
 



ci
en
t 

             

   
   

   
   

      
   

  

    

    

a-2 &A-3 

AESOP. AIMACO 

ALGOL 
ALGY 

    

   
    
   

  

AMBIT 

  

ALTRAN 
AMTRAN 

Animated Movie 

APL/360 APT 

BACAIC BASEBALL 

   
     

      

   

  

     

  

      

    

APL 

  

   

C—10 

COBOL 

COLASL 

COMIT 

BUGSYS 

CLP 

COGO 

      
    

   

   
    

   
   

  

   

    

  

   
BASIC 

CLIP 

COGENT 

COLINGO 

Commercial Translator 

Computer Compiler 

CORC 

DAS 

DIALOG 

DSL/90 

English 

    

      

    

  

   

        

     

      
       

    

    

   
   
   

    

  

   
    

    

  

   

    

   

    

    
   

  

    Computer Design CORAL 

ces Culler—Fried 

DATA-TEXT DEACON 

DIMATE DOCUS 

DYNAMO DYSAC 

Extended ALGOL 

         
     

    

       

  

    

    
       

   

    

     

  

| DIAMAG 

DYANA 

    

    

        

  

    
   

    
    

    
    

  

zon NA 

    

    

   

    

    
    

FLAP    
     

    

   

  

   

    
     

    
     

     

   

  

     

  

   

      

    

    

    

  

473L Query FACT TRAN 
ALGOL GPl 

FORMAC Formula aay GECOM 

FSL Klerer- May 
  FORTRANSIT 

pss |} GRAE 

ICES IDS 

JOSS 
JOVIAL 

Graphic 

on Algebra 
d 

Laning 

   

informatt 
\6 

   
   

  

   

   

  

    

olin Reckoner 

LOIS 

Line    

    

   
   

    

   

  

LDT 

LOLITA 

    

     

  

    

    
   

   

MATHLAB 

    

   

    

    

META 2 Magic paper 

OMNITAB Matrix COmpPUe! 
   
   

    

   

    

   

    

OCAL 

   

  

    
   

  

     

            

        

  

    

  

    

NELIAC : PRINT 

PENCIL PL eze5-ALGOL 
Short Code 

IKTRAN 
SIMSCRIPT } { SIMULA 

SOL Speedcoding 

Symbolic Math. Lab. 

UNCOL UNICODE 

         
Simul. Dig. Syst- SNOBOL 

SPRINT STRESS 

TRANDIR 
           STROBES 

TREET 
     

     TRAC 
 



PROGRAMMING LANGUAGES : 

History and Fundamentals



Prentice-Hall Series in Automatic Computation 

George Forsythe, editor 

ARBIB, Theories of Abstract Automata 
BATES AND DOUGLAS, Programming Language/One 

BAUMANN, FELICIANO, BAUER, AND SAMELSON, Introduction to ALGOL 

BLUMENTHAL, Management Information Systems 

BOBROW AND SCHWARTZ, editors, Computers and the Policy-Making Community: Applica- 

tions to International Relations 
BOWLES, editor, Computers in Humanistic Research 

CESCHINO AND KUNTZMANN, Numerical Solution of Initial Value Problems 
CRESS, DIRKSEN, AND GRAHAM, Fortran IV with Watfor 

DESMONDE, A Conversational Graphic Data Processing System: The IBM 1130/2250 

DESMONDE, Computers and Their Uses 

DESMONDE, Real-Time Data Processing Systems: Introductory Concepts 

EVANS, WALLACE, AND SUTHERLAND, Simulation Using Digital Computers 
FIKE, Computer Evaluation of Mathematical Functions 

FORSYTHE AND MOLER, Computer Solution of Linear Algebraic Systems 

GOLDEN, Fortran IV: Programming and Computing 
GOLDEN AND LEICHUS, IBM 360: Programming and Computing 

GORDON, System Simulation 

GREENSPAN, Lectures on the Numerical Solution of Linear, Singular and Nonlinear Differential 

Equations 

GRISWOLD, POAGE, AND POLONSKY, Zhe SNOBOL4 Programming Language 

GRUENBERGER, editor, Computers and Communications—Toward a Computer Utility 

GRUENBERGER, editor, Critical Factors in Data Management 

HARTMANIS AND STEARNS, Algebraic Structure Theory of Sequential Machines 

HULL, Introduction to Computing 

LOUDEN, Programming the IBM 1130 and 1800 
MARTIN, Design of Real-Time Computer Systems 
MARTIN, Programming Real-Time Computer Systems 

MARTIN, Jelecommunications and the Computer 

MARTIN, Jeleprocessing Network Organization 

MINSKY, Computation: Finite and Infinite Machines 

MOORE, Interval Analysis 

SAMMET, Programming Languages: History and Fundamentals 

SCHULTZ, Digital Processing: A System Orientation 

SNYDER, Chebyshev Methods in Numerical Approximation 
STERLING AND POLLACK, Introduction to Statistical Data Processing 

STROUD AND SECREST, Gaussian Quadrature Formulas 
TRAUB, Iterative Methods for the Solution of Equations 

VARGA, Matrix Iterative Analysis 

VAZSONYI, Problem Solving by Digital Computers with PL/I Programming 

WILKINSON, Rounding Errors in Algebraic Processes 

ZIEGLER, Time-Sharing Data Processing Systems 

PRENTICE-HALL INTERNATIONAL, INC., London 

PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney 

PRENTICE-HALL OF CANADA, LTD., Toronto 

PRENTICE-HALL OF INDIA PRIVATE LTD., New Delhi 

PRENTICE-HALL OF JAPAN, INC., Tokyo



PROGRAMMING LANGUAGES : 

History and Fundamentals 

JEAN E. SAMMET 

Programming Language Technology Manager 

Federal Systems Division 

IBM Corporation 

PRENTICE-HALL, INC. 
ENGLEWOOD CLIFFS, N. J.



Concept of the tower of BABEL to represent a large set 

of programming languages is due to the Communications 

of the ACM, a publication of the Association for Com- 

puting Machinery, Inc. The illustration appears on the 

front endpaper. 

© 1969 by Prentice-Hall, Inc. 
Englewood Cliffs, New Jersey 

All rights reserved. No part of this book 

may be reproduced in any form 

or by any means without permission 

in writing from the publisher. 

Current printing (last digit): 

10 9 8 7 6 5 4 3 

Library of Congress Catalog Card No. 68-28110 

Printed in the United States of America



. And the LORD said, Behold the people is one, and they have all one language; 

and this they begin to do; and now nothing will be restrained from them, which 

they have imagined to do. 

. Go to, let us go down, and there confound their language, that they may not 

understand -one another’s speech. 

. So the LORD scattered them abroad from thence upon the face of all the earth; 

and they left off to build the city. 

. Therefore is the name of it called Babel; because the LORD did there confound 

the language of all the earth; and from thence did the LORD scatter them 

abroad upon the face of all the earth. 

Gen. XI



PREFACE 

The primary purpose of this book is to serve as a reference for an overall 

view of higher level languages. The book brings together in one place, and 

in a consistent fashion, fundamental information on programming lan- 

guages, including history, general characteristics, similarities, and differences. 

A second purpose of the book is to provide specific basic information 

on all the significant, and most of the minor, higher level languages developed 

in the United States. 

The third purpose of the book is to provide history and perspective for 

this particular aspect of the programming field. Comments on both are the 

responsibility of the author and are not necessarily accepted by all the people 

concerned. Because of the rapidly changing nature of this type of work, 

new languages appear daily (literally) and so this book represents a snapshot 

of—and an (indirect) explanation of how we arrived at—the situation at 

a given point in time, namely the fall of 1967. In a few instances, major 

happenings of 1968 which could be inserted into galley or page proofs were 

included, but in general the text and bibliography cover the period through 

1967. 

The most well known language (FORTRAN) is merely one of approxi- 

mately /20 languages described in this book. (Of this total, approximately 

20 are completely dead or on obsolete computers, about 35 are receiving 

very little usage, about 50 are for specialized application areas, and about 

15 are widely used and/or implemented.) No major attempt has been made 

to include languages which are known or used only within a single organi- 

zation. Most of those discussed here have been described in published 

literature. However, a few languages discussed only in reports issued by the 

developing organization have been included. 

vi



PREFACE Vii 

Other purposes are to provide an extensive bibliography of relevant 

material, to show various philosophies of language design, to describe a 

number of the key factors involved in choosing a language, and to provide 

the reader with enough information so that he can decide which languages 

he wishes to examine in detail. 

It is not the purpose of this book to teach how to program in any of the 

languages described, nor is the purpose to provide specific or detailed com- 

parisons of related languages, nor is it meant to provide a cookbook for 

selecting a language for a particular application. A discussion of implemen- 

tation techniques is also outside the scope of this book. Except for a few 

special cases, only languages which have been developed in the United States, 

and which have been implemented, are described. This restriction applies also 

to comments of the type “there has not been anything of this kind done”; 

such remarks apply to U.S. work only and might be invalid when consider- 

ing other countries. Furthermore, some of these remarks are very time 

dependent and because of the rapidly changing nature of the field become 

invalid when considering work done after 1967. 

Since even the very definition of a programming language is debatable, 

it is clear that inclusion or exclusion in the book is based on my view of 

the meaning of the phrase programming language. This is discussed in 

Chapter I. The amount of space given to each language in the book is 

usually dependent on both the complexity of the language and the author’s 

judgment of its importance (either past, present, or future). Every effort 

has been made to ensure that the descriptions are accurate and not mislead- 

ing. (See the Acknowledgments.) 

The reader is assumed to have had experience, or at least one course, 

in programming. In many places, more than this minimum is needed for 

full understanding although the basic points should be comprehensible to 

readers with little experience. 

Although not written as a textbook, this book could be used as the 

basic source for course 12 (Programming Languages) in Curriculum 68 

as described by the ACM Curriculum Committee on Computer Science. 

It might be used for background reading in courses B1 (Introduction to 

Computing), 11 (Data Structures), 15 (Compiler Construction), Al (Formal 

Languages and Syntactic Analysis), A8 (Large-scale Information Processing 

Systems), and A9 (Artificial Intelligence and Heuristic Programming). Since 

this book was not available at the time that the committee made its report, 

obviously the book could not appear in any of the bibliographies suggested 

for the courses. 

Chapter I provides a general introduction to the subject of programming 

languages, advantages and disadvantages, various classifications, and factors 

involved in the choice of a language. Chapters II and III discuss respectively 

the functional (i.e., non-technical) and technical characteristics of program-



viii PREFACE 

ming languages. Most of the language descriptions are based on the outline 

and concepts established in those two chapters, and so a careful reading of 

Chapters II and III is required in order to understand the rest of the book. 

This admittedly has the disadvantage of not necessarily being the best way 

to describe a specific language, but has the advantage of providing some 

consistency throughout the discussions. However, some of the flavor and 

style of the individual language descriptions have been allowed to creep in, 

and serve as a preview of what would be encountered in a more detailed 

study. In a very few instances, minor inexact statements have been made 

because the accurate language description would require details beyond the 

scope of this book. 

The remaining chapters and sections are relatively independent, and 

in most cases a specific language description can be read without knowledge 

of any other languages. Chapter IV deals with languages used primarily for 

numerical scientific problems. Chapter V discusses those used for business 

data processing. Chapter VI discusses the list and string processing languages, 

and Chapter VII describes languages used for doing formal algebraic mani- 

pulation. Chapter VIII describes languages which can be effectively used in 

more than one of the areas covered in the preceding four chapters. Sample 

programs for most of the languages in Chapters IV through VIII have been 

included; they are meant solely to illustrate the syntactic style of the lan- 

guages, and they are not guaranteed to be either correct or efficient. A few 

problems have been coded in several different languages to provide an easy 

comparison. 

Chapter IX describes about 50 languages which are used in more 

specialized application areas. Because greater specific knowledge of those 

areas is needed to appreciate the languages, the discussions are very brief 

and superficial. The criteria for judging these languages is less stringent 

than those used for languages in preceding chapters, so that some of the 

languages included are not conceptually very different from older ones which 

were deliberately omitted, and they do not necessarily satisfy all the defining 

characteristics of Chapter I. The criteria have been reduced to make clear 

the great need for specialized languages. 

Chapter X discusses a few significant unimplemented concepts. Finally, 

Chapter XI contains the author’s personal views on future long range 

developments in programming languages. 

The philosophy and arrangement of references 1s described in Appendix 

A, which also contains a list of authors of included citations. The beginning 

of this Appendix should be read before looking at any of the reference lists. 

Appendix B contains a list of each language described in this book, the 

meaning of its acronym, a very brief description, and the one or two best 

references for it. 

The book outline was constructed with great care and is shown com-



PREFACE 1X 

pletely in the Table of Contents. A significant amount of fundamental 

information is contained there and it should serve as a basic outline to the 

subject as viewed by the author. 

The process of preparing this manuscript for printing actually required 

the solution of some technical problems in language description, not all of 

which I successfully solved. In order to make the reading of the text easier, 

it was necessary to settle on a distinctive type style to represent actual words 

in a language. Thus, specific statements which would be legal in a program, 

such as normal arithmetic and control statements, are written as A = B + C 

and GO TO HECK. However, in those cases where the format of a state- 

ment was being described, it was necessary to distinguish between the fixed 

words in the language, and the variable names which are to be supplied by 

the programmer. This was settled by writing GO TO statementiabel or 

MOVE A TO B where A and B represent variables. However, there is 

clearly a difference between the two occurrences of the phrase “GO TO 

statement” in the following sentence, and the distinction is handled as 

follows: The GO TO statement in FORTRAN is of the form GO TO statement. 

More specifically the style used in the book 1s the following: Fixed words 

appearing in a definition of the format of a command, and all words in a 

specific example, are set THIS WAY or this way. Words or letters representing 

characters to be supplied by the programmer (metalinguistic variables as 

described in Chapter II) are set THIS WAY or this way. (Thus the letters A 

and B would be set as A, B if used in an example, and as A, B if used in the 

definition of a format.) In a discussion about a statement or a Jist of state- 

ment names, the name of the statement is set THiS WAY or this way. The 

use of upper and lower case letters have no significance and are merely 

those most commonly used in descriptions of the particular language in- 

volved. In ALGOL based languages, the tradition of boldface was used 

with the above concepts, resulting in this style or this style. The character 

‘has been used to represent the prime or apostrophe available on printer 

chains or typewriters. 

Another problem which exists is the variable size of the characters and 

spaces used in setting this book. In input/output media for computers, all 

characters require the same amount of space, and there is either a blank 

between them, or there is not. To simulate this a specific size space was 

used to represent the computer blank character; however, this space could 

not always be maintained in programs where vertical alignment of columns 

was critical. Thus, in material that represents specific examples, the spacing 

is critical and is shown as well as possible; on the other hand, it is essential 

to realize that in many languages the presence of one, many, or no spaces 

is immaterial and the reader should not conclude that because a space was 

present or absent that this is a requirement of the language. The language 

description specifies whether or not the blank character is significant.



X PREFACE 

While these ideas may appear confusing here, it is hoped that the type 

styles will be clear in the text. However, the really careful reader will find 

that my scheme breaks down in many minor places, and it is left as an 

exercise for the reader to find the actual places and to propose a solution. 

The subject of programming languages 1s quite controversial and even 

includes debate on what should be included or excluded. Therefore, this 

book reflects the author’s personal opinions to a much larger extent than 

would a book on a more stable or well defined area. It should be clearly 

understood that the specific views expressed in the text, and the implied 

views represented by the selection and arrangement of the languages, are 

solely those of the author. 

Jean E. Sammet 

Cambridge, Massachusetts



ACKNOWLEDGMENTS 

As stated in the preface, every effort has been made to ensure that the lan- 

guage descriptions are accurate and not misleading. In order to accomplish this, 

virtually every individual language writeup was sent to one or more experts 

in that particular language. Because a large majority of these people spent 

significant time in reviewing more than one draft and making constructive 

comments, it seems appropriate to list the names of the languages or sections 

with the individuals who commented on them, and to take this opportunity 

to express my deep thanks. It must be emphasized that any errors, omissions, 

or misleading statements in the text are completely and solely my respon- 

sibility, and not those of the people listed here. They are also not necessarily 

in agreement with the views I have expressed about various aspects of the 

language or its contributions to the technology. 

Languages marked with an asterisk were also included in a review of 

a larger section. Languages that are marked with an asterisk but for which 

no reviewer is listed were reviewed only as part of a larger section. 

  

Language Reviewer(s) Language Reviewer‘(s) 

A-2 & A-3* Hopper, G. M. APL Iverson, K. 

ADAM* Lafferty, E. APL/360 Falkoff, A. D. 

AED* Ross, D. T. APT* Ross, D. T. 

AESOP* Hazle, M. BACAIC* 
AIMACO Hopper, G. M.; BASEBALL* 

Jones, J. L. BASIC Kurtz, T. E. 

ALGOL Ingerman, P. Z. C-10* Lafferty, E. L. 

ALTRAN Brown, W. S. CLIP* 
AMBIT* Christensen, C. CLP* 

AMTRAN Seitz, R. N. COBOL Betscha, R. F. 

xi



Xii ACKNOWLEDGMENTS 

Language Reviewer(s) Language Reviewer(s) 

COGENT* LISP 1.5* Abrahams, P. W.; 

COGO* Logcher, R. Edwards, D. 

COLASL Carter, G. L. LISP 2 Abrahams, P. W.; 

COLINGO* Lafferty, E. L. Barnett, J. A. 

COMIT* Bennett, J. L.; MAD Galler, B. A. 

Yngve, V. MADCAP Wells, M. B. 

Commercial Magic Paper Clapp, L. C. 

Translator Goldfinger, R. MAP Brackett, J. 

CORAL* MATHLAB Engelman, C. 

CPS Rochester, N.; MATH-MATIC* — Hopper, G. M. 

Schroeder, D. A. META 5* 

DEACON?* MILITRAN* 

DYNAMO* MIRFAC Gawilik, H. J. 

473L Query* NELIAC Halstead, M. H. 

FACT Clippinger, R. F. OPS-3* Jones, M. 

FLAP Morris, A. H., Jr. PL/I Beech, D.; Cundall, P.; 

FLOW-MATIC Hopper, G. M. Hankam, E. V.; 

FORMAC Tobey, R. G. Mitchell, R. 

Formula ALGOL Perlis, A. J. PRINT* 

FORTRAN Heising, W.; Protosynthex* 

Ridgeway, R. QUIKTRAN Morrissey, J. 
FORTRANSIT* Short Code* 

FSL* | SIMSCRIPT* 

GAT* Galler, B. SIMULA* 

GPSS* Krasnow, H. SNOBOL* Bennett, J. L.; 

GRAF Johnson, C. Griswold, R. E. 

ICES* Logcher, R. SOL* 
IPL-V* Newell, A. Speedcoding* 
IT Galler, B. A.; STRESS* Logcher, R. 

Perlis, A. J. Symbolic Math. 

JOSS Shaw, J.C. Lab. Martin, W. A. 

JOVIAL Perstein, M.; TMG* 

Shaw, C. J. TRAC* Mooers, C. 

Klerer-May Klerer, M. TRANDIR* 

L6* Knowlton, K. TREET* Haines, E. C. 

Laning and Zierler* UNICODE* Hopper, G. M. 

Lincoln Reckoner  Wiesen, R. 

Section Reviewer(s) Section Reviewer(s) 

IV.1 andIV.2 Hopper, G. M. IX.3.1 Jones, M.; Krasnow, H. 

Chapter VI Bobrow, D.G.; Raphael, B. 3.2 Walker, D. 

IX.2.1 Ross, D. T. 3.4 Ross, D. T. 

2.2 Logcher, R. 3.5 Walker, D. 
2.5 Cheatham, T. E., Jr. 3.6 Walker, D.   

In addition to the above, Patricia Cundall and Peter Ingerman carefully 

reviewed most of the manuscript and made valuable comments. I am 

particularly grateful to Robert Tabory not only for his review of several 

manuscript drafts but also for many constructive discussions on detailed



ACKNOWLEDGMENTS Xi 

and general points. Other people too numerous to cite individually, including 

students in various courses who saw successive drafts, made constructive 

suggestions On various sections. 

Each sample program not taken from a printed source was coded by 

a person with much experience in the language, although no guarantees 

of either correctness or efficiency are made. I am grateful to the following 

people for the coding of one or more of the sample programs: J. Andrada, 

F. Bequaert, J. Bennett, C. Engelman, H. J. Gawlik, E.C. Haines, W. 

Harrison, M. H. Halstead, K. Knowlton, T. Kurtz, C. Mooers, M. Perstein, 

B. Raphael. 

Most of the material used in figures and sample programs came from 

publications of the Association for Computing Machinery, Inc., the Inter- 

national Business Machines Corporation, and various Proceedings of the 

AFIPS Joint Computer Conferences. I particularly appreciate the coopera- 

tion of these organizations, as well as all others who permitted the use of 

copyrighted material. 

My appreciation to the IBM Corporation—specifically the Systems 

Development Division and the Federal Systems Division—is unbounded, 

both for providing me with the majority of the time I used for preparing 

this book, and for supplying all the typing support, as well as the computer 

time and telephone lines for the use of ATS (Administrative Terminal 

System) which was used for typing and correcting most of the drafts. J am 

specifically very grateful for the continued support and encouragement of 

my managers, Nathaniel Rochester and Joel D. Aron. 

Last but not least, a devoted crew of typists struggled with my manu- 

script and having to learn an unfamiliar system of typing and correcting 

(namely, ATS). They include Josephine Auterio, Margaret Mahoney, Carrie 

Jo Clausen, and Dorothy Pearlman. The last two did a Herculean task 

in helping prepare the initial reference lists. Finally, my secretaries Beatrice 

Roffman and Carolyn Willet cheerfully coped not only with the book typing 

but with a myriad of other chores as well.



CONTENTS 

GENERAL 
INTRODUCTION 

1. Machine Language Programming 

2. Symbolic Assembly Language Programming 

. Early Development of Better Tools 

3.1. Specific needs to be met 

3.2. Brief history of early efforts 

. Definition of Programming Languages 

4.1. Definition problem 

4.2. Defining characteristics 

1. Machine code knowledge is unnecessary 

2. Potential for conversion to other computers 

3. Instruction explosion 

4. Problem-oriented notation 

4.3. Basic terminology 

1. Source program 

. Object program 

. Compiler 

. Interpreter 

. Automatic coding 

6. Automatic programming 

4.4. Difference between programming language and application 

package 

. Advantages and Disadvantages of Higher Level Languages 

5.1. Advantages 

. Ease of learning 

. Ease of coding and understanding 

. Ease of debugging 

. Ease of maintaining and documenting 

. Ease of conversion 

. Reduce elapsed time for problem-solving 

Mm 
&
 
W
N
 

N
a
n
 

RB 
WY

 
bh 
—
 

XiV 

an
h 

O
0
0
 

CO
O 

CO 
U
W
W
w
W
 

NN
 

N
O
 

13 

14 
14 
14 
15 
15 
16 
16 
17



CONTENTS 

5.2. Disadvantages 

1. Advantages do not always exist 

2. Time required for compiling 

3. Inefficient object code 

4. Difficulties in debugging without learning machine language 

5. Inability of the language to express all needed operations 

5.3. Overall evaluation 

. Classifications of Programming Languages and Proposed Definitions 

6.1. Procedure-oriented language 

6.2. Nonprocedural language 

6.3. Problem-oriented language 

6.4. Application-oriented language 

6.5. Special purpose language 

6.6. Problem-defining language 

6.7. Problem-describing language 

6.8. Problem-solving language 

6.9. Reference language 

6.10. Publication language 

6.11. Hardware language 

7. Factors in Choice of a Language 

7.1. Suitability of language for problem area and projected users 

7.2. Availability on desired computer 

7.3. History and evaluation of previous use 

7.4. Efficiency of language implementation 

7.5. Compatibility and growth potential 

7.6. Functional (= nontechnical characteristics) 

7.7. Technical characteristics 

References 

FUNCTIONAL CHARACTERISTICS 
OF PROGRAMMING LANGUAGES 

1. 

2. 

3. 

Description of the Concept of Functional Characteristics 

Properties of Languages 

Purpose of Language 

3.1. Application area 

3.2. Type of language 

3.3. Type of user 

3.4. Physical environment 

. Conversion and Compatibility 

4.1. Types of compatibility 
1. Machine independence 

. Compiler independence 

. Dialects and language L-like 

. Subsetting and extensions 

. Relation to language definition n
f
 

Ww 
NO
 

XV 

17 
17 
17 
18 
18 
18 
19 

19 
19 
20 
21 
21 
21 
21 
22 
22 
22 
22 
23 

23 
23 
24 
25 
25 
25 
26 
26 

26 

30 

30 

31 

32 
33 
34 
34 
36 

36 
37 
37 
38 
39 
40 
41



XVi CONTENTS 

4.2. Ease of conversion 

1. Based on compatibility 

2. Ease of SIFTing to another language 
3. Ease of translating to another language 

5. Standardization 

5.1. Purposes 

5.2. Problems 

1. Conceptual problems 

2. Technical problems 

3. Procedural problems 

5.3. Method of establishing standards 

5.4. Overall status 

. Types and Methods of Language Definition 

6.1. Administrative 

1. Who designed the language ? 

2. What were the objectives of the language? 

3. Who implemented the language ? 

4. Who maintains the language? 

6.2. Technical 

1. Syntax, semantics, and pragmatics 

2. Formalized notation 

6.3. Types of documentation 

. Evaluation Based on Use 

7.1. Availability on differing computers 

7.2. Evaluation of language versus evaluation of compiler 

7.3. Usage relative to objectives 

7.4. Advantages 

7.5. Disadvantages 

7.6. Mistakes to be avoided in the future 

References 

TECHNICAL CHARACTERISTICS 
OF PROGRAMMING LANGUAGES 

1. Description of Concept of Technical Features 

1.1. Introduction 

1.2. Major parts of language 
. Data and its description 

. Operators 

. Commands 

. Declarations 

. Compiler directives 

. Delimiters 

7. Program structure 

N
O
 

kh 
w
W
N
 
—
 

2. Form of Language 

2.1. Character set 

2.2. Types of basic elements (= tokens) 

1. System-defined 

2. User-defined and restrictions 

65 

65 
65 
66 
66 
66 
67 
67 
68 
68 
68 

68 
69 
70 
70 
71



2.3. 

2.4. 

2.5. 

CONTENTS 

Identifier definition 

1. Types of identifiers 

2. Formation rules 

3. Use of reserved words 

4. Data names for aggregates (subscripts, qualification) 

Definition and usage of other basic elements 

. Operators 

. Delimiters 

. Use and meaning of punctuation 

. Significance of blanks 

. Use of noise words 

. Literals 

Type of input form used 

1. Physical input form 

2. Conceptual form 

N
a
h
 
W
h
 

3. Structure of Program 

3.1. 

3.2. 

Types of subunits 

. Nonexecutable: declarations and compiler directives 

. Smallest executable unit 

. Sets of smallest executable units 

. Loops 

. Functions, subroutines and procedures 

. Comments 

. Interaction with the operating system and environment 

. Inclusion of other languages 

. Complete program (including sequencing rules) 

Characteristics of subunits 

1. Methods of delimiting 

2. Recursive 

3. Parameter passage and differing types 
4. Embedding 

Oo 
O
n
 

HN 
A
 

h
 
W
N
 

—
 

4. Data Types and Units and Computations with Them 

4.1. 

4.2. 

4.3. 

Types of data variables and constants 

. Arithmetic 

. Logical (= Boolean) 

. Character 

. Complex 

. Formal (= algebraic) 

String 

. List of pointer 

. Hierarchical 

. Others 
10. Combinations of variable and constant types 

Accessible data units 

1. Hardware data units 
2. Language data units 

Types of arithmetic 

1. Integer, fixed point, mixed number 

2. Floating point 

3. Rational 

O
A
N
N
A
N
N
P
W
N
 

72 
72 
72 
73 
74 
77 
77 
77 
78 
79 
79 
80 
80 
81 
82 

82 
83 
83 
83 
84 
85 
85 
86 
87 
87 
88 
88 
89 
89 
90 
92 

92 
93 
93 
93 
93 
93 
94 
94 
94 
94 
95 
95 
95 
95 
97 
97 
98 
98 
98



XVili CONTENTS 

. Complex numbers 

. Double or multiple precision 

. Logical 

. Other 

. Higher level data units 

4.4. Rules on creation and evaluation of arithmetic and logical 

expressions 

1. Intermingling rules 

2. Conversion rules 

3. Precision and computation rules for various modes 

4. Precedence and sequencing rules 

4.5. Scope of data 

C
O
N
N
 

. Executable Statement Types 

5.1. Assignment 

1. Methods of specifying computation 

2. Conversion rules for results 

5.2. Alphanumeric data handling 
1. Editing statements 

2. Conversion statements 

3. Sorting statements 

5.3. Sequence control and decision making 
1. Control transfer statements 

2. Conditional statements 

3. Loop control statements 

4. Error condition statements 

5.4. Symbolic data handling 

1. Algebraic expression manipulation statements 

2. List-handling statements 

3. String-handling statements 
4. Pattern-handling statements 

5.5. Interaction with operating system and/or equipment 

1. Input/output statements 

2. Library reference statements 

3. Debugging statements 

4. Storage and segmentation allocation statements 

5. Operating system and machine feature statements 

5.6. Others 

. Declarations and Nonexecutable Statements 

6.1. Data description 

6.2. File description 

6.3. Format description 

6.4. Storage allocation 

6.5. Environment or operating system descriptions 

6.6. Procedure, subroutine, function declarations 

6.7. Compiler directives 

6.8. Others 

. Structure of Language and Compiler Interaction 

7.1. Self-modification of programs 

7.2. Self-extension of the language 
7.3. Ability to write the compiler for a language in that language 

99 
99 
99 

100 
100 

100 
100 
101 
102 
102 
103 

104 
104 
105 
105 
106 
106 
106 
106 
107 
107 
108 
109 
110 
111 
111 
111 
112 
112 
112 
113 
113 
114 
114 
115 
115 

115 
116 
117 
118 
118 
119 
119 
119 
120 

120 
120 
121 
121



CONTENTS XIX 

7.4. Effect of language design on implementation efficiency 122 

1. Compile time versus object time efficiency 122 

2. Generality versus restrictions 123 

3. Specific features with significant effect 124 

4. Storage allocation requirements 124 
5. Possibility for providing choice of tradeoffs 124 

7.5. Debugging aids and error checking 125 

8. Other Features Not Included 125 

References 126 

iV LANGUAGES FOR NUMERICAL 
SCIENTIFIC PROBLEMS 128 

1. Scope of Chapter 128 

2. Languages of Historical Interest Only 128 

2.1. Very early systems 129 

1. SHORT CODE 129 

2. Speedcoding 130 

3. Laning and Zierler system 131 

4. A-2 and A-3 132 

5. BACAIC 133 

6. PRINT 134 

2.2. More widely used systems 134 

1. MATH-MATIC (AT-3) 135 

2. UNICODE 137 

3. IT, FORTRANSIT, and GAT 139 

4. ALGOL 58 (cross-reference only) 143 

3. FORTRAN 143 

3.1. History of FORTRAN 143 

3.2. Functional characteristics of ASA (USASI) FORTRAN and 

Basic FORTRAN 150 

3.3. Technical characteristics of ASA (USASI) Basic FORTRAN 157 

3.4. Technical characteristics of ASA (USASI) FORTRAN 165 

3.5. Significant contribution to technology 169 

3.6. Significant extensions of FORTRAN 170 

1. Proposal Writing language 170 

2. FORMAC (cross-reference only) 171 

3. QUIKTRAN (cross-reference only) 172 

4. GRAF (cross-reference only) 172 

5. DSL/90 (cross-reference only) 172 
4, ALGOL 172 

4.1. History of ALGOL 172 

1. ALGOL 58 172 

2. ALGOL 60 175 

3. Revised ALGOL 60 177 

4. ALGOL 6X 178 

4.2. Functional characteristics of Revised ALGOL 60—Proposed ISO 

Standard 178 

4.3. Technical characteristics of Revised ALGOL 60—Proposed ISO 

Standard 182



XX CONTENTS 

4.4. Significant contribution to technology 

4.5. Extensions of ALGOL 

. Formula ALGOL (cross-reference only) 

. LISP 2 (cross-reference only) 

. AED (cross-reference only) 

. SFD-ALGOL (cross-reference only) 

. SIMULA (cross-reference only) 

. DIAMAG 

GPL 

. Extended ALGOL C
O
N
 

N
U
M
 

Rh 
W
N
 
=
 

. Languages Motivated by ALGOL 58 

5.1. NELIAC 

5.2. MAD 

5.3. JOVIAL (cross-reference only) 

. On-Line Systems 

6.1. Introductory remarks 

6.2. JOSS 

6.3. QUIKTRAN 

6.4. BASIC 

6.5. CPS 

6.6. MAP 

6.7. Lincoln Reckoner 

6.8. APL/360 and PAT 

6.9. Culler-Fried System 

6.10. DIALOG 

6.11. AMTRAN 

. Languages with Fairly Natural Mathematical Notation 

7.1. Introductory remarks 

7.2. COLASL 
7.3. MADCAP 
7.4. MIRFAC 
7.5. Klerer-May system 

. Miscellaneous 

8.1. CORC 
8.2. OMNITAB 
8.3. More nonprocedural languages 

References 

LANGUAGES FOR BUSINESS 
DATA PROCESSING PROBLEMS 

1. Scope of Chapter 

2. Languages of Primarily Historical Interest 

2.1. FLOW-MATIC (and B-@) 

2.2. AIMACO 

2.3. Commercial Translator 

2.4. FACT 

2.5. GECOM 

192 
194 
194 
195 
195 
195 
195 
195 
195 
196 

196 
197 
205 
215 

215 
215 
217 
226 
229 
232 
240 
245 
247 
253 
255 
258 

264 
264 
265 
271 
281 
284 

294 
294 
296 
299 

300 

314 

314 

316 
316 
324 
324 
327 
328



VI 

CONTENTS XxXi 

3. COBOL 330 

3.1. History of COBOL 330 

3.2. Functional characteristics of COBOL 334 

3.3. Technical characteristics of COBOL 345 

3.4. Significant contribution to technology 375 

4. File Handling 376 

4.1. Extensions of COBOL 376 

1. IDS 376 

4.2. General (cross-reference only) 376 

References 377 

STRING AND LIST 
PROCESSING LANGUAGES 382 

1. Scope of Chapter 382 

2. Languages of Historical Interest Only 388 

3. IPL-V : 388 
3.1. History of IPL-V 388 

3.2. Functional characteristics of IPL-V 389 

3.3. Technical characteristics of IPL-V 393 

3.4. Significant contribution to technology 400 
4. L6 400 

5. LISP 1.5 405 
5.1. History of LISP 1.5 405 

5.2. Functional characteristics of LISP 1.5 407 

5.3. Technical characteristics of LISP 1.5 410 

5.4. Significant contribution to technology 416 

6. COMIT 416 
6.1. History of COMIT 416 

6.2. Functional characteristics of COMIT — 417 
6.3. Technical characteristics of COMIT 421 

6.4. Significant contribution to technology 435 

7. SNOBOL 436 
7.1. History of SNOBOL 436 
7.2. Functional characteristics of SNOBOL 436 

7.3. Technical characteristics of SNOBOL 438 
7.4. Significant contribution to technology 448 

8. TRAC 448 

9. Languages Not Widely Used 454 
9.1. AMBIT 454 
9.2. TREET 457 
9.3. Others 461 

1. CLP 461 
2. CORAL 462 
3. SPRINT 462 

4. LOLITA 464 

References 464



XXil CONTENTS 

Vil 

Vill 

FORMAL ALGEBRAIC 
MANIPULATION LANGUAGES 

. Scope of Chapter 

. Languages of Historical Interest Only 

2.1. ALGY 

. FORMAC 
3.1. History of FORMAC 
3.2. Functional characteristics of FORMAC 
3.3. Technical characteristics of FORMAC 

3.4. Significant contribution to technology 

. MATHLAB 
4.1. History of MATHLAB 

4.2. Functional characteristics ofp MATHLAB 

4.3. Technical characteristics of MATHLAB 

4.4. Significant contribution to technology 

. ALTRAN 

6. FLAP 

7. Systems Requiring Special Equipment 

7.1. Magic Paper 

7.2. Symbolic Mathematical Laboratory 

References 

MULTIPURPOSE 
LANGUAGES 

1. Scope of Chapter 

. Languages of Historical Interest Only 

3. JOVIAL 

5. 

6. 

3.1. History of JOVIAL 

3.2. Functional characteristics of JOVIAL 

3.3. Technical characteristics of JOVIAL 

3.4. Significant contribution to technology 

. PL/I 
4.1. History of PL/I 

4.2. Functional characteristics of PL/I 

4.3. Technical characteristics of PL/I 

4.4. Significant contribution to technology 

Formula ALGOL 

LISP 2 

References 

471 

471 

473 
473 

474 
474 
475 
476 
490 

491 
491 
491 
493 
501 

502 

506 

510 
510 
514 

520 

523 

523 

524 

524 
524 
526 
530 
539 

540 
540 
542 
548 
582 

583 

589 

598



CONTENTS 

[ SPECIALIZED 
LANGUAGES 

1. Scope of Chapter 

2. Languages for Special Application Areas 

2.1. Machine tool control 

1. 
2. 

APT 

Others 

2.2. Civil engineering 

1. 

2. 

3. 

2.3. Lo 

1. 

A
n
 

&
 

WwW 
NY 

2.4. Di 

1 

2 

3 

4. 

5 

Co 2.5. 

o
N
 
D
A
W
N
 =
 

2.6. Mi 

m
P
w
W
N
 =
 

an 

3. Speciali 

COGO 

STRESS 

ICES 

gical design 

APL (Iverson) 

. LOTIS 
LDT 

. Langage for simulating digital systems 

. Computer Compiler 

. Computer Design Language 

. SFD-ALGOL 

gital simulation of block diagrams 

. Introduction 

. DYANA 

. DYSAC 

DAS 
. DSL/90 
mpiler writing 

. Introduction 

CLIP 
TMG 
COGENT 
META 5 
TRANDIR 
FSL 

. AED (cross-reference only) 

scellaneous 

. Matrix computations: Matrix Compiler 

. Cryptanalysis: OCAL 

. Movie creation: Animated Movie Language and BUGSYS 

. Social science research: DATA-TEXT 

. Equipment checkout: STROBES, DIMATE 

zed Languages across Application Areas 

3.1. Discrete simulation 

1. 

M
h
 

w
W
N
 

Introduction 

. DYNAMO 
GPSS 

. SIMSCRIPT 

. SOL 

603 

603 

605 
605 
605 
606 
610 
611 
612 
615 
620 
620 
621 
621 
622 
623 
623 
623 
627 
625 
628 
629 
631 
632 
633 
633 
635 
636 
638 
638 
640 
641 
641 
642 
642 
642 
644 
646 
647 

650 
650 
650 
651 
653 
655 
656



XxivV CONTENTS 

6. MILITRAN 657 
7. SIMULA 657 
8. OPS 660 

3.2. Query 662 

1. Introduction 662 
2. COLINGO and C-10 664 
3. 473L Query 665 

4. ADAM 667 
5. BASEBALL 668 
6. DEACON 668 
7. Protosynthex 669 
8. AESOP 670 

3.3. Graphic and on-line display languages 674 

1. GRAF 674 
2. PENCIL 677 
3. Graphic 677 

4. DOCUS 678 
5. AESOP (cross-reference only) 678 

3.4. Computer-aided design 678 
1. General 678 

2. AED 680 
3.5. Text editing and processing 684 
3.6. Control languages for on-line and operating systems 687 

References 693 

xX SIGNIFICANT 
UNIMPLEMENTED CONCEPTS 707 

1. Scope of Chapter 707 

2. UNCOL 708 

3. Information Algebra 709 

4. APL (Iverson) 712 

5. English 715 

6. Hardware Implementation of Programming Languages 717 

References 719 

Xi FUTURE LONG-RANGE 
DEVELOPMENTS 722 

1. Introduction 722 

2. Theory-Oriented Category 723 

2.1. Language definition, translation, and creation 723 
2.2. Next major conceptual step 725 

2.3. Nonprocedural languages 726 

2.4. Problem-describing languages 726 

2.5. Use of mathematical concepts 727



3. User-Oriented category 

3.1. User-defined languages 

3.2. Use of natural language 

3.3. Communication with hardware and software 
3.4. Languages for new application areas 

3.5. Languages for writing software 

4. Interrelationships among Some of These Concepts 

5. Conclusions and Summary 

References 

BIBLIOGRAPHY ARRANGEMENTS 
AND AUTHOR LIST 

LANGUAGE 
SUMMARY 

NAME AND SYSTEMS INDEX 

SUBJECT INDEX 

CONTENTS XXV 

727 
727 
729 
732 
733 
734 

734 

736 

736 

738 

753 

765 

776



LIST OF FIGURES 

AND SAMPLE PROGRAMS 

CHAPTER | 

I-1 List of automatic programming systems (1959) 

CHAPTER Il 

There are no figures in Chapter II. 

CHAPTER lil 

III-1 Example of tree and data layout 

CHAPTER IV 

IV-1 List of BACAIC facilities 

IV-2 MATH-MATIC commands 

IV-3 List of UNICODE instructions 

IV-4 Table of FORTRAN I statements for the IBM 704 

IV-5 Summary of FORTRAN II statements 

IV-6 List of FORTRAN statements implemented on IBM computers, 

circa 1961 

IV-7 List of intrinsic functions in Basic FORTRAN 

IV-8 List of basic external functions in Basic FORTRAN 

IV-9 Rules for assignment of e to vin FORTRAN 

XxVvi 

6-7 

76 

133 
136 
138 
145 
146 

149 
162 
162 
167



LIST OF FIGURES AND SAMPLE PROGRAMS 

IV-10 List of statements in Proposal Writing Language 

IV-11 Program in Proposal Writing Language 

IV-12 Format for changing operators and modes in MAD 
IV-13 Short summary of JOSS I 

IV-14 JOSS II commands and functions 

IV-15 Summary of BASIC statements : 

IV-16 Summary of CPS facilities (one-page summary with notes). 

IV-17 Example of the use of Least Square command in MAP 

IV-18 Standard scalar operators in APL 

IV-19 Summary of DIALOG facilities 

IV-20 List of AMTRAN operations 

IV-21 The COLASL alphabet 

IV-22 Example of COLASL program including heavy commentary 
IV-23 Expressions in COLASL 

IV-24 Two forms of the same MIRFAC program 

IV-25a Page 1 of the Klerer and May Reference Manual 

I1V-25b Page 2 of the Klerer and May Reference Manual 

IV-25c “Addendum” to the Klerer and May Reference Manual 

IV-26 Example of expressions with ambiguities in Klerer-May system 

IV-27 Interpretation of ambiguities in expressions shown in Figure IV-26 

CHAPTER V 

V-1 Eight different ways to add three numbers . 

