate data-handling facilities and the lack
of specified input/output. The second of these has already been corrected
in the ISO proposed standard and the former will probably be corrected in
a later version of ALGOL (presumably ALGOL 68). A further facility will
need to be added to carry out list and string-handling processes.

1V.4.3. TECHNICAL FEATURES OF REVISED ALGOL 60—
PRrROPOSED ISO STANDARD

The language which is being defined here is the proposed ISO Standard
[1065], of which official copies were not generally available at the time of this
writing. Since [[065] is itself primarily based on, or a concatenation of, many
documents, primarily Naur [NA63], [CC63b], [CC64a], [CC64b], and [CC64c],
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the basic information is actually available. Since ALGOL is conceptually
composed of the three languages—reference, publication, and hardware, that
which is being described here is the reference language.

The character set is composed of the 52 upper-and lower-case letters,
the 10 digits, the logical values true (true) and false (false), and the following
characters, which are called delimiters in ALGOL:

+ - x / =+ 1

= # < = > =

= V A 71 D

( ) [ ] ' e, = 1o U
go to for own switch

if step Boolean string
then until integer label
else while real value
begin comment array procedure
end do

Note that although many of the items look like words, e.g., step, begin, and
label, they are really considered single characters. This means that from the
point of view of the compiler there is no difference between the single letter
a, a period . and the (apparent) word if; each is considered a single character.
(Key words in ALGOL are customarily printed in boldface to emphasize
this point.)

Because most items which would intuitively be considered key words
are defined as single characters, e.g., if, there are no fixed words in the lan-
guage. This causes no trouble in the reference language but it is a source of
difficulty in creating a hardware representation and implementing it. The
graphic operators for the categories arithmetic, relational, and logical are
shown in the first three lines in the list of characters.

Both data names and program unit labels can consist of an unlimited
string of letters and/or digits, but the first character must be a letter. As far
as reserved words are concerned, there is (only) a strong recommendation
that the following identifiers be reserved for the standard mathematical
functions; these identifiers would be expressed as procedures and could be
used without explicit declaration: abs, sign, sqrt, sin, cos, arctan, In,
exp and entier. A variable can have subscripts; they are written within
square brackets and are separated by commas. There are no restrictions
on the form of subscripts; in particular, subscripts can be arithmetic
expressions and conditional expressions; they can have subscripts; and
there is no limit on the number or depth of subscripts allowed, eg.,
ALPHA [X+2, 3xYZ[2+I1[3+J[2]]]]). Since there is no data structure in
ALGOL, there is no qualification needed or permitted.
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In normal terminology, there are three kinds of operators (arithmetic, rela-
tional, and logical), although ALGOL defines a fourth called sequential. There
are actually six arithmetic operators—the normal five plus the division sign,
+, which has a separate meaning. The relational operators are <, =, =,
>, =, #. The logical operators are >, V, A, 1, =. Although ALGOL
defines a great many delimiters (including what are called operators here),
the only ones within the meaning of Chapter 1II are the begin, end, and
punctudtion symbols.

Literals are defined as strings which can be any sequence of basic symbols
except the delimiters ‘ and > which must be properly paired.

Blanks have no significance outside of strings. There are no noise words
in ALGOL.

There are several punctuation symbols used (and referred to in ALGOL
as separators), namely the comma, colon, semicolon, and colon equals,
.=, which is considered a single character. The semicolon is used only
to separate different statements or declarations from each other (e.g.,
integer x; real y; x := y + 2). The comma is used in some cases to separate
items in a list. The colon is used to identify statements by preceding them
with an identifier and a colon, e.g., case 2: x:= 5 and also to separate
identifiers from their semantic descriptions in the parameter list of a procedure
declaration, e.g., procedure order: (g, b) result: (y); it also separates the up-
per and lower bounds of the subscriptvalues in an array declaration, e.g.,
array q, b[5:8, 2:n]. The := is used primarily to designate assignment
statements, e.g., a:=b + ¢ + 5, and then to apply an assignment concept
in a for list and a switch list.

The physical input form is generally considered to be a continuous
string; thus there are no concepts of card columns or images. The primary
difficulty is the one which has been mentioned before; namely the hardware
representation can be very awkward relative to the actual reference language.
This occurs primarily, although not exclusively, from the use of what are
really English words as basic symbols. One way of handling the hardware
transliteration of these is to provide a specific escape character that is used
before every occurrence of one of these basic symbols; another way is to
restrict the use of labels and identifiers so as to exclude these words and to
use the concept of reserved words in the hardware representation. Some of
the specific hardware representations that have been used or advocated are
given in [QG66], [CC63a and CC64d], and [IB66i]. The conceptual form of
ALGOL is essentially one of simplicity, one of reasonable correspondence
to mathematics, and one with as much flexibility as the designers felt was
needed for the intended classes of applications.