V-2 FLOW-MATIC verb formats 

V-3 FLOW-MATIC program 

V-4 List of Commercial Translator commands 

V-5 List of FACT verbs 

V-6 Schematic diagram showing the structure of pUSASI COBOL 

V-7 Formats of COBOL verbs 

V-8 Flowchart represented by a single COBOL sentence 

V-9 Data description (=Record description) skeleton in COBOL 

V-10 Report description (RD) skeleton in COBOL 

V-11 Report group skeleton in COBOL 

V-12 File description (FD) skeleton in COBOL 

V-13 Sort file description (SD) skeleton in COBOL 

V-14 OBJECT—COMPUTER format in COBOL 

V-15 SPECIAL—NAMES format in COBOL 

V-16 FILE—CONTROL format in COBOL 

V-17 [—O—CONTROL format in COBOL 

CHAPTER VI 

VI-1 Illustration of list 

VI-2 Inserting element in a list 

VI-3 List structure, i.e., list containing list as element 

XxVvii 

171 
172 
215 
220 
224-225 
231 
234-235 
243 
249 
257 
262-263 
266 
268 
270 
283 
286 
287 
288 
292 
293 

315 
317-322 
323 
326 
328 
342 
353-359 
361 
366-367 
367 
368-369 
370 
370 
371 
372 
373 
374 

383 
384 
385



XXVili LIST OF FIGURES AND SAMPLE PROGRAMS 

VI-4 Fairly complete list of basic processes in first Information Processing 

Language 

VI-5 List of IPL-V basic processes 

VI-6 Summary of all L® instructions 
VI-7 Syntactic definition of LISP S- and M-expressions 

VI-8 Example of CORAL statements 

CHAPTER VII 

VII-1 7090/94 FORMAC verb formats with examples 

VII-2 Example of use of MATHLAB on the AN/FSQ-32 
VII-3 Typical executive control characters in first Magic Paper 

VII-4 Format control characters in first Magic Paper 

CHAPTER VIII 

VIII-1 JOVIAL usage and compilers 

VIII-2 Executable PL/I statement formats 

VIII-3 List of On-conditions in PL/I 

VITI-4 List of Built-in functions in PL/I 

CHAPTER IX 

IX-1 Example of APT program for specific part to be cut 

IX-2 APT vocabulary list 

IX-3 Small COGO program for figure shown 

IX-4 List of 7090 COGO command names 

IX-5 Specifications for a particular COGO command 

IX-6 STRESS program for analysis of space truss shown in the diagram 

IX-7 Partial listing of STRESS commands 

IX-8 Some of the CDL commands in ICES 

IX-9 Portion of LOTIS program defining a hypothetical computer 

IX-10 Relationship between information flow on a block diagram and 

LDT input 

IX-11 System layout and data paths in a sample computer, and part of 

computer compiler program 
IX-12 Computer Design Language program to define multiplication 

IX-13 SFD-ALGOL program to describe action of pushdown stack shown 

in diagram 

IX-14 Mechanical system and corresponding DYANA program 

IX-15 DYSAC components 

IX-16 DYSAC statements for input data sections 

390-391 
398 
403-404 
409 
463 

481-484 
492 
S11 
512 

526-527 
558-561 
565 
568 

607 
608-610 
611 
612 
613 
614-615 
616 
619 
621 

622 

624 
625 

626-627 
628 
629 
629



IX-17 
IX-18 

IX-19 

TX-20 
IX-21 
IX-22 
IX-23 
IX-24 
IX-25 
TX-26 
IX-27 
TX-28 
IX-29 

LIST OF FIGURES AND SAMPLE PROGRAMS 

Problem, diagram, and corresponding DYSAC program 

Mathematical problem, block diagram, and corresponding DAS 

program 

Examples of some DSL/90 functional blocks, switching functions, 

and function generators 

Differential equation, diagram, and corresponding DSL/90 program 

Example of part of TMG program 

Example of part of COGENT program 

META program to convert JOVIAL constants to PL/I constants 

Example of part of TRANDIR program 

Example of part of FSL program 

OCAL program for solving cryptanalysis problem 

Part of movie animation program 

Example of part of BUGSYS program 

Example of DATA-TEXT input data 

IX-30 Example of defining new variables based on conditions 

TX-31 DATA-TEXT program 

IX-32 Example of STROBES program 

IX-33 
IX-34 
IX-35 
IX-36 
IX-37 
IX-38 
TX-39 

IX-40 
IX-41 
IX-42 
IX-43 
IX-44 
IX-45 
IX-46 
TX-47 

IX-48 
IX-49 

Program for testing equipment 

DYNAMO example of model of retail store 

Some of the GPSS block types and corresponding operations 

Example of harbor arrival problem and GPSS solution 

Names of SIMSCRIPT commands and phrases 

SIMSCRIPT program for order in machine shop 

Complete SOL program for the multiple console on-line 

communication system shown in the diagram 

List of MILITRAN statements 

MILITRAN program for finite length queue 

Skeleton SIMULA description of job shop system 

OPS-3 program for multi-server queuing model 

List of basic commands in COLINGO 

Portion of a C-10 program 

Punctuation characters and key words in 473L Query language 

Examples of control statements, questions, and answers from 

Protosynthex II 

Communication tree in AESOP 

AESOP commands used on typewriter 

IX-50 Small GRAF program 

IX-51 
IX-52 
IX-53 

List of PENCIL primitives 

PENCIL program for diagram shown 

Example in Graphic language 

IX-54 GOL, DOL, and PIL operations in DOCUS 

TX-55 
TX-56 
IX-57 
IX-58 
IX-59 
IX-60 
IX-61 

General structure of AED-1 compiler 

Examples of editing statements in ES-1 

List of DATATEXT commands 

Sample of DATATEXT usage 

Names of commands in CTSS context editor 

Sample of actual CTSS session 

Uses of Job Control Language: (a) catalogued procedure, 

(b) changes to catalogued procedure, and (c) result of changing 

catalogued procedure 

XXix 

630 

631 

632 
633 
637 
639 
639 
640 
642 
643 
644 
645 
646 
647 
647 
648 
649 
652 
653 
654 
655 
656 

657-658 
659 
660 
661 
662 
665 
666 
667 

670 
671 
672-673 
674 
675 
676 
677 
679 
683 
684 
685 
686 
686 
690 

692



XXX LIST OF FIGURES AND SAMPLE PROGRAMS 

CHAPTER X 

X-1 Use of UNCOL to reduce the number of compilers in going from M 

languages to N machines 

X-2 System information for payroll problem in Information Algebra 

X-3 Payroll program written in Information Algebra 

X-4 Partial list of APL notation 

X-5 m-way merge sort written in APL 

CHAPTER Xi 

There are no figures in Chapter XI 

SAMPLE PROGRAMS 

ALGOL 60 
ALTRAN 
AMBIT 
AMTRAN 
APL/360 
BASIC 
COBOL 
COLASL (Fig. I[V-22) 
COMIT II 
CPS 
FLAP 
FORMAC (PL/I-FORMAC) 
Formula ALGOL 

FORTRAN 
IPL-V 
JOSS II 
JOVIAL 
Klerer-May System 
L6 

LISP 1.5 
LISP 2 
MAD 
MADCAP 
MAP (Fig. IV-17) 
MATHLAB 68 
MIRFAC 
NELIAC 
OMNITAB 
PL/I 
PL/I-FORMAC 
Proposal Writing Language (Fig. IV-11) 

QUIKTRAN 
SNOBOL3 
Symbolic Mathematical Laboratory 

TRAC 
TREET 

708 
710 
711 
713 
714 

178 
502 
455 
259 
248 
230 
336-337 
268 
418 
233 
507 
477 
583 
151 
392 
218 
528 
285 
401 
407 
591 
207 
272 
243 
499 
282 
199 
297 
544-545 
477 
172 
227 
437 
315 
449 
458



I GENERAL INTRODUCTION 

Programming languages have become the major means of communication 

between the person with a problem and the digital computer used to help 

solve it. In fact, it would be impractical to solve most problems if the com- 

puter had to be instructed in machine language. This has come about 

because most machines tend to operate in binary, and this is clearly an 

unsatisfactory method of communication for humans; hence the primary 

interface between the computer user and the computer itself has become 

the programming language used. In this context, language has the broadest 

possible meaning and includes not only the description of the problem to be 

solved but also the needed instructions to the operator or operating system. 

It should be noted that throughout this book the terms programming language 

and higher level language will be used synonymously, with the former being 

my preferred term. In particular, as noted later in this chapter, I do not 

consider an assembly language (even a very sophisticated one) to be a pro- 

gramming language. This view differs from that held by some people who 

maintain that anything in which programs are written is a programming 

language. 

The main function of this chapter is to motivate the need for program- 

ming languages, and to define and characterize them. One section discusses 

the advantages and disadvantages of programming languages; however, 

in spite of the disadvantages, the net evaluation is that programming 

languages are here to stay. Finally, there is a lengthy list of types of program- 

ming languages, together with some proposed definitions. This provides 

one way of classifying programming languages. Many of these types are 

overlapping, i.e., a language can fall into several categories simultaneously. 

1



2 GENERAL INTRODUCTION 

1.1. MACHINE LANGUAGE PROGRAMMING 

Every computer has a specific set of instructions which it can execute once 

the instruction is placed into the appropriate part of the machine. The actual 

set of symbols which the hardware can interpret for execution is the direct 

machine language. Since most computers are designed so that their storage 

locations and registers contain binary characters (i.e., bits), the most com- 

mon machine language 1s actually binary. Thus the sequence 

011011 O00000 000000 000000 000001 000000 

might mean place the contents of storage location 64 in the accumulator. To 

write one instruction, let alone many of them, in this form is clearly imprac- 

tical, and this was recognized very rapidly in the early days of computers. 

A partial step to alleviate this problem involved the use of mnemonic codes 

to represent the instruction, while the rest of the information was left in 

binary. Thus, the sequence 

CLA 000000 000000 000000 000001 000000 

might have the same meaning as the binary string given earlier. While this 

was a partial improvement, it was still far from easy to write even one in- 

struction correctly. The next step forward came when the numbers (repre- 

senting the storage locations or registers in the computer) were allowed to be 

written in decimal form. Thus the sequence CLA 0 0 0 O 64 might have 

the same meaning as the earlier strings. 

The border line between machine language and symbolic assembly 

language is not well defined. Some people would choose to refer to the 

format given just above as assembly language. At the present time, it is not 

worth debating the merits of either view. 

1.2. SYMBOLIC ASSEMBLY LANGUAGE PROGRAMMING 

The biggest disadvantage to machine language as described in the previous 

section, even in the form CLA O O O O 64, was that the insertion or elimina- 

tion of a single instruction (or piece of data) caused many—if not all—of 

the addresses in other instructions to be incorrect. This situation could be 

improved somewhat by a scheme of relative addressing or regional addressing, 

in which the program was divided into sections, each of which started in 

a fixed location. Addresses within each section were given relative to the 

starting location. Thus CLA 0 O O O R64 might refer to the 64th location 

within the R section of code. 

While this was an obvious improvement, it was the development of 

completely symbolic notation and addressing for both instructions and 

data that freed the programmer from worrying about changing all occur- 

rences of R64 to R63. A preliminary step in this direction was the work



I.3. EARLY DEVELOPMENT OF BETTER TOOLS 3 

done at MIT on Whirlwind in 1952, and by Rochester [RT53] which used 
numeric symbolic addresses. These numbers had no mnemonic or numerical 
significance but were merely used as symbols for addresses. The culmination 
of this early work was the use of mnemonic symbols for both instructions 

and data, thus permitting the user to write CLA TEMP where TEMP stands 

for the location in memory of the value of a variable, e.g., temperature. 

A whole generation of programmers thus learned to use the IBM 704 by 

writing programs in SAP (Symbolic Assembly Program) [XY 56]. 

1.3. EARLY DEVELOPMENT OF BETTER TOOLS 

1.3.1. Speciric NEEDS TO BE MET 

The histories of automatic coding, programming languages, and the 

development of better tools to assist programmers are almost—but not 

completely—synonymous. As noted in the ensuing discussion, virtually all 

the significant problems arising in the early days were, or have been, solved 

by the increasing development of higher level languages (which are defined 

and discussed in Section I.4). It was not until the existence of second genera- 

tion computers (circa 1959) that the speed, cost, and difficulty of manually 

changing jobs began to force the development of operating systems; this 

latter is probably the one major area that is entirely distinct from program- 

ming languages which has had, and is having, a major impact upon the 

overall computing community. (Time-sharing is considered to be in the 

broad category of operating systems.) One can go even further and say that 

the development of operating systems was really to help the installation 

managers rather than the individual programmers; the latter seldom see 

a direct benefit from the operating system unless it greatly reduces their 

turnaround time (which is not always true!). Time-sharing of course attempts 

to bring to the programmer of third generation computers the advantages 

of the on-line debugging which the user of the first computers usually had. 

However, even this inherently nonlanguage development requires con- 

sideration of the language with which the user will address the system. 

The desirability of having a symbolic code forced the development 

of symbolic assembly languages. However, that was not sufficient to meet 

the growing demands of programmers. For one thing, programmers wanted 

the ability to use other people’s code wherever it was appropriate. This 

could not always be done because of differences in notation and lack of 

an effective way to link the pieces together. One of the main motivations 

for using other people’s code was that certain programs were being written 

over and over again. For example, square root and trigonometric routines 

were being written by the dozens. In some cases, this proliferation was



4 GENERAL INTRODUCTION 

justifiable because one person was interested in saving space and therefore 

wrote as short a subroutine as he could, while somebody else wanted to 

save as much time as possible and therefore removed loops even at the 

expense of using more storage locations. In another case, people had 

differing requirements for precision, and this caused another whole set of 

routines to be developed with varying degrees of precision. However, 

eventually the individual effectiveness of a particular program became less 

important and was subjugated to the overall effectiveness of a group of 

programmers. Thus there developed the need for effective library facilities 

and, in particular, library routines—many of them parameterized—that 

could be invoked very easily by a programmer. 

Another area where a need rapidly became apparent was in routines 

which differed not in concept but only in specific cases or which had many 

input parameters, not all of which were numbers. The best example of this 

was the early sort routines, which used the same techniques but differed 

in the coding because the key might be in the first word of the record or the 

fifth or the ninth, and the key might be three characters long or eight, etc. 

The early work of F. Holberton [HF54] in developing sort generators for 

UNIVAC had a significant impact on this type of problem because she pro- 

vided a set of routines which would partially write themselves once given 

the necessary input parameters. 

Programmers not only wanted the ability to use other people’s code, 

but they wanted the capability of easily bringing together small sections 

of a program. One of the earliest and most significant efforts along these 

lines was the development of the subroutine library for the EDSAC as 

represented and described by Wilkes, Wheeler, and Gill [WI51]. 

Finally, there was an increasing demand for being able to write short- 

hands of various kinds. Once people had written sequences of code, they 

were interested in finding a shorthand way to write the same or similar in- 

formation, and calling the material from the library was not always appro- 

priate. In addition, people wanted better and better notation, where they 

implicitly defined “better” as “more natural”. 

All these needs were attacked by different people in different ways. 

In my opinion, Dr. Grace Hopper probably did as much as any other single 

person to sell many of these concepts from an administrative and manage- 

ment, as well as a technical, point of view. See, for example, Hopper [HP55]. 

One of the first meetings held to discuss the subject that was then called 

automatic programming was sponsored by the Office of Naval Research in 

May, 1954 and reported in [DN54]. At that time, a number of interesting 

systems were described, some of which are covered in later sections. 

Probably the most significant ideas that were mentioned at that early meeting 

and that are not covered in this book are the concept of code generation 

discussed by Holberton, the editing generator of Waite and Elmore, the



1.3. EARLY DEVELOPMENT OF BETTER TOOLS 5 

analytic differentiator of Kahrimanian, and the grandiloquent objective 
(not yet achieved) of the universal code described by Gorn; all these are 
described in [DN54]. 

The next significant meeting was the symposium on “Advanced Pro- 

gramming Methods for Digital Computers” held under the joint sponsorship 

of the Navy Mathematical Computing Advisory Panel and the Office of 

Naval Research in June, 1956 [DN56]. About the only paper presented at 

that meeting which had any significance as far as programming languages 

are concerned was the paper by Thompson [TM56] which discussed 

OMNICODE. This is sufficiently similar in principle to the PRINT system 

discussed in Chapter IV so that it will not be mentioned here (although the 

reader should realize that the details are significantly different). 

The next meeting of major importance was the symposium on 

“Automatic Coding” held in January, 1957 at the Franklin Institute in 

Philadelphia [FK57]. The major items covered there were PRINT I, B-0, 

[T, and the Matrix Compiler; they are described elsewhere in the book. 

1.3.2. Brief HISTORY OF EARLY EFFORTS 

A number of systems were developed in the early years (defined to be 

prior to 1957) which made significant contributions to the development of 

higher level Janguages. Chief among these, in approximate chronological 

order, are Short Code (UNIVAC), Speedcoding (IBM 701), Laning and 

Zierler system (Whirlwind), A-2 and A-3 (UNIVAC), BACAIC (701), and 

PRINT (705). These are all described in Chapter IV, and the references are 

given there. The early work of Rutishauser in Switzerland is also mentioned 

there, even though this book is only attempting to deal with American 

developments. 

These systems generally provided some type of mathematically oriented 

operation (e.g., addition, computation of sines) and control functions, 

together with either fixed or variable operands. In each case, the information 

written by the programmer in one line or statement was either interpreted 

or was directly equivalent to several lines of actual machine code. However, 

most of these systems had a fixed format and, in particular, did not permit 

the writing of mathematical expressions in anything resembling natural 

notation. Only the Laning and Zierler system and BACAIC had this latter 

facility. 

Figure I-1 is a list of the automatic programming systems of 1959. Note 

that many of them would not be considered programming languages by the 

criteria established later in this chapter. 

No attempt has been made in this book to include those systems which 

contributed strongly to the development of either better symbolic assembly



Computer In ACM Library Do Not Have 
  

704 AFAC 
CAGE 
CORBIE 
FORTRAN 
KOMPILER 3 
MYSTIC 
NYAP 
PACT IA 
REG-SYMBOLIC 
SAP 

ADES 
FORC 

  

701 BACAIC 
DUAL-607 
FLOP 
JCS-13 
KOMPILER 2 
PACT I 
QUICK 
SEESAW 
SHACO 
SPEEDCODING 3 

BAP 
DOUGLAS 
GEPURS 
LT-2 
QUEASY 
SO 2 
SPEEDEX 

  

705 ACOM 
AUTOCODER 
ELI 
PRINT I 
SOHIO 
SYMBOLIC ASSEMBLY 

FAIR 

  

702 AUTOCODER 
ASSEMBLY 
SCRIPT 
  

650 ADES II 
APT 
BACAIC 
BELL 
BELL L2, L3 
CASE SOAP II 
DRUCO I 
EASE II 
ELI 
FAST 
FOR TRANSIT 
FORTRUNCIBLE 
IT 
IT 3 
MYSTIC 
RELATIVE 
RUNCIBLE 
SIR 
SOAP I 
SOAP I 

BALITAC 
ESCAPE 
FLAIR 
KISS 
MITILAC 
OMNICODE 
SPEEDCODING 
SPUR 

  

650 GAT-2 
RAMAC 
  

NORC NORC COMPILER 
  

7070 BASIC AUTOCODER 
  

Figure I-1. List of automatic programming systems (1959). 

Source: Comm. ACM, Vol. 2, No. 5 (May 1959), p. 16. By 

permission of Association for Computing Machinery, Inc. 

6



Computer In ACM Library Do Not Have 
  

1103, 1103A APT TRANS-USE 
BOEING 
CHIP 
FAP 
FLIP-SPUR 
MISHAP 
MYSTIC 
RAWOOP-SNAP 
UNICODE 
USE 
  

UNIVAC I, Il AO, Al, A2 MJS 
ARITHMATIC (A-3) RELCODE 
BIOR 
FLOWMATIC (B-0) 
GP 
GPX (IL ONLY) 
MATHMATIC (AT-3) 
MATRIX MATH 

NYU, OMNIFAX 
SHORTCODE 
UNISAP 
X-1 
  
DATATRON 
201 
204 
205 

APX Ill 
DUMBO BELL 
PURDUE COMPILER DATACODE I 
SAC DOW COMPILER 
SIMPLE SHELL 
UGLIAC SPAR 

STAR 0 

ANCP 

  
DAISY 201 
FLIP 
INTERCOM 101 
INTERCOM 1000 

POGO 

  
WHIRLWIND COMPREHENSIVE 

SUMMER SESSION 
ALGEBRAIC 

  
FERUT TRANSCODE 
  
JOHNNIAC EASY FOX 
  

ILLIAC ILLIAC 
  

LGP-30 ERFPI 
JAZ 
SPEED 
  

MIDAC EASIAC 
MAGIC 
  

LARC K5 
SAIL 

  

FERRANTI 

MERCURY 

AUTOCODING 

MAC (NORWAY) 
  

FERRANTI 
PEGASUS 

AUTOCODE 

 



$ GENERAL INTRODUCTION 

programs or file-handling techniques. In particular, such systems as PACT 

(see papers by Baker [BK56] and others in the same journal, and Steel 

[ST57]), BIOR [RR55a], and SURGE [NMO00] are deliberately excluded. 

1.4. DEFINITION OF PROGRAMMING LANGUAGES 

1.4.1. DEFINITION PROBLEM 

The ASA (now USASJ) standard Vocabulary for Information Processing 

[AA66b] defines a programming language on page 23 as “A language used 

to prepare computer programs”. The IFIP-ICC Glossary [IF66] defines 

on page 79 a language as “A general term for a defined set of symbols and 

rules or conventions governing the manner and sequence in which the 

symbols may be combined into a meaningful communication,” with a note 

that “An unambiguous language, intended for expressing programs, is 

called a PROGRAMMING LANGUAGE.” This glossary also states that 

the term pseudocode has been used in England to denote a programming 

language which is not a computer language, but this usage is deprecated by 

the IFIP-ICC Glossary. 

While these definitions may be true from an overall abstract point of 

view, they do not—in my opinion—reflect actual current usage. Furthermore, 

neither glossary includes the term higher level language. It is intuitively clear 

that there is a significant difference between symbolic assembly languages 

and the languages which are discussed in this book. However, not only is 

there a lack of a specific term for the items in this book but, furthermore, 

a symbolic assembly program with a very powerful macro facility can 

certainly be made to look very much like what is frequently called a pro- 

gramming or higher level language. (See for example the XPOP system of 

Halpern [HL64].) For the purposes of this book, and admittedly contrary 

to the opinion of many, these two terms will be used interchangeably. One of 

the prime differences between assembly and higher level languages is that 

to date the latter do not have the capability of modifying themselves at 

execution time. In one instance—namely, LISP 1.5 (see Section VI.5)—an 

equivalent result can be achieved because the program is represented inter- 

nally in the same form and can be acted on as data. However, no language 

in this book has the facility for changing, e.g., a GO TO to an IF. The lack of 

this capability has not proved much of a handicap and is cited merely because 

it is one of the clear-cut distinctions between an assembly language and 

a programming language. 

Because there is no satisfactory definition, it seems more effective to 

try to define a programming language through its characteristics rather



1.4. DEFINITION OF PROGRAMMING LANGUAGES 9 

than by a specific definition. Thus, in my opinion, a programming language 

is a set of characters with rules for combining them which have the following 

characteristics. 

1.4.2. DEFINING CHARACTERISTICS 

1. Machine Code Knowledge Is Unnecessary 

A programming language requires no knowledge of the machine code 

by the user. In other words, the user need only learn the particular program- 

ming language and can use this quite independently of his (perhaps non- 

existent) knowledge of any particular machine code. Thus he need not learn 

about what registers are available on the computer, nor the specific hardware 

instructions that are required to activate the computational and logical 

processes. In many cases he can also remain ignorant of the internal 

representation of numbers; thus he can avoid worrying about whether 

numbers are represented internally as binary, hexadecimal, decimal, etc. 

However, this should not be interpreted to mean that the user can completely 

ignore the actual computer if he wants to obtain maximum (or even reason- 

able) effectiveness from it. For example, he may wish to take advantage of 

certain machine facilities (e.g., mass storage devices) which are known to 

him and which can provide more efficient programs; even more specifically 

he obviously cannot use input/output equipment which does not exist on 

a particular computer configuration. He might conceivably wish to concern 

himself with whether numbers were represented in binary or decimal fashion 

because this could affect certain points of computational precision that 

might be of concern to him. 

In summary, the first characteristic of a programming language is that 

the user can write a program without knowing much—if anything—about 

the physical characteristics of the machine on which the program is to be 

run. This same comment does not apply if he wishes to obtain maximum 

efficiency. 

A further constraint is that the user should be unable to affect directly 

the machine registers and memory. This rules out such ideas as Wirth’s 

PL360 [WT68] from being considered a higher level language (nor does he 

claim it is). 

2. Potential for Conversion to Other Computers 

Since the first characteristic states that the user need not know the 

details of the particular computer on which his program is to be run, it 

follows that a programming language must have some significant amount



10. GENERAL INTRODUCTION 

of machine independence. The whole question of compatibility and con- 

version is discussed at some length in Section II.4. It is sufficient to say here 

that a major characteristic of a programming language is that there must be 

a reasonable potential of having a source program written in that language 

run on two computers with different machine codes without rewriting the 

source program. Again, we are dealing with both absolute and relative 

quantities. In the absolute sense, the program may be able to be moved 

from one machine to another with no rewriting. In most programming 

languages, some—but often very little—rewriting of the source program is 

necessary. 

3. Instruction Explosion 

When a source program [see the definition in Section I[.4.3(1)] written 

in a programming language is translated to the actual machine code, there 

is normally more than one machine instruction created for each statement 

in the programming language. For example, a statement in a programming 

language might be something of the form A = B + C * D or MOVE A TO B. 

Normally each of these phrases requires more than one machine instruction 

to execute it, and this is the major difference between a symbolic assembly 

language and a higher level language. In fact, many compilers actually 

translate the source program to a symbolic assembly language. 

To be considered a programming language, there should be no need 

for the user to write any sequence of machine code. This provision causes 

the exclusion of macro assemblers from the category of programming 

languages (by assuming that some user must write the machine instructions 

for the macro). 

4. Problem-Oriented Notation 

A programming language must have a notation which is somewhat 

closer to the specific problem being solved than is normal machine code. 

It usually permits a relatively free format. Thus, for example, the first illustra- 

tion given in Section 1.4.2(3) might be translated into a sequence of instruc- 

tions such as 

CLA C 

MPY D 

ADD B 

STO A 

which is clearly less understandable than the programming language form 

A=B+C~xD. Again, this notational question is a relative one because 

what is considered problem-oriented and relatively free in one case might



I.4. DEFINITION OF PROGRAMMING LANGUAGES II 

be considered quite rigid and unnatural in another. However, as in each of 

the preceding discussions, the comparison that is being made is with a sym- 

bolic assembly language and not between two types of higher level language. 

To fall within the spirit of this concept of problem-oriented notation, 

a programming language must not require that each statement type or 

executable unit be specifically identified or flagged in a standard terminology 

and location. Furthermore, a fixed format, or the existence of a form to be 

filled out, is not considered problem-oriented notation. The first of these 

requirements rules out the Autocoder series, e.g., [[B6la], from being 

considered programming languages. The second rule excludes the class of 

report generators, e.g., [I[B65d], and decision tables, e.g., [EP66], [K V60], 

[UC61]. The exclusion of report generators, and to a lesser extent the exclu- 

sion of the Autocoder languages, runs contrary to much of the popular 

nomenclature. Very specifically, Report Program Generators (RPG) are 

commonly referred to as programming languages. However, I believe my 

classification is justified by the rigidness and lack of flexibility of the normal 

RPG “programs” which consist primarily of filling in a preprinted form. 

This in no way implies any failing or lack of importance of systems of this 

type; it merely excludes them from the class of languages considered in this 

book. 

[.4.3. BAsic TERMINOLOGY 

1. Source Program 

The actual program written in a higher level language is called the 

source program. This is the material that is put into the computer by the 

user for the purpose of obtaining results. The source program contrasts 

with the object program (which does not always exist), defined in the next 

paragraph. 

2. Object Program 

A source program can usually be translated to an object program. 

[Note the differences between compiler and interpreter in Sections I.4.3(3) 

and I.4.3(4) below.] The object program can actually exist in many forms, 

depending on the particular system involved. It can exist in pure binary 

form, or it could actually exist in a fairly complex symbolic assembly lan- 

guage form. The phrase object program, strictly speaking, relates only to the 

final binary form that can be executed by the computer, but in common 

conversation it is often used to denote the result of translating the source 

program at least down to an assembly level.



12 GENERAL INTRODUCTION 

3. Compiler 

A compiler is a program, not a piece of hardware. A compiler is simply 

a program which translates a source program written in a particular pro- 

gramming language to an object program which is capable of being run on 

a particular computer. A compiler is therefore both language and machine 

dependent. The most important characteristic of a compiler is that its output 

iS a program in some form or another and not an answer of any kind. This 

contrasts with the interpreter defined in Section 1.4.3(4). The first completed 

compiler seems to be the A-0 system developed by Dr. Grace Hopper and 

her staff at Remington Rand in 1952; see [HP53] and [HP53a]. 

A compiler must perform at least the following functions: Analysis 

of the source code, retrieval of appropriate subroutines from a library, 

storage allocation, and creation of actual machine code. In current systems, 

some or all of these functions (except the first) may actually be performed by 

another part of the general operating system (e.g., a loader), but these 

functions are conceptually part of the compiling process. Thus the com- 

piler acts very much as an executive routine to obtain and combine the 

necessary pieces of information to produce a machine-executable program. 

The word translator has been in and out of vogue for years as a synonym 

for compiler. In my opinion, translator is too general a term to use for the 

specific process of turning a source program written in a higher level language 

into machine code. 

4. Interpreter 

An interpreter is a program which executes a source program, usually 

on a step-by-step, line-by-line, or unit-by-unit basis. In other words, an 

interpreter will usually execute the smallest possible meaningful unit in the 

programming language. The output of an interpreter 1s an actual answer, 

1.e., the result of performing the actions designated in the program. 

The greatest disadvantage of an interpreter is that certain phases of 

work and analysis must be done repeatedly. In particular, the scan of a 

statement which is to be executed for varying values of a particular parameter 

must take place each time that a new value is to be used. This contrasts with 

the compiler, which performs this translation function only once. On the 

other hand, the disadvantage to the compiler is that it does not produce 

answers; as soon as a change in the program is made, a recompilation must 

be made. 

The originally clear-cut distinctions between compilers and interpreters 

have become quite blurred. Some systems (e.g., QUIKTRAN, see Keller, 

Strum, and Yang [K R64]) compile partway, 1.e., translate the source program 

to some other form and then interpret that information. This is an attempt



1.4. DEFINITION OF PROGRAMMING LANGUAGES 13 

to obtain the advantages of both concepts, while minimizing the disadvan- 

tages of both. 

5. Automatic Coding 

In the very early stages of work in this area, the phrase automatic 

programming was used to mean the process of writing the program in some 

higher level language. As time went on, it became clear that this encoding 

was only part of the entire process of programming since there were phases 

of analysis, documentation, debugging, testing, etc. Hence, the term 

automatic coding began to apply to the portion of the overall programming 

effort that related specifically and only to the process of actually writing 

the source program and having it translated to a form where it could be 

run on a computer. 

6. Automatic Programming 

The term automatic programming, which as stated above was originally 

used to cover anything to do with higher level languages, is defined on page 

10 of the USASI Glossary [AA66b] as “The process of using a computer to 

perform some stages of the work involved in preparing a program”. Thus, 

automatic coding is a particular subset of automatic programming, which 

is as it should be since coding is one of the many facets of programming. 

1.4.4. DIFFERENCE BETWEEN PROGRAMMING LANGUAGE AND 

APPLICATION PACKAGE 

In the past few years there has been an increasing number of special 

application packages developed. One of the earliest and most significant of 

these was the work done on linear programming. More recent areas involve 

type composition [IBOOf], demand deposit accounting [IB00e], traffic control 

[IB66c], inventory management [IB00] and [IBOOd]. However, it is impor- 

tant to realize that an application package and a programming language 

are not the same. An application package tends to be a set of routines which 

are heavily parameterized, so that an individual user can supply the specific 

information which is needed for his particular direct usage. The information 

is often supplied through tables or filling in a form. File formats are usually 

specified by the application package. In some cases the execution sequence 

of the routines is predetermined, e.g., student scheduling [IB66j]. In others, 

the user decides which routines he needs and what the sequence should be, 

e.g., bill of material processing [I1B66k]. In the latter situation, the user some- 

times has to write a control program in an assembly or higher level language 

to set up and call the necessary routines. A programming language, on the 

other hand, provides flexibility in the way in which information is conveyed



14 GENERAL INTRODUCTION 

and, more importantly, provides the tools with which the subroutines or 

packages can be built-up. An application package is limited to use in a 

narrow area. A programming language usually involves a wider potential 

range of applications, although the languages discussed in Chapter IX are 

designed for very specific—and sometimes quite narrow—applications. 

1.5. ADVANTAGES AND DISADVANTAGES OF HIGHER LEVEL 

LANGUAGES 

As with any item, it is impossible to obtain something for nothing; therefore, 

there are both advantages and disadvantages to programming languages, 

where the alternative is some type of assembly language. It is essential to 

realize that the comparison is being made between a symbolic assembly 

language (which might but does not necessarily have macros) and some 

type of higher level language which has the defining characteristics given 

in Section 1.4.2. Furthermore, the comparison is being made between an 

assembly and a higher level language of roughly equivalent orders of com- 

plexity within their given classes. Thus, in examining the advantages and 

disadvantages of a powerful (very simple) programming language, it is 

tacitly being compared to a powerful (very simple) assembly language. This 

point will be critical in several of the advantages given below. Furthermore, 

the programming language must be appropriate to the task; thus a language 

with notation well suited to scientific problems is not likely to be much help 

in business data processing (although this has actually been done with 

FORTRAN; see Robbins [RM62]). 

1.5.1. ADVANTAGES 

1. Ease of Learning 

A very significant advantage to a higher level language is that it is 

easier to learn than a machine-oriented language. This is probably the main 

place in which the relative aspect referred to above is significant. An extremely 

powerful programming language might be harder to learn than an assembly 

language with only a dozen instructions. However, given programming and 

assembly languages of approximately the same complexity in their relative 

classes, the programming language will be easier to learn. This ease of learn- 

ing actually has two facets to it. The programming language may itself be 

complex, but its ease of learning often comes because the notation is some- 

what more related to the problem area than is the machine code—this 1s 

essentially the fourth defining characteristic given on page 10. The second 

facet is that more attention can be paid to the language and the logic of the



I.5. ADVANTAGES AND DISADVANTAGES OF HIGHER LEVEL LANGUAGES 15 

program rather than to the idiosyncracies of the physical hardware which 

are significant when one deals in machine code. 

A further element of comparison in the ease of learning is that learning 

a subset of a complex programming language may be, and probably will be, 

very much easier than learning a subset of a complex assembly language. 

Furthermore, the subset of the programming language will probably be 

more useful and powerful than an equivalent subset of the assembly language. 

Thus, although some programming languages have extremely thick manuals, 

this is because they provide all the very detailed definitions that are needed 

for writing compilers and sophisticated programs; the user who does not 

wish to learn (or have) all the power available to him need not be bothered 

with the full language. 

2. Ease of Coding and Understanding 

Because the notation is considerably more problem-oriented, the actual 

coded program is generally easier to write. This 1s exemplified not only by 

the case of algebraic expressions given on page 10 but by such things as 

IF C IS GREATER THAN A+B, GO TO ALPHA OTHERWISE GO TO BETA. 

which ts easier to write than an equivalent symbolic form which might look 

like the following: 

CLA A 

ADD B (Calculate A+B) 

SUB C (Calculate A+B—C) 

TRN ALPHA (Transfer control to ALPHA if A+B—C 

is less than O, 1.e., if C is greater than A+B) 

JMP BETA (Transfer control to BETA) 

The other half of the advantage is the ease of understanding the program 

once it is written. These two aspects reflect the differences between actually 

writing the program and trying to understand an already existing program 

(either one’s own or, more likely, someone else’s). The higher level language 

is clearly easier to read and understand, as seen from the example above. 

In addition, the complexities of today’s large computers make it very 

difficult to learn to program them at all, let alone effectively. 

3. Ease of Debugging 

A problem written in a programming language is generally easier to 

debug than one written in a symbolic assembly language, for two major 

reasons. First, there tends to be less material written because of the explo- 

sion factor given as the third defining characteristic of a programming 

language. Thus, in comparison with a program written in assembly language,



16 GENERAL INTRODUCTION 

the source program will generally be physically shorter. Since the number of 

errors is roughly proportional to the length of the program, obviously there 

will be fewer errors. In some cases it might turn out that the program 

written in the higher level language was actually longer if measured by the 

number of characters actually written. (This happened in the example given 

on p. 15.) However, the program is easier to debug because the notation 

is so much more natural; more attention can be paid to the logic of the 

program with less worry about the details of the machine code. For example, 

although there might be more characters involved in writing READ NEXT 

RECORD FROM TAPE ALPHA than in REDABC, ALPHA, the former is easier 

to understand, particularly when there may be a whole sequence of six-letter 

instructions which differ by at most one letter. 

4. Ease of Maintaining and Documenting 

One of the greatest advantages to a programming language is the fact 

that it provides certain documentation automatically because of the nota- 

tional advantages; it is also considerably easier to maintain. There are very 

few programs which last very long without requiring some changes, and 

a combination of reasonably natural notation plus shortness of program 

make the higher level language quite advantageous. In addition, one of the 

great difficulties in changing a program written in assembly language is to 

make sure that a change in one instruction does not have major (and un- 

pleasant) ramifications elsewhere. This factor applies not only to the logic 

of the change (which must also be considered when dealing with the higher 

level language) but, more significantly, to various tricky coding techniques 

which might be forgotten by the time the change was made and result in 

incorrect code. 

5. Ease of Conversion 

Since the second defining characteristic of a programming language is 

the potential for conversion to other computers, it is not surprising that this 

is considered an advantage. Since by now it 1s clear that programming costs 

equal or exceed hardware costs, it is not surprising that the problem of con- 

version is a very major one. In many cases, companies have been unable to 

acquire new computers because of the enormous cost of converting their 

existing programs to the new machines. This has forced the manufacturers 

to pay much more attention to compatibility among the computers they 

offer to their customers and to provide technically graceful ways of con- 

verting programs from one machine to another. However, since programming 

languages are relatively machine independent, the ease of conversion be- 

comes an extremely important advantage. The various types of conversion, 

and their significance, are discussed in Section II.4.



1.5. ADVANTAGES AND DISADVANTAGES OF HIGHER LEVEL LANGUAGES 17 

6. Reduce Elapsed Time for Problem-Solving 

Probably the greatest single overall advantage to a programming 

language is that it usually reduces the total amount of elapsed time from 

inception of the problem to its solution. This is particularly true for one- 

shot problems—problems in which a single or only a small number of cases 

need to be run. Higher level languages have cut this elapsed time from 

months to weeks in some cases and from days to hours in other cases. 

Although sometimes one particular facet of the overall process might be 

worse in a higher level language (specifically, the compilation time, discussed 

in Section I.5.2.2), the overall problem solution time is greatly reduced. 

This is somewhat less of an advantage for long-term production runs, such 

as payroll. In that case, the advantages of ease of maintenance and docu- 

menting probably overshadow the elapsed time advantage, although the 

latter is still available. 

1.5.2. DISADVANTAGES 

1. Advantages Do Not Always Exist 

There is a subtle point that the advantages stated above do not always 

exist in specific cases, and a person might be worse off; however, this would 

only tend to arise in a comparison of a complex and powerful programming 

language versus a simple assembly language. Thus the programming lan- 

guage might be extremely difficult and hard to learn; and unless proper 

attention is paid to the compiler and other facets of the overall system, the 

other advantages may not themselves accrue. Fortunately, this seldom 

occurs. 

2. Time Required for Compiling 

A very obvious disadvantage to the use of a higher level language is 

that the additional process of compilation requires more machine time 

than the straight assembly process; the compilation time might, in fact, 

require more than the machine time saved from easier debugging. This 

additional machine time is most easily observed by recognizing the fact that 

a very common compiling technique is to translate the source program to 

an assembly language which already exists for the given computer and 

letting the standard assembly program create the final object code. 

(Naturally techniques have been developed to avoid this particular difficulty, 

but they are not always applicable.) Compilation time is a particular dis- 

advantage on one-shot problems in which the compilation time sometimes 

exceeds the time actually required to produce the answers. Another dis-



18 GENERAL INTRODUCTION 

advantage associated with compilation time is the necessity of recompiling 

every time a change in the source program is made. However, sometimes 

modern assemblers are so complex that they take “longer” than the transla- 

tion of an equivalent program in a higher level language. 

3. Inefficient Object Code 

A disadvantage which significantly affects production runs occurs when 

the compiler produces inefficient object code. When a program is to be run 

repeatedly, it is important that the final program be efficiently coded be- 

cause of the constant repetitive use. The counterargument to this, of course, 

is that compilers nowadays generally produce code that is at least as good 

as the average programmer, and there are only a limited number of really 

expert programmers who can write the most efficient machine code. A 

further counterargument is that it is usually possible to take very critical 

routines, which are generally quite short and encapsulated, and code them 

as efficiently as possible in machine code. 

A disadvantage in this area which is sometimes unjustly blamed on the 

compiler occurs when the programmer writes inefficient source programs 

in the higher level language and obtains inefficient object programs as a 

result. Although it is easier to code in a higher level language than in machine 

code, there is still a difference between good and poor coding. A program 

that has been written inefficiently (e.g., unnecessary control transfers and 

extra computations) with respect to the programming language will produce 

inefficient object code regardless of how good the compiler is. 

4. Difficulties in Debugging Without Learning Machine Language 

If a person does not know machine code, and the compiler does not 

provide the proper type of diagnostics and debugging tools, the program 

may actually be harder to debug than an assembly language program which 

the user understands. A person who must look at an octal memory dump 

will have a lot more trouble debugging his high level source program than 

he would if he had written it in assembly language. Thus a compiler which 

does not provide proper attention to this aspect may greatly reduce the 

advantages of a higher level language or cause them to disappear entirely. 

5. Inability of the Language to Express All Needed Operations 

In some problems there are operations to be performed which cannot 

be expressed in the programming language, or if they are available, they will 

be so awkward as to be almost useless. Thus, to handle individual bits in 

a language designed only to manipulate numeric quantities is virtually im- 

possible, and certainly inefficient. The user may find himself trapped by



1.6. CLASSIFICATIONS OF PROGRAMMING LANGUAGES AND PROPOSED DEFINITIONS 19 

being unable to do certain manipulations without resorting to machine code. 

This usually occurs when he has chosen the language unwisely for his par- 

ticular application. However, a more common problem is the poor match 

between the older (and more popular) languages and third generation 

hardware. For example, a language with no facilities for dealing with random 

access memories requires the user to either ignore his equipment or resort 

to machine language to deal with it. 

1.5.3. OVERALL EVALUATION 

In spite of the fact that higher level languages have been with us for 

over 10 years, there has been relatively little quantitative or qualitative 

analysis of their advantages and disadvantages. One very small study is given 

by Shaw [SH66] and some information is given by Nelson et al. [NE65]. 

In spite of this paucity of definitive information, the current milieu 

calls for the use of higher level languages. People who use assembly code 

are—if not in an actual minority—considered somewhat archaic or old-fash- 

ioned. The fact that there is a tremendous proliferation of languages (as 

witnessed by all those described, plus others not even mentioned, in this 

book) indicates that we have not yet solved the problem of knowing what 

is really needed by the user. Some comments about possible future direc- 

tions are given in Chapter XI. However, the net overall evaluation appears 

to be that higher level languages have proved their worth and are definitely 

here to stay. 

1.6. CLASSIFICATIONS OF PROGRAMMING LANGUAGES AND 

PROPOSED DEFINITIONS 

As indicated earlier, it is very difficult to define a programming language. 

However, it is a little easier to propose definitions for classes of programming 

languages. The terms to be defined are the following: Procedure-oriented 

and nonprocedural; problem-oriented, application-oriented, and special 

purpose; problem-defining, problem-describing, and problem-solving; 

hardware, publication, and reference. Note that some of these are over- 

lapping and that a particular language may fall into more than one of these 

categories. 

1.6.1. PROCEDURE-ORIENTED LANGUAGE 

A procedure-oriented |language is one in which the user specifies a set of 

executable operations which are to be performed in sequence; the key factor



20 GENERAL INTRODUCTION 

here is that these are definitely executable operations, and the sequencing 

is already specified by the user. FORTRAN, COBOL, and PL/I are examples. 

1.6.2. NONPROCEDURAL LANGUAGE 

The term nonprocedural language has been bandied about for years 

without any attempt to define it. It is my firm contention that a definition 

is not really possible because nonprocedural is actually a relative term mean- 

ing that decreasing numbers of specific sequential steps need be provided 

by the user as the state of the art improves. The closer the user can come to 

stating his problem without specifying the steps for solving it, the more 

nonprocedural is the language. Furthermore, there can be an ordered 

sequence of steps, each of which is “somewhat nonprocedural,” or a set of 

executable operations whose sequence is not specified by the user. Both cases 

contribute to “more nonproceduralness”. Thus, before the existence of such 

languages as FORTRAN, the statement 

Y=A+Bx*xC— F/G 

could be considered nonprocedural because it could not be written as one 

executable unit and translated by any system. Right now, the sentences 

CALCULATE THE SQUARE ROOT OF THE PRIME NUMBERS FROM 

7 TO 91 AND PRINT IN THREE COLUMNS and PRINT ALL THE 

SALARY CHECKS are nonprocedural because there is no compiler avail- 

able that can accept these statements and translate them; the user must 

supply the specific steps required. Another type of nonprocedural statement 

is a higher level primitive operation, e.g., integration. Note that there is a 

fundamental language difference between writing INTEGRATE F(X) FROM A 

TO B USING SIMPSON’S RULE and CALL SIMP (F(X), A, B) although the 
same subroutine could be used for both. In cases where subroutines do not 

exist (as in the earlier two examples), then obviously the detailed steps 

must be specified. 

As compilers are developed to cope with increasingly complex sentences, 

the nature of the term changes. Thus, what is considered nonprocedural 

today may well be procedural tomorrow. The best examples of currently 

available nonprocedural systems (not really languages) are report generators 

and sort generators in which the individual supplies the input and the output 

without any specific indication as to the procedures needed. 

Specific attempts to raise the level of nonproceduralness in different 

ways are discussed by Wilkes [WI64], Rice and Rosen [RI66], Klerer and 

May [KL67], and Schlesinger and Sashkin [QL67]. General discussions of 

some of the issues are given by Young [YJ65] and Whiteman [WF66].



1.6. CLASSIFICATIONS OF PROGRAMMING LANGUAGES AND PROPOSED DEFINITIONS 21 

1.6.3. PROBLEM-ORIENTED LANGUAGE 

The term problem-oriented has been used in many ways by different 

people, but it seems that the most effective use of this term is to encompass 

any language which is easier for writing solutions to a particular problem 

than assembly language would be. Any current programming language 

illustrates this; thus, the term problem-oriented is a general catchall phrase. 

1.6.4. APPLICATION-ORIENTED LANGUAGE 

The term application-oriented seems to apply best to a language which 

has facilities and/or notations which are useful primarily for a single applica- 

tion area. The best illustrations of this are such things as APT for machine 

tool control and COGO for civil engineering applications, both of which 

are discussed in Chapter IX. Notice that both of these are of course problem- 

oriented languages. On the other hand, FORTRAN and COBOL are 

problem-oriented but much less application-oriented than APT or COGO. 

Here again, the term is somewhat relative because FORTRAN is suitable 

for applications involving numerical mathematics, whereas COBOL is 

obviously suited for business data processing and the overlap between these 

is relatively small. The wider the application area, the more general the 

language must be. 

1.6.5. SPECIAL PURPOSE LANGUAGE 

A special purpose language is one which is designed to satisfy a single 

objective. The objective might involve the application area, the ease of use 

for a particular application, or pertain to efficiency of the compiler or the 

object code. 

1.6.6. PROBLEM-DEFINING LANGUAGE 

A problem-defining \anguage is one which literally defines the problem 

and may specifically define the desired input and output, but it does not 

define the method of transformation. There is a significant difference among 

a problem (and its definition), the method (or procedure) used to solve it, 

and the language in which this method is stated. The best current illustrations 

are report and sort generators, although none of these involves languages 

in the sense of Section I.4.



22 GENERAL INTRODUCTION 

[.6.7. PROBLEM-DESCRIBING LANGUAGE 

A much more general type of language classification is that referred 

to as problem-describing, in which the objective is described only in very 

general terms, e.g... CALCULATE PAYROLL. All this does is cite, in the 

most general way, the problem which is to be solved but gives no indication 

of its detailed characteristics, let alone how to solve it. We are an extremely 

long way from this! 

1.6.8. PROBLEM-SOLVING LANGUAGE 

Finally, a problem-solving language is one which can be used to specify 

a complete solution to a problem. Like the term nonprocedural, this is a 

relative term which changes as the state of the art changes. All procedure- 

oriented languages are problem-solving languages. 

1.6.9. REFERENCE LANGUAGE 

A reference language is the definitive character set and form of a lan- 

guage. It usually has a unique character for each concept or character in the 

language, 1s one-dimensional, and need not be suitable as computer input. 

In some cases, English is the reference language; in other cases, a fixed set of 

symbols is provided. The concept of having a reference language, as dis- 

tinguished from a publication or hardware representation language (dis- 

cussed below), was introduced by the ALGOL committee in their first report 

[PR58]. In fact, ALGOL 1s the only language in this book with these three 

forms. The reference language need not be particularly easy to read. 

1.6.10. PUBLICATION LANGUAGE 

A publication language is some well-defined variation of the reference 

language which is suitable for publication. It is designed to be suitable for 

printing and/or writing; therefore, it would have reasonable rules and 

characters for such things as subscripts, exponents, spaces, and Greek 

letters. The publication language would normally be the means of com- 

munication between people (using printed media). There can be many 

publication languages and they can contain different characters, but there 

must be a well-defined mapping between the publication and reference 

languages. An illustration of this is the use of an up arrow ft to denote 

exponentiation in the ALGOL reference language, but the use of a raised 

symbol in the publication language, e.g., A t 2, becomes A?.



1.7. FACTORS IN CHOICE OF A LANGUAGE 23 

1.6.11. HARDWARE LANGUAGE 

A hardware language, sometimes called a hardware representation, is 

a mapping of the reference language into a form which is suitable for direct 

input to a computer. The number and type of characters used must be that 

accepted by the computer involved. A hardware language must have a well- 

defined mapping between itself and the reference language, e.g., ** might 

be a hardware representation of the ¢ in the reference language. 

1.7. FACTORS IN CHOICE OF A LANGUAGE 

Assuming that a decision has been made not to use assembly language (see, 

e.g., Shaw [SH66]), there is currently no scientific, or even logical, way to 

choose the best programming language for a particular situation. Part of 

the difficulty stems from the fact that the situation itself is usually defined 

poorly, and potential for change in the application area is a factor which 

must be taken into consideration. It is definitely not the purpose of this book 

to provide all the information needed by a potential user to choose the 

programming language most suited for his purposes. However, it is one of 

the purposes to supply some of this information and to indicate the factors 
which should be considered. The reader is cautioned to be very careful in 

applying the items discussed in this section to a particular case. Not all factors 

are relevant in all situations, nor are they all equally important. In virtually 

all cases, no single language will be ideal for a particular application, let 

alone for a particular installation, and probably not for an entire company. 

An increasing amount of work is being done to develop some fairly 

specific methods for evaluating languages and their compilers. Scientific 

evaluations have seldom been made, and documented even less often, and 

the few attempts to date seem to be without any quantitative measurements. 

Questionnaires and comparisons have been developed by Shaw [SH62] and 

Budd [QH66]; although the latter pertains only to FORTRAN and COBOL, 

it is quite detailed for those languages. General discussions are given by 

Haverty [HV64], Chapin [CZ65], and Schwartz [SC65]. A number of un- 

published papers on evaluations for specific military applications also exist. 

Some of the terms and/or concepts used below are defined and discussed 

in some detail in Chapters II and III, particularly the former. 

1.7.1. SUITABILITY OF LANGUAGE FOR PROBLEM AREA AND PROJECTED 

USERS 

The most important factor in the choice of a language is whether it 

contains the elements needed to solve the particular class of problems for



24 GENERAL INTRODUCTION 

which it is being considered. In the simplest case, a language which provides 

good facilities for handling equations may not provide the character handling 

and input/output facilities needed to process a payroll. Conversely, a lan- 

guage which is too large, i.e., has many more facilities than are needed, 

is not necessarily desirable since the user will be paying a heavy price because 

of less efficiency in his specialized area. While these points are fairly obvious 

at a gross level, there are other elements in the language suitability issue. 

For example, if there is to be much array handling, then the type and amount 

of subscripting which 1s permitted may be significant. Another case might 

involve the types of data names which are permitted; for example, if the 

application involves inventory and all the stock items are identified by 

numbers, then it might be more convenient if these were allowed as names 

in the program. 

In addition to the capabilities of the language, the type of actual users 

must be considered. There is an obvious difference among experienced 

programmers, professionals in other fields, novice programmers, open 

shop versus closed shop, etc. The amount of formalism or naturalness in 

the language relative to the projected users is of vital importance. 

In summary, the potential user must first examine the language at a 

gross level to see whether it supplies the general capabilities he needs. 

Then he must determine whether individual features which might be very 

important in a particular situation are available. (See also Section I.7.7.) 

Finally, he must consider the style of the language relative to the intended 

users. 

1.7.2. AVAILABILITY ON DESIRED COMPUTER 

The most obvious question which must be asked (and which is also 

raised in Section II.7.1) 1s whether there is an implementation of the language 

on the desired computer (configuration). It is obviously useless to decide 

on a superb language for a particular application and then find there is no 

way to obtain running programs. Of course in some cases the language may 

be deemed so worthwhile that a particular installation would choose to 

finance a compiler if there was not one existing already. 

If there is a compiler available, then a particular point to watch out for 

is the exact computer configuration which it requires. It does not help to 

find an excellent language and an efficient compiler if the latter requires 

twice as much memory capacity as the installation possesses. Again, in this 

case, if other factors warrant it, then there might be justification for obtain- 

ing the extra memory.



1.7. FACTORS IN CHOICE OF A LANGUAGE 25 

1.7.3. HisTORY AND EVALUATION OF PREVIOUS USE 

Once the user has found what he considers a suitable language and 

there is a compiler available on his computer, then he should consider the 

history of usage of this language. He should investigate such items as the 

reactions of previous users, users’ views on its applicability in actual practice, 

the efficiency of the implementation (see Section I.7.4.), its potential for 

expansion into other (and probably unforeseen) application areas, ease or 

difficulty of training and effectiveness of documentation, and problems of 

conversion and compatibility. In short, he should consider the language 

based on the practical experience of others with regard to the factors in 

Chapter II. 

1.7.4. EFFICIENCY OF LANGUAGE IMPLEMENTATION 

In choosing a language, it is essential to understand the difference 

between a language and a specific implementation of it. However good the 

former may be, a very bad compiler may render the language almost useless. 

The prospective user must investigate this situation very thoroughly. There 

may be elements in the language (some are discussed in Chapter III) which 

would prevent a good compiler from ever being developed. On the other 

hand, the first compilers for a new language almost always tend to be ineffi- 

cient and remain that way until better implementation techniques are found 

and finances and time permit them to be used. Similarly, a language may 

be very difficult to implement on a particular computer (configuration), 

although it might have an excellent compiler on another. While this latter 

point is obvious in considering small versus large computers, there are other 

more subtle points which are relevant (e.g., type of input/output and type 

of indexing permitted). 

The user who finds a language which is well suited to his purpose may 

choose to suffer the (presumably temporary) inconvenience of an inefficient 

compiler for the sake of long-range benefits. 

1.7.5. COMPATIBILITY AND GROWTH POTENTIAL 

The meaning of compatibility and its applicability to problems in 

programming languages is discussed in Section I1I.4. The prospective user 

must understand what types of compatibility and conversion are available, 

and how important they are to him. In addition, the potential use of the 

language in new and unforeseen areas must be considered. While this is



26 GENERAL INTRODUCTION 

obviously impossible in detail (since it would be self-contradictory to consider 

unforeseen areas), some thought can be given to the matter. For example, 

a scientific installation might consider whether it might ever be involved 

with data processing. A large command and control project might consider 

whether the application would grow into other areas. Finally, the language 

should be viewed from the point of possible extensions to meet other needs. 

In addition to looking ahead, the user may need to look behind if there 

are existing applications. The consideration of a new language may involve 

problems of compatibility with the old one. 

[.7.6. FUNCTIONAL (= NONTECHNICAL CHARACTERISTICS) 

There has tended to be much confusion in the past due to lack of 

consideration of the difference between the nontechnical and the technical 

characteristics of a programming language. It is my hope that the delineation 

of these issues and a detailed discussion of them in two separate chapters 

will alleviate this difficulty. It suffices to point out here that the prospective 

user must consider the nontechnical characteristics (as discussed in Chapter 

II) as carefully as he considers its technical elements in order to arrive at 

a proper judgment. 

1.7.7. TECHNICAL CHARACTERISTICS 

While the nontechnical characteristics of a programming language may 

tend to prevent it from being used in a particular application, an affirmative 

choice can only be made if the language contains the necessary technical 

features. Some relevant factors were mentioned in Section I.7.1. A careful 

study of Chapter III should provide a complete checklist to be used against 

a specific language. The importance of particular elements in a given situa- 

tion is a value judgment to be made by the prospective user. 

REFERENCES 

[AA66b] American Standard Vocabulary for Information Processing, X3.12, 
American Standards Association [now United States of America 

Standards Institute], New York, 1966. 

[AD54] Adams, C. W. and Laning, J. H., Jr., “The M.I.T. Systems of Automatic 
Coding: Comprehensive, Summer Session, and Algebraic”, Symposium 
on Automatic Programming for Digital Computers, Office of Naval 

Research, Dept. of the Navy, Washington, D.C. (1954), pp. 40-68. 

[BK56] Baker, C. L., “The PACT I Coding System for the IBM Type 701”, 
J. ACM, Vol. 3, No. 4 (Oct., 1956), pp. 272-78.



[CZ65] 

[DN54] 

[DN56] 

[EP66] 

[FK57] 

[FR63] 

[HF54] 

[HL64] 

[HM66] 

[HP53] 

[HP53a] 

[HP55] 

[HV64] 

[IB00] 

[1B00d] 

[1B00e] 

[1BOOf] 

[1B00j} 

REFERENCES 27 

Chapin, N., “What Choice of Programming Languages?”, Computers 
and Automation, Vol. 14, No. 2 (Feb., 1965), pp. 12-14. 

Symposium on Automatic Programming for Digital Computers, Office of 
Naval Research, Dept. of the Navy, Washington, D.C. (1954). 

Symposium on Advanced Programming Methods for Digital Computers 
(Washington, D.C., June 28, 29, 1956). ONR Symposium Report ACR- 

15, Office of Naval Research, Dept. of the Navy, Washington, D.C. 

(Oct., 1956). 

“How to Use Decision Tables”, EDP Analyzer, Vol. 4, No. 5 (May, 

1966), pp. 1-14. 

Automatic Coding (Proceedings of the Symposium on Automatic 
Coding held January 24-25, 1957 at the Franklin Institute in Philadel- 

phia), Jour. of the Franklin Inst., Monograph No. 3, Philadelphia, Pa. 

(Apr., 1957). 

Ferguson, H. E. and Berner, E., “Debugging Systems at the Source 
Language Level”, Comm. ACM, Vol. 6, No. 8 (Aug., 1963), pp. 430-32. 

Holberton, F. E., “Application of Automatic Coding to Logical Proc- 

esses”, Symposium on Automatic Programming for Digital Computers, 
Office of Naval Research, Dept. of the Navy, Washington, D.C. (1954), 
pp. 34-39. 

Halpern, M. I., “XPOP: A Meta-Language Without Metaphysics’, 
Proc. FJCC, Vol. 26, pt. 1 (1964), pp. 57-68. 

Homer, E. D., “An Algorithm for Selecting and Sequencing Statements 
as a Basis for a Problem-Oriented Programming System”, Proc. ACM 
2Ist Nat’! Conf., 1966, pp. 305-12. 

Hopper, G. M., “Compiling Routines”, Computers and Automation, 
Vol. 2, No. 4 (May, 1953), pp. 1—S. 

Hopper, G. M. and Mauchly, J. W., “Influence of Programming Tech- 
niques on the Design of Computers”, Proc. IRE, Vol. 41, No. 10 (Oct., 
1953), pp. 1250-54. 

Hopper, G. M., Automatic Coding for Digital Computers (Talk presented 
at The High Speed Computer Conference, Louisiana State University, 

Feb. 16, 1955), Remington Rand Corp., ECD-1 (1955). 

Haverty, J. P., Programming Language Selection for Command and 

Control Applications, RAND Corp., P-2967, Santa Monica, Calif. (Sept., 
1964). 

Management Operating System: Inventory Management and Materials 
Planning— Detail, IBM Corp., E20-0050-0, Data Processing Division, 
White Plains, N.Y. 

Retail IMPACT—Inventory Management Program and Control Tech- 

niques, IBM Corp., E20-0188, Data Processing Division, White Plains, 
N.Y. 

Demand Deposit, IBM Corp., 1140-FB-03X, Data Processing Division, 
White Plains, N.Y. 

Type Composition, IBM Corp., 1130-DP-04X, Data Processing Division, 
White Plains, N.Y. 

The Bank Central Information System—Locate File, IBM Corp., E20- 
0138, Data Processing Division, White Plains, N.Y.



28 GENERAL INTRODUCTION 

{IB61la] 

[1B65d] 

[I1B66c] 

[1B66)] 

[1B66k] 

[1F66] 

[KL67] 

[KR64] 

[K V60] 

[LA54] 

[NE65] 

[NMO00] 

[PR58] 

[QH66] 

[QL67] 

[R166] 

[RM62] 

[RR55a] 

IBM 7070 Series Programming Systems: Autocoder (Reference Manual), 
IBM Corp., C28-6121-0, Data Processing Division, White Plains, N.Y. 
(1961). 

IBM System/360 Operating System Report Program Generator Speci- 
fications, IBM Corp., C24-3337, Data Processing Division, White 
Plains, N.Y. (1965). 

1800 Traffic Control System: Application Description, IBM Corp., H20- 
0212-0, Data Processing Division, White Plains, N.Y. (1966). 

Student Scheduling System/360, Application Description, IBM Corp., 
H20-0202-0, Data Processing Division, White Plains, N.Y. (1966). 

System/360 Bill of Material Processor (360-ME-06X), Programmer’s 
Manual, IBM Corp., H20-0246-0, Data Processing Division, White 
Plains, N.Y. (1966). 

IFIP-ICC Vocabulary of Information Processing (First English language 
edition). North-Holland Publishing Co., Amsterdam, Netherlands, 
1966. 

Klerer, M. and May, J., “Automatic Dimensioning”, Comm. ACM, 
Vol. 10, No. 3 (Mar., 1967), pp. 165-66. 

Keller, J. M., Strum, E. C., and Yang, G. H., “Remote Computing: An 
Experimental System Part 2: Internal Design”, Proc. SJCC, Vol. 25 
(1964), pp. 425-43. 

Kavanagh, T. F., “TABSOL—A Fundamental Concept for Systems- 
Oriented Languages”, Proc. FJCC, Vol. 18 (1960), pp. 117-36. 

Laning, J. H. and Zierler, W., A Program for Translation of Mathe- 
matical Equations for Whirlwind I, M.1.T., Engineering Memorandum 
E-364, Instrumentation Lab., Cambridge, Mass. (Jan., 1954). 

Nelson, E. A. et al., Research into the Management of Computer Pro- 
gramming: Some Characteristics of Programming Cost Data from 
Government and Industry, System Development Corp., TM-2704/000/00, 
Santa Monica, Calif. (Nov., 1965). 

SURGE: A Data Processing Compiler for the IBM 704, North American 
Aviation, Inc., Columbus, Ohio. 

Perlis, A. J. and Samelson, K. (for the committee), “Preliminary 
Report—International Algebraic Language”, Comm. ACM, Vol. 1, 
No. 12 (Dec., 1958), pp. 8-22. 

Budd, A. E., A Method for the Evaluation of Software: Procedural 
Language Compilers—Particularly COBOL and FORTRAN, MITRE 
Corp., (DDC) AD 651142, Commerce Dept. Clearinghouse, Springfield, 

Va. (Apr., 1966). 

Schlesinger, S. and Sashkin, L., “POSE: A Language for Posing Prob- 
lems to a Computer”, Comm. ACM, Vol. 10, No. 5 (May, 1967), pp. 

279-85. 

Rice, J. R. and Rosen, S., “NAPSS—A numerical analysis problem 

solving system”, Proc. ACM 21st Nat’l Conf. 1966, pp. 51-56. 

Robbins, D. K., “FORTRAN for Business Data Processing”, Comm. 

ACM, Vol. 5, No. 7 (July, 1962), pp. 412-14. 

BIOR (Business Input-Output Rerun) Compiling System, Remington 

Rand Corp., ECD-2 (1955).



[RT53] 

[SC65] 

[SH62] 

[SH64a] 

[SH66] 

(ST57] 

([TM56] 

[UC6]1] 

[WF66] 

[W151] 

[W164] 

[WT68] 

[XY56] 

[YJ65] 

REFERENCES 29 

Rochester, N., “Symbolic Programming”, Trans. IRE Professional 

Group on Electronic Computers, Vol. EC-2, No. 1 (Mar., 1953), pp. 10-15. 

Schwartz, J. I., “Comparing Programming Languages”, Computers 
and Automation, Vol. 14, No. 2 (Feb., 1965), pp. 15-16, 26. 

Shaw, C. J., An Outline/Questionnaire for Describing and Evaluating 
Procedure-Oriented Programming Languages and Their Compilers, 
System Development Corp., FN-6821/000/00, Santa Monica, Calif. 
(Aug., 1962). 

Shaw, C. J., “More Instructions ... Less Work”, Datamation, Vol. 10, 
No. 6 (June, 1964), pp. 34-35. 

Shaw, C. J., “Assemble or Compile?”, Datamation, Vol. 12, No. 9 
(Sept., 1966), pp. 59-62. 

Steel, T. B., Jr., “PACT IA”, J. ACM, Vol. 4, No. 1 (Jan., 1957), pp. 8-11. 

Thompson, C. E., “Development of Common Language Automatic 

Programming Systems”, Symposium on Advanced Programming Methods 
for Digital Computers (Washington, D.C., June 28, 29, 1956). ONR 
Symposium Report ACR-15, Office of Naval Research, Dept. of the 
Navy, Washington, D.C. (Oct., 1956), pp. 7-14. 

Grad, B., “Tabular Form in Decision Logic”, Datamation, Vol. 7, No. 7 

(July, 1961), pp. 22-25. 

Whiteman, I. R., “New Computer Languages”, Internat’! Science and 

Technology (Apr., 1966), pp. 62-68. 

Wilkes, M. V., Wheeler, D. J., and Gill, S., The Preparation of Programs 
for an Electronic Digital Computer. Addison-Wesley Press, Reading, 

Mass., 1951. 

Wilkes, M. V., “Constraint-Type Statements in Programming 

Languages”, Comm. ACM, Vol. 7, No. 10 (Oct., 1964), pp. 587-88. 

Wirth, N., “PL360, A Programming Language for the 360 Computers”, 

J. ACM, Vol. 15, No. 1 (Jan., 1968), pp. 37-74. 

“UA SAP 1 and 2”, SHARE Distribution No. 36 (Feb., 1956). 

Young, J. W., Jr., “Non-Procedural Languages”, Presented at ACM 
S. Calif. Chap. Seventh Annual Technical Symposium, Mar. 23, 1965.



I I FUNCTIONAL CHARACTERISTICS 

OF PROGRAMMING LANGUAGES 

ll.1. DESCRIPTION OF THE CONCEPT OF FUNCTIONAL CHARACTERISTICS 

This chapter concerns itself with the functional characteristics of program- 

ming languages. The term functional characteristics is used to refer to those 

aspects of programming languages which are primarily nontechnical and/or 

which are not part of the language specifications themselves. The functional 

aspects normally relate to economic and political factors and also to those 

aspects of compilers which affect the use of the language in a significant 

way. The actual elements of the language are considered technical charac- 

teristics and are described in Chapter III. 

Although the primary characteristics of a programming language are 

its technical facilities and the way in which they are provided, these are far 

from being the only features in determining the use and usability of a lan- 

guage. Just as in the case of computer hardware selection there are factors 

that transcend the physical characteristics, so there are multitudinous and 

interlocking issues which apply to programming languages. For example, 

originally the selection of a computer depended primarily on the speed of 

individual instructions such as addition, multiplication, etc. After a while, 

it became clear that the amount of time required for memory access was very 

significant; still later it became apparent that speed of input/output, sizes 

of secondary storage units, and the interrelationship of all these hardware 

features were very important. Finally it became clear that the selection of hard- 

ware depended not only on the hardware itself but on its relationship to the 

software; so the concept of thruput became of paramount importance. Thus, 

just as the total amount of productive work which could be done using a 

particular piece of hardware and its associated software became the prime 

30



Il.2. PROPERTIES OF LANGUAGES 31 

criterion in computer selection, so in the case of programming languages 

there are factors beyond the immediate language definition which signifi- 

cantly affect its selection and use. It is the function of this chapter to try to 

describe these functional characteristics and to indicate their importance. 

The items to be discussed include general properties of a language, the pur- 

pose of a language, issues of conversion and compatibility, standardization, 

types and methods of language definition, and evaluation. 

11.2. PROPERTIES OF LANGUAGES 

There are a number of language properties which are difficult to define 

and which often appear to be subtle aesthetic qualities rather than tangible 

characteristics. Although it is not possible to provide rigorous definitions 

for these qualities, it is nevertheless worth trying to provide some brief in- 

tuitive feel for each of them. 

Two properties which may occur either in parallel or at opposite ends 

of a scale are generality and/or simplicity. Generality really means a wide 

scope, i.e., ability of the language to apply directly and effectively to a wide 

class of problems (see Section II.3.1). Simplicity usually refers to ease of 

learning, use, and implementation. These properties are at opposite ends 

of the spectrum because putting a large number of capabilities into one 

language, thus making it general, causes loss of simplicity by requiring many 

different facilities to be learned. On the other hand, a very simple language 

cannot provide too many facilities because in so doing it will lose that charac- 

teristic. It will tend to provide a few very powerful primitives. The only way 

in which generality and simplicity can exist together is when the ability to 

handle a large number of differing application types is achieved by providing 

a simple framework and allowing (and requiring) the user to build up the 

larger capabilities that he needs. This is sometimes referred to as the core- 

language concept. It is often difficult to separate the concept of generality 

from the availability of many special purpose features. 

Two properties which are often at opposite ends of a spectrum are suc- 

cinctness and naturalness. An example of naturalness might be FIND 

THE SQUARE ROOT OF 17 USING NEWTON-RAPHSON ITERATION, whereas 

its succinct equivalent might be SQR (17, NR). To a person well trained in 
formal notation, the succinct notation may even be more natural. Such a case 

clearly arises in comparing the sentence ADD A TO B AND MULTIPLY THAT 

RESULT BY C TO PRODUCE D with the equation D = C « (A +B). Both of 
these are clearly within current technology. The choice is usually based both 

on the type of intended users and the personal choice of the language 

designers. 

The notational properties of languages play at least as great a role as



32 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

any other characteristic. A language notation can be succinct and/or natural 

and/or formal. There is a significant difference between the facilities a lan- 

guage provides and the notation by which they are invoked. 

Consistency is a property which programming languages should have, 

but often cannot. In this instance, consistency means the constant applica- 

tion of the same rules in the same way throughout the entire language. 

While it may seem both easy and obvious that this can and should be done, 

sometimes achieving this objective is not worth the sacrifice. (The change 

of optional key words in different divisions of COBOL illustrates such a 

case. See Section V.3.) 

The property of efficiency is seldom applied to a language, but it is an 

appropriate one nevertheless. Unfortunately, the criteria for efficiency are 

as widespread as the people who use or implement the language. For example, 

efficiency could mean the number of pencil strokes required to write a pro- 

gram or the ease of use by novice programmers or a language design which 

permitted rapid compilation or the provision of a number of compiler aids 

to provide optimal object code. There is no single measure of efficiency, 

and the language examiner should be careful of what facet is being measured 

in attempting to ascertain the efficiency of the language. It 1s also essential 

to realize that efficiency of a language and a compiler are not the same thing; 

the latter usually cannot be achieved without some appropriate language 

design, but the best language in the world can have a very inefficient compiler 

(see Section II.7.2). 

Another very general property of a language is whether it is easy to write 

and/or whether it is easy to read. These are not necessarily coexistent in a 

single language, and one may in fact tend to militate against the existence of 

the other. Thus a language which is extremely easy to read (e.g., some of the 

languages discussed in Section IV.7) might be difficult to prepare for com- 

puter input. A related property is whether the average user will be very 

error prone. If the language has many specific and strict rules about spacing 

and punctuation, there is more of a tendency for error in writing the program. 

Finally, while one of the avowed advantages of programming languages 

is that they are easier to learn than assembly languages, some higher level 

languages may be designed to be very easy to learn while others do not have 

that as a characteristic or objective. Being easy to learn is definitely not neces- 

sarily the same as being easy to read, write, or avoid errors. 

1I.3. PURPOSE OF LANGUAGE 

In looking at a language, the first and most important characteristic is its 

purpose. It is futile and foolhardy to look at languages and complain about 

them for not accomplishing some particular task, when their avowed purpose



11.3. PURPOSE OF LANGUAGE 33 

was quite different. Defining the design objectives of a programming language 

requires specifying the type of applications, the type of language, and the 

type of potential user. 

I1.3.1. APPLICATION AREA 

Generality often breeds inefficiency, just as familiarity breeds contempt. 

Thus, a language which is designed to be all things to all people will probably 

be less successful than a language with somewhat narrower objectives, unless 

the design is very carefully done. We must consider the application area for 

which a language is designed; it may be aimed at a very narrow range of 

endeavor such as machine tool control, or it may be designed for a wider 

class of problems—for example, numerical scientific computations—or it 

may be designed to cover the whole gamut of all problems to be run on a 

computer. (There are not likely to ever be languages which satisfy the last 

objective.) To date, most languages have dealt with application areas such 

as numerical scientific computations (e.g., FORTRAN) and then more recent- 

ly nonnumerical scientific computations (e.g., FORMAC), business data 

processing (e.g., COBOL), simulation (e.g., SIMSCRIPT), or machine tool 

control (e.g., APT). Some languages (see Chapter VIII) were designed to be 

very wide in scope and encompass several of the items in the preceding list. 

However, even in some of these cases—notably JOVIAL and PL/I—the types 

of applications envisioned were fairly standard scientific and data processing. 

It is essential to distinguish between the basic application area for which 

the language was designed and the actual usage to which it may be put. 

There are numerous examples of languages which were aimed at coping 

with a given class of problems but which eventually were used for many 

other things. The best example of this is FORTRAN, which was originally 

designed for use in numerical scientific work but has been used for subjects 

as widely separated as logical design and payroll writing. The important 

factor in viewing the issue of application area is not so much what the lan- 

guage has been or can be used for but what it is really designed to be good 

at. To the extent that one extends beyond the hard core of the basic objective, 

one finds the language may be more general and may be useful to a larger 

class of people than originally intended. Any inefficiencies which result from 

such extended usage should not be blamed on the language. 

The objectives of a language are usually stated in the terminology of 

the intended users. Thus COBOL is described as business oriented, although 

it is restricted to administrative and financial areas of business. An operations 

researcher might expect that COBOL would be useful in solving scientific 

problems associated with business planning, whereas COBOL was never 

intended for use in that class of problems. The person who is concerned



34 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

with choosing the best language for his problem or his installation is strongly 

advised to consider not only the stated objectives but the frame of reference 

for the terminology. This can usually be achieved by considering the techni- 

cal features in the language. 

11.3.2. Type oF LANGUAGE 

In addition to being concerned with the application area for which 

a language is designed, it is necessary to consider the type of language within 

the classifications described in Section 1.6. Obviously, a language can fall 

into more than one of these categories. In fact, a person interested in cate- 

gorizing a language can, in the manner of a Chinese menu, choose one from 

each of columns A, B, and C and choose any number from column D, al- 

though there do not exist languages for every possible combination. 

A B C D 

procedure-oriented problem-defining hardware problem-oriented 

nonprocedural problem-describing publication application-oriented 

problem-solving reference special purpose 

11.3.3. Type oF USER 

In designing a language, considerable attention must be given to the 

kind of user for whom the language is designed. We can separate two very 

broad classes—namely, professional programmers and, in contrast, people 

who have a problem to be solved and must program it but consider their 

profession to be the field in which the problem arose. If the objective is to 

help the latter category (who will be called nonprofessional programmers), 

then considerable effort must be made to make the languages easy to learn 

and to use. Various tricks and quirks relative to the machine or even relative 

to the language itself should be minimized, because the nonprofessional 

programmer is more concerned with being able to state his problem easily 

than he is with obtaining the maximum efficiency from a particular machine. 

For a nonprofessional programmer, the distinction between writing the 

program and reading it or using it after it is written is significant. It is well- 

known that two of the major problems in administering any activity involving 

programming are the need for program maintenance and the troubles arising 

from personnel turnover. Thus one objective might be to make it very easy 

for nonprofessional programmers (or for that matter, even professional 

programmers) to pick up and understand somebody else’s program. For 

example, one can envision a situation in which very succinct information 

is fed into a compiler and much more elaborate and detailed information



II.3. PURPOSE OF LANGUAGE 35 

is put out, so that the program becomes easily understandable to a wide varie- 

ty of people. (This has actually been done by developing the Rapidwrite 

system for COBOL—see Humby [HY62], [H Y63].) 

In the case of a language designed for use by a professional programmer, 

a major characteristic is to provide maximum capability. In other words, 

the programming language can and should aim at relieving the professional 

programmer of many annoying details but still provide him with great flexi- 

bility. Thus, for example, he should have some very nice way of stating the 

beginning and ending points of loops and the increment to be used, but 

he may want a large number of ways of specifying or controlling the loops 

(e.g., incrementing or decrementing, varying several parameters in one state- 

ment). In the case of the nonprofessional programmer, he may be satisfied 

with one relatively simple way of handling this particular facility. Similarly, 

the professional programmer will almost always want to be able to get at 

the machine code. No programming language to date has been designed 

so well that the professional programmer has been completely satisfied with 

it; there are always things that he wants to do that seem to require resorting 

to machine code. This facility does not generally interest the nonprofessional 

programmer. 

One other feature in considering this distinction between the profes- 

sional and the nonprofessional programmer is in the type of debugging aids 

that are made available. These are discussed in somewhat more detail in 

Sections [1.5.5.3 and III.7.5, but it should be pointed out here that a pro- 

gramming language which requires a nonprofessional programmer to under- 

stand machine language in order to debug his higher level language 

program is not much help. Only if the debugging can take place at the source 

language level is he really aided. On the other hand, in very tricky cases 

the professional programmer may want the ability to get memory dumps 

and to examine contents of index registers. This is particularly true if the 

language does not provide really good debugging aids. 

In attempting to aim a language at a nonprofessional programmer, 

one can give strong arguments for making the language as natural as possible. 

In other words, if the user is concerned only with solving the problem, he 

will presumably prefer to communicate with the computer in the language 

which is most natural to him. He is not necessarily concerned with all the fine 

points that the professional programmer wishes to be able to control. The 

issue of what is meant by natural and how much is desirable and feasible 

is a hotly debated one. (See Sammet [SM66b], Halpern [HL66], and Dijkstra 

[DJ63] for further discussions of this point.) 

An issue of vital concern to the nonprofessional is the amount of 

“nonlanguage” material he must learn. Since the compilers are usually 

part of an operating or time-sharing system, the user can seldom just “write 

his program”. He ts often required to worry about such things as control



36 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

cards, form of his object deck, etc. A discussion of these problems is beyond 

the scope of this book. 

11.3.4. PHysicAL ENVIRONMENT 

A major defining purpose of a language 1s the physical environment 

in which it is to be used. The most significant distinctions existing today 

are between batch and on-line systems. However, on-line systems can be 

further subdivided into those which are tru/y conversational and thus permit 

significant man-machine interaction and those which are merely time-sliced 

and provide only some additional facilities to an inherently batch-oriented 

language. (There are actually many levels of gradation of these concepts.) 

There is also a possibility that the language may be intended for use in real- 

time situations. The actual size of the computer may be relevant since some 

languages are clearly aimed at maximum effectiveness on large computers, 

while others may be intended for small machines. The possibility of mul- 

tiprocessing configurations could also affect the language. 

11.4. CONVERSION AND COMPATIBILITY 

Of all the characteristics of programming languages about which there has 

been great confusion, the subject of compatibility and its associated factor 

of conversion rank very high. These characteristics are of prime importance 

from a management point of view, although they may be of very little concern 

to the programmer himself. In some cases, the characteristics provide the 

deciding factor in determining what languages should be used. The reason for 

the importance of compatibility and conversion is easy to understand as 

soon as one realizes that the investment in programs for a particular machine 

may run into millions of dollars. In particular, by now the costs of program- 

ming tend to equal or, in some cases, even exceed the actual cost of the hard- 

ware. Thus, it 1s no light matter to ignore the question of what happens to 

the programs if one wants to change machines. Hardware technology does 

not stand still and is continually improving. This means that users can gener- 

ally improve their economics by obtaining new equipment which permits them 

to do the same jobs faster or cheaper, or both. However, the decision to obtain 

new machines is usually influenced very strongly by the prior investment in 

programming. Thus, if a large amount of money has been invested in pro- 

grams which cannot be run on a new machine, it becomes necessary to think 

very long and hard before obtaining new equipment, even though the new 

machines could certainly do the job faster and cheaper. The timing cycles of 

hardware and software development are such that by the time an installation 

has its programs running satisfactorily on one machine, the manufacturers



1.4. CONVERSION AND COMPATIBILITY 37 

have usually come up with new and better hardware. There has been a great 

deal of misinformation and misunderstanding on what is meant by compat- 

ibility and what types of conversions are possible and meaningful. It is 

the purpose of this section to try to clarify these issues. 

11.4.1. Types oF COMPATIBILITY 

1. Machine Independence 

The first type of compatibility that people are concerned with is compat- 

ibility across machines, i.e., how dependent on a particular machine or class 

of machines Is a given programming language. Clearly, if the programming 

language makes reference to hardware that is unique to a given machine 

(e.g., sense lights, backward-reading tapes, and discs), then there is no hope 

that a program written in this language can be directly handled on a machine 

without these features, unless they are simulated; this is usually prohibitive in 

cost. Similarly, if the language—as a language—makes particular use of the 

fact that the machine 1s fixed word length versus variable word length, binary 

versus decimal, or has a particular number of bits or characters per word, then 

again there is no chance of having the program directly transferable to anoth- 

er machine. A partial solution to this problem is to allow the user to state 

in his program the precision he requires. (This is done in PL/I.) However, 

this 1s a double-edged sword because the user may pay a heavy penalty 

for the inefficiency caused by a precision which is grossly disparate from the 

word size, e.g., specifying 11-digit precision on a computer with 10 decimal 

digits per word. If the user is aware of these factors, he can make a more 

intelligent choice. 

Clearly if a language makes use of the hardware characteristics of a 

specific computer, programs cannot possibly be directly compatible, i.e., 

directly usable on another machine. There might be exceptions to this but they 

would depend on very clever programming on the part of the compilers, 

and this has not yet been done. The true definition of machine compatibility 

is the ability to take a deck of cards, or whatever other input media is used, 

insert it into a different type of computer (1.e., not one “in the same family”), 

and have the program run and produce the same answers. Anything less 

than that capability is a partial or pseudo type of compatibility. We have not 

yet achieved this facility for the languages, let alone for the extra information 

required by the operating system. 

Two of the machine features which tend to “ruin” compatibility most 

are word size and collating sequence; actually both of these could be cor- 

rected by the compiler—but at prohibitive cost. The word size affects the 

precision and sometimes even the actual results of numeric calculations



38 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

because numbers are usually stored in one or two machine words. Thus, 

unless the actual number of characters (or bits) to be used is specified (and 

implemented by the compiler), the arithmetic results will differ from machine 

to machine whenever the word lengths are different. In many cases this does 

not have a practical bad effect, but the potentiality is certainly there. In 

the case of the collating sequence, the situation is actually worse because 

incorrect results are easily obtained as a result of branches which operate 

differently. If the collating sequence on one computer places letters before 

numbers, but this is reversed on another machine, then any test of data based 

on this sequencing information will produce opposite results in going from 

one machine to another. Again, this could be corrected by having the lan- 

guage specify the collating sequence and require the compiler to turn out 

the correct code, but nobody has yet been willing to do this because of the 

tremendous cost at object time. 

Other facets of the data base problem, such as wordmarks, fixed versus 

variable length words, and general record layouts, cause incompatibility. 

This difficulty exists independently of the language characteristics. 

2. Compiler Independence 

It is clear that when one talks about machine independence, there is 

an implied reliance on the ability of compilers to do the same things on dif- 

ferent machines. In other words, a statement in the programming language 

that causes an addition to be performed must be translated into the proper 

instructions on all machines. That is quite obvious; what is not so obvious 

is the amount of incompatibility which can actually be engendered by the 

compilers themselves even on the same computer. One of the best examples 
of this is the situation in which a compiler accepts and correctly handles a 

statement which is not really legal in the language, but which is certainly 

meaningful to anybody using the language; e.g., one of the early FORTRAN 

compilers correctly translated a certain type of implied multiplication. What 

happens in cases like these is that people tend to write programs knowing 

the characteristics of their particular compiler, and they are in for a rude 

shock when the same problem is translated by another compiler. 

A second kind of incompatibility caused by compilers 1s much more 

subtle and, therefore, much more difficult to track down. Because of the lack 

of precision in defining programming languages, there are often ambiguous 

rules relative to the meaning of certain statements in the language, and 

every compiler writer must make a decision on how to interpret such state- 

ments. This is bad enough, but what makes it even worse is that in many 

cases the ambiguity is not even recognized as such. Thus two people looking 

at a statement or sequence of statements in the language definition may, 

in all good faith and in all clear conscience, come up with two entirely dif-



II.4. CONVERSION AND COMPATIBILITY 39 

ferent views of what is meant. On top of that, neither person may even 

recognize that an alternative view is possible, until it is pointed out to him. 

This causes the compilers to be incompatible in the sense that two different 

compilers may accept the same source statement and not only produce 

different object code but, more importantly, cause the source programs to 

produce different results. Unfortunately there is no way around this incompat- 

ibility until better means of defining languages are developed. It is because 

of this problem that many people have taken the view that the only complete 

definition of a language is a compiler for the language. My personal view 

is that this is so impractical that I prefer the unpleasant alternative of admit- 

ting that we do not yet know how to define programming languages rigorous- 

ly. 

3. Dialects and Language L-Like 

One of the most difficult problems in the question of compatibility has 

to do with the existence of dialects. A dialect means a minor variation on 

a particular language. These variations may exist for any number of reasons. 

One group may feel that they can obtain a more efficient compiler if they 

simply make a minor change in the rules. An illustration of this involves 

naming conventions, whereby the language definition may not require data 

names and/or statement labels to start with a letter, but some particular 

compiler writer may decide that his efficiency can be improved by an order 

of magnitude if he imposes such a restriction. In other cases, minor devia- 

tions may occur because one group does not like the actual notation used 

by the language designers and substitutes a different one. The most common 

reason for dialects is that for any language there is almost always somebody 

who feels he can improve the language by making certain additions and/or 

changes. A more laudable motive is the creation of modifications to meet 

the needs of a particular application. It 1s important to notice that the diffi- 

culty usually arises more from changes than from additions or restrictions, 

although the latter two also present problems and are discussed in the next 

section. 

The phrase language L-like is frequently heard; it usually refers to a 

language which is similar in spirit and notation to language L, but differs 

from it markedly enough not to be considered a dialect. The deviations usual- 

ly involve (1) some changes in notation, (2) some omissions of features 

or some restrictions, and (3) some additions. As an illustration, LISP 2 

(see Section VIII.6) is described as being an extended ALGOL-like language. 

The prime distinction between being a dialect and being language 

L-like is one of degree. If there are only minor variations, then the word 

dialect is appropriate. Unfortunately, there is seldom universal agreement on 

how minor the variations really are.



40 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

4. Subsetting and Extensions 

The issue of subsetting differs significantly from that of the dialects, 

in the sense that dialects involve changes, whereas subsets imply incomplete- 

ness but presumably no changes. Strictly speaking, a subset is a type of 

deviation but usually one that is less severe in its implications for compati- 

bility. 

A language S is considered a proper subset of a language L if (1) there 

are some programs which can be legally written in L which cannot be legally 

written in S, (2) all legal S programs are legal L programs, and (3) the results 

from a program written in S when executed with an S compiler are the same 

as the results obtained from an L compiler on the same machine, except 

for those aspects which are implementation dependent. Subsetting obviously 

permits upward but not downward compatibility. That is, by definition, 

programs written in S must run on L compilers, but the converse is not 

true.! 

Subsetting may take a number of forms. One is simply the nonability 

to handle a certain class of features in the language. For example, if a 

language allows both double and single precision, a subset of the language 

might not allow double precision. Another form is to omit certain special 

cases in a general feature; e.g., the subset might omit double-precision in- 

tegers but not double-precision floating points. Another type of subsetting 

involves placing additional restrictions that the language itself does not have, 

such as requiring data names to begin with a letter, although the language 

may not require this. 

The primary motivations for subsetting are cost and time. Subsets permit 

smaller compilers, which can be developed more cheaply and/or more rapidly. 

Furthermore, subsets tend to compile faster. 

Problems with regard to compatibility arise when nonnested subsets 

exist. In other words, if there are several subsets of a given language, and there 

is no hierarchy among them, then there is chaos for the user who tries to move 

from one subset compiler to another. Clearly, if the overall language contains 

features A, B, C, and D, and Compiler 1 eliminates feature A and Compiler 

2 eliminates features A and B, then a hierarchy exists which permits upward 

compatibility. On the other hand, if Compiler | eliminates feature A, whereas 

Compiler 2 eliminates only feature B, then there is no relationship between 

those two compilers. They can only be related back to the main compiler 

which is implementing the entire language. Thus, nonnested subsets will 

always lead to lack of compatibility among implementations of each other. 

One interesting facet of subsetting occurs when the language is imple- 

mented by bootstrapping, which means that a translator for a subset of the 

1 This definition was essentially suggested to me by E.F. Codd.



1.4. CONVERSION AND COMPATIBILITY 41 

language is coded in machine language and the compiler is written in this 

subset of the language. This can be done only for certain languages. Some- 

times more than one level of subset is required to create the full compiler. 

A language F is an extension of a language L if L is a subset of E. Types 

of extensions might be the provision of additional facilities, such as new 

variable types and commands to handle them or removal of restrictions 

(e.g., on the ways in which data names can be defined). If L is the prime 

language under consideration, then the existence of its extension, namely 

E, is of no concern to the users of L. If E is a proper extension of L, then 

the compiler for £ should accept legal programs written in L and produce 

the correct results. Unfortunately this is seldom true in practice and, after 

extending L to produce E£, restrictions are usually placed on L programs, 

regardless of whether or not they use the additional facilities of the E language 

(compiler). This happens because extending a language is seldom easy and 

almost always requires some change—albeit minor—1in the original language. 

A common occurrence is to start with a language L, create a subset 

of it (called S), allow some minor deviations (say S’), and then put in some 

extensions which are not in L (say S’+). The result is an L-like language. 

If S’+ is significantly smaller than L, then it is really an L-like extended 

subset and this term will be used throughout this book. 

5. Relation to Language Definition 

Many of the problems of compatibility are caused by the current in- 

ability to define languages in a complete and accurate fashion. A good start 

has been made on defining the syntax of the language, but only a little effec- 

tive work has been done in defining semantics and virtually no work in defin- 

ing pragmatics. These terms will be discussed in more detail later. The crucial 

point is that the lack of compatibility across compilers and very often across 

machines is related to the fact that the language definition may not have been 

completely rigorous or understandable. 