There are a number of nonexecutable statements in ALGOL, ranging
from those which essentially relate to the type of arithmetic to be done with
the variable (e.g., real and integer) to those involving procedures. The com-
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plete list of declarations (used in the sense of this book, not necessarily
agreeing with ALGOL terminology) permitted is as follows: own, Boolean,
integer, real, array, switch, procedure, string, label, and valve. These
declarations apply only to the block in which they appear (and also to
blocks included within that block).

The smallest executable unit is a single statement of the form x :=y.
From this simple statement a complex structure can be built up. Individual
statements can be combined into compound statements by enclosing the
sequence in the delimiters begin, end, ¢.g., begin x := y + z; p:=r + |1 end.
The begin-end pair causes the groups of individual statements to be
treated as a single statement. A larger type of subunit is a block which
consists of a series of declarations and statements, again completely enclosed
within the begin-end pair, e.g., begin real x, y; integer z; x: = y end.
A block is itself a statement, and thus one or more of the statements which
constitute a block may themselves be blocks.

Loops in ALGOL can be handled by the conditional statements and by
the for statement.

ALGOL provides for both functions and procedures, and the procedures
are really the backbone of the practical use of the language. Most algorithms
are written as procedures so that they can be invoked from other programs.
As is standard, the functions are a special kind of procedure, namely one
in which there is a single numerical or logical result.

The symbols ;, begin, and end can be replaced by the following, re-
spectively, to permit writing comments:

; comment < any sequence nof containing ; > ;
begin comment << any sequence not containing ; > ;
end < any sequence not containing end or ; or else >

Comments can therefore also be put into the procedure declaration.

ALGOL does not include any interaction with the operating system or
the environment. There is no provision for references to other languages.

A program is a block or a compound statement which is not contained
within another statement and which makes no use of other statements not
contained within it. Declarations appear in a block immediately after the
begin symbol and can then be followed by any number of statements until
the end symbol designates the termination of the block.

A statement in ALGOL is normally ended by the use of a semicolon.
A compound statement and a block are both delimited by the symbol begin
at the beginning and the symbol end at the end. Declarations (considered
to include the identifiers to which they apply) are delimited at the end by a
semicolon. A procedure declaration is preceded by the symbol procedure
and normally ended by the symbol end which refers to the block within the
procedure which is accomplishing the desired task.
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ALGOL is almost the only (and was the first) language to allow recur-
sive procedures. There is no requirement that the procedure be defined
specifically as being recursive; this leads to inefficiency at object time in
many implementations because the compiler must prepare to cope with a
procedure which might be recursive but in fact is not.

ALGOL introduced the concept of two different types of parameter
passage for procedures—call by name and call by value. It also permits con-
siderable embedding, most notably, if statements in arithmetic expressions.

The language allows arithmetic and logical variables and arrays of them.
String variables are defined, but there are no operations defined on them. In
addition, there are two other elements which ALGOL defines as data types,
namely label and switch.

There are no hardware data units accessible as such in an ALGOL
program; this is quite consistent with the concept of machine independence
and a reference language. All the variable types can be either declared and/or
operated on, except for strings.

Two types of numerical arithmetic are provided in ALGOL, namely
integer and real (i.e., floating point.) A special division operation designated
by + is defined only if the variables involved are of type integer. Boolean
arithmetic is also provided.

Real and integer numbers can be intermingled, and the result of the
arithmetic operations is an integer (only) if the operands are integers.

Boolean expressions can be embedded in arithmetic ones. The normal
precedence rules for arithmetic and logical operations apply in the evaluation
of arithmetic and Boolean expressions, respectively.

General arithmetic expressions can include if clauses in which one out
of several simple arithmetic expressions is selected on the basis of the actual
values of the Boolean expressions. In this case, the Boolean expressions are
evaluated one by one in sequence from the left until the one having the value
true is found. The value of the arithmetic expression is then the value of the
first arithmetic expression following this Boolean expression. Thus if Ab < C
then 17 else q [if w <0 then 2 else n] + r is a meaningful arithmetic
expression.

There are two special functions, sign and entier, which yield integer
results. The sign (e) equals 1, 0 or —1 if e is greater than 0, equal to 0, or
less than 0, respectively. The value entier (e) is defined as the largest integer
not greater than e. There are no rules given for precision. There are a number
of rules relative to the computation in various modes, and in particular
there is a real problem relative to side effects if procedures involving call
by name are used in expressions.