11.4.2. EASE OF CONVERSION 

1. Based on Compatibility 

As indicated earlier, there is great motivation to ease the conversion of 

programs from one computer to another. The best way to do this is to main- 

tain complete compatibility between a language acceptable to one machine 

and the same language handled on another machine. Acceptability can be 

achieved by hardware or software or a combination of both (i.e., emulation). 

In that case, the conversion problem is negligible. Achieving compatibility 

is one of the strongest motives for writing programs in a higher level



42 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

language. Unfortunately, languages tend to change somewhat when imple- 

mented on new machines for reasons indicated above, thus reintroducing 

the dialect problem. The relevant factor becomes the amount of difficulty 

that is involved. If only small changes are necessary to make the program 

run on a different machine, then there has been a large amount of compati- 

bility preserved and the conversion is very easy. On the other hand, if major 

changes and difficulties are encountered, then the conversion is difficult. 

(This is not meant to imply that conversion of programs from one machine 

to another is the only factor in changing machines. However, it is the only 

aspect under discussion here.’) 

2. Ease of SIFTing to Another Language 

The term S/FT stands for Share Jnternal FORTRAN Translator and 

was first used in connection with the program to go from FORTRAN II 

to FORTRAN IV on the 709/90/94 (see Allen, Moore, and Rogoway 

[AX63]). In the development of FORTRAN IV, great attempts were made 

to make FORTRAN II a proper subset of FORTRAN IV. However, there 

were cases in which this was not possible, either because it would place too 

great a restriction on the new version of the language or, in other cases, 

because people had taken strong advantage of what the compilers of 

FORTRAN II would do and these nonlanguage facilities were not applicable 

to the larger and newer compilers. The term sift became used fairly generally 

to refer to the partial translation of one higher level language to another 

one which is fairly similar. This normally means the automatic conversion 

of equivalent language elements and flagging the others for manual conver- 

sion. This is a type of conversion, which again is dependent for its ease on 

the amount of sifting which can be done. A particular illustration—namely, 

of ALTAC to FORTRAN II—is described by Olsen [OL65]. 

3. Ease of Translating to Another Language 

In the worst case, one may be faced with the problem of trying to have 

one language, which has been implemented for a particular machine, trans- 

lated into the form of another language for another machine. It is of course 

assumed that such a translation will preserve the high level characteristics 

of the original program and will not cause severe degradation of the even- 

tually resulting object code. An almost useless translation (from an effici- 

ency viewpoint) occurs when a less powerful language is translated on a 

statement-by-statement basis to a more powerful one. This has actually 

occurred in translating from powerful assembly programs (Autocoder) 

2 See Datamation, Vol. 12, No. 6 (June, 1966) for several papers on this subject.



11.5. STANDARDIZATION 43 

to COBOL. It is an interesting—and as yet unsolved—problem as to what 

general characteristics of languages are needed to permit one to be trans- 

lated into the other automatically without severely losing the efficiency of 

the original source program. The ease of conversion is dependent upon how 

easily—if at all—this translation can be made. 

One of the reasons for wanting an effective translation is that the newer 

machine may not have available on it a compiler for the earlier language. 

A second reason occurs when the installation managers wish to have every- 

thing coded in the newer language and, therefore, want to have the old 

programs translated automatically. 

11.5. STANDARDIZATION 

One of the key factors in the definition and use of a programming language 

is the role played by standardization. The purpose of this section is to de- 

scribe the purposes and problems in standardizing programming languages 

and the procedures that are involved and to give a brief status report. More 

details about the latter are shown in the individual language descriptions. 

II.5.1. PURPOSES 

The basic purpose of standardizing programming languages is to achieve 

compatibility, which in turn reduces costs. Compatibility in programming 

languages permits savings in training personnel because they do not need 

to learn a new language. It also permits savings in documentation because the 

number of new manuals that must be written is sharply reduced. Standardiza- 

tion also minimizes—although it does not eliminate completely—the problem 

of converting to new computers. (This assumes that a standard language 

is implemented for a new set of machines.) 

Even assuming a language standard exists, there is a management prob- 

lem in enforcing the standard. This is not significantly different from the 

problem of enforcing any standard or set of conventions in a programming 

organization. 

II.5.2. PROBLEMS 

There are three main problem areas in standardization: Conceptual, 

technical, and procedural. It should be recognized that the conceptual and 

procedural problems are not unique to programming languages; they apply to 

most technology.



44 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

1. Conceptual Problems 

The first conceptual problem is one of timing; 1.e., when should stan- 

dardization of a language take place. Unless this is given careful considera- 

tion, it is likely to come too soon or too late. If it 1s too soon, then the 

standardization is premature; it is not clear what is needed, and there is a risk 

of standardizing on a number of things that really are not very good. On the 

other hand, if standardization is delayed too long, then there are dialects— 

admittedly some of them very minor changes—and this in turn creates a num- 

ber of vested interests which are reluctant to accept a standard which 

deviates from their particular version. 

A second conceptual problem is the risk of stifling progress. Somehow 

the standardization process must avoid eliminating or preventing technical 

progress. This is extremely difficult because there is no easy way of coping 

with new and bright ideas if they come in after the standard is established, 

or even while it is in the process of being established. An excellent example 

of this arose in one subcommittee meeting which suggested a somewhat bet- 

ter method for handling the proposed revised ASCII code. Unfortunately, 

too much work had already been done by too many people to permit the 

change, even though several groups agreed it was an improvement. 

2. Technical Problems 

The first technical problem in standardization is one of definition. 

We do not yet know how to define a programming language rigorously. 

No completely formal method exists, even for the purely syntactic defini- 

tions, although tremendous strides have been made along these lines. There 

are only beginning attempts at defining semantics rigorously, and no effort 

has been made toward coping with the problem of pragmatics. (These terms 

are defined in Section I1.6.2.) A verbal description is inadequate (although 

used) because the English language is ambiguous and it is impossible to spell 

out every possible contingency or interpretation. Some people would cope 

with this problem by accepting the processor (i.e., the compiler) as the basic 

definition of a language. This might work satisfactorily if there were only 

one processor per language, but that clearly is not the case. It is certainly 

not feasible to say that the first compiler written will be the formal defin- 

tion of a language. Even if that were done, or some other compiler were 

chosen, there would still arise the problem of requiring everybody to inves- 

tigate the details of the compiler coding to find what a particular issue meant. 

In some cases this would still not provide a complete definition for the entire 

language. 

A second technical problem ts to try to determine when a compiler (or



11.5. STANDARDIZATION 45 

a program) actually meets the standards. Since we do not have a completely 

rigorous definition of the language, we clearly do not have a rigorous way 

of testing whether or not a given compiler meets that language specification. 

Even if we accept the unfeasible alternative that a particular compiler will 

define a language, this still does not tell how to determine whether another 

compiler actually meets the language specification. The use of test problems 

is definitely not the answer because a particular compiler could easily be 

designed to meet the test problems but still be very far from the standard. 

A third technical problem is to determine how to do maintenance in an 

orderly way and still not invalidate the compilers. This is tied in with the prob- 

lem of the language definition because most of the maintenance involves 

clarifying unclear points. The difficulty that arises here is the one pointed 

out in Section II.4.1.2—namely, two different groups may have implemented 

a particular point differently without even realizing that there was another 

possible view on what they were doing. Once there is a large amount of money 

invested in the implementation, it is very difficult to persuade any one group 

to change its view on what should be done. Since in many cases maintenance 

also involves extensions, these have to be looked at very carefully in the light 

of present implementations. Certain extensions could invalidate all compilers 

written for a particular language, even though the extension was extremely 

desirable. 

A fourth technical problem is the one of subsetting, which was discussed 

earlier in Section II.4.1.4. Since a standard must achieve wide acceptance 

in order to fulfill its purpose, a highly complex language may reduce the 

number of groups which can implement the standard. On the other hand, 

reducing the level of the standard to the smallest computer will lower the 

value of the standard considerably. The best solutions for this problem seem 

to be controlled subsetting and/or modularity of features. 

The last technical problem is the multiplicity of standards for program- 

ming languages. It is preposterous at this point and in the near future to 

consider standardizing one language for all programming. The best we can 

hope for is one language for each major application area and some languages 

(e.g., PL/I) which cover more than one application area. However, it is impor- 

tant to notice that FORTRAN and ALGOL were both standardized; yet 

they covered very similar application areas, namely, the solution of scien- 

tific numerical problems. The reason for the two standards was quite simple; 

there were large investments in both languages, and neither group was willing 

to retreat and disclaim all interest in having its language become standardized. 

Thus, there has been a necessary regression from the mythical ideal of one 

programming language standard to one for each major application area, 

and a further regression to merely standardizing any “suitable” language 

to prevent dialects of it from being developed and used.



46 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

3. Procedural Problems 

The procedural problems in establishing standards are enormous, 

but this is necessary to prevent the promulgation of undesirable standards. 

In this context, undesirable merely means not acceptable by virtually all 

the groups to whom the standard will apply. The complexity of the pro- 

cedures—which have been established to protect the rights of all those in- 

volved—of necessity delays the establishment of a standard. This often causes 

difficulty to those groups who are at a stage in their technological or manu- 

facturing development where they are ready to implement the standard, 

but it does not exist officially and may yet be changed. 

11.5.3. METHOD OF ESTABLISHING STANDARDS 

Most standards are adoptions or rework of existing practices. Some come 

into being through a specific committee which does developmental work 

and announces at the outset that their result 1s to be a standard of some 

kind. (This was done with COBOL.) Other standards become what are called 

de facto standards—i.e., they are so commonly used that by general agreement 

and general practice they are a standard, even though no formal mechanism 

whatsoever has been used to establish them as such. In most of these cases, 

however, although there may be widespread agreement on the basic item, 

there are almost always deviations which must be eliminated from an actual 

standard. (FORTRAN is an illustration of this situation.) There is a very 

formal and specific procedure for establishing official standards, and this 

section will discuss this procedure in some detail. 

The authority for industrial standardization in the United States is vested 

in the United States of America Standards Institute (USASI), which replaced 

the American Standards Association (ASA) in August 1966. Obviously 

any group, e.g., government, professional societies, and user groups, can 

(and does) standardize anything, but USASI 1s recognized as the central and 

official source of activity for any type of industrial standardization in the 

United States. Unlike European countries, standardization is a voluntary 

process in the United States. Thus, nobody is obligated to obey a standard 

just because it exists; whereas, in many European countries, once a standard 

exists, it is a government regulation and must be followed. There are a num- 

ber of factors which are relevant to the standardization process under USASI 

and which are independent of programming language standardization per 

se. It is worth noting these, so that the problems and procedures for program- 

ming language standardization can be seen in perspective. (A more detailed 

description of the procedures is given by Goodstat [GS67] and Steel [ST67].) 

The USASI provides an elaborate structure with built-in checks to pre-



1.5. STANDARDIZATION 47 

vent “railroading” of anything as a standard; a broad basis of participation 

is required both to do the work in establishing the standard as well as to 

approve it. A consensus among all interested parties is required before some- 

thing is approved as a standard, and a consensus is much more than a mere 

majority. If a significant-sized minority objects to a standard, then it is 

normally sent back for rework. It is characteristic of USASI in particular 

(and most organizations in general) that if they provide an elaborate struc- 

ture of the kind just indicated, then of necessity the committee procedures 

and regulations will be long and complicated. In addition, there is also an 

international standards organization which has different rules from USASI, 

and groups in the United States usually wish to satisfy both standards organi- 

zations. 

The USASI normally asks some group to sponsor work in a particular 

area. This is usually a trade association or similar group. In the case of the 

computing industry they asked BEMA (Business Equipment Manufacturers 

Association) to provide sponsorship. Thus, BEMA established the sectional 

committee X3, which in turn established seven technical working commit- 

tees as follows: (1) Optical character recognition, (2) coded character 

sets and data formats, (3) data transmission, (4) common programming 

languages, (5) glossary, (6) problem description and analysis, and (7) 

magnetic character recognition. 

The charter of X3.4 (which was formed in 1960) is “Standardization of 

common programming languages of broad utility through standard methods 

of specification, with provision for revision, expansion and improvement, 

and for definition and approval of test problems”. At the time of this writing, 

X.3.4 has established eight subcommittees. A list of these follows, with 

a brief indication of the function and purpose of each subcommittee. 

X3.4.1. Language theory. This committee has been dormant for a 

long time but was responsible initially for investigating some of the technical 

problems associated with standardization. 

X3.4.2. Language specifications. This committee is concerned with 

miscellaneous activities, which includes deciding what languages are appro- 

priate candidates for standardization and the criteria involved. These tasks 

are not as easy as they sound due to the need for being concerned with a 

large number of vested interests. This committee also has the responsibility 

for reviewing an actual proposed language standard for X3.4. 

X3.4.3. FORTRAN. This committee defined the standard FORTRANs 

and is responsible for their maintenance. 

X3.4.4. COBOL. This committee is responsible for the definition of 

the standard COBOL and for its maintenance.



48 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

X3.4.5. ISO/TC97/SC5 secretariat and USA participation. This com- 

mittee handles interaction with the international standards organization: 

SC5 is roughly the equivalent of X3.4 at the international level. 

X3.4.6. Glossary. This committee is responsible for determining and/or 

reviewing glossary items which are particularly relevant to the subject of pro- 

gramming languages. 

X3.4.7. Machine tool control. This group was actually the latest 

formed; it did not come into existence until the latter part of 1964. It is con- 

cerned with the development of standards for machine tool control. 

X3.4.8. ALGOL. This was actually a sub-subcommittee under X3.4.2 

and was eventually formed into a subcommittee in its own right. 

The main work of X3.4 has been in deciding what languages to try to 

standardize and then actually attempting to do it. Because the maintenance 

and definition are different for each language, the procedures need to be dif- 

ferent. 

Once X3.4 has created a proposed draft standard, it is submitted to the 

parent body, X3, which arranges for its publication and wide distribution. 

A period of approximately 6 months is then allowed for commentary by any 

person or organization whatsoever. Following (and sometimes during) 

this period, a ballot is taken according to USASI rules and procedures and, 

based on that ballot, either the proposed standard is sent back to the commit- 

tee for rework or it is submitted to the Information Processing Systems 

Standards Board (IPSSB) for its determination that the proper procedures 

were used and a consensus really exists. In almost all cases, IPSSB provides 

final approval of the standard. (There is a still higher group, but it is seldom 

needed.) Once the standard becomes promulgated, it is then recognized 

as an American standard. Again it must be emphasized that adherence to 

this standard is completely voluntary on the part of any organization. Experi- 

ence to date has shown that such standards do play a very significant role 

in the activities of computer manufacturers. 

11.5.4. OVERALL STATUS 

The descriptions of each language indicate the status of the standardi- 

zation for that language and the process that was involved. 

11.6. TYPES AND METHODS OF LANGUAGE DEFINITION 

Fortunately or unfortunately, language definition is an administrative as 

well as a technical issue. Many factors discussed below play an important 

role in the creation, development, and usage of the language. These aspects



11.6. TYPES AND METHODS OF LANGUAGE DEFINITION 49 

tend to be ignored or misunderstood but they play a vital role in the overall 

consideration of the language. 

11.6.1. ADMINISTRATIVE 

1. Who Designed the Language? 

The first administrative question to be asked about any language is: 

Who designed the language? Also, how was the group constituted? Who 

was the sponsor or directing authority? What kind of pressures were they 

under ? Several languages have been designed by committees, where the com- 

mittee consisted of participants from a number of organizations. This 1s not 

necessarily bad since even when a language is designed within one organi- 

zation, it is normally designed by more than one person and this group 

could also be called a committee. It is not at all clear whether a committee 

composed of people from different organizations fares significantly worse 

than one formed solely within an organization. The main reason for this 

is that current and past language design has been based very much on per- 

sonal opinion, rather than just on fact or objectivity. Many of the properties 

described in Section II.2 mean different things to different people, and cer- 

tainly the method of applying them is nebulous. Language design is an art, 

not a science. Furthermore, as in any endeavor, language designers also 

tend to use their past experience even though it is not always applicable to the 

current situation. The one factor that pervades intercompany language 

design which generally does not affect intracompany work is a number of 

political considerations. In particular, an intercompany committee may 

have on it people who are under directives from their organization to try 

to place into the language those features which are helpful to their equipment 

(and possibly harmful to others) and, of course, to prevent the converse 

from happening. These are all unfortunate facts of life which must be taken 

into account in considering any language. 

2. What Were the Objectives of the Language? 

In examining any language, it 1s necessary to know the objectives. Just 

as it would be silly to complain that an automobile is not a good device for 

crossing an ocean, it is equally foolish to say that a language is a poor one 

because it does not satisfy the person examining it. A language designed for 

use by nonprogrammers may seem very loquacious or inefficient when viewed 

by a professional programmer. Conversely, terminology or techniques that 

are useful to a person with considerable programming experience may be 

confusing or meaningless to a person who just wants to find answers quickly. 

There are two legitimate questions which can be asked about a program- 

ming language and its objectives. The most important is: Does the language



50 = FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

satisfy the objectives? The second is: Were the objectives worthwhile? The 

first question is a very good one if it is applied honestly, and the prime cri- 

terion of a good language is whether it achieves the goals specified for it. 

The question about worthiness of objectives is a dangerous one. Using the 

earlier analogy, a device good for crossing an ocean may be a silly idea to 

someone who has no interest in moving off dry land. Too many criticisms 

of programming languages tend to be made by people who have no knowl- 

edge of, or interest in, the problem area; they insist that the objective is bad 

when in reality they do not understand or care about it. 

3. Who Implemented the Language? 

The question of who implemented the language is another adminis- 

trative facet which cannot be ignored. If the language is implemented by the 

same people who designed it, then there 1s the greatest chance of success 

because the language can be modified as the needs of the implementation 

demand. Of course, a poorly conceived implementation design should not 

be allowed to ruin the language by forcing unnecessary restrictions. There 

are more difficulties when the implementation group differs significantly 

from the language group and the latter must be consulted on every change 

in the language. Making sure that the right kinds of interactions occur in both 

cases is clearly an administrative problem. As mentioned earlier, very often 

the definition of a language is not completed until the compiler is completed. 

Implementation is normally done either by a group within one company 

(usually a computer manufacturer, but sometimes a user with its own lan- 

guage) or an outside software group (which is charged with the responsibility 

for preparing a compiler for a particular machine or class of machines). 

Even here, there are difficulties that depend on whether the implementation 

for a given class of machines is under direct control at a low enough organi- 

zational level to be effective. Thus, if a company has a class of machines 

which are either similar or purportedly compatible in some sense, then the 

question of how compatible the compilers are becomes another administra- 

tive and management problem. 

4. Who Maintains the Language? 

The maintenance of a language is not the same as the maintenance of 

a compiler or a program. The language maintenance is by far the stickiest 

of the administrative problems. In some cases, the group who originally 

designed the language retains the responsibility for its maintenance. This 

maintenance has many facets, starting from answering the questions of the 

implementers who do not understand a particular language specification to 

responding to requests for changes on features that are difficult to implement 

and, ultimately, making improvements and/or extensions to the language. As



1.6. TYPES AND METHODS OF LANGUAGE DEFINITION 51 

was true with the question of who designed the language, the maintenance 

is sometimes done by an interorganization group and sometimes within 

a single organization. However, when the maintenance of the language is 

divorced from the implementation, a certain amount of chaos is likely to 

arise. This occurs because the implementors usually need an immediate deci- 

sion on what a particular point means; those who are maintaining the lan- 

guage may not be ready to meet that week to answer the question; yet coding 

must continue. Similarly, people who are pressing for improvements and/or 

extensions to the language are apt to find a very responsive chord in the 

maintenance group, but an unresponsive chord in the implementation group. 

The latter will certainly resist improvements to the language if it invalidates 

their compilers. Thus, if the maintainers of the language are significantly 

separated from the implementers, they may make changes and/or decisions 

and/or improvements which seriously affect the implementation. Even 

if the two groups coincide, the thorniest of all the administrative problems 

is to decide when to allow the language to be significantly improved, at the 

cost of much compiler rewriting. 

11.6.2. TECHNICAL 

The technical issues in language definition are, of course, the very heart 

of determining what the language actually is, 1.e., what its specifications are. 

These issues are often mixed up with the notation (metalanguage) of the 

definition, i.e., the actual way in which the language definition is written down 

on one hand, and the questions of the rigorousness of the definition of the 

syntax, semantics, and pragmatics on the other hand. In my opinion, too 

much of the discussion of the actual features and qualities of a language 

centers around the way in which the language is defined. While obviously 

a poor and unrigorous definition makes it difficult if not impossible to deter- 

mine what the language specifications really are, it should be kept in mind 

that the language and the means of defining the language are not the same 

thing. It is for this reason that the discussion of the technical methods of lan- 

guage definition are included in this chapter, even though they are definitely 

technical and this chapter is purportedly concerned with nontechnical charac- 

teristics of programming languages. I would go even further and say that 

many of the nontechnical problems exist because the computing community 

has not yet solved satisfactorily the technical problems of defining program- 

ming languages rigorously. 

|. Syntax, Semantics, and Pragmatics 

The three characteristics of a language definition are syntax, semantics, 

and pragmatics. (These are discussed specifically by Zemanek [ZE66] and



52. FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

were largely the subject matter of the 1964 IFIP working conference, whose 

proceedings appear in Steel [ST66a]. 

By syntax we mean a rigorous statement of what sequences of charac- 

ters are considered correct in the language and, ultimately, what character 

sequences constitute a (syntactically) legal program. Thus, the syntax could 

specify that the sequence A + B is legal; whereas the sequences +AB or 

A+B are not allowed. On the other hand, a different language might say 

that the second or third (or both) of these was legal; whereas the first was not. 

In any case, the syntax simply specifies the legitimate strings in the language. 

The meaning of the string is determined by the semantics. Thus, for example, 

the string A + B might mean addition if A and B were numbers; whereas 

it might mean union if A and B were sets or logical conjunction if A and B 

were truth values. Clearly, a single legal string can have a great many mean- 

ings; the collection of all these meanings for each legal string is called the 

semantics of the language. The pragmatics is the relationship of these strings 

and their meanings to the user. Thus, the user himself must understand and 

appreciate what is meant by arithmetic, set union, and logical conjunction. 

Furthermore, there must be agreement between his intended use of a string 

of symbols and its actual semantic interpretation by a compiler. 

The following statements appear to be true: (1) There is sometimes a 

hazy line between what is syntax and what is semantics; e.g., the rule that 

the number of subscripts on a variable in FORTRAN must agree with the 

information in the DIMENSION statement can be considered both syntactic 

and semantic, although it is primarily syntactic. (2) There is no notation yet 

developed which will express completely unambiguously all the syntax of a 

programming language, even if there were agreement on what was purely 

syntax. (3) Little work has been done on formalizing semantics, although 

the work of the IBM groups in Hursley, England and Vienna, Austria has 

made a good start on PL/I (see the reference lists at the end of this chapter 

and Chapter VIII for numerous reports). (4) Nothing has been done about 

formalizing pragmatics. Thus, the problem of rigorously defining a lan- 

guage—assuming there is an intuitive idea of what the language should 

be—is one in which a large amount of technical work needs to be done. 

However, significant work in providing formal notation for syntax has been 

done and has helped the language definition problem enormously. See Floyd’s 

survey [FL64] and the other items in the list of references at the end of the 

chapter. 

2. Formalized Notation 

Since the English language permits numerous ambiguities, it is desirable 

to provide a formal or rigorous method for defining programming languages. 

Considerable work has been done to provide such formalism for the syntax,



II.6. TYPES AND METHODS OF LANGUAGE DEFINITION 53 

but very little work has been done for the semantics; hence, the latter will 

therefore not be discussed at all. 

A complete discussion of the formalized notations used for describing 

programming languages is beyond the scope of this book. However, the basic 

principles can be stated rather simply. This whole area is the major interface 

point between artificial languages and the work of linguists concerned with 

natural languages. Further details can be found in the references in Floyd’s 

paper [FL64]. 

To define a language, some language must be used for writing the defini- 

tions. This latter is called a metalanguage. It is a general term which can 

include any formal notation or even English itself. Metalanguage is a relative 

term since it is itself a language which must be defined, and that requires 

a metametalanguage. For the languages discussed in this book, we need only 

be concerned about the single level of metalanguage. 

The first, and still the most significant, contribution made in this area 

was by John Backus in his paper [BS60] describing IAL (later called 

ALGOL). After an informal description of the proposed language, Backus 

states (page 129) “There must exist a precise description of those sequences 

of symbols which constitute legal IAL programs... . For every legal program 

there must be a precise description of its ‘meaning’, the process or transforma- 

tion which it describes, if any ....” The second part of this objective has not 

yet been carried out completely and successfully, although significant work 

is well underway. The prime elements of the metalanguage are the concepts 

of a metalinguistic formula or expression composed of metalinguistic vari- 

ables (whose values are strings of symbols), a metalinguistic equivalence 

symbol, and metalinguistic connectives. The metalinguistic variable (which 

is also called a syntactic unit) normally has mnemonic meaning, although 

this is not required; thus integer is a metalinguistic variable whose values 

are the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. (Angular brackets < > are a com- 

monly used notation for syntactic units.) The most important connectives 

are or, concatenation (i.e., adjoining two strings to make one string), choice, 

and optional. Not all these connectives are used in each metalanguage; 

it is largely a matter of (1) personal choice and (2) structure of the language 

being defined, as to which combinations are used. The concepts of recursion 

within definitions and repetition of syntactic units are also widely used; 

these are illustrated later. 

The most common (although by no means the only) combinations of 

symbols are those which have been used for the ALGOL 60 report (Naur 

[NA60] or [NA63]) and for the COBOL report [US65].* In the former, com- 

monly referred to as BNF for Backus Normal Form or Backus-Naur Form, 

the metalinguistic symbols and their meanings are 
  

3Citations are given in the reference lists at the ends of Chapters IV and V, respectively.



54. FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

Symbol Meaning 

[= equivalence 
< > surround metalinguistic variable 

juxtaposition concatenation 

| or 

In the COBOL report, 
Symbol Meaning 

small letters metalinguistic variable 

juxtaposition concatenation 
{ } choice 

[ ] optional 
upper-case letters optional fixed words in language 

upper-case letters underlined required fixed words in language 

repeat previous syntactic unit 

As a simple example using BNF (i.e. the “ALGOL metalanguage”), consider 

the definition of an integer. We start by defining a digit by writing 

<digit> := O0]1]/2/3]4/5161718]9 

<integer> := <digit> | <integer> <digit> 

The first line specifies that a metalinguistic variable called digit is one of the 

characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. The second line illustrates recursion 

as part of the definition because it says that an <integer> is either a <digit>, 

or an <integer> followed by a <digit>. A negative integer would be defined 

by saying 

<negint> := —<integer> 

The following are integers (by the definition above): 

3 32 0045 000000 2598600002 100900 

Note that there is no limit stated on the number of digits allowed. From 

the definition of negative integer, examples are 

3 —32 — 000000 —05290600 

but not 

—32— —3—2 

As a more abstract illustration, suppose 

<ab> : (| * | <ab> )|<ab> <d> 

<d> :; A|B|C|DIE



II.6. TYPES AND METHODS OF LANGUAGE DEFINITION 55 

Then the following are legitimate values for <ab>: 

( (A 

*))) *C 

QE) QE)) 

() *)))ABCDE)ABCDE) 

The following are not legitimate values for <ab>: 

A A) 

A( ABC) 

((* *( 

)x JE 

Using the “COBOL metalanguage,” consider the following abstract 

example: 

integer K {Pipee| [bull] ... 

where integer has the expected meaning, bibble represents a letter, bull 

represents a digit, and the three dots ... indicate repetition of the immedi- 

ately preceding syntactic unit, namely, bull, 1.e., digits. Note that it is the 

syntactic unit which is repeated, not necessarily the individual value of the 

unit. Then the following are legitimate values for the metalinguistic expres- 

sion above (which is not actually given a name): 

3K5 9KC3333 

5B3259 AKAB 

2KL 2B 

Since the K is not underlined, it 1s optional. Note that in the first case it is 

impossible to tell whether the K has come from the specific K, or from bibble. 

In the last case, the B can be from either the bibble or from the AB. A lan- 
guage with the characteristic that its strings can be broken apart in only one 

way is called uniquely deconcatenable, and the example above defines a lan- 

guage which is not uniquely deconcatenable.



56 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

To show the difference between these two examples of metalanguages 

more fully, each formula will be written both ways. The first one can be writ- 

7 ES} 
<partial> := <integer> K <bibble> <bull> | <integer> K <bibble> | 

<integer> K AB <bull> | <integer> K AB | 
<integer> K B <bull> | <integer> <bibble> <bull> | 

<integer> <bibble> | <integer> AB <bull> | 

<integer> AB| <integer> B <bull> | <integer> B 

<integer> KB 

and the second as 

<full> := <partial> | <full> <bull> 

The primary advantage to metalanguages similar to those used in the 

ALGOL report is their ability to name a metalinguistic variable and use it 

in a formula. The inetalanguages similar to those used in the COBOL report 

do not have that facility. This often makes it very difficult to define certain 

metalinguistic variables. On the other hand, in most cases where any compli- 

cated choice is involved, the COBOL approach is simpler. However, the 

COBOL approach involves two dimensions, while the ALGOL metalanguage 

requires only one. A more detailed discussion of the differences between 

the two general approaches is given in Sammet [SM6la]. A discussion of the 

problems of two-dimensional syntax is given in Rochester [RT66]. 

While some readers may feel that such notation introduces undesirable 

formalism, it certainly serves to eliminate a number of ambiguities. For 

example, the following definition appears on page 5 of the COMIT Reference 

Manual ([MT61]: 

A name consists of a string of twelve or less characters chosen 
from the letters of the alphabet, the numbers, an. period and hyphen in 

medial position: 

Characters for use in names: 

ABC...2Z 

012...9 

_- except as first or last character 

The question left unanswered by this definition is whether more than one 

period and/or hyphen can appear in a name. Thus, it is not clear whether 

or not A.B.C.D and A.B — C are legal names.



II.6. TYPES AND METHODS OF LANGUAGE DEFINITION 57 

The illustrations of metalanguages above should not be thought to 

include all the major concepts. For other ways to define artificial languages, 

see Gorn [GO6la] and Floyd [FL64]. However, the two above, and minor 

variations of them, have proved to be most useful. They have also given 

rise to the whole compilation technique known as syntax-directed compiling. 

Very briefly, this is a method whereby languages are defined by providing 

tables of their syntax and tables of the operations (e.g., convert to machine 

code) which are to be performed on different syntactic units. Among the ear- 

liest works along these lines were the independent efforts of Irons [IR61], 

Glennie [GC60], and Brooker and Morris [BX62]. An overall description 

of the technique of syntax-directed compilation is given by Cheatham and 

Sattley [CH64]. 

In my opinion, if there is ever to be any hope of allowing users to define 

their own artificial languages, it will most likely occur through the use of 

formal methods of language description and processors which can accept 

these definitions and either translate them to running code or interpret them 

to produce answers directly. 

11.6.3. TyPES OF DOCUMENTATION 

It is a truism that a language or a program is only as good as its docu- 

mentation. Without written specifications for an artificial language, there 

is no language. The real problems exist in determining what type of documen- 

tation should exist. 

There are essentially four types of documentation for a programming 

language. The first is the reference manual containing the exact specifica- 

tions, using whatever metalanguage (including English) has been agreed 

upon by the language designers. It is in this document that the real technical 

troubles usually fall since, as discussed in Section II.6.2, there are-as yet 

no Satisfactory techniques for defining programming languages rigorously. 

The second type of document is a user’s manual, which can be tutorial 

or introductory. Such manuals are usually replete with examples and often 

omit many of the trickier points of the language. This usually causes the 

individual who wishes to know all about the language to refer to the speci- 

fication manual, which may be very difficult to read. In such a case, the tuto- 

rial description has served its purpose, namely to allow individuals to learn 

to use the language in a reasonable way but not necessarily with all the fine 

points. Ideally, the tutorial manual would exist in stages, providing first 

the most basic information and then progressing toward the most complex, 

so that all points are covered. 

The third type of document is written for a specific implementation 

and often combines elements of the other two. Although ideally there should



58 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

be no need for a new language description manual for each compiler, in 

practice this has turned out to be necessary. Minor differences in implementa- 

tion techniques or machines cause differences in such points as numbers 

of variables allowed, precision of the arithmetic, special cases not handled,’ 

etc. Such manuals often contain information on how to write programs 

most efficiently for the particular version involved. Sometimes the individual 

implementation manuals are based on a more general manual which is as- 

sumed to be the basic information. (See, for example, the IBM FORTRAN 

manuals listed in the references.) 

The fourth type of document is some form of summary or very short 

(ideally 1-2 pages) document to be used as a ready reference by those rainiliar 

with the language and needing only to refresh their memories. (See, for 

example, the CPS summary in Section IV.6.5.) 

For a general discussion of the problem of documenting programming 

languages and the ways in which seven languages (ALGOL, COBOL, 

COMIT, FORTRAN, IPL-V, JOVIAL, NELIAC) were documented, 

see the series of articles edited by Yngve and Sammet [YN63a] and their 

specific comments [Y N63]. In addition, there is a series of individual language 

bulletins which have appeared independently and/or under the auspices 

of the ACM SICPLAN Notices. The latter is an informal “news and notices” 

bulletin edited by C.J. Shaw and has appeared monthly. 

11.7. EVALUATION BASED ON USE 

It is characteristic of the computer business that systems are often evaluated 

on theory and personal preferences rather than on the basis of practical 

usage. This is advantageous if the system is so obviously bad that nobody 

ought to even try using it. Unfortunately, nobody has yet devised a fool- 

proof way of making such judgments. It is always very easy—and much 

more fun—to examine a language in an abstract condition that is independent 

of its usage. This tends to relieve people of the problem of obtaining facts 

to back up their contentions, and it allows them to operate continuously 

in the realm of opinion. However, this is not the most effective way to pro- 

ceed. It is essential that work be done to determine valid criteria for evalua- 

tion based on usage, rather than on whim. We need to understand the 

advantages and disadvantages of specific systems—evaluated against specific 

objectives—so that mistakes can be avoided in the future. 

II.7.1. AVAILABILITY ON DIFFERING COMPUTERS 

The most obvious question for a prospective user is whether the language 

has been implemented for his computer. The answers can range from yes



IL.7. EVALUATION BASED ON USE 59 

to in process now to never will be. Part of the evaluation of a language is its 

availability and usage on one or more machines. If it has been widely imple- 

mented, then there is more accumulated experience for both users and im- 

plementers. There is also strong indication that the language has been used 

successfully. If it has been available only on large machines and now is to 

be used on a small computer for the first time, then certain new problems 

will arise. 

As discussed below, the usefulness of the language must be judged 

independently of the compilers which implement it. 

11.7.2. EVALUATION OF LANGUAGE VERSUS EVALUATION OF COMPILER 

There are two ways of looking at a language—one is on paper and the 

other is as implemented on a machine. In the first instance, an individual 

can examine the language and decide whether or not it is easy for him to solve 

his problem using that language. In making such an evaluation, he uses such 

criteria as ease of learning, ease of writing, and applicability to his class of 

problems. When he attempts to evaluate the implementation, however, he 

has other characteristics he must be concerned with, such as rapidity of com- 

pilation and effectiveness and efficiency of the object code which is produced. 

Unfortunately, there are too many instances in which the evaluation of the 

language is based primarily on the evaluation of the compilers. All too often 

people say language X is no good, when what they really mean is the compiler 

they are using for that language is very poor. Once the compiler is improved, 

then their view of the language changes. It is extremely important to separate 

these two aspects. (There are cases in which new languages received semi- 

permanent black marks because the first compiler(s) for the language was 

so bad.) 

The two greatest criticisms of compilers are slow compilation and poor 

object code. The latter can be considered bad because of slow running time 

or large storage requirements or both. Secondary objections can be raised 

about the diagnostics at compile or object time or both, inadequate listings 

from the compiler, unavailability of load-and-go (i.e., compile and immedi- 

ately execute), and poor debugging facilities. The language should not be 

deemed poor unless it can be shown that its features would permanently 

cause one or more of these faults. (This point is discussed in Section III.7.) 

11.7.3. USAGE RELATIVE TO OBJECTIVES 

The most important factor in evaluating a language is to compare its 

achievements against its objectives. It is therefore necessary that the objec- 

tives of the language be well understood before the language design begins.



60 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

It is equally essential that prospective users understand the avowed objectives 

of the language so that they do not try to use a language for the wrong pur- 

pose. Unfortunately, the purposes are seldom clearly stated. Either they 

are not realized when the language development ts started or the designers 

try to claim too much for the language or else they try to claim a more sell- 

able set of objectives than are actually intended or implemented. It is cer- 

tainly fair to consider whether the objectives are worthwhile, but it is not 

fair to complain about a language for not meeting some objective that was 

never intended. 

There are cases in which languages have been known to exceed their 

objectives. One way in which this can occur is when a language becomes 

useful outside its primary application area. The widespread use of 

FORTRAN for a variety of problems that are not numerical scientific 

makes it the outstanding example of this additional factor. 

11.7.4. ADVANTAGES 

Only after a language has been in use for a while can its advantages 

be ascertained. The first thing to determine is whether or not it met its objec- 

tives. If so, then the language can be considered to be successful. (The ques- 

tion of whether the objectives were worthwhile is a separate issue and should 

not be combined with the evaluation of the language.) However, there are 

two other possible advantages which might exist. The first is that the language 

may exceed its objectives by being useful for areas which were not originally 

intended or by being particularly easy to implement or to learn (if these 

were not part of the original objectives). A second advantage may occur if the 

language has certain special features which turn out to be very valuable and 

can be used in other areas. The concept of list processing is a good illustra- 

tion of this; the basic list processing languages (IPL-V and LISP—see Chap- 

ter VI) showed the value of list processing so successfully that it became 

important for inclusion in newer languages (e.g., PL/I). 

The most important thing to realize is that the full advantages (see Sec- 

tion J.5.1) of a language cannot be determined without actually using it on 

a computer. This is not true about the disadvantages, which can often be 

found before going near a computer. Those advantages which can be ascer- 

tained without actually using a machine are the ease in learning, ease in 

coding in, documentation it provides, and ease in transferring a program 

from one person to the next. 

II.7.5. DISADVANTAGES 

Obviously, the most important disadvantage to a particular language 

is that it does not meet its objectives. This can sometimes be determined before



REFERENCES 61 

actually running on a computer, but there must be some honest attempt 

to try using the language. For example, if one objective of the language is 

to make it easy for nonprogrammers to use it, then a failure of this aspect 

can be determined after appropriate training and attempts at program 

writing. Similarly, if efficient compilation is an objective, the implementers 

may discover the disadvantages very early in their work. 

One important thing to keep in mind is that one cannot measure the 

disadvantages of a language in a vacuum; one must consider them in the light 

of the objectives. If the purpose of the language is to solve numerical scien- 

tific problems, then one cannot say that the language has disadvantages 

because it cannot do formal differentiation or integration. 

The main disadvantages that can be discovered without actually using 

a computer are that it fails to have the advantages cited in Section II.7.4 

and it is not possible to express all the needed operations in the language. 

11.7.6. MISTAKES TO BE AVOIDED IN THE FUTURE 

Only after the language has been in use for a considerable period of time 

can one determine what mistakes have been made. These mistakes might 

be in the actual design objectives, in the sense that they were either too nar- 

row or too broad and, therefore, incapable of achievement; or the mistakes 

might be involved with the relationship between the language and the imple- 

mentation; or it may be that the language was not suitably designed to meet 

its objectives. Again, all these factors can be determined only after actual 

uSage. 

REFERENCES 

H.1.—ll.3. 

[DJ63] Dijkstra, E. W., “On the Design of Machine Independent Program- 
ming Languages”, Ann. Rev. Automatic Programming, Vol.3 (R. Goodman, 
ed.), Pergamon Press, New York, 1963, pp. 27-42. 

[DT62] “The RAND Symposium: 1962, pt. 1”, Datamation, Vol. 8, No. 10 (Oct., 
1962), pp. 25—32. 

[DT62a] “The RAND Symposium: 1962, pt. 2”, Datamation, Vol. 8, No. 11 
(Nov., 1962), pp. 23-30. 

[HL66] Halpern, M. I., “Foundations of the Case for Natural-Language Pro- 
gramming”, Proc. FJCC, Vol. 29 (1966), pp. 639-49. 

[HY62] Humby, E., “Rapidwrite—COBOL Without Tears”, Symbolic Languages 
in Data Processing, Gordon and Breach, New York, 1962, pp. 573-83. 

[HY63] Humby, E., “Rapidwrite”, Ann. Rev. Automatic Programming, Vol. 3 
(R. Goodman, ed.), Pergamon Press, New York, 1963, pp. 299-310. 

[SM66b] Sammet, J. E., “The Use of English as a Programming Language”, 
Comm. ACM, Vol. 9, No. 3 (Mar., 1966), pp. 228-30.



62 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

11.4. CONVERSION AND COMPATIBILITY 

[AX63] 

[HL65] 

[OL65] 

Allen, J. J.. Moore, D. P., and Rogoway, H. P., “SHARE Internal 
FORTRAN Translator”, Datamation, Vol. 9, No. 3 (Mar., 1963), 
pp. 43-46. 

Halpern, M. I., “Machine Independence: Its Technology and Econo- 
mics”, Comm. ACM, Vol. 8, No. 12 (Dec., 1965), pp. 782-85. 

Olsen, T. M., “Philco/IBM Translation at Problem-Oriented, Symbolic 
and Binary Levels”, Comm. ACM, Vol. 8, No. 12 (Dec., 1965), pp. 
762-68. 

11.5. STANDARDIZATION 

[AT64] 

[GS67] 

[ST67] 

Alt, F. L., “The Standardization of Programming Languages”, Proc. 
ACM 19th Nat’l Conf. 1964, pp. B.2-1—B.2-6. 

Goodstat, P. B., “Standards in Data Processing”, Data Processing 
Magazine, Vol. 9, No. 3 (Mar., 1967), pp. 22-25. 

Steel, T. B., Jr., “Standards for Computers and Information Process- 
ing”, Advances in Computers, Vol. 8 (F.L. Alt and M. Rubinoff, eds.), 
Academic Press, New York, 1967, pp. 103-52. 

1.6. TYPES AND METHODS OF LANGUAGE DEFINITION 

[AL67] 

[AN66] 

[BA67] 

[BC66] 

[BC66a] 

[BC67] 

[BS60] 

[BU65] 

[BX62] 

Alber, K., Syntactical Description of PL[I Text and Its Translation into 
Abstract Normal Form, IBM Corp., TR 25.074, Vienna Lab., Vienna, 

Austria (Apr., 1967). 

Allen, C. D. et al., An Abstract Interpreter of PL/I, IBM Corp., TN 

3004, Hursley, England (Nov., 1966). 

Bandat, K., On the Formal Definition of PL/I, IBM Corp., TR 25.073, 
Vienna Lab. (Mar., 1967). 

Beech, D. et al., Concrete Syntax of PL/I, IBM Corp., TN 3001, Hursley, 
England (Nov., 1966). 

Beech, D., Nicholls, J. E., and Rowe, R., A PL/I Translator, IBM Corp., 

TN 3003, Hursley, England (Oct., 1966). 

Beech, D. et al., Abstract Syntax of PL/I, IBM Corp., TN 3002 (Version 
2), Hursley, England (May, 1967). 

Backus, J. W., “The Syntax and Semantics of the Proposed International 
Algebraic Language of the Zurich ACM-GAMM Conference”, Proc. 

Ist Internat’] Conf. Information Processing, UNESCO, Paris, 1959, 
R. Oldenbourg, Munich and Butterworth, London, 1960, pp. 125-32. 

Burkhardt, W. H., “Metalanguage and Syntax Specification”, Comm. 

ACM, Vol. 8, No. 5 (May, 1965), pp. 304-305. 

Brooker, R. A. and Morris, D., “A General Translation Program for 
Phrase Structure Languages”, J. ACM, Vol. 9, No. 1 (Jan., 1962), pp. 

1-10.



[CH64] 

[FL64] 

[GC60] 

[GO61] 

[GO6la] 

[1B62] 

[1B64a] 

[1B66] 

(IB66h] 

[IR61] 

[1V64] 

[LW64] 

[MT61] 

[PU67]} 

[RT 66] 

[SM6la] 

[ST66a] 

REFERENCES 63 

Cheatham, T. E., Jr. and Sattley, K., “Syntax Directed Compiling”, 

Proc. SJCC, Vol. 25 (1964), pp. 31-57. (Also in [RO67].) 

Floyd, R. W., “The Syntax of Programming Languages—A Survey”, 

IEEE Trans. Elec. Comp., Vol. EC-13 (Aug., 1964), pp. 346-53. (Also 

in [RO67].) 

Glennie, A. E., On the Syntax Machine and the Construction of a Uni- 
versal Compiler, Tech. Report No. 2, Carnegie Inst. Tech. Computation 

Center (AD-240512) (July, 1960). 

Gorn, S., “Some Basic Terminology Connected With Mechanical 
Languages and Their Processors”, Comm. ACM, Vol. 4, No. 8 (Aug., 

1961), pp. 336-39. 

Gorn, S., “Specification Languages for Mechanical Languages and 
Their Processors, A Baker’s Dozen”, Comm. ACM, Vol. 4, No. 12 

(Dec., 1961), pp. 532-42. 

IBM 1620 FORTRAN (Reference Manual), IBM Corp., C26-5619-0, 

Data Processing Division, White Plains, N.Y. (1962). 

IBM Operating System/360: FORTRAN IV, IBM Corp., C28-6515-2, 

Data Processing Division, White Plains, N.Y. (1964). 

FORMAL DEFINITION OF PL/I, IBM Corp., TR 25.071, Vienna 

Lab., Vienna, Austria (Dec., 1966). 

IBM 7090/7094 IBSYS Operating System-Version 13: FORTRAN IV 

Language, IBM Corp., C28-6390-3, Data Processing Division, White 

Plains, N.Y. (Apr., 1966). 

Irons, E. T., “A Syntax Directed Compiler for ALGOL 60”, Comm. 

ACM, Vol. 4, No. 1 (Jan., 1961), pp. 51-55. (Also in [RO67].) 

Iverson, K. E., “A Method of Syntax Specification”, Comm. ACM, 

Vol. 7, No. 10 (Oct., 1964), pp. 588-89. 

Landweber, P. S., “Decision Problems of Phrase-Structure Gram- 

mars”, [EEE Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), pp. 

354-62. 

COMIT Programmers’ Reference Manual, M.1.T. Research Lab. of 
Electronics and the Computation Center, Cambridge, Mass. (Nov., 

1961). 

Pursey, G., Concrete Syntax of Subset PL/I, IBM Corp., TN 3005, 

Hursley, England (Feb., 1967). 

Rochester, N., “A Formalization of Two Dimensional Syntax Descrip- 
tion”, Formal Language Description Languages for Computer Program- 
ming (Proc. of the IFIP Working Conference on Formal Language 
Description Languages). (T. B. Steel, Jr., ed.), North-Holland Publishing 

Co., Amsterdam, 1966, pp. 124-38. 

Sammet, J. E., A Definition of the COBOL 61 Procedure Division Using 
ALGOL 60 Metalinguistics. Summary in Preprints of 16th Nat’l Meeting 

of the ACM (Sept., 1961), pp. 5B-1 (1)-(4). 

Steel, T. B., Jr. (ed.), Formal Language Description Languages for 
Computer Programming (Proceedings of the IFIP Working Conference 
on Formal Language Description Languages). North-Holland Publish- 

ing Co., Amsterdam, 1966.



64 FUNCTIONAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

[UE67] 

[Y N63] 

[Y N63a] 

[ZE66] 

deBakker, J. W., Formal Definition of Programming Languages With an 
Application to the Definition of ALGOL 60. Mathematical Centre Tract 
16 (Mathematisch Centrum), Amsterdam (1967). 

Yngve, V. H. and Sammet, J. E., “Toward Better Documentation of 
Programming Languages: Introduction”, Comm. ACM, Vol. 6, No. 3 
(Mar., 1963), p. 76. 

Yngve, V. H. and Sammet, J. E. (eds.), “Toward Better Documentation 
of Programming Languages”, Comm. ACM, Vol. 6, No. 3 (Mar., 1963), 
pp. 76-92. 

Zemanek, H., “Semiotics and Programming Languages”, Comm. 
ACM, Vol. 9, No. 3 (Mar., 1966), pp. 139-43.



; I ; TECHNICAL CHARACTERISTICS 
OF PROGRAMMING LANGUAGES 

il.14. DESCRIPTION OF CONCEPT OF TECHNICAL FEATURES 

III.1.1. INTRODUCTION 

In Chapter II there was a discussion of those characteristics of program- 

ming languages which were distinct from the detailed specifications of the 

language itself. Many of those factors were avowedly nontechnical, including 

economic and political aspects. This chapter is devoted to a discussion of the 

fundamental technical characteristics in programming languages. The main 

functions of this chapter are (1) to describe briefly most—if not all—of the 

salient features that are likely to be present in the common types of pro- 

gramming languages and (2) to provide a consistent framework for discus- 

sion of individual languages. It must be emphasized that not all languages 

have all the features mentioned here, nor is this list absolutely complete; 

however, it should definitely serve as a checklist for comparing and describ- 

ing the languages. There does not appear to be any really major attempt at 

such a classification anywhere in the literature. Some superficial attempts at 

a breakdown into a few broad categories are given by Perlis [PR65] and 

Raphael [RA66]. A questionnaire, which contains many of the points listed 

in this chapter, and was, in fact, a starting point for the development here 

and in Chapter II, was developed by C. J. Shaw [SH62]. The (unpublished) 

questionnaire developed by the ACM SICSAM Subcommittee on Language 

Comparison in developing its report by Raphael et al. [RA67] also provides 

a gross way of dividing the major language elements. 

65



66 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

11.1.2. MAJoR PARTS OF LANGUAGE 

In considering a programming language, there are seven major compo- 

nent parts. These are not mutually exclusive, nor is this the only possible 

way of dividing a language into its elements. For purposes of this book, 

however, this particular set of categories seems to be the most useful. The 

categories are (1) the data and its description, (2) operators, (3) commands, 

(4) declarations, (5) compiler directives, (6) delimiters, and (7) program 

structure. Each of these will now be described from an overall point of view 

to show how they interrelate. Details will be given in later sections. 

1. Data and Its Description 

The purpose of a program is to accomplish some type of computation, 

where computation is not limited to numerical calculations. The elements on 

which the computation is to be performed are called the data. This might 

consist of numerical quantities, lists of names and addresses, mathematical 

formulas, or just an arbitrary string of characters. The data might even be 

generated completely internally from the program. In most cases there arises 

the need for the concept of data variables whose values are to be determined 

during the execution of the program. Because of the multiplicity of data 

types which can be used, there is a need for descriptions of them. The 

methods of describing the data vary considerably, ranging from implicit 

assumptions to specific declarations [see Section III.1.2 (4)]. 

2. Operators 

The use of operators is one of the ways of combining or acting on data 

elements. Operators generally fall into the computational, relational, or 

logical category, although there are other miscellaneous possibilities, e.g., 

find first element on a list and find third bit. The distinction between operators 

and commands is not clear-cut; the most common difference is that operators 

generally appear in expressions and do not themselves necessarily cause 

permanent results (e.g., writing IF A = B + C does not create a result B + C), 

while commands precede a set of parameters and cause direct execution. 

The common computational operators are addition, subtraction, multi- 

plication, division, and exponentiation. These can be represented by any 

symbols chosen by the language designers, including specific words. Thus, 

one language might permit the user to write A + B, while another requires 

A PLUS B. The relational operators, e.g., GREATER THAN, EQUAL TO, LESS 

THAN, and varying combinations of these, are commonly used to compare 

arithmetic quantities but the result is (at least implicitly) a logical value. 

Common operators for logical data (data which can have only the values 

TRUE and FALSE) are AND, OR, NOT. Operators need not necessarily be



111.1. DESCRIPTION OF CONCEPT OF TECHNICAL FEATURES 67 

written between variables; when they are, then the notation is called infix; 

when they appear before or after the variables, the notation is called prefix 

or postfix (=suffix), respectively. 

3. Commands 

The heart of a language is the set of executable actions that can be 

performed on the data elements. Each command performs a specific task 

as specified by the language designers, e.g., assign a new value to a variable 

or transfer control to another command. The major types of commands are 

described in some detail in Section III.5. In some cases the commands in a 

particular language are defined through a specific set of formation rules but 

usually the individual commands are listed along with syntactic rules on how 

to specify the data they are to operate on. 

4. Declarations 

Under Section III.1.2.1 it was pointed out that data elements had to 

be described so that the system would know on what it was working. One 

technique of providing this information is through the use of explicit decla- 

rations. These declarations do not cause action to be taken directly at object 

time, but rather they supply information to the compiler. One simple but 

common illustration is the controlling of arithmetic precision by including 

somewhere in the program an indication that double-precision arithmetic is 

to be performed on certain variables. Declarations can take the form of 

separate statements; they can be associated with the commands themselves, 

or they can simply be associated with a description of the variable. For 

example, one could write 

DOUBLE PRECISION X, Y, Z 

or 

Z = X + Y (DOUBLE) 

or 

X(DOUBLE), Y(DOUBLE), Z(DOUBLE) 

The concept is the vital issue here and not the exact form in which the 

information is conveyed. Declarations can also be used to convey information 

about storage requirements or even about equipment (e.g., equating a sense 

switch with a variable). 

In some cases, declarations provide information about what is to be



68 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

done and leave it to the compiler to figure out how to do it, e.g., some of the 

pattern-matching statements in COMIT and SNOBOL. Further discussion 

on declarations is given in Section III.3.1.1. 

Declarations are a special case of a more general concept called compiler 

directives, but they are sufficiently important to warrant this separate dis- 

cussion. 

5. Compiler Directives 

The parts of the language which are directly associated with executable 

object code are the commands and the data. There are numerous cases, 

however, in which it is not possible for the compiler to translate such material 

without having more information. This latter is normally supplied through 

compiler directives, of which the declarations described above are a special 

case. Other types of information which might be supplied to a compiler 

relate to the environment in which the system is being used, to specific input/ 

output facilities, or to efficiency criteria, etc. 

6. Delimiters 

The delimiters are a part of the language which serves only the syntactic 

purpose of helping define the various other parts of the language. The 

delimiters might include such things as punctuation marks, blanks, or even 

key words. They can be token separators (e.g., + in A+B) or terminators 

for larger units (e.g., .in GO TO ALPHA.). This is discussed further in Section 

III.2.4.2. 

7. Program Structure 

Assuming that the language contains the six elements discussed above, 

there must be a meaningful way of combining these to produce some desired 

action. The way in which this is done is the program structure. This concept 

involves the rules needed for combining sets of commands and the data on 

which they operate. It also provides rules for building larger programs from 

smaller ones. This is discussed in more detail in Section IITI.3. 

lil.2. FORM OF LANGUAGE 

There is a difference between the form of the language and the form of the 

program written in the language; the latter is discussed in Section III.3. The 

form of the language can be considered to consist of the following major 

constituents: (1) The character set, (2) the basic elements (=tokens), (3) iden-



11.2. FORM OF LANGUAGE 69 

tifier definition, and (4) definition and usage of other basic elements. The 

identifier definition is logically a part of the general usage of the basic 

elements, but it has been shown as a separate topic because of its importance. 

111.2.1. CHARACTER SET 

The fundamental constituent (although fundamental only in a trivial 

way) of a programming language is the character set which it uses. There may 

actually be three character sets, corresponding to the publication, hardware, 

and reference languages described in Section I.6. Depending on the particular 

language involved, one or more of these may be involved. The readability of 

the language, as well as many other features, is heavily dependent on the 

character set used. For example, if there is a <, 1.e., a /ess than sign in the 

character set, then this eliminates the necessity (although not necessarily the 

desirability) of having a string of letters to represent this operator. Con- 

versely, and more likely to occur, the absence of specific characters for 

relational operators forces the use of some representation for them. This is 

usually done by using some appropriate letter string, e.g., LESS THAN or 

-LT.. 

The character set for the /anguage 1s not necessarily the same as that 

allowed for the data. The latter can be much larger (or smaller, although this 

is less likely). The program can therefore operate on more characters than 

are available for actually writing the program. 

Character sets for computer input are obviously constrained by the 

hardware available and, as a result, the most common classes are those which 

use the 47 (or 48) characters of the key punch and those which use the 

characters on a typewriter. There is no single standard set for either class, 

however, since the hardware can provide certain choices. For example, two 

common sets on the IBM 026 key punch are the “FORTRAN character set”, 

which includes the following in addition to the letters and digits: 

+ — x f/f )(., $ = ' © blank 

and the “commercial set”, which uses the following nonalphanumeric 

characters: 

& . — $ *« , & | # @ blank 

One way of extending a limited character set is by means of an escape 

character. In this case, one specific character is used for this purpose and no 

other. When the escape character precedes other characters, they take on a 

second meaning. Thus, for example, if the dollar sign were an escape char-



70 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

acter, then A $+ B might mean A is greater than B, whereas A + B has 

the normal arithmetic meaning. In some cases, concatenation of operators 

is used even without an escape character to denote a single operator 

(which really should be a single character), e.g.. >= means 2, 1.e., greater 

than or equal to. 

As of this writing, there is not enough widespread use of the typewriter 

for any definite character set to emerge as the most common, although the 

PL/I set is quite likely to do so. The probable increasing use of ASCII will 

also begin to have a significant effect on the choice of character set for a 

programming language. 

Although language design can proceed without a fixed determination of 

the character set, | consider it undesirable. There is a significant difference 

between designing a language from a hardware language rather than from 

a reference language. (See Sections 1.6.9 and 1.6.11.) The former usually 

imposes many more constraints than the latter. In general, if one starts with 

the reference language and then specifies the hardware language later, the 

result will be quite different than if one starts with the hardware language 

at the beginning. In my opinion, it is much better to work directly from the 

hardware language because in that way the maximum effectiveness for the 

given physical character set is achieved. The effect of the character set is 

most heavily shown in the rules for naming, the choice of operators with or 

without word equivalents, and the punctuation (rules) used. It is obviously 

desirable—although equally obviously not technically essential—that char- 

acters retain their normal meaning when there is one. Thus, it would be 

ineffective to have a plus sign + mean equality and have an equal sign = 

mean greater than. 

I1f.2.2. Types oF BASIC ELEMENTS (= TOKENS) 

The word tokens is used to refer to the basic elements in the language. 

In this context, the elements are atomic, 1.e., they have no possible further 

subdivisions. The definition of token depends on the language; in one case 

it might be a single character, while in another it could be a sequence of 

characters surrounded by spaces. While the types of tokens and many 

specific ones are system-defined, some individual instances of tokens (e-g., 

names) can be user-defined. In the latter case, there are restrictions imposed 

by the system. 

1. System- Defined 

The system tokens are the graphic operators, the key words, and the 

graphic punctuation symbols. The graphic operators are those characters



Ill.2. FORM OF LANGUAGE 71 

which are in the character set for the language and which have a defined 

semantic meaning as an operator. The most common occurrences of these are 

the +, —, *, and / signs. For those character sets containing them, the 

>, <, =, and combinations of them are normally used to designate the 

relational operators. The key words are those which have fixed meaning in 

the language. They may be used as commands, operators, compiler directives, 

delimiters, or punctuation. Finally, the punctuation characters are defined 

by the system from among the available graphics. The punctuation characters 

(whether individual graphics or key words) serve as delimiters. 

2. User-Defined and Restrictions 

There are categories of tokens which the user defines (or, more precisely, 

creates in his program) within the restrictions imposed upon him by the 

language designer. The most important of these are the identifiers, but the 

existence of constants, literals, and comments also must be discussed. 

For any program, the concepts of data and variables exist in some form. 

As mentioned earlier, the data may consist of numerical quantities, alpha- 

betic quantities, strings of characters, or anything else permitted by the 

language. This data, however, must be able to be referred to in some general 

way. This is done by giving it a name, and the name is more rigorously called 

an identifier. Similarly, the concept of a variable—i.e., a quantity whose value 

changes during the program—exists, and it must be named or identified. There 

is a significant difference between an identifier and the item it is naming. 

The identifier may refer primarily to a storage location or to a whole hier- 

archy of data elements or to a formal variable which never receives any value. 

It may also refer to elements of the program structure. Possible ways of 

defining such identifiers are discussed in Section III.2.3. 

Most programs require the use of some fixed quantities during the 

course of the computation. The quantities are most usually numbers, although 

they can also be logical, or character string, constants. A constant is one of 

the user-defined basic elements in a programming language. In this case, 

the term user-defined means that the programmer decides which values to use. 

However, he is bound by the restrictions of the language, which may allow 

some kinds of constants but not others. For example, he might be able to use 

fixed point numbers but not floating point numbers. He might be allowed 

numeric constants but not logical constants. The most common restrictions 

are on the size of the constants; these rules tend to reflect the computer(s) 

on which the programming language is expected to be used. The presence or 

absence of a decimal point is significant in some languages, i.e., 2. is not 

necessarily treated the same as 21n 2. + 2 * A. 

A special type of constant is known as a /iteral. A number of cases arise



72 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

in which one wishes to use the string ABC to mean a data name (1.e., an 

identifier for an element of data). In this case it simply represents a location 

somewhere which contains information which is desired. On the other hand 

there are many times when one wishes to use the string ABC to mean exactly 

itself. This latter usage is the meaning of the word literal. In other words, a 

literal is a string of characters which represents itself and not something else. 

Thus there is a difference between the number 23 and the /iteral 23; the latter 

has no numeric significance. The problem in the language design arises in 

specifying the means of identifying literals. This is discussed in Section 

111.2.4.6. 

Since one of the advantages of a programming language is to provide 

better documentation of the task being performed, it is essential that there 

be a means of providing comments in the program. Comments are one of the 

possible types of user-defined tokens. Most programming languages provide 

a method by which the user can intersperse comments into his program. 

These must have appropriate flagging so that the compiler will not attempt 

to translate them. : 

11.2.3. IDENTIFIER DEFINITION 

1. Types of Identifiers 

There are two major types of identifiers: Data names and program unit 

labels. The former can be individual data elements or records or files or 

aggregates of data. The latter are more commonly called statement names 

or statement labels, but these terms are misleading because the language may 

not have statements or it may be able to name several different parts of the 

program. A program unit label may itself be treated as data in certain types 

of commands and may also be used to identify nonexecutable parts of the 

program (e.g., declarations). 

2. Formation Rules 

There are a number of different ways in which data and/or statement 

names can be created. For example, it is possible to specify that data names 

can consist only of alphabetic characters, numeric characters, a single 

alphabetic character, or alphabetic and numeric characters in any sequence. 

Other common alternatives include allowing letters and numerals to be 

intermingled providing the first character is a letter, and/or placing a limit 

on the number of characters. Finally, it is possible to allow punctuation 

marks or other characters as part of data names and statement labels, with 

or without specific restrictions to go with them. (However, the use of a



Ill.2. FORM OF LANGUAGE 73 

hyphen or its equivalent is intuitively reasonable, whereas the use of semi- 

colons in the middle of a word is not.) 

One of the key features that must be decided in the formation of rules 

for identifiers 1s whether there is any difference between the rules for a 

variable name (i.e., the name of a piece of data) and the program unit label 

(called statement label for short). Some languages use the same rules for 

both, whereas others provide for some distinguishing characteristic between 

them. In any case, clearly one name cannot be used to represent two different 

items at the same time unless it is always clear from context which 1s meant. 

An interesting problem in establishing rules for naming variables is con- 

nected to the method of representing multiplication. In ordinary algebra, we 

write xy and mean the product of two variables. However, in a programming 

language, if data names have more than a single letter, it becomes very 

difficult, or logically impossible, to distinguish between the product of two 

variables and a single data name with two letters. Thus, most programming 

languages which allow more than a single letter for the variable name are 

forced into providing a specific operator (usually the asterisk) to indicate 

multiplication. Conversely, if the language is to permit multiplication by 

merely indicating juxtaposition, then it usually restricts names to a single 

letter. Some of these problems could be handled by appropriate use of blanks, 

but it is usually not worth the trouble. 

3. Use of Reserved Words 

A language can contain key words which are merely character strings 

having a specific meaning in the language. Some, all, or none of these may 

be defined as reserved words, which are forbidden for use as either data names 

and/or statement labels, or their beginnings. For example, FORTRAN has 

no reserved words, although it does have key words (e.g., DO, DIMENSION). 

On the other hand, all the key words in COBOL (e.g., PERFORM, RECORD, 

READ) are reserved words and cannot be used as either data names or 

statement labels. Most key words in PL/I are not reserved. The advantage of 

refusing to allow the programmer to use key words for naming variables or 

statements is that the scanning of the source program becomes considerably 

easier. The disadvantage of disallowing reserved words for the use of the 

programmer is that he must always have in front of him a list of these 

reserved words and make sure that he does not use them. Furthermore, if 

he is choosing a language for use in an existing installation, he must make 

sure that the words he has already used for his files do not conflict with 

reserved words in the language. In some cases, there 1s even a more severe 

restriction which says that a data name or statement label cannot start with 

any letters which coincide with one of the reserved words. It can become 

even more confusing when, as in the case of COBOL, reserved words vary



74 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

from division to division (see Section V.3) and the user must keep this in 

mind. In PL/I there are built-in function names which have specialized 

rules. This is one of the characteristics that is very significant as far as imple- 

mentation efficiency 1s concerned, but it is at the expense of the user’s 

convenience. 

Some reserved words may be used as noise words (see Section II1.2.4.5). 

4. Data Names for Aggregates (Subscripts, Qualification) 

In most practical problems, data is grouped together into some mean- 

ingful form of aggregate. The most common types of aggregates are sets of 

items of the same type, normally called arrays, and sets of items of distinct 

types grouped together into some type of hierarchy, normally called hier- 

archical or structured data. \t is logical to have arrays of hierarchies or hier- 

archies containing arrays as elements. 

There are many cases in which one wishes to give a single name to a list 

of elements and then refer to an individual element in this by a subscript. In 

other words, one might have a list called A with 12 elements in it; then it is 

normal to want to refer to these as A, Az, ... , A1z- To do this in a program- 

ming language, it is necessary to introduce the concept of subscripts as part 

of the data name. Because almost all the input is in one dimension, the 

subscripts can seldom be written below the line as done in normal mathe- 

matical notation; some other notation must be used and this fact usually 
becomes a significant problem in language design. (This is one of the key 

places in which the publication language will differ from the hardware 

language, as discussed in Section 1.6.) Once we have established the principle 

of desiring to refer to an element in a list by its position designator, then 

there arises the question of a two-dimensional array; this is normally coped 

with by allowing two subscripts. Similarly, the position of an element in an 

N-dimensional array is denoted by N subscripts. The most common notation 

for this is the use of parentheses adjacent to the variable name, e.g., A(3,2) 

would refer to the item in the third column and second row or in the third 

row and second column of a two-dimensional array. One of the key points 

in a language design is the number of subscripts which will be allowed. From 

a language point of view, there is usually no reason to impose any limit, 

but restrictions are placed for implementation reasons. 

An additional characteristic of subscripts is the amount of flexibility 

used in defining them. For example, a language could permit only constants 

but this would be rather pointless. An almost equally severe restriction 1s to 

permit only a fixed point variable to specify the value of the subscript. The 

next most flexible rule is to allow arithmetic expressions involving addition 

and multiplication of fixed point variables. From there, generality can be 

increased to allowing any combination of fixed point variables (with rules



Ill.2. FORM OF LANGUAGE 75 

required for division) and, finally, to allowing any combination of variables, 

including floating point, Boolean, or anything else for which some rule can 

be specified that will end with an integer. This latter allows statements such 

as IF A = 5 THEN 3 ELSE 7 to be used as subscripts in some languages, 

e.g., ALGOL. A fairly common practice is to allow any arithmetic expres- 

sions, including floating point numbers, and then to truncate the result to 

produce the integer which is needed to obtain the position in the array. 

Other design questions involve the allowed range (i.e., negative or zero, as 

well as positive) and whether or not subscripts can themselves be subscripted 

and, if so, in what form and to what depth. 

Hierarchical data occurs when a particular data item has subitems to 

which names should be given. Alternatively, there may be data items which 

can be grouped into a larger unit which can then be named by an identifier. 

Consider a complete name and address as an illustration. Suppose this is 

of the form JOHN DOE, 7777 OCTAL ROAD, CITY, STATE, ZIPCODE. 

Depending upon the purpose, we might wish to reference just the name, any 

single one of the other items, the city and state, or any combination of these 

fields. Suppose that we could assign a name to each piece and to each meaning- 

ful group of pieces. Then we might have something of the following form: 

A) NAME—AND—ADDRESS 

B) NAME 

C) ADDRESS 

D) STREET 

E) AREA 

F) CITY 

G) STATE 

H) ZIPCODE 

This is really a representation of the tree and data layout shown in Figure 

III-1. In another file, we might also have a data item called AREA, and the 

problem becomes one of specifying which occurrence of the name (and 

corresponding data) is meant. The technique which is used for this is nor- 

mally called qualification. By this is meant the usage of enough names in the 

hierarchy to uniquely identify the desired data name. In a fairly common 

case, suppose that the NAME—AND—ADDRESS data item appears in both an



76 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

  

Address 
[— IN ~ 

Area 
eee 

fr" oN 
  

  

Name Street City State | Zip code 
              

Name and Address 

Name Address 

Street Area 

City State Zip code 

Figure III-1. Example of tree and data layout. 

INPUT file and an OUTPUT file. Then in order to uniquely identify which was 

meant, it would be necessary to say NAME—AND—ADDRESS IN INPUT. Simi- 

larly, if the AREA was used as a data name in several items, it would be 

necessary to use some higher level name to identify it. For example, if AREA 

also appeared in a data element called SALES—RECORD, then the user would 

write AREA IN SALES—RECORD or AREA IN NAME—AND—ADDRESS to iden- 

tify the one he wanted. The actual notation used to specify this qualification 

differs in each language. These additional names can be attached at the 

beginning or the end of the relevant data name and are then called prefixes 

or suffixes, respectively. Various notational devices which are used to indi- 

cate these are periods, hyphens, specific key words (e.g., IN as used above), 

etc. A variety of rules can be used for the identification, ranging from the 

most severe which says all names up to and including the topmost one which 

gives uniqueness must be shown, to the most liberal which says you need only 

show enough to make it clear to the compiler which piece of data you are 

referencing. 

Various combinations of subscripting and qualification are permitted 

in those languages which allow both individually.



IlI.2. FORM OF LANGUAGE 77 

I{I.2.4. DEFINITION AND USAGE OF OTHER BASIC ELEMENTS 

Assuming the basic elements (=tokens) of the language as described 

above, these can be combined or used in numerous ways. This section 

discusses a number of the factors in both the syntax and the semantics of 

these combinations. 

1. Operators 

The operators in a language are one of the two categories which can 

cause things to be done (the other being the commands). Operators provide 

means of combining or relating data types; hence they can be defined as 

connectives for variables. Thus, for arithmetic quantities, the ordinary arith- 

metic operations are essential and the relational operators, such as GREATER 

THAN and EQUAL TO, are fairly standard in any language which permits 

comparison of arithmetic quantities. (Note that the use of relational operators 

with arithmetic variables does not yield an arithmetic result.) Operators are 

also defined for nonarithmetic data types. For example, Boolean (i.e., 

logical) variables are often combined by logical operators such as AND, NOT, 

and OR; while DIFFERENTIATION is an operation performed on formal expres- 

sions. It 1s important to note that operators may be represented by symbols, 

such as + and =, or by any legal combination of other characters in the 

language, e.g., PLUS and EQUALS. As mentioned before, it would certainly 

be possible to attach nonnormal meanings to operators but this would be of 

value only when the normal meanings were not needed at all. In some cases, 

normal operator functions are actually represented as commands; e.g., instead 

of writing A + B, one writes ADD A TO B. In the first case, the + 1s 

considered an operator, while in the second the ADD is considered a com- 

mand. However, the distinction between operators and commands is not 

clear-cut. The former tend to indicate actions which need to be performed, 

while the latter specify actions which must be performed. Thus, A + B 

implies that an addition will take place while ADD A TO B requires it to 

take place. There are counterexamples to both these conceptual definitions. 

2. Delimiters 

The concept of delimiter was mentioned in Section IIJ.1.2.6. In this 

context it is merely necessary to note that a delimiter can be any combi- 

nation of tokens that the language designers feel desirable. For example, a 

delimiter can be a key word, a particular punctuation symbol, a blank, or 

varying combinations of these. The prime purpose of the delimiter is to 

define the beginning and/or end of elements in the language. Thus, a 

delimiter might be needed to define the end of an identifier, the beginning of



78 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

some unit in the program, or the beginning and end of a literal. In some 

cases the delimiter exists as a concept rather than a specific entity since the 

termination of one element might be determined only by the beginning of 

another, e.g., the end of a paragraph in COBOL is identified by the occurrence 

of the beginning of another paragraph. 

3. Use and Meaning of Punctuation 

The word punctuation in English usually refers to the use of characters 

such as commas, semicolons, periods, hyphens, and parentheses. For our 

purposes here, we shall limit attention to the first three, although many of 

the points to be made are valid or relevant independently of how many 

characters are specifically classified as being punctuation characters. In many 

cases, punctuation characters are used as delimiters. 

Because many of the languages attempt to make things natural (or at 

least not unnatural) for the user, a period or semicolon is often used to end 

a sentence or statement (see Sections II1.3.1 and If1.3.2). It is essential to 

notice that an end of statement marker is not required in the case of fixed 

format input (discussed in Section III.2.5) because the beginning of a new 

card (which does not have a continuation mark on it) is an automatic termi- 

nation of the previous statement. Thus the problem of statement termination 

really becomes an issue only in the case of continuous string input or where 

one wants to permit a second statement to begin on the same line (or card) 

as the ending of the first statement. 

Another area in which punctuation is needed is in listing a string of 

parameters; normal English usage requires commas between them and this 

concept is followed in almost all programming languages. For example, if 

one wants to print the three characters A, B, and C, a very natural notation 

would be PRINT A, B, C. The use of commas in a situation like this is 

intricately tied in with the use of significant blanks. (See Section III.2.4.4.) 

Thus, if blanks are considered significant, then a space between the A and 

the B is sufficient to denote that these are two different names. On the other 

hand, if the blanks are not significant, then some marker must be used to 

indicate that AB is not the name. Thus, the nonuse of significant blanks forces 

more punctuation than would be necessary if blanks are critical. It should 

be noted that even where blanks are critical, punctuation is still required in 

certain cases. 

The most common uses of punctuation in a programming language are 

the use of the period or some similar character (often a dollar sign is used) 

to indicate the end of some level of executable unit and the use of a comma 

or some other mark to separate items in a list. The next most significant 

usage occurs with a semicolon which is often used to delimit other executable 

subunits. Sometimes the semicolon and the period play different roles, in



III.2. FORM OF LANGUAGE 79 

the sense that the semicolon is used for an end of statement mark, while the 

period is not used for punctuation. The reason for the latter is that the actual 

period mark is required in numbers, e.g., 3.14159. In some cases where a 

significant difference exists between 2. and 2 there is a problem if 2. appears 

at the end of the unit that the period terminates. Since obviously a period 

should be used with numbers, great care must be given to the syntactic rules 

for embedding periods in the language. 

Other punctuation marks are sometimes used for more specialized pur- 

poses; the most prevalent is the use of parentheses in mathematical formulas 

where the normal rules of mathematical notation apply. Problems arise, how- 

ever, when parentheses are also used to designate subscripts (which is done in 

almost all languages) and also to represent functions. It is not obvious 

whether F(I) represents the function F with the parameter |, the variable F 

with the subscript !, or even the variable F multiplied by the variable |. 

4. Significance of Blanks 

The blank or space character usually plays a special role in program- 

ming languages, even if in a negative sense. One characteristic of the word 

formation rules is whether or not blanks are significant. Being significant 

means that ABB and AB are not the same thing (where # means the blank 

character). The advantage to having blanks be nonsignificant is that the user 

does not have to worry at all about where he puts them. This presumed 

advantage tends to be more than counterbalanced by the double virtues of 

providing an extra character to use for technical purposes and permitting a 

person’s natural tendency to use blanks as separators to be indulged. Thus, 

since English is written with a blank space following (but not within) each 

word, it is quite natural to require a blank at the end of a word in an arti- 

ficial language. However, there tend to be special rules for blanks near 

operators. Thus it might be legal or illegal to write AB + BB, or it might not 

matter. 

5. Use of Noise Words 

The term noise words refers to character strings which can be inserted 

or omitted in a program at the user’s option without changing the meaning 

of the program. There are several different rules which can be established 

within this general principle. For example, the most flexible rule (it is not 

used in any language in this book except COLASL—see Section IV.7.2) is 

that between any two fixed words there can be any number of arbitrary words. 

The prime difficulty with such a general rule is the difficulty (or potential 

impossibility) of distinguishing noise words from legitimate names. A much 

more restricted (but far more reasonable) rule which does exist is that certain



80 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

fixed words may be present or absent in certain fixed places; this was done 

in COBOL, for the express purpose of improving readability. For example, 

in the sentence READ PAYROLL RECORD INTO INPUT—AREA, the word 

RECORD is a noise word and can be omitted. Between these extremes there 

are a number of possibilities. 

Noise words are often key words. They can also be reserved words so 

that the programmer is restricted from using them as identifiers. 

6. Literals 

Obviously, there must be some way of indicating whether ABC is a name 

or the three-letter string (i.e., literal). It might appear at first glance that this 

could be determined from context. In some cases this is possible, but in many 

other cases it is not. For example, if we write PRINT ABC, then the compiler 

is at a loss to know whether we want the three-letter string ABC printed out 

or the quantity whose name is ABC. Thus it is necessary to put some kind of 

a marker around the literals. This can be done in a variety of ways: One 

way is to take some single character from the character set and designate 

this as a beginning and ending delimiter for a literal. If, for example, one 

chooses the dollar sign, $, then writing $ABC$ would designate the literal 

string of characters. Another alternative (which is practical only if there is 

an extremely large character set) is to choose two characters, one of which is 

used to designate the beginning and the other, the end of the literal. The 

prime advantage to this second method is that it makes it easier to solve the 

problem of how to represent the literal delimiter as a literal. If one uses $ 

for the beginning and end of a literal, then one might require that $$$ be 

written to designate the literal $ itself. Thus $AB$$CD$ is really two literals, 

AB and CD, while $AB$$$CD$ is the string AB$CD. Another alternative to 

representing the literal delimiter itself is to choose a particular fixed word, 

such as QUOTE, to designate the literal value. Actually, any fixed word, or 

pair of them, could be used as literal delimiters instead of characters, but this 

is less convenient for the user and still requires rules for terminating the 

literal or embedding the terminal character in the string. Still another possible 

way of delimiting literals is to have one character to mark the beginning and 

then a count of the number of literal characters following. This is a poor 

choice because the user frequently miscounts the length of his literal if it is 

more than a few characters. There are various other techniques which can be 

used. 

11.2.5. Type of INPUT Form USED 

There are several ways in which to consider the amount of form required 
in a particular programming language. The word form in this case means



111.2. FORM OF LANGUAGE 81 

both the way in which legitimate sequences of characters are placed on the 

input media and the philosophy associated with the types of sequences which 

are used. 

1. Physical Input Form 

Physical input can be in one or two dimensions. The latter means that 

syntactic significance is given to more than one physical line simultaneously, 

e.g., the use of subscripts and/or superscripts as in A,°. Because the most 

common input media for program preparation are punched cards and paper 

tape, all programming languages using that type of standard hardware have 

a one-dimensional string form as input.' (Note that since paper tape is pre- 

pared through the use of a typewriter, the direct use of a regular keyboard 

does not change the basic principles involved.) There are languages, however, 

which permit two-dimensional input through the use of special hardware; 

they are described in Section IV.7. 

Once we assume a single dimension, then the primary distinction 1s 

between fixed format and a continuous string. The term fixed format is a 

relative one since programming languages vary in their requirements. They 

run the gamut from a continuous string (e.g., PL/I) to some requirements 

about card columns (e.g., FORTRAN). 

Since many of the earlier programming languages assumed the use of 

punched cards for input, it is quite natural that they took some advantage of 

the fixed columns to represent specific items. The advantage to using fixed 

columns is that the compiler need not scan every single character to find the 

one that is wanted. Thus, if there is a requirement that a statement label 

should start in a particular column, it is not necessary to continue scanning 

until you find something that looks like the beginning of a statement label. 

In the case of higher level languages, information often extends over more 

than one card. For that reason, it is convenient to permit early columns in 

the card to contain some kind of symbol to indicate that the current card is 

a continuation of a previous one. Space can then be left for specific commands 

or, more likely, for a label, followed by specific commands and the operands. 

One of the significant differences between the format on a punch card for a 

higher level language and for an assembly program is that the latter usually 

has a fairly restricted amount of space and format allowed for the operands, 

whereas the higher level language usually permits them to be written con- 

tinuously following the command. 

Assuming continuous string input (which of course can be punched on 

cards), it is necessary to scan every character to reach any future one, and the 

meaning of symbols can only be determined from context. Thus, the string 

' The MAC-360 system which appeared too late for a thorough discussion is an 

exception to this. See Section IV.7.6



82 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

ABC can be determined to be either a statement label or the name of a 

variable (or something else) only by seeing what precedes and what follows it. 

Delimiters (including punctuation) play a much more important role in a 

continuous type of format because new statements can often be recognized 

only as coming immediately after the end of a statement and not on a new 

card or fixed location. 

Techniques more suitable to punched cards can be used for paper tape 

(by using tabs) and vice versa. The important point is the continuity versus 

fixed format aspect of the input string rather than the physical media being 

used. 

Graphic display devices with input by light pen or keyboard have not 

yet become a significant input media, although they undoubtedly will become 

so. They may require new developments in specifying the physical form of a 

program. 

2. Conceptual Form 

The conceptual form of the language is completely independent of the 

input media. At the extremes are the concepts of an “English-like” language 

(e.g., COBOL) versus a highly symbolic one (e.g., LISP). A number of 

arguments pro and con can be given for both of these views. At one extreme, 

a language can be designed to be as close to natural English (for the com- 

mands allowed) as the designers can make it and still be able to implement it. 

COBOL was an early attempt to follow this philosophy. At the other extreme 

is the philosophy that a programming language should be as succinct and 

formal (not necessarily natural) as possible for the class of problems it 

handles. No really good illustration of this exists among the fairly common 

languages, although LISP 1.5 has some of this flavor. This latter viewpoint 

is often expressed by proponents of ALGOL (although ALGOL programs 

are not difficult to read after a little training). A formal notation is not 

necessarily harder to read or write than a more natural notation; the deci- 

sion on ease of use is almost entirely a matter of personal taste. 

Obviously, the physical input form of the language must be based on the 

conceptual form, and certain combinations are inherently meaningless. For 

example, it would be impractical to design a language which is “English-like” 

and then use a rigid input format. 

The definition of the conceptual form of a language is really rather 

intuitive and is being left to the reader to formulate after consideration of 

the languages in this book. 

1.3. STRUCTURE OF PROGRAM 

The previous section discussed a number of items relative to the form of the 
language, in particular, those items which are very significant in determining 

what strings are legal, such as rules for naming and punctuation. This section



11.3. STRUCTURE OF PROGRAM 83 

involves a similar type of discussion, but from the point of view of units and 

subunits of a program. In other words, merely a long list of syntactically 

correct character sequences is not going to necessarily produce a meaningful 

program, and all languages have types of subunits which must be combined 

properly. For that reason, this section discusses in some detail the types of 

subunits that are permitted and their characteristics. The characteristics are 

mentioned briefly where appropriate with the subunit description, with a 

full discussion given in Section III.3.2. 

II.3.1. Types oF SUBUNITS 

There are a number of different types of subunits which go into making 

a complete program, and there are two ways in which a discussion like this 

can be handled: One is to define a program and then successively work down 

until the smallest unit is defined; the alternative is to define smaller units 

and work upward until a program is defined. The latter seems to be a little 

easier to cope with in terms of normal understanding and will be done here. 

With the exception of the declarations and comments, all the subunits are 

executable, 1.e., they will directly cause some action to take place at object 

time. It is important to realize that the subunits discussed represent concepts, 

not detailed ways in which they are handled. Those are discussed with each 

of the languages. Furthermore, not all these subunits appear in every lan- 

guage. 

1. Nonexecutable: Declarations and Compiler Directives 

There are many instances in which information must be given to the 

compiler to permit it to compile correct code or, in some cases, to compile 

more efficient code. This information is nonexecutable and is usually—but not 

always—given explicitly as declarations. In some cases, the information is 

given explicitly or implicitly as part of an executable unit. Declarations are 

used primarily to supply information about variables or data; common 

examples are the dimensions for a particular variable, fixed or floating point, 

the arithmetic precision desired in a calculation, etc. More generally, decla- 

rations usually indicate which characteristics a variable has from among those 

listed in Section III.4, or they supply information about storage allocation 

or interaction with the environment. The category compiler directive includes 

declarations; in addition, some languages make a subtle distinction by 

including some things in the former category but not the latter. 

2. Smallest Executable Unit 

The smallest executable unit (SEU) is a general name for what is usually 

a single command and its operands. There must always be a clear-cut way



84 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

of determining its end, either through the use of a special symbol or through 

the syntax of the command. A SEU might be something of the form 

Y = 3 

or 

Z=AxX+B 

or of the form 

PERFORM ALPHA THROUGH BETA FOR Y VARYING FROM 

1 TO 17 IN STEPS OF 2 

The most common word used for SEU’s is statement. A sequence of these 

statements can be used to make up a program. Note that the SEU cannot 

necessarily be given a name. Furthermore, SEU does not refer to the smallest 

unit for which the compiler turns out code since in the executable unit 

Y = A x X + Bit is necessary for the computer to do two arithmetic oper- 

ations and a store operation. 

There are a number of different types of commands which can be used 

as SEU’s, and these are discussed in Section III.5. 

3. Sets of Smallest Executable Units 

One SEU by itself will not accomplish very much, unless it is being used 

in an on-line desk calculator system (e.g., QUIKTRAN). Hence it 1s neces- 

sary to be able to group these together in a way which permits assigning a 

name for identification and cross-reference purposes and which permits them 

to be treated as a single unit in other ways. There are a number of ways of 

doing this; for example, in ALGOL there are blocks, in COBOL there are 

paragraphs and sections, and in PL/I there are several other levels of com- 

bining. The use of the same term, e.g., block or compound statement, in dif- 

ferent languages does not mean that they are defined or used the same way 

since there is no standardization at all for these ideas. A block, however, 

is the name usually given to a sequence of executable units which can be 

treated as a single nameable executable unit. That is, it can be referenced 

from a control transfer statement; it can be used as a single statement in the 

range of a loop; or it can be used as a single statement wherever a single 

statement is valid in the language. A block normally has some kind of 

designator to indicate its beginning and end; the words BEGIN and END are, 
in fact, often used. A block often contains declarations about the variables 

used in the block. The main function of a block is to permit the handling as 

a unit of a number of individual statements. The word block is sometimes



UI.3. STRUCTURE OF PROGRAM 85 

used for other items and, conversely, is not always used for the concept 

above. 

It is also possible to combine SEU’s to create a subunit which has fewer 

properties than those normally associated with a block, e.g., a sentence in 

COBOL. In such a case, the ability to name the subunit is usually the first 

characteristic to be eliminated. 

4. Loops 

A common and essential part of a programming language is the capa- 

bility of repeating a certain sequence of executable units for more than one 

value of a particular parameter (or set of parameters). This concept is called 

a loop and has four constituents: Range, the value(s) of the parameter(s), 

the terminating condition for the loop, and the place to which control is 

transferred when the execution of the loop is finished. The first three elements 

are normally in one statement (which is of course an executable unit), but 

they need not be. Any language with a conditional statement of the form 

IF ... THEN can be used to write a loop, although many statements will be 

required in this case. The range is simply the set of statements which are to 

be repeated for the differing values of the parameter(s). Depending on the 

particular language, these may be sets of contiguous statements immediately 

following the loop statement, they may be widely scattered statements con- 

nected by control or conditional transfers, or they may be contiguous sets 

of statements elsewhere in the program. In some cases, the range of a loop 

may consist of one or more sets of subroutines. Regardless of how the range 

is determined, there must always be a way to designate the beginning, ending, 

and intervening values for the loop parameter(s). This point is discussed 

more fully in Section III.5.3. 

5. Functions, Subroutines, and Procedures 

It was discovered many years ago that it was inefficient and very diffi- 

cult to check out a very large number of statements as a single unit. Further- 

more, it was very wasteful to have many people writing the same routines 

over and over again, and this occurred very frequently with commonly 

needed computations, e.g., finding sin x or finding the roots of a polynomial. 

Thus was born the idea of a subroutine, which is simply a self-contained set 

of statements to perform a particular task. Although some subroutines are 

independent of the values of any input parameters, most are written to 

perform their task for the particularly supplied value(s). Thus, a subroutine 

may have zero, one, or many input values and one or many results. (It could 

conceivably have none, but this usually would be indicated by an error 

condition, which is a form of result.) Most large programs are built up from 

a series of subroutines.



86 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

The special case of a subroutine which has a single result is usually 

called a function. Routines for computing the elementary mathematical func- 

tions (e.g., sine, cosine, exponential, logarithm) are usually included in 

languages designed for solving mathematical problems. Because there is only 

a single item as a result, functions can usually occur in the same places as 

numbers or variables. Thus, Y = A + SIN(B) * C would normally cause 

the actual value of the sine of B to be multiplied by C. An alternative—but 

obviously more inconvenient—way of doing this is to write 

Z SIN(B) 

Y=AtZx*C 

Although there is usually a real choice between using open or closed 

subroutines in assembly languages, most subroutines used in programming 

languages are closed. The lack of macros in most programming languages 

discourages the use of open subroutines. 

I consider procedures to be the same as subroutines, but some people 

feel there is a subtle difference, in which the procedure is a more meaningful 

unit than the subroutine. This is primarily a historical difference, with the 

problem of parameter passage (see Section III.3.2.3) and declarations more 

closely associated with the use of the word procedure than with subroutine. 