ALGOL was the first language to introduce and define significant scope
rules for data variables. The main unit considered for this purpose is the
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block. The basic principle is that the data named by an identifier occurring
within a block is usually specified to be local to the block and is always local
to the block if declared within the block. Thus the (data’s) identifier has no
existence outside the block, and conversely this identifier can be used else-
where but is not accessible inside the block. At the time of exit from a block,
all local identifiers lose their local significance, and in particular their values
are not available at the next reentry to the block. All identifiers except labels
and formal parameters of procedure declarations must be declared. If the
user desires to retain the meaning and value of an identifier throughout
significant portions of a program, this must be declared as an own variable,
which means that when the block is reentered, the previous values are
available. Nonlocal variables are those which are used in a block but declared
in a larger (i.e., containing) block. Global variables are those defined only
in the outermost block.

The assignment statement in ALGOL can be both single and multiple.
Thus A :=B:= C:=D + E; means that the variables A, B, and C, are all
assigned the value D + E. It is assumed that in the case of a multiple assign-
ment statement the type associated with all variables and procedure identifiers
on the left must be the same. If the type is Boolean, the expression must also
be Boolean; if the type is real or integer, the expression must be arithmetic.
If the types of the arithmetic expressions on the left and right do not match,
then the appropriate transfer functions are understood to be automatically
invoked to go from the right to the left.

There is no character data handling.

Normal sequence of control is from one statement to the next. There
is an unconditional control transfer designated by the single symbol go to. It
is also possible to have this symbol go to followed by a subscripted identifier,
e.g., go to K[I], where K has been previously identified as a switch by means
of a switch declaration. The value of the subscript designates which of the
possible labels is chosen. Designational expressions are rules for obtaining
statement labels as values and can be written as subscripts. Designational
expressions can be if statements, e.g.,

goto if A =0 then ALPHA else BETA

causes control to transfer to ALPHA if A equals O and to BETA otherwise.

Functions are invoked by writing them, with their actual parameters,
wherever the value is needed, e.g., in expressions. Procedures are invoked
by writing the procedure name, with the actual parameters, where the pro-
cedure body is to be executed. The procedure given on p. 191 is invoked by
writing

Spur (ALPHA) ORDER : (5) Result to: (ISH)
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and the function might be used as follows:
y := z + Step(line) X Valve

A conditional statement in ALGOL can have one of three forms: The
simplest is just if B then U, where B is a Boolean expression and U is an
unconditional statement; the second form is if B then U else V, where V is
any kind of a statement and in particular can itself be a conditional statement;
the third form is if B then F, where F is a for statement which is described
below. Any of these conditional statements can have labels. In the latter
case it is possible to have something as complicated as the following:

ifs<0 V p> Qthen ALPHA: begin if a > vthen a: = v/s
else y:=a+ b end
else if v <sthena:=v +q
elseifv=s—1thengoto§S;
y:=a—b

In somewhat more general terms, a conditional statement can have the form:
if B; then S; else if B, then S, else if B; then S; else if B, then S,; S,

where the B; are Boolean expressions, the S; are unconditional statements,
and there is no limit on i. The statement is executed by evaluating the Boolean
expressions in sequence from left to right until one yielding the value true
is found. Then the unconditional statement following this Boolean is executed
and, unless this statement defines its successor explicitly, the next statement
to be executed is (in the example above) S,, i.e., the statement following
the complete conditional statement.

The basic loop control statement in ALGOL is the for statement; this
consists of a for list, followed by a do, followed by a statement. The for
statement can be labeled. The range is the siatement following the do. The
for list consists of a single parameter which is to be varied, followed by the
list over which it is being varied, possibly followed by more parameters and
their values with termination criteria, e.g., a complete loop control state-
ment might be

for i := 2 x| step 2 until 71, 3 + k while k = p do X[i] := Y[i] + 5;

The list over which a variable may assume values can be expressed in one of
three forms: It can be just a regular arithmetic expression; it can be something
of the form A step B until C where A, B, and C are arithmetic expressions, or
finally the form E while F, where E is an arithmetic and F is a Boolean expres-
sion. The last two of these can be described, respectively, most concisely
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in terms of additional ALGOL statements as follows:

V:i=A;
L1: if (V — C) x sign(B) > O then go to Element exhausted;
statement S;

V:=V +B;
go to Ll;
and
L3: V:=E;

if V # F then go to Element exhausted;
statement S;
go to L3;

where in both cases V is the controlled variable, and Element exhausted
points either to the evaluation using the next element in the for list or to
the next statement in the program if it is the last element of the list.

There are no provisions in ALGOL for error condition statements.
There are also no facilities for handling symbolic data of any kind.

The proposed ISO standard provides for two types of input/output
procedures—one is a very small subset of the other. The difference in philos-
ophy is that the user of the small subset is assumed to program most of the
things that he wants himself, whereas the larger system should provide
virtually everything that is needed.