In any case, the terms subroutine, procedure, and even function are relative 

because what may be a complete program in one case is merely part of a 

program (i.e., a subroutine) in another. For example, the code to invert a 

matrix might be the entire program in one instance but merely part of a more 

complicated program in another case. In modern languages, a program is 

usually written as a procedure. 

There is a significant difference between the use of (commonly called 

invoking) the function, subroutine, or procedure and the information which 

defines the function, subroutine, or procedure. The definition is usually 

written as a self-contained unit, called the body, outside the main control 

flow of the program and invoked from within the program. The process of 

invoking requires supplying parameters (unless the function, subroutine, or 

procedure does not allow them). 

6. Comments 

Although it may seem strange to include a category called comments 

with all the other subunits in this section, it is an item which must be con- 

sidered. Since one of the key problems in programming Is to provide adequate 

documentation of programs, any means to assist in this is worthwhile. A 

device which exists in virtually all programming languages is a specific way 

of indicating comments which are meaningful to people but not to the



II.3. STRUCTURE OF PROGRAM 87 

compiler. This is most often done by specifying some delimiter(s) for the 

beginning (and end) of the comments. When the compiler encounters these 

flags, it knows that it should ignore the following material until the beginning 

of the next subunit which requires compiler action. This permits the user to 

write anything which will be helpful to him or others. 

The liberal use of comments, together with the problem-oriented nota- 

tion should supply most of the documentation for a particular program. 

7. Interaction with the Operating System and Environment 

In modern computers, an operating system is quite common, and the 

compiler must operate under it. It is therefore often—but not always—neces- 

sary for the user to be able to communicate with the operating system in 

order to obtain or put out data, to know when parts of his problem are 

finished, to take advantage of the specific hardware that might be involved, 

etc. Thus, there are potentially in the language a number of statements or 

subunits which have to do with the operating system. Included among these 

are procedures for recovery from tape errors or other computer malfunctions, 

where the programmer feels he can recover or he wishes to take specific 

action based on a particular error message. 

The types of things which may (or must) be written to provide inter- 

action with the operating system and the environment may actually take the 

form of a number of the subunits previously discussed. For example, they 

could be declarations, which really provide information to the operating 

system rather than the compiler but which must be translated by the compiler 

to provide the proper interface. Alternatively, they can be executable state- 

ments which are called into action by either the compiled object code or by 

the operating system. In fact, for very large and complex operating systems, 

it is necessary to create a special language to provide the necessary interface 

between the user and his program on one hand and the operating system and 

hardware on the other. This point is carried to its extreme limits in the case 

of the control statements and operations in a time-sharing system. In such a 

situation, the language by which the user communicates with the system 

tends to be more important or more complicated than the language he uses 

to solve his problem. (See Section IX.3.6.) 

8. Inclusion of Other Languages 

It is an unfortunate fact that very few programming languages are so 

self-sufficient that the user does not wish he had some capability from another 

language available to him. In some instances, the language does provide the 

ability for the user toinsert—directly or indirectly—a different form of language. 

This must be preceded by some kind of declaration which informs the 

compiler that it must switch out of its present scanning mode and bring in



88 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

some other mechanisms. If this were not done, then the compiler would have 

to scan and translate statements of which it had no knowledge. 

One of the key types of languages which users like to be able to inter- 

mingle with their higher level language programs is machine language. At 

the very minimum they wish to insert machine-language subroutines which 

already exist; even more importantly, they would like to be able to include 

machine instructions in the midst of the higher level language code. (This is 

particularly important for small sections which should be coded as efficiently 

as possible.) However, there is a significant difference between being able to 

invoke a machine language subroutine which already exists, and the inclusion 

of machine language in line. The former requires the user to make sure that 

the interface of information about variables is handled properly, whereas 

the latter requires the compiler to do it. Relatively few languages include 

this facility (which is really a requirement on the compiler). The earliest (and 

in fact the only) publicly available Janguage to require this facility in great 

generality was MATH-MATIC [RR60]. (A version of FORTRAN with 

this facility, namely FORTRAN III, was distributed for use on the 704.) 

The facility to invoke a subroutine which has been coded in another 

language is definitely not considered an instance of being able to include 

another language. 

9. Complete Program UIncluding Sequencing Rules) 

A complete program is usually created by combining any or all the 

preceding subunits according to specified rules. Whether this produces the 

answers desired by the user is a pragmatic question. 

The legal ways of sequencing and concatenating executable units of 

various kinds, and combining these with the declarations, must be defined for 

each language. There are a few common practices, however, and almost all 

these are imposed to make the implementation easier; very few have any 

inherent meaning for the language or the program itself. For example, decla- 

rations are sometimes required to precede the items which they are describing. 

In other cases, all the declarations must be together and must be labeled as 

such. In still other cases, all the subroutines or equivalent subunits must fol- 

low the main part of the program. Thus, the issue of intermingling executable 

and nonexecutable subunits is a significant characteristic in the overall form 

of the program. 

11.3.2. CHARACTERISTICS OF SUBUNITS 

Some types of subunits have characteristics which have a significant 

effect on programs written in the language. Not all these characteristics are



111.3. STRUCTURE OF PROGRAM 89 

meaningful for each type of subunit; with the description of each character- 

istic, the units it applies to are indicated. 

1. Methods of Delimiting 

All subunits—without exception—must have some way of indicating 

their beginning and end, although in some cases the only way of determining 

the end of one unit is by recognizing the beginning of another unit. In the 

cases of single executable units or declarations, this is usually controlled 

either by fixed format (see Section III.2.5) or by the syntax of the individual 

unit. It is in a situation like this that the concept of reserved words intro- 

duced in Section III.2.3.3 becomes particularly significant. Thus, if there is 

a declaration with an unlimited number of parameters following it (e.g., 

FIXED A, B, C, D ...), then there must be either a specific way of termi- 

nating the list (e.g., using a period) or else a way of determining the begin- 

ning of the next statement. This beginning can be defined in a number of 

ways, but it 1s most commonly done by using a reserved word (e.g., 

COMPLEX G, H, ...). 

In larger subunits, special symbols or words are introduced. A very 

common way of ending smallest executable units (defined in Section IHI.3.1.2.) 

is by either semicolons or periods. Sequences of executable units are often 

delimited by key words at the beginning and end. 

In addition to delimiting the actual subunit itself, there must be a 

method of specifying the name of the subunit; the name sometimes performs 

a delimiting function, but it also presents other syntactic problems. Methods 

of handling these things will be seen in the individual languages. 

Another facet of the delimiting problem is the scope issue. This involves 

a determination of what characteristics of variables or other program infor- 

mation is relevant in different parts of the program. (See Section II1.4.5.) 

2. Recursive 

A subunit is said to be recursive if it can be used in, or referenced from, 

itself. This means that if subroutine XYZ is invoked, say by writing 

CALL XYZ, (parameter list) 

then subroutine XYZ will be said to be recursive if CALL XYZ, (parameter list) 

can appear within the XYZ subroutine itself or in another routine which ts 

invoked from XYZ, although normally with a different set of parameters. 

This particular characteristic is extremely important because some problems 

require this kind of capability and others are stated most easily by using



90 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

recursion. To clarify what is meant by recursion, the following example of 

the factorial is the most easily undersood: 

SUBROUTINE FACTORIAL (N) 

FACTORIAL 1 = 1 

IF N > 1, FACTORIAL N = N * FACTORIAL (N — 1) 

END SUBROUTINE 

itself to find the value of N!. Note that writing SQRT(SQRT(X)) is not an 

example of recursion, because the normal ways of writing square root rou- 

tines do not require the routine to call itself. The term recursive is applied 

only to those subunits for which there are parameters involved. Thus, func- 

tions, subroutines, and procedures can be considered as being recursive. 

3. Parameter Passage and Differing Types 

The basic nature and concept of functions, subroutines, and procedures 

require that they have parameters. In other words, these subunits are sets of 

commands whose objective is to produce specified results for each set of 

inputs. The inputs can be simple (e.g., an identifier) or complicated (e.g., an 

expression or an invocation of a function). The invocation of a subroutine 

(or function or procedure) requires that the values of the variables for which 

the subunit is to be executed be supplied. (This process is called passing the 

parameters.) The variables which appear in the subunit itself are usually 

called formal parameters. The word value in this case is somewhat misleading 

because there are three primary types of parameter passage which exist. The 

first is referred to as call by value, the second is the call by name, and as the 

third has no standard terminology, I use call by location. (This is the same 

as the call by simple name proposed by Strachey and Wilkes [SQ61] and is 

the one used in FORTRAN.) While the concept of location does not appear 

in programming languages as such, the rules given for handling the parameter 

passage use this implementation factor directly or indirectly as part of the 

language definition. In the call by value case, the actual value of each param- 

eter called by value is assigned to the corresponding formal parameter 

at the time of invocation. In the call by name case, the name of the particular 

parameter involved is inserted into the code of the subunit before executing 

it. In those languages for which the input parameter can be an expression, 

the distinction is more significant; the call by value causes the expression to 

be evaluated before entering the subunit, whereas in the call by name case 

the occurrence of the parameter in the subroutine is replaced by the code to



Ill.3. STRUCTURE OF PROGRAM 91 

evaluate the expression (or by a call to a subroutine to perform the evalu- 

ation). The call by location applies only to a single variable and not to an 

expression; in this instance the occurrence of the parameter in the subroutine 

is replaced by the code to access the location, thus permitting the subroutine 

to destroy constants by storing over them. 

As an illustration of these concepts, consider the following example 

(assuming there is no concept of global or local variables in the language): 

Suppose we have a subroutine called INC with an input parameter § and an 

output parameter R. Suppose that the body of the subroutine consists only 

of the two statements: 

A= 4 

R=S +1] 

Assume that the subroutine is invoked by writing CALL INC (S, R), where 

S and R represent the input and output parameters, respectively. Then 

A=3 

CALL INC (A + 1, B) 

will give B the value 5 in the call by value case, and the value 6 in the call by 

name case. The reason for this is that in the call by value, the expression 

A + 1 is computed (yielding 4) before entering the subroutine, and so 

B = 4 + 1 = 5. However, in the call by name case, the subroutine actu- 

ally becomes 

A= 4 

R=A+1+4+1 

Hence the result is 6. In both these cases, the original value of A prior to 

invoking the subroutine (namely 3) is preserved. 

Any reader who studies this matter further and then wants to test his 

understanding of the concepts should see Weil [WL65]. 

To show the call by location case, suppose the subroutine 1s called 

ADDONE and has a single formal parameter R used for both input and 

output, and it has the body 

Then if we write 

A=3 

CALL ADDONE (A)



92 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

the result is that the value of A has been reset to 4. The same thing happens 

in the call by name case. However, in call by value, the assignment of the 

result is only to the formal parameter R and there is no change in A. 

4. Embedding 

Embedding (sometimes called phrase substitution) means that one or 

more subunits can be inserted in, or used as part of, another subunit. Looking 

at the same idea from another angle, this means that within a given subunit 

other subunits can be identified which may be of the same or different types. 

One of the most common examples of this is the inclusion of statements 

within IF ... THEN ... ELSE ... sentences. Thus, we can write IF A = B 

THEN X =: Y ELSE X =: Y + Z and the relatively simple executable units 

X =: Y and X =: Y + Zand the relation A = B are all embedded in the 

larger unit. In this case, not everything shown is executed because a branch is 

definitely indicated here; in other cases, everything shown is executed. 

Embedding can also occur when declarations are included in larger units. 

A common case of embedding is the inclusion of functions in place of 

variables in statements like Y = A + COS B. Subroutines often contain 

other subroutines, sometimes going down many layers. A more interesting 

case that is seldom allowed (although it is permitted in ALGOL 60) is the 

inclusion of conditional statements for arithmetic variables. For example, the 

sentence A = 4 + (IF X = Y THEN 5 ELSE 8) assigns the value 9 to A if 
X = Y and the value 12toAifX # Y. 

It is clear that only certain types of subunits can be embedded in others. 

Thus, the examples given above are perfectly reasonable, as in the situation 

in which A = B + LOG (IF A = B THEN C ELSE D). A case which is 
intuitively unreasonable, however, is A = B + PRINT XYZ. The rules for 

embedding always exist in the language definition, although they may be 

hard to identify as such. This issue is related to the problem of the sequence 

in which executable units are carried out. The main difference is that embed- 

ding implies (and requires) an immediate replacement of a variable by a more 

complex unit, whereas sequencing involves the order in which parts of the 

program can be written. 

lll.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 

The key features of a programming language are the types of data it can 

handle and the ways in which it can operate on that data. The major aspects 

are the specific types and characteristics of data variables, the types of data 

units either in the machine or in the language which are available relative to 

the commands in the language, the types of arithmetic which are permitted,



111.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 93 

how expressions are created and evaluated, and how data elements are 

defined relative to the whole program. This section discusses all these poinis. 

11.4.1. Types oF DATA VARIABLES AND CONSTANTS 

There are a number of different types of data variables, and each 

requires (or permits) different types of computation and operations to be 

performed upon them. More specifically, certain types of executable state- 

ments can meaningfully operate only on certain types of data variables. 

1. Arithmetic 

The first and most obvious type of data variable is the real (i.e., not 

complex) arithmetic, sometimes called numeric. The data name represents a 

number; therefore, to say that A + B = C where A and B are numbers 

means that C will be a number. The types of arithmetic that can be performed, 

however, are discussed in Section IT1.4.3. 

Every programming language has rules about the size of constants and 

the ways in which they can be written in the program. These will not be 

described for each language. 

2. Logical (= Boolean) 

The second most common type of data variable is the logical (= Boolean) 

variable; this is simply a variable which can take on only two values, normally 

designated as true or false. These are usually represented in the machine by 

0 and 1, 0 and non-0, or any other two distinct numbers. Boolean variables 

are usually the direct or indirect operand of an /F clause; see Section III.5.3.2. 

3. Character 

A character data type is really one which is nonnumeric. The two most 

important special cases of character data types are alphanumeric (where the 

data consists of letters and/or numbers) and bit (where the only elements are 

0 and 1). The former is usually introduced into languages which are con- 

cerned with handling data processing applications to provide a data type that 

excludes characters other than letters and numbers. 

4. Complex 

Some languages permit complex numbers and variables. In such cases, 

the complex number is made up of a real and an imaginary component. 

Presumably, although it is not logically necessary, a language which allowed



94 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

the representation of complex numbers would automatically perform arith- 

metic on them. (See Section III.4.3.4.) This is not required, however, and a 

language might permit the user to declare certain variables as complex so as 

to allow the proper amount of storage for them and then require the user to 

do the arithmetic himself. 

5. Formal (= Algebraic) 

A type of data variable is the formal or algebraic which stands only for 

itself or for an expression, such as Z or A? + B?, where these are not 

numeric. A formal data variable has no value in either the numeric or logical 

sense. The operations performed on it are usually those related either to 

string handling, or more usually to formal mathematics or algebraic manipu- 

lation. Languages emphasizing this data type are discussed in Chapter VII. 

6. String 

Strings and lists are types of data variables which represent similar but 

somewhat different concepts. A string 1s a type of data variable that consists 

of one or more characters concatenated, and it will be operated on as such, 

e.g., ABC or JOHN Y. DOE. Depending on the intended purpose, either the 

individual characters have meaning and the whole unit does not or vice versa. 

Among the operations to be performed on strings are concatenation, decon- 

catenation, and replacement. The special case in which the string consists 

only of bits is significant because this can usually be interpreted as some 

type of logical variable and operated on accordingly. 

7. List or Pointer 

A list or pointer data variable conveys information either directly or 

indirectly—about the location of another data item. A Jist variable is definitely 

not the same as a string. A string can be represented internally in a computer 

as a list but this does not change the conceptual view of the string. Opera- 

tions on lists include adding and deleting elements and pushing down and 

popping up. The pointer variable itself is a specific data type. 

8. Hierarchical 

A data type that is actually the superstructure or concatenation of a 

number of other data variables is called hierarchical (see Section I11.2.3.4). 

Looking from the top down, a hierarchical variable is one which has identi- 

fiable subparts, each of which might be of a different data type. The simplest 

example is the zip code, which consists of three codes concatenated. In 

that illustration the subordinate variables are all the same data type, but



l11.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 95 

this is not essential to the concept. For example, the complete identification 

of a person in a payroll file might consist of his name, address, and social 

security number. In this case, some of the subordinate data variables are 

alphabetic, while others are purely numeric. 

The operations performed on hierarchical data variables are usually 

limited to movements within storage and to operation on the subunits that 

is appropriate to their type. 

9. Others 

While individual languages may introduce other variable types, they 

are not sufficiently general to justify their inclusion here. 

10. Combinations of Variable and Constant Types 

A number of the types above can be combined to form new variable 

types. The most common are expressions, vectors, arrays, records, and files. 

A string of variables, all of the same data type, is called a vector. A 

sequence of vectors is called a matrix. Note that the elements of the vector 

or array can be of any type; theoretically they need not all be of the same 

type but, practically speaking, they usually are. The operations which can 

be performed on vectors and arrays are normally the same ones which are 

performed on their individual elements, except that they are applied to the 

larger set. 

Combinations of arithmetic, logical, or formal variables, together with 

appropriate operators, are called arithmetic, logical, or formal expressions. 

Some of the issues involved in defining the rules for creating these expres- 

sions are given in Section IJII.4.4. 

111.4.2. AccEssisLE DATA UNITS 

The commands in a language may operate on, and the declarations 

may describe, different data units. There are two main aspects of this data 

unit consideration: One is the essential hardware of the machine itself, 

and the other is the set of variable types allowed in the language. 

1. Hardware Data Units 

The main issue is which of the subunits of data which exist in a particular 

computer are accessible to some or all the commands in a programming lan- 

guage. The criteria for inclusion or exclusion usually involve implementation, 

efficiency, and compatibility. If it were not for these problems, it would not 

matter whether a variable occupied a single bit, a character, or a full word.



96 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

In a binary machine, obviously there are some machine instructions 

which are able to access and operate on individual bits. This is particularly 

useful for logical operations in which there are only two values of the 

variable. The problem arises when the programming language tries to 

include commands which operate on individual bits without also sinking 

to what would essentially be the level of machine instructions. One way of 

handling this is through the use of declarations and implementation tech- 

niques. In such a situation, a variable is defined as occupying (or requiring) 

a certain number of bits. The command specifies only the variable, without 

regard to its internal representation; the compiler must bridge the gap by 

turning out the necessary machine instructions to manipulate the bit(s). 

On binary and character, as well as fixed and variable, word length 

machines, there is a basic unit size which contains a single character. On 

some machines there may be several such units to represent different types 

of characters. For example, to represent 63 characters, obviously 6 bits are 

needed; alternatively, one can save space (at the cost of time and other 

complexity) by allowing different amounts of space for the representation 

of letters and numbers. The programming language might cope with these 

various possibilities. As in the case of the bits, it is often more effectively 

handled by allowing the commands to operate solely on a variable and 

letting the compiler take care of obtaining the right information from 

storage. 

On a fixed word length machine, most machine instructions deal either 

with the complete word or with specifically defined subsets of the word. 

These latter often contain addresses of storage locations or various registers. 

Obviously the commands in a programming language are not basically 

concerned with such subdivisions. Some languages, however, have been 

specifically designed around certain machine word structures and their 

associated hardware (most noticeably LISP), but they have been success- 

fully implemented on very different types of computers. 

In summary, a language which permits the user the ability to access 

any bit in the machine is clearly more flexible than one which permits him 

to access only words. On the other hand, he is paying a very heavy penalty 

for this capability because he must supply much more information about 

his data. 

One of the biggest disadvantages to allowing programming language 

commands direct access to bits or even larger units is the difficulty of main- 

taining machine independence. This problem arises in trying to switch pro- 

grams and their associated data structures from one machine to another. 

If the commands have been designed to be independent of the specific data 

unit, then there will be relatively little difficulty in the executable portion 

of the program, but significant changes are probably needed in either the 

declarations or the file layout or, most likely, both.



111.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 97 

2. Language Data Units 

Section III.4.1 discussed a number of different variable types that can 

exist in a programming language. There is a strong interaction between the 

existence (and relative importance) of these data types and the actual execut- 

able commands which exist. For example, it would be inconsistent to permit 

logical variables if there were no command (or operator) capable of rec- 

ognizing truth or falsity and acting on this recognition. Similarly, having 

strings as a legitimate data type would be relatively useless unless there 

were commands to operate on them. (However, strings can actually serve 

a useful purpose without special commands, by being used for printouts.) 

Thus, for each variable type there should be one or more commands which 

permit that type as an operand; conversely, each command must clearly 

specify which of the allowable variable types in the language are legitimate 

operands of the command. 

Referencing of arrays and hierarchies is normally handled by sub- 

scripting and qualification rather than by specific commands. 

[11.4.3. Types OF ARITHMETIC 

There are a number of types of arithmetic which are available in pro- 

gramming languages. The significant point is what arithmetic is provided 

by the language and not what happens to be available in the hardware. 

The two most common types of arithmetic (both in the language and the 

hardware) are of course fixed point and floating point. There is no require- 

ment that the arithmetic available in the programming language must also 

be available in the hardware; conversely, the programming language may 

not make use of all the hardware available, e.g., COBOL does not provide 

floating point capability in the language, even though many machines have 

that facility (and some implementations have provided it). The only require- 

ment for permitting varying kinds of arithmetic in the language is that the 

user have some method of specifying in his source program what type of 

arithmetic he wants performed. This is usually done through the use of 

declarations or sometimes through a combination of declarations and com- 

mands. It is better to specify the type of arithmetic desired solely by the use 

of declarations since this permits one to have an ADD or COMPUTE command 

which is independent of the data type. Thus, the most common way of 

handling this matter is to have a specific declaration in which a variable 

is defined to be of the desired arithmetic type. However, by doing it this way 

there becomes a need to establish rules for what forms of intermingling of 

arithmetic data types are permitted in one command. This point is discussed 

in Sections II1.4.4 and HI.5.1.



98 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

1. Integer, Fixed Point, Mixed Number 

In considering the various types of arithmetic, the simplest and most 

obvious is the integer arithmetic, which means exactly what it says: Namely, 

the addition of the integers 2 and 3 yields exactly 5. Integer arithmetic is 

needed to give complete accuracy, particularly in counting. Unfortunately, 

on a binary computer if one adds 0.1 to itself 10 times, the result is not 

necessarily the number |; it might be 0.99999 or 1.0001, depending on 

the machine and the conversion programs that have been written. It is clear 

that there are a number of cases in which the exact arithmetic is needed. 

On the other hand, integers clearly do not suffice for most scientific prob- 

lems and so floating point numbers are used. 

Although the terms fixed point and integer are often used interchange- 

ably, this is not really accurate. The term fixed point is actually a more 

general one and can be used for numbers which are not actually integers 

because they require a decimal point, but they are not floating point numbers 

because they are not in exponent-mantissa form. Thus, the addition of 3.2 

and 4.6 to produce 7.8 can be considered fixed point. The distinction is 

between the ways in which the numbers are represented internally; a more 

accurate description of the concept just cited is the phrase mixed number 

arithmetic. Few computers permit this type of arithmetic because the radix 

point is usually at the left or right end of the word. Hence, it is usually 

a capability provided by the programming language itself. 

2. Floating Point 

Floating point numbers are used to eliminate the need for scaling 

and/or to provide for the use of a wide range of numbers. Through the use 

of the so-called scientific notation, both large and small numbers can be 

contained in a single word (although with some loss of precision in the 

fractional part). This is done through the use of an exponent and mantissa; 

thus, the number 3.14159 is represented as 0.314159 x 10, or 31.4159 x 107°. 

Depending on the machine, there are differing ways of representing floating 

point numbers, but they all reduce to separating the number into two parts, 

one representing an exponent of a fixed quantity (usually 2 or 10, depending 

on whether the machine is binary or decimal) and the other representing 

the decimal part of the number. The programming language itself does not 

usually distinguish between the actual representation; this is handled by the 

compiler in translating to machine code. 

3. Rational 

Rational arithmetic is a relatively newer concept in practical program- 

ming usage than either integer or fixed or floating point. Rational arithmetic



11.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 99 

means the ability to take two numbers of the form A/B and C/D and add 

them to produce the result (AD + BC)/BD. The need for this arises particu- 

larly in scientific problems, where one wishes to do very precise arithmetic 

of this kind. For example, in most implementations of programming lan- 

guages, if one computes 1 + 4 in fixed point or integer mode, the result 

may well be 0 or 1, depending on whether the language specifies or the 

compiler chooses to truncate or round up the result. In floating point form, 

the result would clearly be 0.66667, whereas the real answer that is desired 

is 2. Since no machine known to me has this capability built into the hard- 

ware, it must be supplied by the compiler. 

4. Complex Numbers 

While it would be possible for the programmer to handle complex 

arithmetic by separating the real and imaginary parts, he would certainly 

prefer not to have to do this. Through the use of declarations, or some 

other similar technique, the compiler becomes aware of the fact that a 

particular variable is a complex number; the compiler then becomes re- 

sponsible for doing the arithmetic on the real and imaginary parts separately. 

Obviously, there is a potential storage allocation problem here because it is 

no longer possible for the variable to be contained in one machine word. 

5. Double or Multiple Precision 

Regardless of the amount of arithmetic precision inherent in a given 

computer, there are always problems requiring more. As a result, many 

languages (and compilers) include the capability for double, higher, or 

variable precision. (The fact that a particular compiler might provide 

variable precision arithmetic does not make it a language feature.) The 

actual precision is obviously a relative concept because double precision 

on one computer may be a single or triple precision on another computer. 

This is a problem that has not been satisfactorily solved with regard to 

compatibility. It is very easy—and has been done frequently—to include 

declarations, or even to modify commands as necessary, to notify the 

compiler that additional precision is desired. However, if this source program 

is run on another computer, the arithmetic results may be quite different. 

(See Section II.4.) 

6. Logical 

The arithmetic performed on logical variables obeys the rules of logic 

(with the most common precedence rules described in Section III.4.4.4), 

and produces a logical quantity as a result.



100 3=TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

7. Other 

Although | do not share the view, some people consider operations 

on strings to be a form of arithmetic. Common operations include concate- 

nation and deconcatenation, counting the number of characters, searching 

for a pattern, and transforming the string. 

While no other types of arithmetic seem to be present in programming 

languages, there is always the possibility for such. 

8. Higher Level Data Units 

Languages that include vectors and arrays sometimes include special 

commands, or permit modification of regular commands, to allow arith- 

metic on these higher level data units. In most cases this simply means 

performing the indicated arithmetic on each element in the vector or the 

array. When the language permits data hierarchies, then there are some- 

times commands which can be applied to the hierarchy, with the actual 

action being performed on all the subunits in the hierarchy. 

I1L.4.4. RULES ON CREATION AND EVALUATION OF ARITHMETIC AND 

LOGICAL EXPRESSIONS 

Because of the variety of types of arithmetic and types of data variables, 

there are a number of rules about the creation and evaluation of arithmetic 

and logical expressions which must be made. The word mode is used to 

apply to both the type of data variable and also to the types of arithmetic. 

The first set of rules is needed to specify how much intermingling of dif- 

ferent types of arithmetic is to be permitted; the second issue involves rules 

for converting numbers and data types from one form to another; the third 

problem involves rules for precision. Finally, precedence rules for operators 

and sequencing rules for evaluation are needed. 

1. Intermingling Rules 

In early versions of some languages it was not legal to add an integer 

and a floating point number; this is called the mixed mode case. This re- 

striction still holds in a number of cases (e.g., FORTRAN), but it has been 

removed in more recent languages (e.g., PL/I). Similarly, there are often 

rules preventing the use in a single arithmetic expression of variables re- 

quiring different precision. There is nothing inherently logical in these 

restrictions, and they are usually imposed just to make the implementation



Ill.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 101 

easier and/or to avoid specifying the rules described in Sections III.4.4.2 

and III.4.4.3. A problem does exist, however, if one tries to add arithmetic, 

Boolean, and formal variables together; it is not at all obvious what form 

the result should take. Thus, in any programming language a decision must 

be made as to what types of intermingling are permitted and what conversion 

rules will be applied to such combinations. Obviously, it is impossible to 

establish intermingling rules without simultaneously specifying the meaning 

of the combinations. 

2. Conversion Rules 

Once it has been determined what types of data variables can be inter- 

mingled, it is necessary to determine what kinds of rules are involved in 

such intermingling. Conversely, in order to say it is legal to add an integer 

and a floating point number or an arithmetic and a Boolean variable, it is 

necessary to specify the rules used to determine the result. Thus, if one adds 

3 and 2.5, the answer could be either 5, 5.5, or 6, depending on whether one 

wanted an integer value rounded up or down, a floating point value, or a 

fixed point noninteger. Normally when floating point and integer numbers 

are added, the result is floating point because the precision from the integer 

calculation has already been lost and the floating point number itself may 

be too large to fit into an integer format. (It is often, but not always, true 

that if variables of a single type, such as floating point or logical, are com- 

bined, then the result would be of the same type.) 

If one tries to add arithmetic and logical variables, then there is another 

problem because it is hard to define what variable type the results should 

be. As indicated earlier, logical variables normally take on one of two 

specific machine values; therefore, it is certainly possible to produce a 

number as the result of adding an arithmetic and Boolean data variable; 

however, this is a fairly meaningless number. Interestingly enough, use of 

this concept with arithmetic multiplication can be both meaningful and 

useful if the values 0 and 1 are used to represent the logical variables 

internally. If A is an arithmetic variable and L is a logical variable, then 

A x L will be either O or A, depending on the truth value of L. 

Other conversion rules are not so obvious. For example, if one tries 

to add a logical and a formal variable, what is the result? Similarly, com- 

bining strings and other types of variables produce very many questions. 

There are numerous rules of thumb and arbitrary guidelines but no very 

definitive way of determining what the result should be, aside from the 

wishes of the language designers. In cases where one mode includes another, 

there is usually automatic conversion to the more general case, e.g., 

integer c rational c floating point, or arithmetic < formal.



102 = TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

3. Precision and Computation Rules for Various Modes 

Once it has been established what variable types can be combined and 

what type of variable will be produced as a result, there are still a number 

of rules which must be specified. Unless the rules are carefully defined, each 

compiler will produce a different answer for variables of differing kinds. 

Thus, if we have A = B + C * D + E / F, where B is single-precision 

fixed, C is double-precision floating point, D is a logical variable with a 

numerical representation, and E and F are rational numbers, there must be 

precision rules as to how to do the arithmetic. The language with the most 

flexibility on this point is PL/I; it therefore has the most complicated rules. 

4. Precedence and Sequencing Rules 

There is a normal precedence rule for the five arithmetic operators, 

namely exponentiation, then multiplication and division, and then addition 

and subtraction. (Cases involving minus signs and exponents sometimes 

require special definitions.) This means that the expression A+B*x*C*xD—E 

is interpreted as A+(Bx*C)*D—E. Naturally these precedence rules can 

be overridden by the use of parentheses for grouping purposes. Thus al- 

though 3 + 4 x 5 Is evaluated as 23, the expression (3 + 4) x 5 yields the 

result 35. However, implicit multiplication (shown by juxtaposition, e.g., 

AB) is seldom allowed unless data names are restricted to single letters. 

It is either impossible or difficult (requiring other complicated rules) to 

distinguish between the data name AB and the product of variables A and B. 

Furthermore, the precedence rules are insufficient to deal with an expression 

of the form A/B*C. The normal sequencing rule is left to right; thus, 

A/BxC is evaluated as (A/B)*C, subject to whatever conversion and preci- 

sion rules have been defined. Without some sequencing rule, the user would 

probably obtain different numeric results from different compilers even when 

using the same computer. (This happens even when all these rules are spelled 

out because of differences in conversion routines.) 

The most common precedence rule for logical variables is to apply first 

the unary NOT operator, then the AND, and last the OR. Thus X AND NOT 

Y OR Z is evaluated as (X AND (NOT Y)) OR Z. 
In expressions containing both arithmetic and logical operators, the 

latter are normally evaluated first. 

It should be assumed that all languages obey the precedence rules given 

above unless stated otherwise. 

Since expressions can usually contain functions, and these might have 

parameters called by location, there is a possibility that the value of a 

variable in an expression might change while the expression was being



11.4. DATA TYPES AND UNITS AND COMPUTATIONS WITH THEM 103 

calculated; e.g., if A + DBL(A) + A is to be calculated and DBL(A) doubles 
the value of A, it is unclear what value of A is being used where. This (and 

some related confusing situations) is often referred to as the side effects 

problem. 

111.4.5. Scope oF DATA 

The problem of determining the scope (i.e., the meaning in different 

portions of a program) of data is a very complex one. In its simplest occur- 

rence, the same data name might be used in a subroutine and also in the 

main program. This is usually handled in a simple way by specifying that 

any variable used in a subroutine body is protected from the rest of the 

program; i.e., it has no meaning outside its use as a formal parameter in 

the subroutine. However, there are times when it is desirable to use the 

same variable in a subroutine and in the main program or in two or more 

subroutines. The technique of COMMON used in FORTRAN helped solve 

this problem. However, with the advent of the block structure in ALGOL, 

the problem became much more complex. When the main program itself 

is broken down into smaller subunits which can be nested, then the scope 

of the type and value of a variable must be clearly defined. Thus if we have 

executable subunits A, B, C, D, E arranged in the overall program as follows, 

and a variable V is defined prior to starting the execution of A, then what 

happens to it in B and C, and how does this affect its value when entering 

D? Suppose there is an occurrence of V in one of these subunits; what rules 

or restrictions on this should exist? Inherently there are two concepts which 

are needed: Local and global. In the former case, a variable is considered 

defined only within the specific subunit in which it is declared; the variable 

has the same value and characteristics in any smaller subunits unless it is 

redeclared. Furthermore, if a local variable is referenced outside the unit 

in which it is defined, this will be an error since it is undefined (unless it is 

redeclared). The intuitive definition of global is that the variable has the same 

characteristics and means the same thing each time it is used in the entire 

program. Readers who are interested in pursuing the details and ramifica- 

tions of these points should see the Revised ALGOL 60 report [NA63] and



104 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

the PL/I manual [IB66b] since these are the main languages in which this is 

an issue. 

11.5. EXECUTABLE STATEMENT TYPES 

The two main components of a programming language are the data types 

and the executable statements permitted. Depending on the view of the 

person involved, one of these can be considered the main facet of the 

language and the other the secondary, or they can be considered equally 

important. The view that the data types allowed are the major factor is 

expressed by Perlis [PR65]. I hold the alternative view—namely that the 

most important factor of a programming language is the list of commands 

that it can perform. Probably the most reasonable view is that this is a 

“chicken and egg” situation and both components are equally necessary. 

This section provides a categorization of the multiplicity of executable 

statement types which are relatively commonly used. Obviously, all lan- 

guages omit certain specific ones. The exact details are discussed under the 

individual languages. 

Executable statements are sometimes referred to as imperatives as con- 

trasted with the declaratives which supply information about data or aspects 

of the program. 

11.5.1. ASSIGNMENT 

Assignment statements have the function of assigning a name to the 

result of some operation—usually but not always an arithmetic computation. 

The operation that is involved may be as fundamental as renaming or doing 

basic arithmetic or as uncommon as differentiation or concatenating strings. 

In some types of assignment statements, the results are capable of being 

assigned to many variables; i.e., a single result can be given several dif- 

ferent names. 

There are two classes of rules that are needed in connection with the 

assignment statement, andthey affect the way in which the operation 1s 

carried out. One involves the actual method of specifying the action to be 

performed and the other involves the rules which are needed in converting 

a result into a form which the name of the result requires. 

It is unfortunate that the most common notation used for the assign- 

ment statement is the equal sign, =, although some languages (e.g., ALGOL) 

do use a separate symbol. In virtually every case, the = is used to mean 

that the value of the expression on the right-hand side is to be assigned 

the name on the left-hand side. This results in such mathematically un-



IlI.5. EXECUTABLE STATEMENT TyPEs 105 

pleasant statements as | = | + 1, where the meaning is that some variable 

| is to have the quantity 1 added to it and the result is to be given the 

name |. This naturally causes the original value of | to disappear. 

1. Methods of Specifying Computation 

In some languages the indicated computation on the right-hand side 

is controlled by the data types involved (see Section III.4.1), the arithmetic 

performed on them, and the operators and/or commands involved, as well 

as the rules on conversions and modes (see Section III.4.4). Thus, the assign- 

ment statement A = B + C is meaningless until we know all the data types 

involved, not just those on the right-hand side. If A, B, and C are numbers, 

then the action and result are obviously numeric, although there are problems 

of precision, mode, etc. However, if B and C are strings, then the operation 

indicated by + might be concatenation. The actual result is based on con- 

version rules (discussed in the next section). 

In contrast to the principle of using just data types to indicate com- 

putation, it is possible to specify other desired actions. In this case, it is 

an actual command which is being used on the right-hand side, and this 

command falls into another category. For example, in FORMAC one 

writes LET A = SUBST X*x*2 + Yx*2, (X, Y+1). Here the actual assign- 

ment is caused by the LET ... = and the SUBST or equivalent command is the 

operation being performed. 

2. Conversion Rules for Results 

Most of the previous discussions have pertained to variables which are 

in one arithmetic statement. However, it is perfectly possible—and often 

necessary from the problem solution viewpoint—to provide entirely different 

types of variables on the two sides of the assignment sign. It is necessary to 

consider conversion rules across the assignment sign. In other words, if we 

write Z = X + Y * A, then once the right-hand side is computed it is 

necessary to specify the value of the left-hand side. It might seem obvious 

that the value of Z should be exactly the same as the computed value of 

X + Y x A, but this is not always desired. The differences can vary from as 

little as the arithmetic mode (e.g., fixed point on one side, floating point on the 

other) to the very significant difference of having a string on one side and a 

number on the other. In the example of A = B + C given earlier, it might 

be assumed that B and C were strings to be concatenated, and it is still per- 

fectly possible for A to be numeric. The conversion rule involved might 

require that the string on the right-hand side be converted to its equivalent 

numeric value; obviously, in order to do this, the right-hand side would 

have to be capable of being converted to a numeric quantity. For example,



106) TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

the string 4527 is, but the string A3+,45 is not unless some special inter- 

pretation is given, which of course can be done. 

11.5.2. ALPHANUMERIC DATA HANDLING 

Most data processing applications involve the use of alphanumeric 

(often abbreviated as alphameric) data. The primary types of manipulations 

on this data are editing (which has many facets), converting, and sorting. 

The form of the data may be the same here as in Section III.5.4, but the 

operations to be performed (i.e., the commands) are significantly different. 

1. Editing Statements 

The term editing covers a number of areas and applies primarily to the 

preparation of data for use outside the computer. In the simplest case, 

it may involve actions as basic as zero suppression or insertion of dollar 

signs where needed. This type of editing involves primarily a single variable 

or piece of data. At the other extreme, we can consider report generation 

as a form of editing. In this case, many pieces of data are being examined, 

possibly changed in format, and moved around to prepare them in a par- 

ticular form relative to a printed page. Even arithmetic computation may 

be involved for the purpose of obtaining totals on a report. 

Depending on the language, the various facets of editing may be called 

into play by a direct command; more often editing is accomplished through 

the implicit invocation of the necessary routines through another command 

and/or through data descriptions. 

2. Conversion Statements 

The use of conversion—at least in this context—is primarily an internal 

matter. There is often a need for data to be transformed from binary to 

EBCDIC or from purely numeric form to alphanumeric form. As with the 

editing, this can be accomplished through direct commands or through data 

declarations combined with other commands. Thus the statement MOVE 

A TO B inearly specifications of COBOL called for A to be converted to the 

form specified for B and stored there. 

3. Sorting Statements 

Sorting is seldom thought of as a command in a programming language, 

but it does exist in at least one—namely COBOL—and was considered for 

inclusion in PL/I. Most sort routines are run as independent programs by 

using a proper set of control cards. However, the disadvantage to that pro-



Ill.5. EXECUTABLE STATEMENT TYPES 107 

cess is that the user may wish to perform actions on his files either before 

the sorting takes place or after, or both. If there is a sorting command 

as an integral part of the language, then the other mechanisms of the 

language can be used prior to and after the execution of the sort command. 

This concept is really the reverse of the situation where some sort generators 

permit hand-coded routines to be included in the sort package. 

III.5.3. SEQUENCE CONTROL AND DECISION MAKING 

All programming languages must have statements to change the se- 

quence of control of execution and also to make certain decisions with alter- 

native choices based on the result. If this were not true, it would be 

impossible to stop most of the operations which were started and it would 

be impossible to have any branches in a program. Sequence control state- 

ments are usually conditional and unconditional transfers, where the latter 

can be considered to include procedure calls. Decision making facilities 

can take many forms; the most significant are the conditional statements, 

the loop control statements, and the error condition statements. 

1. Control Transfer Statements 

For each language there is a normal flow of control which specifies what 

the next executable unit is. This is usually, but definitely not always (e.g., 

COMIT), the next statement in sequence. Naturally there must be a way 

of changing this normal flow of control. 

The simplest type of control transfer is the unconditional jump, in which 

the next statement to be executed is specifically named rather than auto- 

matically being the next one in sequence. The conditional jump is based 

on some choice or test being made. The conditional jump statement is really 

just the simplest type of conditional statement, normally consisting only 

of a test and a new location to transfer control to, e.g., IF A > B GO TO 

ALPHA; if the condition is not satisfied, then the next statement in sequence 

is executed. The invocation of a subroutine is a special type of control 

transfer which provides an unconditional jump and also some type of 

automatic return jump to the next executable unit in sequence after the 

subroutine call. 

There are also switch-control statements which the programmer can 

use to cause control to transfer to one of a number of possibilities depending 

on existing or prior conditions. The choices can be made in elementary or 

complex ways, depending on the language, but all have the objective of 

specifying (at object time) the place to which control should be transferred. 

The most common is the computed GOTO, which usually is of the form



108 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

GOTO (Si, S2,---, Sn), J where the value of J designates which § is used 

(e.g., J = 2 means control is transferred to S,). 

2. Conditional Statements 

Although the purpose of a conditional statement is to permit alter- 

native actions to occur, there are many forms of conditional statements 

and they do not always cause a control transfer. In fact, a significant aspect 

in judging the power of a programming language is the strength and flexi- 

bility of the conditional statements which it contains. Conditional state- 

ments usually start with some key words, such as IF or WHEN, followed by 

some condition which is to be tested and an action to be taken if the con- 

dition is satisfied. Thus, for example, a very common type of statement is 

to say “IF A IS LESS THAN B do something and/or transfer control some- 

where”. The power of the conditional statement depends on its two different 

parts: One is the amount of flexibility in the condition that can be stated 

(and tested) and the second is the amount of nesting of conditionals and/or 

other statement types which is permitted. An example of a complicated 

condition which can be tested is A > B + C AND B = SIN(X) OR 
X = Y * Z AND A = B = C. Obviously, precedence rules are needed to 

control the evaluation of the truth value of such an expression. (See Section 

111.4.4.) In considering the amount of nesting permitted, note that the 

simplest sentence form is 

IF condition THEN statement ELSE statement 

(The case of IF condition GOTO is too trivial to discuss.) In other words, 

a test is supplied and, depending on its result, either of two statements is 

selected. If either (or both) of the statements can themselves be conditional 

statements, or contain more than one command, then increased power 

and flexibility is obtained. For example, the single sentence (written in 

separate lines for clarity) 

IF A> B+ C ORC = SIN(X) 

THEN IF X < Y THEN PUTZ=A+C 

ELSE PERFORM ALPHA THRU BETA 

ELSEIF A>B—C 

THEN Z=A-—C 

ELSEZ=AxC



IlI.5. EXECUTABLE STATEMENT TyPES 109 

permits the user to state a variety of conditions and actions in one sentence. 

Obviously, rules of matching clauses, precedence, and existence of key words 

must all be specified very carefully. A discussion of this problem and existing 

and proposed solutions is given by Abrahams [AH66]. 

The situation in which a conditional statement can appear as part of 

an expression was discussed in Section III.3.2.4 in connection with 

embedding. 

3. Loop Control Statements 

One of the most powerful things in a programming language 1s its 

ability to state easily that a loop is to be executed. There are four parts to 

a loop control statement. One is the range of the loop; this indicates just 

which statements are to be executed under its control. A second part is 

the set of parameters which are to vary to actually create the loop; for 

each parameter, there are a set of values which that parameter will assume. 

These may be either individually stated values or, more commonly, a 

sequence of numbers with a constant increment, i.e., an initial value with 

a fixed increment to reach a final value. It is possible to have one or many 

parameters in a loop control statement, and they can vary simultaneously 

or sequentially. A third major feature is the termination criterion which 

specifies a rule for determining when the loop is ended. This is usually 

based on reaching the last set of values of all the parameters, but a loop 

can also be terminated when a particular condition (which may be stated 

independently of the parameters) is reached. The final part of the loop 

control statement is the specification of where control should be transferred 

after the loop is finished. In some cases it will be to the statement imme- 

diately under the loop control statement itself; in others it will be following 

the range of the loop; in still others it will be to some place designated by 

the loop control statement itself. One of the important facets of the range 

of the loop is to determine whether transfers within or outside that range 

are permitted and under what circumstances. In particular, if a control 

transfer out of the range of the loop is permitted before the loop is finished, 

then there must be a whole set of rules on what has happened to the param- 

eters and what will happen in the future to the component parts of the 

loop control statement. 

Finally, a significant characteristic is what type of nesting of loop 

control statements is permitted; i.e., can a loop control statement be within 

the range of another loop control statement? Usually, such nesting is per- 

mitted provided it is total; 1.e., the range of the second loop is completely 

contained within the range of the first. 

Language specifications sometimes tend to be somewhat vague in 

specifying all the necessary information needed in connection with a loop



110} =TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

control statement. This is less likely to happen nowadays, but it is interesting 

to note a few of the problem areas because they exist in some earlier manuals 

and languages. For example, an often unspecified rule is whether or not the 

range must be executed at least once if the termination criterion is already 

satisfied at the time the loop-control statement is given. This could easily 
happen if a variable J was to vary from 1 to 10 until K was greater than 

50, and K was greater than 50 when the loop was supposed to start. The 

resnits will differ markedly, depending on the implementation, unless the 

rule is stated very clearly. Another common case is lack of precision on the 

termination criteria. This is particularly prevalent on a binary computer, 

where a variable is supposed to vary from 0.1 to | in steps of 0.1. Depending 

on the conversion technique used (let alone any other implementation- 

dependent factors), the range might be executed 9, 10, or 11 times unless the 

criterion is stated very explicitly. A third disastrous example occurs when 

it is unclear whether the parameter is to equal or exceed the final value to 

terminate the execution of the range. 

A loop control statement can almost always be written in terms of 

other statements in the language (i.e., using IF ... THEN and assignment 

statements). Hence one technique sometimes used in the language design 

is to define the meaning of the loop control statement in terms of other 

more basic statements. By doing this, virtually all ambiguities (about the 

loop control statement) can be eliminated. 

4. Error Condition Statements 

There are two major types of error condition statements which can be 

included in programming languages. One refers to the errors which may be 

caused by the data or committed by the programmer (and which he can 

test for), and the other involves errors which may be committed by the 

hardware (although in theory this never happens). Some of the types of 

errors which the programmer might make or be responsible for correcting 

are such things as overflow when it is not expected, trying to store a number 

in a field which is too small to contain it, incorrect data, or getting into 

a loop and not getting out. In some languages, direct testing statements can 

be written at the place in the program the user thinks an error might occur. 

In other cases, he may provide somewhere in his program a command that 

says “if such an error occurs, then do the following”. In this latter 

situation, the generated code will cause an automatic interruption of the 

normal sequence and transfer control to the “corrective action” that the 

programmer has specified. In still other cases, the programmer may simply 

request that a flag be set when some condition occurs, and he retains the 

option of testing for it whenever he feels it is necessary. 

There are certain machine errors which could occur (most notably



11.5. EXECUTABLE STATEMENT Types III 

in the input/output area) for which the programmer would like to test 

or provide corrective action. In some languages he can do this directly, 

although usually this is a function of the compiler and/or the operating 

system. 

11.5.4. SymBoLtic DATA HANDLING 

A whole class of commands can be subsumed under the general category 

of symbolic data handling. These commands deal with algebraic expressions, 

lists, strings, or general patterns. Some commands may deal with more than 

one of these items. These commands can in turn be used or embedded in 

other commands, particularly the assignment statements. 

1. Algebraic Expression Manipulation Statements 

It was shown in Section II1.4.1.5 that one of the possible types of data 

variables was a formal (= algebraic) one, which in turn leads to the pos- 

sibility of algebraic expressions. Therefore, it is necessary to have certain 

kinds of statements for the manipulation of formulas and/or expressions. 

Among the most common of these manipulations are the abilities to sub- 

stitute for a particular variable either another expression or a number, to 

differentiate, and to apply the distributive law to remove parentheses. 

Other types of statements which might be desired are the abilities to match 

expressions, integrate, to find the greatest common divisor of two expres- 

sions, etc. From a purely syntactic view, these facilities can be provided 

in a number of ways, e.g., as statements, as functions, or through inter- 

pretation of the data description. Thus, writing Y = (A—B)*(A+B) will 

have a very different meaning if A, B, and Y are formal variables rather than 

numbers and no new command is needed. On the other hand, differentiation 

requires a specific executable concept to be named; it might be defined as a 

function, an operator, or a command. The methods of handling these facili- 

ties depend highly on the personal taste of the language designers. (See 

Chapter VII.) 

2. List-Handling Statements 

Normally list-handling statements appear primarily in list processing 

languages, although there are a few exceptions to this. In any case, the types 

of statements that are normally involved are those which add to the begin- 

ning or the end of a list, insert information in the middle of a list, delete 

information, and create and delete common sublists. Sometimes these 

statements are interrelated with storage allocation statements. As in Section



112) TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

II1.5.4.1, these facilities can be provided in different ways, with executable 

statements as one of the most likely. 

3. String-Handling Statements 

In languages which have strings, sets of statements (or some other 

syntactic form) are needed to cope with them. Among the more common 

types of operations involved are concatenating and deconcatenating strings, 

inserting strings between others, and removal and deletion of portions of 

a string. 

4. Pattern-Handling Statements 

Some languages provide the ability to scan a string of text for patterns. 

This is extremely valuable in a wide variety of applications such as language 

translation, formula manipulation, and even compilation itself. The most 

common type of statement is one which specifies a pattern to be found 

and then demands some action to be taken after finding the pattern. Thus, 

a Statement might require that all occurrences of the pattern AB2CD (where 

2 represents any arbitrary string) be replaced by the string THEN. Pattern- 

handling statements tend to be intermingled with string-handling statements 

because the normal reason for searching for a particular pattern is to do 

something to it or with it after it has been found. 

IIT.5.5. INTERACTION WITH OPERATING SYSTEM AND/OR EQUIPMENT 

No programming language can be used in a vacuum, and the user, 

compiler, and language must all interact with each other and with the 

physical and operating environment which exists. Thus, any language which 

is actually to be run on a computer and produce results of some kind must 

have some type of input/output statements. In order to make use of pro- 

grams already in existence, there is a need for library referencing facilities. 

Debugging statements which aid the programmer can be officially part of 

the language, but they serve only a secondary purpose. The language must 

provide—or the compiler must handle automatically—storage and segmen- 

tation allocation facilities. Finally, some languages must— or do— provide 

facilities for interacting with the operating system and/or with special 

machine features which exist. (Obviously, these latter preclude the possi- 

bility of the language being machine independent.) 

Each language must have a means of terminating the execution of 

the program either by stopping the computer or by giving control to the 

operating system. Note that this is an executable command based on the



1.5. EXECUTABLE STATEMENT Types’ 113 

program logic and it differs from whatever symbol is used to indicate the 

physical end of the program as input to the compiler. 

1. Input/Output Statements 

The input/output statements are those commands which relate to 

getting data in and out of the computer. They fall into a variety of classes. 

One of the important distinctions 1s the difference between a physical unit 

of information on some storage media such as tape and a logical unit of 

information which may bear little or no relation to the physical unit. 

The input/output statements usually refer to the logical unit, where 

the compiler (and/or operating system) has the responsibility for making 

the necessary information available from the physical units. Thus, one of 

the characteristics of good input/output statements is that they are either 

relatively or completely independent of the physical media that 1s being used. 

In other words, it should not really matter whether information is coming 

in from punch cards, paper tape, magnetic tape, disk, or drum. Of necessity, 

this goal cannot always be achieved, particularly if random access is 

required; but it is a desirable one to strive for because when the physical 

medium is changed, the program need not be. 

The input/output statements usually, but not always, include separate 

facilities for initiating actions (e.g., checking or writing labels) on some 

external media and then asking for (or writing) some fixed amount of data. 

The amount of data being called for may be controlled by the programmer 

or by the data itself. In the first case, the user may specify how much infor- 

mation is to be brought in, whereas in the latter the data itself contains 

some kind of a delimiter and the input command is told to bring in enough 

information until the delimiter is reached. 

2. Library Reference Statements 

In the earlier discussion on subroutines it was pointed out that one 

of the reasons for the heavy development of subroutine libraries was to 

permit people to make use of work done by others. This benefit can and 

should accrue in the use of higher level languages, but this can only be 

accomplished by including appropriate statements in the language. Essen- 

tially, two facilities are needed—one to store a program in the library and 

the other to bring it from the library when needed. (The former capability 

is not usually included in the language itself.) In the case of programs or 

subroutines with no input parameters, the task is fairly simple; but when 

there are variables which must be assigned in order to use the routine, 

then there arise language (and implementation) problems of parameter 

transmittal. One characteristic of the language that affects the implemen-



114 = TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

tation significantly is whether or not the library routines are stored in their 

original (i.e., higher level language coded) form or in a translated form. 

(In the latter case, sometimes programs originally written in assembly lan- 

guage can be included in the library.) Depending upon these and other 

factors, the subroutines may be brought in at compile or object time. 

There is also a need for library facilities for languages with complicated 

data descriptions. These facilities may be provided in the same way as for 

the subroutines. 

3. Debugging Statements 

Although one of the avowed purposes of higher level languages is to 

minimize the debugging problem, it is paradoxical that sometimes pro- 

gramming languages actually increase this problem. The reason is that the 

user of a higher level language tends not to know machine language and 

the higher level language often fails to provide him with information which 

is vital to his debugging in a form which he can understand. Thus, if a 

FORTRAN program stops and the only thing the user receives is a core 

dump, he may be completely unable to find his error. Fortunately, better 

language (and implementation) techniques are being developed to aid this 

problem. See for example the survey by Evans and Darley [EV66]. 

There are specific debugging statements which can be included as an 

integral part of the language. There is a difference between debugging 

statements in the language and debugging facilities provided by the compiler. 

Foremost among the former are various traces and snapshots. The user can 

include in his program statements which allow him to obtain printouts 

(in a form he understands) of various variables at specified times in his 
program. In other cases he is allowed to declare that he wants a trace with 

varying degrees of detail. In still other cases, he may ask for a dump of 

his variables, but with the proper names associated. One other technique 

sometimes used is to tie various debugging statements in with tests for 

error conditions (as mentioned in Section III.5.3.4). 

It is essential to realize that even though a language may not contain 

any debugging statements, a particular compiler might provide such facilities. 

4. Storage and Segmentation Allocation Statements 

Because so very much of the problem in getting particular applications 

run on computers is involved with storage allocation, it is often necessary 

to provide information about storage requirements directly in the source 

program. Most of these actually exist as declarations rather than specific 

executable commands. However, there are other statements which control 

the amount of storage that is used, eliminate information from storage,



III.6. DECLARATIONS AND NONEXECUTABLE STATEMENTS 115 

indicate what things must be saved and what can be disposed of, etc. While 

these statements appear in some mathematical or data processing pro- 

gramming languages, they are absolutely essential to any list processing 

language. In some of the latter there are commands which provide control 

of the garbage collection (i.e., handling of the free list). 

Information about overlays and program segments which can be stored 

individually is usually provided through declarations rather than as execut- 

able commands. 

5. Operating System and Machine Feature Statements 

Because of the increasing importance and complexity of operating 

systems, the compilers for programming languages are being interwoven 

more and more with the operating system. Whereas previously the same 

subroutine might be called into storage separately for each program, now 

this can be handled by the operating system to minimize storage require- 

ments. While most of these aspects continue to be primarily implementation 

problems rather than direct language problems, there is nevertheless a 

carry-over into the language itself. Thus, the user often must know whether 

or not the data he wants can be made available by the operating system, 

whether a program which is being handled on another processor is ready, 

or how much longer he has on the machine, etc. He must also be able to 

time certain actions so that he can control the results if the process appar- 

ently takes too long. Another illustration of possible interaction with the 

operating system or machine itself is the language specifications which 

involve overflow and underflow, or attempts to divide by zero. Finally, the 

STOP (or its equivalent) statement, which indicates termination of a program, 

is included in this category. 

IIT.5.6. OTHERS 

There are statements in some languages which do not fall into any of 

these categories, but they are not general enough to warrant discussion here. 

11.6. DECLARATIONS AND NONEXECUTABLE STATEMENTS 

As indicated in several earlier sections, there are a great many situations 

in which information either can or should be supplied to the compiler. 

In some cases, this is necessary for the logic of the situation, whereas in 

others it helps significantly with the implementation, resulting in better 

object code. The most important statements of these types are those which



116 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

describe or declare information about data items, files, data formats, storage 

allocation, and the hardware or operating system environment. 

Iff.6.1. DATA DESCRIPTION 

Section IEI.4 discussed a wide variety of data types and sizes which are 

used in programming languages and a number of different ways of operating 

upon the data. In order for each executable command to perform its task, 

it must have all the information about the data which Is logically required. 

Thus, for example, if numbers are stored in binary and are to have arith- 

metic performed upon them, the machine instructions needed will be rather 

different than if the numbers are stored in a character form. The primary 

method for doing this 1s to supply data declarations or descriptions which 

provide all the needed characteristics of the data. Thus, numeric data for 

mathematical problems will normally be characterized as being fixed or 

floating point; real or complex; single, double, or multiple precision; etc. 

With the exception of the precision, the amount of space occupied by each 

type of data is usually considered standard for a particular language or at 

least for a specific compiler. On the other hand, business applications 

require data which has more widely varying characteristics. In the first place, 

it is both alphabetic and numeric, and different parts require different sizes 

and internal formats. For example, a person’s name in a payroll file may 

take a large number of characters, whereas a mark to indicate whether the 

person is male or female is clearly going to take the smallest possible unit 

which can be represented in the machine. Because of the need for this wide 

variety of type and size of data, it is essential that the compiler find out 

just how the data is being stored so that the appropriate machine language 

commands can be generated to handle it. All this information must be 

provided in the data description declarations either directly or indirectly. 

In a few cases the compiler will make a determination. In addition, it is 

characteristic of business as well as other types of applications that the 

data is usually in some type of hierarchical form. Again a payroll file is an 

excellent illustration because one can consider that a person’s address 

consists of a street location, followed by a town, a state, and a zip code. 

Clearly, the entire address consists of all four of those items, whereas one 

might be concerned with only the zip code, the state and zip code, the 

town, or almost any other combination of these fields. For that reason, 

it is essential that the compiler knows what type of hierarchy has been used 

for the data so that it knows what machine instructions to generate. 

Languages containing strings, lists, and/or arrays whose size is deter- 

mined at object time must contain enough descriptions to permit com- 

pilation.



III.6. DECLARATIONS AND NONEXECUTABLE STATEMENTS 117 

One of the key problems with regard to any complex data description 

is whether the information is being described in its internal representation 

(for a particular computer) or whether it is being described as it appears 

in a logical fashion on some external media. Thus, if the identification 

number for a person in a large organization is six characters, this is quite 

independent of the internal representation; the question of whether it is 

stored internally in character or binary form is essential information for 

the compiler but irrelevant for the user. Various compromises for this issue 

have been devised and will be described in the relevant languages. 

One interesting philosophical point in creating the data declarations is 

where and how they are to be grouped. The earliest viewpoint—exemplified 

by FORTRAN—is that all data with a given characteristic should be shown 

together, e.g., DOUBLE PRECISION X, Y, Z and REAL X, Y, Z. A more 

recent view—exemplified by PL/I—is that all the declarations for a particular 

variable could be shown together, e.g., X, DOUBLE PRECISION, REAL, Y, 

DOUBLE PRECISION, REAL. (This is not the actual notation for PL/I or any 

other language.) This matter appears to be based considerably on personal 

taste and implementation techniques. 

The requirement for data declarations is double-edged, in the sense 

that, applied as stated above, every variable would need to have a com- 

plete set of descriptions associated with it. Thus, each variable in a mathe- 

matical problem would have to be defined as being SINGLE or DOUBLE 

PRECISION, REAL or FLOATING, etc. This is undesirable because it requires 

far too much writing on the part of the user. Hence, the concept of default 

declarations has existed for some time (although there is a counterargument 

which says that errors are prevented by requiring the complete information 

to be written by the user). The concept simply means that associated with 

certain types of variables are certain characteristics, and these will be auto- 

matically assumed by the compiler unless some other information is specif- 

ically supplied. An early illustration of this is the fact that in FORTRAN 

any variable beginning with one of the letters 1, J, K,L, M, N was automat- 

ically assumed to be an integer unless it was specifically declared as floating 

point. 

IIT.6.2. Fite DESCRIPTION 

A file description usually applies to external and logical characteristics 

of large amounts of data and how this is connected with the physical hard- 

ware units which are being used. For example, the same logical file may be 

stored on tape and disks in entirely different ways. This type of information 

must normally be made available to the compiler to avoid object time 

inefficiencies.



118 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

Among the characteristics usually included in a file description are the 

names of the different logical records it contains, information about the 

header and trailer blocks, and relation between logical and physical records. 

Descriptions of the format play a key role in query languages (see Section 

1X.3.2). 

111.6.3. FORMAT DESCRIPTION 

In order to put out data, the user may definitely wish to have control 

over the format in which it appears. For example, if he wishes numbers to 

appear in three columns, he must be able to have a way of specifying this. 

Similarly, if he is using the computer to write a payroll check, it is essential 

that the amount is placed onto the right part on the check or else the check 

will be invalid. Thus, there needs to be a number of statements to the com- 

piler which actually describe the format of the data which is to be put out. 

Similarly, information which is on some external media may have a format 

which the compiler must know about in order to be able to interpret the 

information coming in. When this formatting of output data is carried to 

a very high degree of complexity, it actually becomes a report generator. 

Format descriptions often supply page and line controls, as well as 

the information necessary to permit the editing and converting discussed 

in Section II.5.2. 

The details of the format descriptions available in each language will 

not be given as they require far too much space. 

111.6.4. STORAGE ALLOCATION 

It was noted in Section III.5.5.4 that much of the control of storage 

allocation was done through the use of declarations rather than through 

executable commands. One prime example of this is the declarations which 

supply information about the dimensions of a data array; usually they give 

the number of dimensions and the maximum number of elements in each 

dimension. The compiler needs this information to allocate storage at either 

compile time (if the dimensions are fixed) or at object time (if the dimen- 

sions are allowed to vary). 

Control of segmentation is usually done through declarations, either by 

indicating the appropriate places to segment a program that was too long 

to fit in storage directly or by indicating parts of the program which can be 

considered segments to overlay others.



11.6. DECLARATIONS AND NONEXECUTABLE STATEMENTS 119 

111.6.5. ENVIRONMENT OR OPERATING SYSTEM DESCRIPTIONS 

It is perfectly possible to have a language describe the environment 

(hardware or software) in which it is to be run. This would allow the user 

to indicate for a particular program just what machine (configuration) he 

wanted it to run on. Ideally he could be allowed to compile on one machine 

for another. There is a significant difference, however, between having the 

language facility to describe a different object machine and having a com- 

piler which will create code for it! Because of the increased importance of 

operating systems, and the sometimes hazy line between them and the 

hardware, descriptions involving the operating system are possible and/or 

needed. There are also situations in which information about data is supplied 

to permit (or require) the operating system to take action. 

The only programming languages which have included this information 

in any significant way are COBOL, which provides a description of the 

environment and some information about the operating system, and PL/I, 

which deals heavily with the operating system. 

11.6.6. PROCEDURE, SUBROUTINE, FUNCTION DECLARATIONS 

In Section II].5.3.1 it was noted that the invoking or usage of proce- 

dures, subroutines, and functions was a particular type of control transfer. 

The executable part of the program contains only CALL (or whatever 

equivalent word is used) together with the necessary parameters. However, 

the body of the procedure, subroutine, or function must be given some- 

where in the program. This is really a form of declaration, since the 

procedure, etc., is not executed where it is written. In other words, it is neces- 

sary to have some type of heading which indicates that the following piece 

of program is a procedure, etc.; this heading must also convey the required 

information about the parameters. These parameters are usually referred 

to as dummy arguments or formal parameters since they will be replaced when 

the procedure is actually invoked. This is then normally followed by the 

body of the procedure, subroutine, or function itself. Although the body 

is composed of executable code (together with any necessary declarations), 

it is never executed unless it is invoked from the program itself. 

11.6.7. COMPILER DIRECTIVES 

As mentioned earlier, compiler directives exist for several purposes: 

One is to improve the efficiency of either the compilation process itself or



120 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

the object code that is turned out; another is sheer logical necessity, in the 

sense that the compiler cannot obtain the information any other way; 

a third is to cause action not to take place, as with comment statements 

included in a source program. These directives generally pertain to action 

that the compiler is to take when a certain situation is encountered at com- 

pilation time or to produce code to take care of these situations if they 

exist at execution time. One example of a compiler directive is some kind 

of a flag indicating that a macro is about to be used and must be handled 

separately. Another is an indication that the next part of the source program 

is written in another language. 

III.6.8. OTHERS 

As with the executable statements, there are other types of declarations 

in specific languages, but none are significant enough to justify discussion 

here. 

l.7. STRUCTURE OF LANGUAGE AND COMPILER INTERACTION 

This section attempts to describe certain characteristics of the language 

which relate to its overall structure and its interaction with the compiler. 

Some of these points are not considered to be 100 percent technical and 

were noted in Chapter II; however, they require either restatement or further 

amplification in this particular context. Other factors affecting implementa- 

tion have already been mentioned briefly when they were particularly 

significant. 

IiI.7.1. SELF-MODIFICATION OF PROGRAMS 

Probably the greatest single difference between a program coded in 

either assembly language or machine language, and one coded in a higher 

level language, is the fact that the former usually has the ability to modify 

itself, whereas the latter does not. Thus, in a machine code or assembly 

language, one can normally modify either the operator or the operand and 

thus include in the program the code to change an instruction which used 

to be ADD 509 into one which says SUBTRACT 604. 

There is no higher level language known to me which has this char- 

acteristic. However, a similar effect can sometimes be achieved by having 

the programs look like data to themselves. Only a very few languages permit 

this, LISP being the main one. In my opinion, this is desirable from the 

user’s point of view, although it does sometimes seriously limit the efficiency 

of the compiler that can be written for that particular language.



III.7. STRUCTURE OF LANGUAGE AND COMPILER INTERACTION 121 

II1.7.2. SELF-EXTENSION OF THE LANGUAGE 

Since most languages are never quite as good as their designers intend 

them to be, there is always a desire on the part of the user to extend the 

language in a number of directions. These directions include the definition 

of new terminology in a program at the user’s option, the need to extend 

capabilities—both data types and commands—and the wish to be able to 

abbreviate frequently used program strings. Note that there is a significant 

difference between the mere existence of a subroutine and an actual (although 

temporary because it lasts only for the program involved) extension of the 

language. The latter allows considerable user control over the format of 

what is written, whereas the subroutine does not. Subroutines which provide 

additional facilities (e.g., matrix-handling operations) are not considered 

language extensions if they are invoked through the normal subroutine 

calling mechanism. 

The degree to which a language can be extended within the framework 

of the language itself, without having the compiler modified, is a measure 

of the self-extendability of the language. The most common way of handling 

this is through macros, which can be similar to those used in assembly 

programs. The only languages which attempted to provide any capabilities 

along these lines are COBOL and PL/I, and only the (macro) facility in PL/I 

has been implemented. (There was a DEFINE verb in COBOL for a long time 

but it was never implemented and was finally removed from the language.) 

A very simple type of self-extension occurs in languages which permit the 

user to name and define functions in a source program and use them in 

expressions as if they were system-defined. Most languages used for scien- 

tific problems have this capability. 

Several suggestions for ways to provide macro facilities have been 

proposed but not necessarily implemented; see, e.g., the references at the 

end of the chapter. One of the earliest discussions of this subject was given 

by Mcllroy [ML60].’? 

11.7.3. ABILITY TO WRITE THE COMPILER FOR A LANGUAGE IN THAT 

LANGUAGE 

The concept of judging a language (even partially) by its ability to be 

used for writing its own compiler is one which I feel has been greatly over- 

rated. The writing of a compiler is a particular type of computing appli- 

cation. (See Section IX.2.5.) Some languages are well-designed for that 

  

2 The interest in macros and/or self-extension of higher level languages has grown 

significantly during the time period in which this book was written. The concept is more 

important and further developed than the brief discussion here would seem to indicate.



122 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

particular application, whereas others are not. Of course, it is desirable 

to permit a compiler to be written in the language it is compiling because 

this is an excellent way of testing it. By writing the compiler for a language 

in that language and then passing it through itself, there might be a better 

chance of checking out the compiler than trying any large number of arti- 

ficially constructed programs. However, it seems completely unreasonable 

to expect that a language which is very suitable for writing scientific appli- 

cations or for doing simulation should also be capable of writing a compiler 

for the language. Even if it can be done logically, it may lead to poor object 

code (although this is often the fault of the compiler design). 

If a language can be used to write its own compiler, this is an additional 

bonus, but no language should be criticized for not having that capability 

(unless, of course, that was its avowed purpose). 

Il1.7.4. EFFECT OF LANGUAGE DESIGN ON IMPLEMENTATION EFFICIENCY 

Complaints about a language are really very often complaints about 

the compiler. (This was discussed in more detail in Section II.7.2.) This is 

a two-way street, however, in the sense that the type of design criteria that 

go into the language can have a serious impact on the efficiency of the 

implementation. Thus, it is possible to design a language for which it 1s 

virtually impossible to create an efficient implementation. Conversely, it is 

possible to design a language in such a way as to increase the efficiency of 

the compilation; the characteristics affecting the compilation may be major 

or minor facets of the language itself. 

1. Compile Time Versus Object Time Efficiency 

The decision of whether a compiler is to be most efficient at compilation 

time or to produce optimal object code is one which can usually be made 

technically by the implementer, although it must be made administratively 

by those people responsible for determining the ultimate method of usage. 

In particular, there 1s a major difference between a university (or possibly 

a scientific) installation which expects many small jobs, each to be run 

only once or twice, and an organization concerned with business data 

processing (or even scientific) production runs. Certain features in the lan- 

guage may tend to encourage compile time versus object time efficiency or 

vice versa. Generally speaking, the more special cases, flexibility, and power 

the language has, the less efficient will be the compilation process; however, 

sometimes these are introduced for the express purpose of permitting the 

creation of good object code. 

There is invariably a tradeoff between compilation and object time 

efficiency, simply because it takes time to create efficient object code. In



IlI.7. STRUCTURE OF LANGUAGE AND COMPILER INTERACTION 123 

other words, if the compiler scans the object code produced to eliminate 

redundant instructions, then computer (compilation) time will be needed 

to accomplish this task. 

There do not seem to be any language facilities which can be used to 

make the compilation process more efficient and simultaneously cause 

production of efficient object code. The converse is not true. Specific features 

which provide information to make it possible for a compiler to create 

efficient object code often require additional compilation time. An early 

example of an attempt at this was the FREQUENCY statement in the first 

FORTRAN (see [IB56] in Section IV.3); it was later dropped because it was 

found not to be worth the trouble it cost. In other cases there is no particular 

language feature provided but the compiler attempts to produce very good 

object code from specific parts of the language. The best examples of this 

are storage allocation and lcop control. These obviously require compila- 

tion time. 

2. Generality Versus Restrictions 

As mentioned before, the greater the size, flexibility, and power of the 

language, the harder it will be to compile. From this, one might draw the 

conclusion that it would help the implementation to impose more restric- 

tions. Unfortunately, this does not always work, particularly if the restric- 

tions are imposed on top of some features providing great generality. 

For example, a language that permits names of any length causes certain 

problems in table design; this difficulty is compounded if the language says 

that certain types of names, e.g., statement labels, must be no more than 

six characters long. The generality causes a problem with the storage alloca- 

tion at compile time but the restriction tends to slow down the scanning and 

processing because it involves a special case. A second problem arises from 

this type of situation if the compiler actually checks to make sure that the 

restriction is obeyed. (See Section III.7.5 for a discussion of error checking 

at compilation time.) 

In many situations, restrictions permit more rapid compilation. For 

example, difficulties in scanning individual sequences of characters can be 

greatly reduced by putting restrictions on naming conventions. If a language 

is designed so that a data name can contain only alphabetic characters, 

then the compilation may be much more efficient than if the name can 

contain any characters. Even if one wants to permit numbers as part of 

the data name, then the restriction of saying that the first character must 

be a letter helps the compiler because when it encounters a digit, it knows 

that it should look for a numerical quantity rather than considering this 

as the potential beginning of a data name. 

A restriction on the use of reserved words (see Section III.2.3.3) is



124 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

another facet that improves compiler efficiency in the scanning. The term 

reserved words usually means the concept that a certain number of words in 

the language are fixed and cannot be used for data names or statement labels. 

In some languages there are fixed words but they can also be used for data 

names; this requires a great deal more investigation by the compiler of the 

context in which the word is used. All kinds of variations or further restric- 

tions can be placed on this concept, even going so far as to say that no data 

name can begin with letters which might look like a reserved word. 

3. Specific Features with Significant Effect 

As an example of a minor characteristic of a language which has a 

great impact on compiler efficiency, one can consider the placement of 

declarations. If there is a rule that declarations about a variable must 

precede the first use of the variable, then the compiler might be able to 

generate good code on the first pass. 

The issue of recursion is another one which has a severe effect on the 

efficiency of the implementation, but primarily it affects the object code. 

If procedures are allowed to be recursive but are not required to be defined 

as such, then the compiler is required to turn out code which will provide 

for all procedures to be recursive. This produces inefficient object code for 

those procedures which are not recursive. Thus, the inclusion of a declara- 

tion stating that a procedure or a subroutine is recursive permits the com- 

piler to provide the mechanism only for those particular subroutines rather 

than for all of them. 

4. Storage Allocation Requirements 

For languages with large amounts of data to handle or for any language 

on a small machine, the storage allocation problem is a critical one. For 

this reason, any information which can be given to the compiler is helpful. 

Types of useful information include possible segmentation points, portions 

of the program which can be overlaid, and maximum expected size of 

variable-sized data and arrays. 

5. Possibility for Providing Choice of Tradeoffs 

Some features in a language provide the user directly or indirectly with 

some choice of tradeoff between compile and object time efficiencies. In most 

cases this occurs by default; i.e., if a user does not include some feature 

which improves his object time efficiency, he may (but does not always) 

save compile time. However, a more interesting situation would arise if the 

language contained definite provisions for the user to specify what type of 

efficiency he most desired.



Il1.8. OTHER FEATURES NOT INCLUDED 125 

11.7.5. DEBUGGING AIDS AND ERROR CHECKING 

The line between debugging aids as part of the language and as part 

of the compiler is sometimes unclear. We must also distinguish between 

debugging at compile time and at object time. Some languages include 

statements which assist debugging at object time, such as on error condition 

statements which cause automatic transfers at object time under certain 

circumstances. In other cases the languages provide specific statements 

requesting traces of previously executed statements in order to obtain 

information. These kinds of debugging aids which are specifically inserted 

into the language are rather different from certain debugging aids and error 

checking which may be provided by the compiler itself. For example, a good 

compiler will normally do a great deal of error checking when scanning the 

source program. The simplest and most common type of error, at least in 

a large class of problems, is mismatched parentheses. A good compiler—and 

even in many cases a mediocre compiler—will specify that parentheses are 

mismatched. A good compiler will then attempt to indicate where the 

difficulty 1s most likely to be. Other ways in which a compiler can aid 

debugging are to list statement labels which are never referenced or give cross- 

references of statements which refer to data names. 

There is a difference between debugging aids which exist in the language 

and are primarily for the purpose of handling object time errors and those 

checks which the compiler itself performs primarily to find syntactic (or 

even semantic) errors in the source code. A type of error which may be 

considered either syntactic or semantic is to have a number of subscripts 

associated with a variable which differs from the dimension declaration 

(or its equivalent). Most compilers will detect such errors at compile time 

and provide an error message to this effect. Far fewer compilers will insert 

checks into the object code to see that the maximum value of the subscript 

does not exceed the specified limit. One of the tradeoffs to be decided is 

how many of these object time error checks will be inserted, considering 

the amount of computer time they require. Ideally the user should decide; 

PL/I actually permits him to do so in many cases. 

il.8. OTHER FEATURES NOT INCLUDED 

Although this chapter attempts to list all the significant technical character- 

istics of programming languages, it cannot possibly list everything. Any 

particular features a certain language has that have not fallen in the cate- 

gories above will be discussed under the particular language description.



126 TECHNICAL CHARACTERISTICS OF PROGRAMMING LANGUAGES 

REFERENCES 

1.4 .—111.6. 

[AH66] 

[BG64] 

[EV66] 

[IB56] 

[IB66b] 

[NA63] 

[PR65] 

[QM67] 

[RA66] 

[RA67] 

[RR60] 

[SH62] 

[SQ6]] 

[WL65] 

[LY M67] 

Abrahams, P. W., “A Final Solution to the Dangling else of ALGOL 
60 and Related Languages”, Comm. ACM, Vol. 9, No. 9 (Sept., 1966), 
pp. 679-82. 

Bergin, G. P., “Method of Control for Re-entrant Programs”, Proc. 
FICC, Vol. 26 (1964), pp. 45-55. 

Evans, T. G. and Darley, D. L., “On-Line Debugging Techniques: A 
Survey”, Proc. FJCC, Vol. 29 (1966), pp. 37-50. 

The Fortran Automatic Coding System for the IBM 704 EDPM (Pro- 

grammer’s Reference Manual), IBM Corp., 32-7026, New York (Oct., 
1956). 

IBM System/360 Operating System: PL/I Language Specifications, IBM 
Corp., C28-6571-4, Data Processing Division, White Plains, N.Y. 
(Dec., 1966). 

Naur, P. (ed.), “Revised Report on the Algorithmic Language ALGOL 
60”, Comm. ACM, Vol. 6, No. 1 (Jan., 1963), pp. 1-17. (Also in [RO67].) 

Perlis, A. J., “Procedural Languages”, Information System Sciences: 
Proceedings of the Second Congress. Spartan Books, Washington, D.C., 
1965, pp. 189-210. 

Standish, T. A., A Data Definition Facility for Programming Languages. 
Ph. D. Thesis, Dept. of Computer Science, Carnegie Inst. Tech. (May, 

1967). 

Raphael, B., “The Structure of Programming Languages”, Comm. 

ACM, Vol. 9, No. 2 (Feb., 1966), pp. 67-71. 

Raphael, B. et al., “A Brief Survey of Computer Languages for Sym- 
bolic and Algebraic Manipulation”, Symbol Manipulation Languages 
and Techniques, Proceedings of the IFIP Working Conference on Symbol 
Manipulation Languages (D.G. Bobrow, ed.). North-Holland Publishing 

Co., Amsterdam, 1968, pp. 1-54. 

MATH-MATIC (Remington Rand Automatic Programming System), 

Remington Rand Univac, U-1568 Rev. 1 (1960). 

Shaw, C. J., An Outline/Questionnaire for Describing and Evaluating 
Procedure-Oriented Programming Languages and their Compilers, 
System Development Corp., FN-6821/000/00, Santa Monica, Calif. 

(Aug., 1962). 

Strachey, C. and Wilkes, M. V., “Some Proposals for Improving the 
Efficiency of ALGOL 60”, Comm. ACM, Vol. 4, No. 11 (Nov., 1961), 

pp. 488-92. 

Weil, R. L., Jr., “Testing the Understanding of the Difference Between 

Call by Name and Call by Value in ALGOL 60”, Comm. ACM, Vol. 8, 

No. 6 (June, 1965), p. 378. 

Mealy, G. H., “Another Look at Data”, Proc. FJCC, Vol. 31 (1967), 
pp. 525-34.



REFERENCES 127 

1.7. STRUCTURE OF LANGUAGE AND COMPILER INTERACTION 

[CH66] Cheatham, T. E., Jr., “The Introduction of Definitional Facilities into 
Higher Level Programming Languages”, Proc. FJCC, Vol. 29 (1966), 
pp. 623-37. 

[GA67] Galler, B. A. and Perlis, A. J., “A Proposal for Definitions in ALGOL”, 
Comm. ACM, Vol. 10, No. 4 (Apr., 1967), pp. 204-19. 

[LR67] Leroy, H., “A System of Macro-Generation for ALGOL”, Proc. SJCC, 
Vol. 30 (1967), pp. 663-69. 

[LV66] Leavenworth, B. M., “Syntax Macros and Extended Translation”, 

Comm. ACM, Vol. 9, No. 11 (Nov., 1966), pp. 790-93. 

[ML60] Mcllroy, M. D., “Macro Instruction Extensions of Compiler Languages”, 
Comm. ACM, Vol. 3, No. 4 (Apr., 1960), pp. 214-20. 

[UH67] Brown, P. J., “The ML/I Macro Processor”, Comm. ACM, Vol. 10, 

No. 10 (Oct., 1967), pp. 618-23. 

[WA67] Waite, W. M., “A Language-Independent Macro Processor”, Comm. 
ACM, Vol. 10, No. 7 (July, 1967), pp. 433-40. 

[ZX67] Cohen, L. J.. “COMMEN: A New Approach to Programming Lan- 
guages’, Proc. SJCC, Vol. 30 (1967), pp. 671-76.



LANGUAGES FOR 

NUMERICAL SCIENTIFIC PROBLEMS 

  

IV 

  

IV.1. SCOPE OF CHAPTER 

The scope of this chapter is almost self-evident. All the languages noted 

here had their objectives either directly as, or deeply rooted in, the solution 

of scientific problems by numerical techniques, using a digital computer. 

These problems tended to be characterized by small requirements for 

input/output and vast amounts of computation. Matrix inversion or the 

evaluation of mathematical formulas for regularly changing sets of values 

of the variables are prime examples of this. Such problems contrast with 

the data processing problems which tend to have much input/output but 

relatively little calculation. This distinction has become considerably less 

clear over the past years, but it still has some validity and certainly did 

at the time these languages were developed. 

The availability of computers, and reasonable languages to use on them, 

helped make a major field out of numerical analysis. Prior to the advent 

of computers, relatively few people were familiar with the subject; with 

the existence of proper equipment, and the apparent inability of such equip- 

ment to handle problems analytically, numerical analysis techniques devel- 

oped and flourished, virtually causing analytic solutions to disappear from 

practical working situations. Attempts to reverse this trend are described 

in Chapter VII. 

IV.2. LANGUAGES OF HISTORICAL INTEREST ONLY 

It is quite natural that most of the early work in language development, 
both in quantity and significant quality, was concerned with handling 

numerical scientific problems. The relative standardization and simplicity 

128



IV.2.1.1. SHORT CODE 129 

of mathematical notation—particularly in the writing of expressions—made 

it very natural for people to try to input this directly into a computer. 

The first two very early systems—namely SHORT CODE (UNIVAC) and 

Speedcoding (IBM 701)—did not make any attempts at this. It was Laning 

and Zierler at M.I.T. (on Whirlwind) who seem to have developed the first 

system in the United States which would allow a fairly natural mathematical 

expression as direct input to a computer. The work of Rutishauser in Switzer- 

land had a similar motivation and is discussed below. The A-2 and A-3 

systems provided scientific facilities on a data processing machine (UNIVAC), 

while PRINT did the same on the 705. The BACAIC system on the 701 was 

another—although less effective—early attempt to permit some type of 

mathematical notation as computer input. 

These very early and primitive systems were followed by a number of 

others which were more widely used but did not survive, either for technical 

inadequacies or because of the exigencies of the marketplace. However, 

each contributed something to either the need at the time or to the tech- 

nology, so they are worth discussing. 

Since this book is defined to cover basically only developments in the 

United States, there is no listing of the early work which was done in 

Europe. Anything purporting to be a history of programming languages, 

however, would be incomplete if it did not at least mention the early work 

of Heinz Rutishauser of the Swiss Federal Institute of Technology, Zurich, 

Switzerland. As early as 1952, he described methods for allowing the input 

of mathematical expressions in a fairly natural form to a computer. Further- 

more, Rutishauser described a system for translating them, i.e., a compiler, 

as contrasted with the interpretive system of Laning and Zierler. The 

early compiling work done in the United States by Dr. Grace Hopper 

initially involved very artificial pseudocodes rather than mathematical 

notation. In addition to permitting mathematical expressions as input, 

Rutishauser also allowed loop-control statements which look very 

much like the ones which eventually became commonly used, e.g., 

for k = 1 (1) 10. 

IV.2.1. VERY EARLY SYSTEMS 

1. SHORT CODE 

The earliest document that I have seen which purports to describe 

a higher-level language (relative to that point in time) was the October, 

1952 description of the SHORT CODE for UNIVAC [RR52] suggested by 

Dr. John Mauchly in 1949 and programmed by R. Logan, W. Schmitt, 

and A. Tonik. It was originally coded for the BINAC by W. Schmitt. In



130 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

[RR52] it is stated (in the preface) that Dr. Mauchly’s “suggestion was, 

in effect, to have a program which would accept algebraic equations as 

originally written... ”. While SHORT CODE did not achieve that goal (nor 

has any other system except those discussed in Section IV. 7), it was a remark- 

able objective for that point in time. 

The basic principle involved was to use a 2-character code to designate 

either an operation or a variable and to use six of these codes at a time 

(because the UNIVAC had a 12-character word). Thus the problem of 

evaluating the equation A = B + C was written as 

00 SO 03 $1 07 S2 

where SO, $1, $2 represent the quantities A, B, C, respectively, and 03 and 07 

stand for the operations of equality and addition, respectively; the 00 was 

the line number. Admittedly this looks primitive by today’s standards, but 

then so does the hardware of 1952! 

There were about 30 operations provided, including such things as 

floating point arithmetic operations, bracket indicators for evaluation of 

expressions, finding integral roots, tests of size, mathematical functions, 

and input/output operations. The system was interpretive. 

The value of this system is in its objective, not in its execution, although 

the programmed floating point was an enormous help to the user. 

2. Speedcoding 

Work on the Speedcoding System for the IBM 701 was started in 

January, 1953 under the supervision of John Backus and the general direc- 

tion of John Sheldon. Those who worked on the project were H. Herrick, 

D. Quarles, S. Skillman, J. Pulos, and L. Siegel. The first official manual 

[IB53] was dated September, 1953. 

The basic principle of Speedcoding was to create two sets of operations, 

designated OP/ and OP2; the first category contained three addresses, 

while the second contained only one. These operations were not part of the 

hardware, and were selected for their utility to the mathematician. The card 

format permitted one of each operation type, as well as a location field, in 

a single card. Thus 

523 SUBAB 100 200 300 TRPL 500 

shows an instruction in location 523 which subtracts the absolute value of 

the contents of 200 from the value in 100 and puts the result in 300; then 

it tests to find the sign of the result in 300 and transfers to 500 if it is positive. 
There were about 45 OP! operations, including 10 arithmetic operations,



IV.2.1.3. LANING AND ZIERLER SYSTEM 131 

5 mathematical functions, and about 35 input/output instructions. (The 

large number of the latter is necessary because each tape number required 

a separate instruction.) The arithmetic was done in programmed floating 

point. 

The OP2 operations included testing, address modification, and control 

transfer instructions and, in particular, programmed index registers. 

The system was interpretive. 

3. Laning and Zierler System 

An interpretive algebraic coding system was developed by J. H. Laning 

and W. Zierler in 1952 and 1953 at M.I.T. on the Whirlwind Computer 

[LA54]. It appears to be the first system in the United States to permit the 

user to write his mathematical expressions in a notation resembling normal 

format. Variables were represented by single letters, and thus multiplication 

could be indicated by juxtaposition rather than a specific operator. Paper 

tape on a Flexowriter was used, and upper-case numbers appeared as ex- 

ponents, thus making it possible to write a = b?. The user wrote his assign- 

ment statements in a very natural form, e.g., 

=0.0053(a—y)/2ay, 

y=5y, 

Such statements could be numbered. 

Normal precedence rules were used in evaluating the expression, so 

that a + be was handled correctly as a + (bc). Both numerical and sym- 

bolic subscripts were permitted; the former were denoted by a vertical bar 

(which existed on the Flexowriter), followed by a superscript number; e.g., 

u|? represented u,. Symbolic subscripts used the vertical bar and the letter; 

e.g., v|j represented v,;. Floating point arithmetic was programmed. 

Both unconditional and conditional control transfers were permitted. 

The former is designated by SP n where n is the equation number. Writing 

CP ncaused a transfer to nif the previously computed quantity was negative. 

A switch control could be used by writing SP x where x represents a vari- 

able; control was transferred to the equation whose number was the value 

of x. Closed subroutines could be executed by writing SR n. 

Although there were no loop control statements originally, they 

apparently were added later. 

Loops could be controlled either by sequences of values or by fixed 
increments; e.g., 

g|N=1,1.2,1.4,1.6,1.8,2,3,4,5, 

g|N=1(.2)2(1)5,



132 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

are both equivalent. The flexibility of the second form has not yet appeared 

in any significant programming language since then. 

Over 20 common mathematical functions were available in a library, 

and they were invoked by writing F with a superscript identification number. 

A PRINT statement and a STOP performed the obvious functions. 

The rules of arithmetic, conversion, etc., were controlled by the CS 

system in use on Whirlwind at the time (see Adams and Laning [AD54)). 

There was also a routine to solve differential equations. 

This is truly an impressive system and, in my opinion, probably the 

most significant of all the early work. 

4. A-2 and A-3 

Although Remington Rand had the earliest automatic coding systems 

which were really compilers (namely A-0 and A-1), the first one to really 

receive extensive usage (starting in 1955) was A-2 [RR55]. It was developed 

by F. M. Delaney, M. H. Harper, M. Koss, J. E. McGarvey, and R. K. 

Ridgeway under the direction of Dr. Grace Hopper. 