The small subset assumes that the following primitive procedures are
available to the user: insymbol, outsymbol, length, inreal, outreal, inarray,
and outarray. Communication between the external media and the variables
of the program is provided by the procedures insymbol and outsymbol. The
appropriate correspondence is established between the basic symbols given
in a string parameter of those procedures with the variables given in an integer
parameter. The length procedure defines the value of the length of the string
as equal to the number of basic symbols of the string enclosed between the
outermost string quotes. The procedures inreal and outreal cause the appro-
priate correspondence to take place between the next value on the external
medium and the destination parameter. The procedures inarray and out-
array cause the transferal of the numbers forming the value of the array in the
procedure declaration. The elements of the array are transferred in an order
which corresponds to the lexicographic order of the values of the subscript.

The major and quite complete input/output facilities given in the pro-
posed ISO standard can be subdivided into two major categories: Formats
and input/output procedures. The former bear a strong resemblance in con-
cept, and even in some places in detail, to the picture description in COBOL.

Whenever input or output is done, certain standard operations are
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assumed to take place unless otherwise specified. These nonstandard opera-
tions are specified through the use of a layout procedure which provides for
horizontal and vertical control; although it is assumed that the output is for
a page prepared by a high-speed printer, the concepts are applicable to other
devices. The descriptive procedures format, h end, v end, h lim, tabulation,
and no data set one of seven “hidden variables” to a particular value, and
the total description is provided by this set.

There are some list procedures which describe the sequence of items
which are to be transmitted for input or output. The actual transmission
between the external medium and the program variables are handled through
the input/output procedures and calls which were mentioned in the abbre-
viated version. However, these input/output procedures and calls are extended
to include the ability to specify layouts and lists as provided in this more
elaborate input/output system.

ALGOL has no provision for library references other than through the
mechanism of procedures and the “standard” functions. There are no
debugging statements in the language, nor are there any direct statements for
allocating storage or segmentation. However, because the size of arrays can
vary at object time, because of scope problems, and because of the provisions
for recursive procedures, the compilers themselves must generate fairly
elaborate object time storage allocation facilities. This has generally tended
to be the area in which the most experimentation in ALGOL implementation
has been done, particularly on small computers where this is critical.

The language contains no provisions for interaction with the operating
system or for making effective use of specific machine features; to do this
would be definitely contrary to the fundamental spirit of ALGOL, which
is to be machine independent and serve as a good communication mechanism
for algorithms.

There is no separate data description as such. The data types allowed
in the language were described earlier. The actual specification for each type
is given as part of the block head in which the variable is to be used. The
array declaration provides for dimension information on data. The upper
and lower bound for each dimension are separated by colons, and the dif-
fering dimensions are separated by commas; all this is contained within
square brackets, e.g:

array A[7:n, 2: m], B[—2, m + 5]
real array m[if c < 0 then 2 else 3: 20]

There is no separate file description since files as such are not an allowable
entity in ALGOL. There are some specific format descriptions included in
the large input/output specifications. There are no declarations in the lan-
guage specifically about storage allocation, although information of this
type is conveyed to the compiler through array declarations and is implied



Iv.4. AtcoL 191

in the block structure. There are no separate compiler-directing statements.

In order to give the reader some flavor of formalism used to define
ALGOL, the following definition of a procedure declaration is copied from
Section 5.4.1 in [IO65] or [NA63], using their notation:

{formal parameter) ::= {identifier)
{formal parameter list) ::= (formal parameter)
| {formal parameter list)> {parameter delimiter)
{formal parameter)
{formal parameter part) ::= {empty) | ({formal parameter list))
(identifier list) ::= (identifier} | {identifier list>, {identifier)
{value part) ::= value {identifier list); | {empty>
{specifier) ::= string | (type> | array | {type) array | label
| switch | procedure | {type)> procedure
{specification part) ::= {empty) | {specifier> {identifier list);
| <specification part) (specifier) {identifier list>;
{procedure heading) ::= {procedure identifier)
{formal parameter part); {value part) {specification part)
{procedure body) ::= (statement)> | {code)>

{procedure declaration) ::= procedure {procedure heading)
{procedure body) | {type) procedure {procedure heading)
{procedure body)

Examples of such declarations (taken from [I065] or [NA63]) are as
follows:

procedure Spur (a) Order: (n) Result: (s); value n; array a;
integer n; real s;
begin body of procedure end

integer procedure Step (v); real v;
Step:=if0=uAu=1then 1 else0

The procedure body always acts like a block even if it does not have
the form of one. A function declaration has the same form as a procedure
declaration except that in the body of the former there must be an assignment
statement with the procedure identifier on the left.

The switch declaration is specifically defined. It consists of a sequence
of values (which can be defined by general arithmetic expressions) which are
called the switch list; e.g.,

switch A := 3,51, Q[4+m], if v=3 then S2 else 4

A switch is used as the ar