A-2 was a three-address code, specifically tailored to the 12-character 

word of UNIVAC. Thus it provided such instructions as 

ADD ABC 

AAL xl del x lim x 

1CN # opn # 

2CN = opn # 

where the first instruction meant add the values of the variables A and B and 

call the result C; the second meant increase x1 by del x and if the result was 

less than lim x, then go to the address (i.e., opn #) designated in the 1CN 

line; if it equaled lim x, then go to the 2CN address. The arithmetic was done 

in programmed floating point. 

A-3 (also called ARITH-MATIC) was an improvement of, but not 

completely compatible with, A-2. It also provided a number of additional 

facilities which were not in A-2. However, A-3 never received much usage 

as such because it was made available at the same time as the AT-3 (later 

called MATH-MATIC) system, which was the Remington Rand conceptual 

equivalent of FORTRAN. (See Section IV.2.2.1.) The MATH-MATIC 

source program was translated to A-3 as an intermediate language, and 

this was then in turn translated to machine code. However, for those opera- 

tions which could not conveniently be performed using MATH-MATIC, 

the user actually could write A-3 code in his MATH-MATIC program and 

have the linkage and translation performed correctly and automatically.



IV.2.1.5. BACAIC 133 

5. BACAIC 

An interesting system called the Boeing Airplane Company Algebraic 

Interpretive Coding System (BACAIC) for the IBM 701 is described in 

a report by M. Grems and R. Porter [GR55] dated July, 1955. It permitted 

the writing of mathematical expressions in a fairly natural notation, except 

that no constants could be included; they had to be replaced by something 

of the form Ki, for ij an integer. Multiplication was indicated by a centered 

dot, and an assignment statement by an asterisk at the right. Thus, 

B-+B— K4*A*Ce2xD 

caused the assignment to the variable D of the value of the expression 

B2 — K4eAeC. A complete list of the symbols for writing expressions 1s 

given in Figure IV-1. Note that a modified form of square brackets rather 

than parentheses was available on their key punch machine. It was not 

only permitted but required to number expressions and refer to them by 

  

Symbols How Used 

A thru Z A + B 

Explanation 

Refer to all parameters by the letters A thru Z, (except 

K). 
K1 thru K99 KI + 8 Refer to all constants by a K-number. 

1 thru 50 1+ B Refer to the value (computed or estimated) of an 
expression by its expression number. An arbitrary 

limit of the number of expressions is 50. 

[ or $ [A + B Front bracket for a term. 
Jor, A + B] Back bracket for a term. 

+ X+ Y Addition. 
_- Xx — Y Subtraction. 
. xXx-yY Multiplication. 

/ x /Y Division. 
SIN SIN A Sine of angle A. A is in radians. 

cos COS A Cosine of angle A. A is in radians. 

ASN ASN A Arcsine A, where the angle will be in radians. 

ACN ACN A Arccosine A, where the angle will be in radians. 

EXP EXP X (e)*, exponential to the X. 

LOG LOG X The natural logarithm of X. 
PWR X PWR N (X)%, the quantity X raised to the power N. 

SRT SRT X / X, the square root of the quantity x. 
SQR SQR [X + Y] The quantity following this symbol is squared. 

* A—-Bx* Y A substitution symbol. Compute the quantity on the 

left side of the symbol *, and substitute it for the 

constant or expression number on the right side. 
  

Figure IV-1. List of BACAIC facilities. 
Source: Grems and Porter [GRS55], p. 6.



134 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

that number in other statements. Thus WHN A GRT B USE 6 meant that 

if the value of A was greater than or equal to the value of B, then expression 

number 6 was computed next. Otherwise, the expression that followed was 

computed. 

Logically unnecessary parentheses could be excluded; thus the expres- 

sion A + B « C was handled correctly. They even allowed multiple assign- 

ment statements, such as 

At+tBxSx«*tTx*U 

which meant assign the value of A + B to §S, T, and U. This particular facility 

did not appear again in any major language until ALGOL 60. 

6. PRINT 

PRINT, which stands for PRe-edited JNTerpretive system, was designed 

to meet the scientific computing needs of those people with an IBM 705. 

It was an interpretive system, which simulated floating point instructions. 

Coding was started at IBM in February, 1956, and the first customer tried 

the system in July, 1956; thus it was actually completed before FORTRAN. 

PRINT provided a series of operation codes with variable fields, such 

as RPT n +—i +—j +—k which performed the next instruction n times, 

indexing its first, second, and third address by i, j, and k word lengths, 

respectively. The general form of the command was 

OpCode Variable Field 

where the variable field contained one to four variables, depending on the 

Op Code. The operations provided included the arithmetic ones, a few 

mathematical functions, testing, and input/output commands; these could 

all be indexed. Operations which could not be indexed included tests, index 

commands, and some input/output. 

The main reason for including any mention of PRINT is the fact that 

it was the other significant attempt (besides A-2 and A-3) to provide facilities 

to handle scientific problems on a machine designed for use in data processing 

applications. 

[V.2.2. MORE WIDELY USED SYSTEMS 

For differing reasons, the systems discussed in this section received 

much wider use than those previously mentioned. Although none of them 

survived, they all helped the development of programming languages.



IV.2.2.1. MATH-MATIC (AT-3) 135 

1. MATH-MATIC (AT-3) 

Because of the logical sequence of material in the chapter, the informa- 

tion on the MATH-MATIC system will actually precede that of 

FORTRAN. However, a number of the comments to be made about 

MATH-MATIC will assume some knowledge of FORTRAN. Therefore the 

reader who is completely unacquainted with FORTRAN is advised to read 
Section IV.3 before trying to understand this particular system. 

The work on MATH-MATIC, which was originally known as AT-3, 

was started around 1955 by a group at Remington Rand UNIVAC in the 

department under Dr. Grace Hopper. A preliminary manual for the MATH- 

MATIC system (Ash et al. [AS57]) was available in April, 1957. It was 

prepared by a group under the technical direction of C. Katz, with key 

participants being R. Ash, E. Broadwin, V. DellaValle, M. Greene, A. Jenny 

and L. Yu. The objective of this system was exactly the same as that of 

FORTRAN, namely to reduce the time and effort required to solve numer- 

ical scientific problems. This system was designed for use on the UNIVAC 

I, whose two major characteristics that affect this system are that it had 

no floating point arithmetic and only a 1000-word memory. It will be shown 

that these played a major role in the development of the system. 

A list of the acceptable statements is given in Fig. IV-2. There were 

a number of the elementary mathematical functions available. A modified 

Unityper (which was the device used to prepare magnetic tape for input) 

had a keyboard which provided numerical superscripts which could be used 

as exponents. However, variable exponents had to be designated using the 

POW operator. 

Data names could be subscripted, and the subscript could involve the 

four basic arithmetic operations; the limitation on the number of subscripts 

was dependent on the size of the UNIVAC word: The subscripted variable 

name, including the parentheses and the subscripts themselves, could not 

exceed 12 characters. Since UNIVAC was a fixed point machine, the floating 

point arithmetic had to be done by subroutines, and each number required 

two words of memory. (This obviously tended to have a catastrophic effect 

on an already small memory.) 

Like any other system, this survived an evolutionary process so that 

some of the items shown in Fig. IV-2 were not in the original version. 

Even the early package was surprisingly strong however, and contained 

a number of features which did not find their way into other languages 

until considerably later. Among the more interesting or unusual commands 

in MATH-MATIC were the following: The EXECUTE statement; the flexi- 

bility of the JF statement, since any number of IF clauses could be included; 

the facility for having the range of the loop specified by the loop control 

statement itself, and the ability to have several variables varying within



CONTROL SENTENCES 

(n) CONTAIN X(m,n) . 

(n) CONTAIN X(m,n,p) . 

(n) EXECUTE SENTENCE F . 

(n) EXECUTE SENTENCES F THRU L . 

(n) IF X > Y JUMP TO SENTENCE F . 

(n) iF X < Y JUMP TO SENTENCE F . 

(n) IF X = Y JUMP TO SENTENCE F . 

(n) IF X > = Y JUMP TO SENTENCE F IF V < W JUMP TO SENTENCE G . 

(n) IF X = < Y JUMP TO SENTENCE F IF V = W JUMP 

TO SENTENCE G IF P > Q@ JUMP TO SENTENCE H . 

(n) IGNORE . 

(n} JUMP TO SENTENCE F . 

(n) PRINTOUT ABC...N. 

(n) SET TO number A BC. 

(n) STOP . 

(n) TYPE-IN ABC...N. 

(n) VARY X Xo (Xi) Xi SENTENCES F THRU L . 

(n) VARY X Xo (Xi) Xt Y Yo (Yi) Ye SENTENCES F THRU L . 

(n) VARY X Xo (Xi) Xt Y Yo (Yi) Ye Z Zo (Zi) Zt SENTENCES F THRU L . 

(n) VARY X Xp X; X2... . Xn SENTENCES F THRU L . 

(n) VARY X Y X Xo Yo Zo Xi Yr Zi X2 Y2 Z2.... Xn Yn Zn SENTENCES F THRU L . 

INPUT/OUTPUT SENTENCES 

(n) WRITE-LABEL X ... X FOR SENTENCE F . 

(n) TITLE FOR SENTENCE FX... X. 
(n) TITLE FOR SENTENCE FX... X HEADINGS A...AB...BC...C. 
(n) HEADINGS FOR SENTENCE FA...AB...8C...C. 

CHECK-LABEL X .. . X FOR SENTENCE F . 
CHECK-COUNT SENTENCE F IF EXCEED X .. . X JUMP TO SENTENCE L . 

(n) READ ABC. 
(n) READ-ITEM X(m,p) LABEL X... X. 
(n) READ A B C IF SENTINEL RESET AND JUMP TO SENTENCE F LABEL X...X. 
(n) READ A B C IF SENTINEL REWIND AND JUMP TO SENTENCE F LABEL X... X. 

PRE-READ ABC. 
READ-ARRAY X(I,J) . 

(n) WRITE A BC. 
(n) WRITE-ITEM X(m,n,p) . 
(n) WRITE EDIT X Y Z. 
(n) WRITE-ITEM EDIT X(m,p) . 
(n) WRITE CONVERT TO n DECIMAL XY Z. 
(n) WRITE-ITEM CONVERT TO n DECIMALS A(m,p) . 
(n) WRITE CONVERT XY Z. 

WRITE-ARRAY CONVERT TO n DECIMALS X(m,n,p) . 
(n) CLOSE-INPUT SENTENCE F . 
(n) CLOSE-INPUT AND REWIND SENTENCE F . 

CLOSE-OUTPUT SENTENCE F . 

e
a
l
 

(n 

—
 (n 

—
 (n 

—
 (n 

a
 (n 

—
 (n 

Figure IV-2. MATH-MATIC commands. The assignment statement and 

mathematical operators are not included in the figure. Note that the Input/ 

Output sentences include only commands involving tape. Other I/O com- 

mands are included under control sentences. The (n) represents the statement 

number. 

Source: [RR60], extracts from pp. 16-34. 

136



IV.2.2.2. UNICODE 137 

the loop control statement. All these facilities were later picked up in one 

way or another in either COBOL or ALGOL. 

There are two unusual features of MATH-MATIC which are very 

important but which have not really been supported in any major language 

since then. The first is the ability to handle lower level languages in line. 

MATH-MATIC was able to accept and handle statements written in both 

UNIVAC machine code (commonly called C-10) and also in A-3, which 

was a three-address intermediate language with its own compiler. (See 

Section IV.2.1.4). The user could use the same variables in all three languages 

(subject to some reasonable conventions) simply by listing these variable 

names in a dictionary. 

In my opinion, the most interesting feature of MATH-MATIC was 

its implementation of automatic segmentation; this is a facility that appears 

not to have been implemented since then, although a great many people have 

talked about it and made claims that they were trying to do it but say they 

have been prevented because of the difficulty. The MATH-MATIC system 

provided completely automatic segmentation, in the sense that any object 

program which was too large to fit in one memory load would automatically 

have inserted into the object code (by the compiler) the necessary control 

transfers and input/output statements to reload memory as many times 

as necessary. Thus the compiler created an object program which brought 

into memory that part of the program which was to be executed next. This 

in itself is not very difficult to do, but it is naturally quite inefficient. The 

MATH-MATIC system went still further, by examining the code for loops 

and attempting to put them into a single segment. Thus, if the normal 

segmentation caused part of a loop to be in one memory segment and 

part in another, the compiler would create a shorter segment preceding 

the loop and put the loop all in one segment. Obviously if the number 

of statements within a loop could not fit into one memory load, the 

compiler could not do much about it; but in that case it looked to see if 

there was a subloop within the larger one and, if so, it would put that into 

a single memory segment. 

It is interesting to speculate whether if this system had been implemented 

on a machine with fewer limitations than UNIVAC or with wider market 

acceptance such as the IBM 704 or 705, it would not have become the major 

language that FORTRAN became. 

2. UNICODE 

The UNICODE system was developed at Remington Rand UNIVAC 

around 1957-1958 for the 1103A and 1105. In many ways it is a hybrid 

language, falling somewhere between MATH-MATIC and FORTRAN. 

It tends to look very much like MATH-MATIC because it was obviously 

to Remington Rand’s advantage to have their two scientific languages be 

the same; on the other hand, the 1103A and the 1105 were obviously machines



138 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

much better suited to the solution of scientific problems than the UNIVAC 

was. In addition, from a timing point of view, UNICODE was able to pick 

up some of the facilities ofp FORTRAN which are of value. A list of the allow- 

able statements is shown in Fig, IV-3. 

  

COMPUTE X . 

X=A. 

VARY X P(Q)R SENTENCES N THRU M THEN JUMP TO K . 

VARY X P(Q)R SENTENCE N . 

VARY X P(Q)R WITH Y S(T)U SENTENCES N THRU M . 

JUMP TO SENTENCE K . 

IF X=Y JUMP TO SENTENCE K . 

IF X NOT=Y JUMP TO SENTENCE K . 

IF X<Y JUMP TO SENTENCE K . 

IF X>Y JUMP TO SENTENCE K, IF X<=Y JUMP TO SENTENCE M . 

IF X<Y JUMP TO SENTENCE K, IF X=Y JUMP TO SENTENCE M, 

IF X>Y JUMP TO SENTENCE N . 

IF X>=Y JUMP TO SENTENCE K . 

RESUME K . 

LIST X(I,J), TAPE L, ((Title)) . 

LIST F(X,Y,Z,T), X, Y, Z, T, TAPE L, ((Title)), (Column Heading), 

(Col. Hdg), (Col. Hdg), (Col. Hdg), (Col. Hdg) . 

TYPE X(I,J), Y, ---, F(X), Z . 

READ A. 

READ A, IF END OF DATA, JUMP TO SENTENCE K . 

STOP . 

END OF TAPE . 

DIMENSION X(- -- -), Y(- oe oe -), “7 Z(- re -) e 

  

Figure IV-3. List of UNICODE instructions. The assignment statement and 

mathematical operators are not included in the figure. 

Source: [RR59], p. 60 (slightly modified). 

One of the concepts from FORTRAN that UNICODE adopted was 

that variables beginning with the letters |, J, K, L, or M were fixed point and 

all others were floating point. They could have up to four subscripts. In both 

UNICODE and MATH-MATIC it was possible to have a numerical super- 

script because the modified Unityper allowed them. However, variable 

exponents had to be designated by the operator POW. Similarly, the modified 

Unityper allowed the relational symbols >, <, and =. 

Because of its somewhat hybrid nature, UNICODE cannot be said to 

have contributed anything significant to the improvement of scientific 

languages since it introduced no new concepts of its own.



IV.2.2.3. IT, FORTRANSIT, AND GAT 139 

3. IT, FORTRANSIT, and GAT 

The IT (/nternal Translator) system was developed for the IBM 650 

by A. J. Perlis, J. W. Smith, and H. V. Zoeren, based on a version developed 

for the Datatron by these people and M. Koschman, J. Chipps, and S. Orgel 

at Purdue University. The system is described by Perlis et al. [PR57] and 

[PR57a]. IT was designed primarily to handle numerical scientific problems. 

It had two enormous shortcomings: One was the hardware language, which 

was forced on the designers by the 650, and the other was the scanning 

technique used, which forced unnatural (and essentially incorrect) evaluation 

of mathematical expressions. In spite of these difficulties, however, IT was 

a significant step in compiler development. Most importantly, IT showed 

that an algebraic language could be implemented on a small machine (2000 

words) with a small effort; it required only about two man-years to develop. 

This language was the forerunner of several others (e.g., RUNCIBLE, 

GATE, CORREGATE, and GAT which is discussed later) which had 

more reasonable hardware and used better compiling techniques. Thus 

a major contribution of IT was to inspire some aspects of compiler research 

at Case Institute of Technology and the University of Michigan. In terms of 

other work being done at that time, it 1s worth contrasting the notation 

for IT with that used for MATH-MATIC (see Section IV.2.2.1), which was 

far more natural and also ran on a machine with limited storage (originally 

UNIVAC I, with 1000 words). However, MATH-MATIC had the advantage 

of a reasonable character set and magnetic tapes for external storage, thus 

placing it in the FORTRAN category. 

In current terminology, the reference language consisted of the digits 

and letters, punctuation characters and operators, and some other symbols; 

the hardware representation is the single letter shown in the right-hand 

column: 

Symbol Name Representation 

( Left parenthesis 
) Right parenthesis 

Decimal point 

Substitution 

Relational equality 

Greater than 

Greater than or equal 

Addition 

Subtraction 

Multiplication 

Division 
General exponentiation 

Comma 

Quotes 

Type 

Finish 

x
I
l
+
V
V
E
T
:
 

x 
o
N
 

o o 

N
A
O
A
V
O
X
E
N
E
 

K
C
N
 

A
T
H



140 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

Floating point variables were represented by Yi...In, which means 

the subscripted variable Yiii...n, e.g., Y3, Y147, YU26. The letter C could 

be used in place of Y for floating point variables, thus giving the programmer 

two mnemonic classes of variables. Fixed point variables were represented 

by Ill...In, e.g., 13, 126. These variables were used primarily as indices. 

Limited subscripting and mixed mode arithmetic were permitted. 

Subroutines were considered operands and_ represented as 

"'n E, vl, v2, ..., vj’ which means the subroutine number n which is a 

function of the variables v7, v2,..., vj, ¢.g., ''21E, ''42E, Yl + Y2""' would 

represent logio(sin(Y1+Y2)) if subroutines 21 and 42 represented the loga- 
rithm and sine routines, respectively. 

Each statement must be numbered using an integer less than 626 (the 

reason for this particular value is unknown to me), but the execution se- 

quence is determined by the physical ordering and not by these numbers. 

Statement types allowed included assignment; unconditional control 

transfers, where the address could be assigned or computed; conditional 

transfers involving relations between operands but not expressions (i.e., 

parentheses around all pairs were required), e.g., the statement numbered k 

k: G13 IF (Yl + Y2)=9 

would cause the statement with the identifier value of I3 to be executed if 

Y1 + Y2 = 9. But, 

k: G13 IF Yl + Y2 = 9 

is illegal. Additional statements included a halt, an input statement 

(READ), and an output statement of the form 

k: Tv] Tv2 Tv3 T v4 

which has the effect of punching out a single card containing the names and 

current values of the (up to four) variables. A conditional output statement 

was provided. 

Loop control was written as 

k: j, vl, v2, v3, v4 

where the range was down through statement j, with the parameter v1 

varying from v2 to v4 in increments of v3. A subroutine call was accomplished 

by writing 

k: "'nE, ... 7 

The compilation technique used involved a right to left scan with no



IV.2.2.3. IT, FORTRANSIT, AND GAT 141 

hierarchy of operators, except for parentheses. Thus the expression 

Y1 x Y2 + Y3 was translated as Yl x (Y2+Y3). 
The greatest difficulty with IT was that each nonalphanumeric character 

was represented as a single letter, as shown above. This caused such com- 

pletely unreadable programs as 

1 READ F 

2 Y2 Z OJ F 

3 AK 11K 11K MIK IK F 

4 Y2 Z Cll YI X Y2 F 

5 H FF 

which is to evaluate the polynomial 

10 

y= a,x' 

i=0 

whose actual reference language version is 

1: READ 

2: Y2<- 0 

3: 4, 11, 11, —1, 1, 

4: Y2 — Cll + Yl X Y2 

5: H 

It has always been my contention that, from the user’s viewpoint, the diffi- 

culties of the hardware representation completely outweighed any advan- 

tages gained by the fundamental concepts in the language, which were 

quite reasonable considering the machine involved and the year in which 

the language was developed. On the other hand, IT was an early example 

of the implementation of a programming language for scientific problems 

on a small machine, and a number of students and scientists at the cited 

universities made effective use of it. (Although the developers naturally 

claim otherwise, it is not obvious to me that these same users would not 

have had equivalent success with the 650 SOAP (Symbolic Optimum Assem- 

bly Program).) 

The FORTRANSIT system was developed (apparently) to have the 

best of both worlds, namely FORTRAN and IT. FORTRANSIT was 

merely a very simple subset of FORTRAN which the user could write; 

this was translated into IT, which in turn was translated to the SOAP



142 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

assembler on the 650, and then to machine code. The FORTRAN statements 

acceptable to FORTRANSIT were 

a=b (arithmetic statement) 

GO TO n 

GO TO (m, m2, ..., m3), i 

IF (a) m, na, n3 

PAUSE 

STOP 

DO ni = m, m2 

DO ni = mi, m2, m3 

CONTINUE 

READ fn, list 

PUNCH nn, list 

DIMENSION V, V, V, ... 

Certain restrictions and extensions of FORTRAN were imposed and 

permitted (respectively). For example, names could be only five characters 

instead of six and there were no built-in functions. On the other hand, 

mixed mode expressions were permitted, with a note of caution that they 

would be evaluated in floating point and would be incompatible for FOR- 

TRAN on the 704. 

GAT was a system developed at the University of Michigan by R. 

Graham and B. Arden, who described it in [GMO0]. GAT was based 

strongly on IT, but it managed to overcome the strongest disadvantage of 

the latter by having a 650 which permitted additional characters rather than 

just letters and digits. It used a different implementation technique than 

IT did, so arithmetic expressions were evaluated normally. Many of these 

techniques were used in the development of MAD (see Section IV.5.2). 

Some of the features which were put into GAT and which were not 

fundamentally part of IT were the ability to handle alphanumeric strings 

of five or less letters by enclosing them within $ delimiters, additional letters 

used for fixed and floating point variables, correct mathematical handling



IV.3. FORTRAN 143 

of arithmetic expressions which were not parenthesized, DIMENSION state- 

ment, and use of function calls as operands within an expression. 

GAT was also implemented for the 1105 and used at the University 

of North Carolina. 

Extensions of GAT, called GATE and CORREGATE, were developed. 

4. ALGOL 58 

Although by now ALGOL 58 is a “language of historical interest only”, 

its historical and technical development played such a major role in the 

creation of ALGOL 60 that it has been discussed within the general ALGOL 

description. See Section IV.4.1.1. 

IV.3 FORTRAN 

IV.3.1. History OF FORTRAN DEVELOPMENT 

The history of the development of FORTRAN is almost equivalent to, 

or certainly parallels, the overall development of programming. It is not 

my intention to give a complete description of either; hence this section 

will describe only the main highlights of FORTRAN development. 

The earliest significant document that seems to exist 1s one marked 

“PRELIMINARY REPORT, Specifications for the IBM Mathematical 

FORmula TRANslating System, FORTRAN”, dated November 10, 1954 

and issued by the Programming Research Group, Applied Science Division, 

of IBM. The first sentence of this report states “The IBM Mathematical 

Formula Translating System or briefly, FORTRAN, will comprise a large 

set of programs to enable the IBM 704 to accept a concise formulation of a 

problem in terms of a mathematical notation and to produce automatically 

a high-speed 704 program for the solution of the problem.” It is interesting 

to note that the authors (who are not identified in the document) felt a need 

to justify such a development. They devoted several pages to a discussion 

of the advantages of such a system. They cited primarily the virtual elimina- 

tion of coding and debugging, reduction in elapsed time, doubling of machine 

output, and the feasibility of investigating mathematical models. 

The first manual for FORTRAN was the reference manual [IB56]. 

A primer [IB57] was issued later. The first page of the reference manual 

listed the working committee as the following people, all of whom worked 

for IBM except those designated otherwise: J. W. Backus, R. J. Beeber, 

S. Best, R. Goldberg, H. L. Herrick, R. A. Hughes (University of California, 

Radiation Laboratory), L. B. Mitchell, R. A. Nelson, R. Nutt (United 

Aircraft Corporation), D. Sayre, P. B. Sheridan, H. Stern, and I. Ziller.



144 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

The leader of this effort was John Backus, who thus deserves a major share 

of the credit for the initial development of what has become the most widely 

used higher level language in the world. 

The 704 FORTRAN system was issued early in 1957 by the Program- 

ming Research Department of IBM. As far as professional presentation is 

concerned, the first paper appears to be the one given at the 1957 Western 

Joint Computer Conference by Backus et al. [BS57]. It is interesting to 

compare the preliminary specifications of November, 1954 and the finally 

issued manual of October, 1956. There is surprisingly little difference, 

although some interesting changes occurred. The preliminary specifications 

only allowed for names with one or two letters but defined function names 

as an alphabetic character followed by two or more characters. Then there 

were three significant deletions from the preliminary specifications: (1) 

Mixed number expressions were allowed, and these did not reappear until 

ALGOL, nor within the FORTRAN family itself except for FORTRANSIT 

(see Section IV.2.2.3), and then much later in FORMAC (see Section VII. 3). 

(2) The DO statement allowed the range to be explicitly stated as a pair of 

statement numbers. (3) The IF statement allowed a comparison between two 

variables, rather than merely a test against zero. The list of FORTRAN state- 

ments in this first system is given in Fig. IV-4. Note that a considerable 

number of these statements are heavily machine dependent; in particular, 

those relating to the sense switches, the overflows and divide check, and of 

course the references to tape and drum. 

Although FORTRAN is considered quite commonplace now, it was 

not readily or easily accepted at that time. Customers raised many objections, 

foremost among them was that the compiler probably could not turn out 

object code as good as their best programmers. A significant selling campaign 

to push the advantages of such systems was underway at that time, with the 

spearhead being carried for the numerical scientific languages (i.e., 

FORTRAN) by IBM and for the “English-language-like” business data 

processing languages by Remington Rand (and Dr. Grace Hopper in 

particular). 

In June, 1958 a new version of FORTRAN with significant language 

additions was released as FORTRAN II for the 704 [IB58]. A summary list 

of the FORTRAN II statements is given in Fig. IV-5. From a technical 

point of view, the following are the most significant additions of FORTRAN 

II to FORTRAN I: The subroutine concept exemplified by the 

SUBROUTINE, CALL, and RETURN statements and the FUNCTION statement; 

the COMMON statement was added to provide communication between 

subroutines; the END statement was added to avoid putting an end of file 

mark to indicate the end of the program; also, the use of subprograms 

permitted the linkage to assembly-coded programs (i.e., SAP).



  

Statement 

a = b 

GO TO na 

GO TO n, (n1, na, .-., Mm) 

ASSIGN i TO n 

GO TO (n}, n2,..., Mm), i 

IF (a) nz, n2,03 

SENSE LIGHT i 

IF (SENSE LIGHT i) n7,n2 

IF (SENSE SWITCH i) n7, n2 

IF ACCUMULATOR OVERFLOW pn), n2 

IF QUOTIENT OVERFLOW 1, n2 

IF DIVIDE CHECK n7, n2 

PAUSE or PAUSE na 

STOP or STOP n 

DO ni = m}1,m2 or DO ni = m),m2,m3 

CONTINUE 

FORMAT (Specification) 

READ on, list 

READ INPUT TAPE i, n, list 

PUNCH a, list 

PRINT n, list 

WRITE OUTPUT TAPE i, n, list 

READ TAPE i, list 

READ DRUM ij, j, list 

WRITE TAPE i, list 

WRITE DRUM i, j, list 

END FILE ji 

REWIND i 

BACKSPACE i 

DIMENSION v, v, v,... 

EQUIVALENCE (a,b,c,...), (d,e,f,..-), . +. 

FREQUENCY on (i,j,...), m(k,I,...), ..- 

Normal Sequencing 

Next executable statement 

Statement n 

Statement last assigned 

Next executable statement 

Statement 7, 

Statement nj,n2,n3 aS ao less than, =, or 

greater than 0 

Next executable statement 

Statement n7, n2 as Sense Light i ON or OFF 

” ”» * as Sense Switch i DOWN 

or UP 

Statement nz,n2 as Accumulator Overflow 

trigger ON or OFF 
Statement nj, n2 as MQ Overflow trigger ON 

or OFF 

Statement n7, n2 as Divide Check trigger ON 

or OFF 

Next executable statement 

Terminates program 

Next executable statement 
399 39 99 

Not executed 

Next executable statement 
99 93 39 

3° 99 99 

39 39 99 

39 39 33 

Not executed 
39 39 

99 $9 

  

Figure IV-4. Table of FORTRAN I statements for the IBM 704. The 

spacing is not significant. 

Source: [IB56], p. 50. Reprinted by permission from The FORTRAN Auto- 

matic Coding System for the IBM 704 EDPM. © 1956 by International 
Business Machines Corporation. 

145



146 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

FORTRAN systems for the 709 and 650 were officially released late in 

1958. In 1960, FORTRANSs for the 1620 and 7070 were released, and in 

1962 FORTRAN IV was released on the 7030 (STRETCH).' The first 

apparent implementation of FORTRAN (using that name) by a manufac- 

turer other than IBM was the version of FORTRAN I for the UNIVAC 

Solid State 80 which apparently was run as early as January, 1961.? Later 

that year, an augmented version of FORTRAN II was developed for the 

Remington Rand LARC by Computer Sciences Corporation.* Although 

not using the name FORTRAN, the ALTAC system developed for the 

Philco 2000 was an extended FORTRAN II running even earlier, in April, 

1960.‘ By 1963 virtually all manufacturers had either delivered or committed 

  

Arithmetic statements (arithmetic Input/Output statements 
formulas and function :definitions) FORMAT (specification) 

a=b READ n, list 

READ INPUT TAPE ji, n, list 
Control statements 
on'ro PUNCH », list 
GO TO n PRINT n, list 
GO TO fn, (nt, n2, .- » , Mm) WRITE OUTPUT TAPE i, n, list 
ASSIGN i TO n READ TAPE i, list 
GO TO (nj, n2,..., Mm), i READ DRUM i, j, list 
IF (a) ni, n2, 3 WRITE TAPE i, list 
SENSE LIGHT i WRITE DRUM i, j, list 
IF (SENSE LIGHT i) n7, n2 END FILE i 

IF (SENSE SWITCH i) n7, n2 REWIND i 

IF ACCUMULATOR OVERFLOW pn, n2 BACKSPACE ji 

IF QUOTIENT OVERFLOW nj], n2 
IF DIVIDE CHECK nz, n2 Specification statements 

PAUSE or PAUSE n DIMENSION v, v, v,...- 

STOP or STOP n EQUIVALENCE (a, b, ¢, . . .), 

DO n i=m], m2 or DO rn i=m], m2, m3 (d, e, f,...),..- 

CONTINUE FREQUENCY n(i, j, . . -), m(k, I, ...), ... 

CALL name (argument list) SUBROUTINE name (argument list) 

RETURN FUNCTION name (argument list) 

END (i, i2, 13, i4, i5) COMMON a, b, ¢, ... 

  

Figure [V-5. Summary of FORTRAN II statements. The spacing is not 

significant. 

Source: [IB58], pp. 59-60. Reprinted by permission from FORTRAN II for 

the IBM 704 Data Processing System. © 1958 by International Business 

Machines Corporation. 

| Heising [HE63], p. 85. 
2 [CC63], p. 96. 
3 [CC63], p. 96. 
4 [CC63], p. 96.



IV.3. FORTRAN 147 

themselves to producing some version of FORTRAN. Oswald [OS64] cites 

the existence of 43 FORTRAN compilers and compares 16 of them. Obvi- 

ously many more have been written since then. 

Because of the widespread use of FORTRAN, several things happened 

(understandably due to naivety and lack of foresight with respect to com- 

patibility and growth problems). The methods of implementation differed 

not only between manufacturers but within the same manufacturer (i.e., the 

same features were handled differently even on IBM machines). It is im- 

portant to note that the differences being referenced here are those which 

have—or at least potentially could have—some effect on the user; the signifi- 

cant concern is not the fact that different techniques of implementation 

create different types of efficiencies or inefficiencies but merely with the kind 

of differences which can happen in the end result. For example, different com- 

pilers handled the DO loop quite differently on a drop through the first 

time and sometimes even produced different values of the variable at the 

end of the execution of the DO loop. This is not very surprising since this 

type of specification was never written, or for that matter never intended 

to be written, into the language itself. A second effect of the widespread 

usage was that many people and groups found themselves wishing for improve- 

ments and changes. “The SHARE FORTRAN Committee... went on record 

in March 1961 as favoring a new FORTRAN language which did not con- 

tain all of FORTRAN II as a subset.” A FORTRAN III was developed 

by I. Ziller of IBM and used internally; its main characteristics were the 

addition of a Boolean algebraic statement, various devices to handle 

alphabetic information, an external capability to pass subprograms as argu- 

ments, and the inclusion of machine language instructions in line. It should 

be emphasized that this latter differs significantly from the ability to call 

a subroutine which happens to have been written in an assembly code. 

Because of the timing and other considerations, some of these features found 

their way as additions to FORTRAN II, others appeared in FORTRAN 

IV, and some others never were considered further. (The in-line machine coding 

facility was released in one version but later dropped because it was felt 

that this would completely ruin attempts at compatibility, and furthermore 

the differences between the 704 and the 709 played havoc with that particular 

feature.) 

A gradual series of improvements or extensions were made to the 709/90 

FORTRAN, including the provision of such facilities as double-precision 

and complex arithmetic. 

In an attempt to stem some of the confusion arising from the multitude of 

implementations, IBM issued a General Information Manual on FORTRAN 

in 1961 [IB61]. It included a list of the available FORTRAN statements, 

  

5 Allen, Moore, and Rogoway [AX63], p. 46.



148 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

together with an indication of which machines the statements were being 

implemented on. This is shown as Fig. IV-6. Several things are worth 

noting from that manual: First, an attempt was made to indicate the differ- 

ences in facilities provided by the various implementations, of which this 

table gives only partial information; secondly, the 1401 version which was 

released later is not included (probably the most significant aspect of the 

1401 version is the fact that a reasonable version of FORTRAN was actually 

put onto such a small machine); a third very interesting fact is that neither 

[IB61] nor, for that matter, quite a few other manuals used the phrase 

FORTRAN ITI in their title, even though that is what they actually were. In 

other words, FORTRAN II was issued so relatively soon after FORTRAN 

I that the distinction rapidly became blurred and to some extent was even 

dropped, although it was clear in Program Library references. 

During this entire period of time, FORTRAN was becoming more and 

more widely used. In some sense, its introduction caused a partial revolution 

in the way in which computer installations were run because it became not 

only possible but quite practical to have engineers, scientists, and other 

people actually programming their own problems without the intermediary 

of a professional programmer. Thus the conflict of the open versus closed 

shop became a very heated one, often centering around the use of FORTRAN 

as the key illustration for both sides. This should not be interpreted as saying 

that all people with scientific numerical problems to solve immediately sat 

down to learn FORTRAN; this is clearly not true but such a significant 

number of them did that it has had a major impact on the entire computer 

industry. One of the subsidiary side effects of FORTRAN was the intro- 

duction of the FORTRAN Monitor System [IB60]. This made the computer 

installation much more efficient by requiring less operator intervention for 

the running of the vast number of FORTRAN (as well as machine language) 

programs. 

As stated earlier, SHARE went on record as favoring an improved 

version of FORTRAN; in 1962 a preliminary bulletin was issued to describe 

what eventually became known as FORTRAN IV, which would run under 

IBSYS-IBJOB on the IBM 7090/94. A number of significant features were 

added to FORTRAN II, including the following: Type statements 

(LOGICAL, DOUBLE PRECISION, COMPLEX, REAL, INTEGER, and EXTERNAL), 

logical expression as argument of an /F, function and subroutine names 

passed as arguments in references to other functions and subprograms, and 

DATA and BLOCK DATA. Some of these facilities were available in specific 

implementations of FORTRAN II but they only became official parts of 

the language in FORTRAN IV. Dropped from FORTRAN II were the 

machine dependent statements involving sense lights and switches, overflows, 

and the use of the words TAPE and DRUM in connection with the READ and 

WRITE statements. The FREQUENCY statement which had been included



  

C
O
M
M
O
N
 

65
0 

65
0 
F
O
R
T
R
A
N
S
I
T
 

16
20

 

70
5 

Ba
si

c 
70
70
/7
07
4 

70
70

/7
07

4 

70
4 

70
9/

70
90

 

  

ACCEPT n, list 
ACCEPT TAPE n, list 
ASSIGN i TO n 
BACKSPACE i 
CALL NAME (a1, a2, -.., Gn) 

COMMON (a], a2, ..-. ,; Gn) 

CONTINUE 
DIMENSION v1, v2, --.-, Yn 

DO n i=m], m2, m3 

END (17, 2, 13, 14, 15) 
END FILE i 
EQUIVALENCE (a, b, c, ...), (d, e, f, ...), .-. 
FORMAT (s7, s2,..- 

FREQUENCY a(i, j, 
Sn) 

...), m(k, |, ...),... 
FUNCTION name (a), a2, . ~~, Gn) 

GO TO n 

GO TO o, (n1, na, ..., Mm) 

GO TO (n}, n2, . . . , Om), i 

IF ACCUMULATOR OVERFLOW pn}, a2 
IF DIVIDE CHECK ny, n2 

IF QUOTIENT OVERFLOW n17, n2 

IF (a) ny, n2, n3 
IF (SENSE LIGHT i) nj, n2 
IF (SENSE SWITCH i) n7, n2 

PAUSE n 
PRINT n, list 
PUNCH on, list 
PUNCH TAPE no, list 
READ n, list 

READ DRUM i, j, list 
READ INPUT TAPE i, n, list 
READ TAPE i, list 
RETURN 
REWIND ji 
SENSE LIGHT i 
STOP n 
SUBROUTINE name (a], a2, ..., Gn) 
TYPE n, list 

WRITE DRUM i, j, list 
WRITE OUTPUT TAPE i, n, list 
WRITE TAPE i list 

K
x
 

x 

mm 
K
K
M
 

K
K
M
 

N
K
 
K
X
 

x 
KX 

K
K
M
 

K
K
 
O
N
 

KO
K 

OM
 

* 

x 
* 

x
x
 

x
x
 

x
x
 

* 

* 
* 

K
A
R
R
 

mK 
MK 

K
K
K
 

P
R
M
 

M
M
 
M
K
 
K
K
 

MK 
KO
K 

OK
 O

M 

~
~
 

e
K
 

KH
 

M
K
 

KM 
K
R
Y
 

x
x
 

K
A
K
K
M
 

XK 

KO
K 

K
O
 
K
K
K
 

DK
 O

K 
KR 

OK
 O

K 
O
K
 

K
O
K
 
OE

 
K
K
 

M
K
 
M
M
 

K
K
 

R
O
K
K
 
K
K
 

P
K
 

OK
 

OR 
OK

 O
K 
OK
 
O
K
 
OK
 
E
K
 
OK

 O
K 
E
N
 

KO
K 

K
K
 

OE
 

K
K
K
 

m
K
 
M
K
 
M
M
M
 
P
K
 

K
K
 

K
K
 
H
K
 
K
H
 

M
N
 
K
K
K
 

MK 
M
M
M
M
 

  

. ii are not permitted. 
. i are optional and may be ignored. 
May be included but will be ignored. 
The n is not permitted. 

. The n is optional and may be ignored. 

. The vn is optional and is ignored. 

Figure IV-6. List of FORTRAN statements implemented on IBM computers, 
circa 1961. 

Source: [IB61], p. 65. Reprinted by permission from FORTRAN (General 

Information Manual). © 1961 by International Business Machines Corpora- 

tion. 

149



150 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

to provide information useful for object time optimization was also dropped. 

FORTRAN IV was definitely not a compatible extension of FORTRAN II. 

One of the interesting results of this FORTRAN IV creation was the 

development of the SIFT program (discussed in more detail in Section 

IT.4.2.2). 

In May, 1962, the ASA X3.4.3 (=FORTRAN) Committee to develop 

an American Standard FORTRAN was formed and eventually produced 

two standards, known officially as FORTRAN and Basic FORTRAN, 

which correspond roughly to FORTRAN IV and FORTRAN II, respec- 

tively. (However, Basic FORTRAN isa proper subset of FORTRAN.) This 

will be discussed in more detail in Section IV.3.2 but it is essential to realize 

that FORTRAN—and in fact two of them—have the distinction of being the 

first programming languages that were actually standardized through the 

normal procedures of the USASI (then called the American Standards Asso- 

ciation). 

IV.3.2. FUNCTIONAL CHARACTERISTICS OF ASA (USASI) FORTRAN 

AND Basic FORTRAN 

It is actually rather difficult to characterize FORTRAN*® according to 

the language properties that were discussed in Section II.2. FORTRAN 

is not very general, but that is not an entirely accurate statement considering 

some of the projects which have been accomplished using FORTRAN. 

Similarly, FORTRAN has fairly natural notation for algebraic expressions 

but tends toward succinctness in most other aspects. It is fairly consistent 

internally but has nothing particular in the language to cause or prevent 

great efficiency. It is easy to read and write and easy to learn, but its use 1s 

somewhat error prone. | 
The original objective in the first FORTRAN manual is worth quoting, 

both for historical interest and because it is still essentially valid today: 

The FORTRAN language is intended to be capable of expressing any 
problem of numerical computation. In particular, it deals easily with 
problems containing large sets of formulae and many variables and it 
permits any variable to have up to three independent subscripts. 

However, for problems in which machine words have a logical 
rather than a numerical meaning it is less satisfactory, and it may fail 
entirely to express some such problems. Nevertheless many logical 
operations not directly expressible in the FORTRAN language can be 
obtained by making use of provisions for incorporating library routines.’ 

  

6 It should be clear, in the ensuing text, when FORTRAN is being used in a very 

general sense and when it refers specifically to a single language standard. 
7 [IB56], pp. 2-3. Reprinted by permission from The FORTRAN Automatic Coding 

System for the IBM 704 EDPM (Programmer’s Reference Manual). © 1956 by Inter- 

national Business Machines Corporation.



1V.3. FORTRAN 151 

SAMPLE PROGRAM—FORTRAN 

  

Problem: Construct a subroutine with parameters A and B such that A and 
B are integers and 2 < A < B. For every odd integer K with A < K < B, com- 

pute f(K) = (3K + sin (K))'” if Kis a prime, and f(K) = (4K + cos (K))'” if K 
is not a prime. For each K, print K, the value of f(K), and the word PRIME or 

NONPRIME as the case may be. 

Assume there exists a subroutine or function PRIME(K) which determines 

whether or not K is a prime, and assume that library routines for square root, 

sine, and cosine are available. 

Program: 

SUBROUTINE PROBLEM (A, B) 
INTEGER A, B 

J = 2x(A/2) + 1 
DO 10 K = J, B, 2 
T= K 
IF (PRIME(K) .EQ. 1) GO TO 2 

E = SQRT (4.4T + COS(T)) 

WRITE (1, 5) K, E 

GO TO 10 
2 E = SQRT (3.%T + SIN(T)) 

WRITE (1, 6) K, E 

CONTINUE 
FORMAT (16, F8.2, 4X, 8H NONPRIME) 
FORMAT (16, F8.2, 4X, 5H PRIME) 

RETURN 
END 

O
M
m
W
O
 

  

From the quotation above, it is clear that FORTRAN staked out a 

claim to handling problems in numerical computation. It has actually turned 

out to be used for a wide variety of other things, as discussed later, but its 

primary objective started and remains as the effective solution of numerical 

scientific problems. Of the classifications given in Section 1.6, FORTRAN 

is definitely procedure-oriented, problem-oriented, and problem-solving; 

it is simultaneously a hardware, publication, and reference language; 1.e., 

it is defined in a manner which makes it immediately acceptable as a hardware 

input language, and there are no other versions. Although not stated any- 

where explicitly, it was clearly aimed at helping the nonprogrammer, 1.e., the 

engineer or scientist. It was designed as a batch system—which is hardly 

surprising considering the time at which it was done! 

When the first work on FORTRAN was accomplished in 1954ff, there 

was no real thought of making the language machine independent. This is 

clearly exemplified by the statements shown in Figure IV-4, which include 

references to sense lights, sense switches, accumulator, etc. By the time that 

FORTRAN IV was developed, however, these machine dependent charac- 

teristics were eliminated specifically to help in achieving such an objective.



152 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

With reference to the two standards, the languages are relatively machine 

independent. The major exceptions are the actual precision of the arithmetic 

which is being done (and which of course depends completely—in the prac- 

tical world—on the size of the machine word) and some of the input/output 

statements. 

The situation is also fairly good relative to compiler independence. 

The standard contains rigid rules about some of the normally tricky areas, 

e.g., ordering of array elements and special cases with DO loops. 

In discussing the question of dialects, we must distinguish between 

dialects of the standards and dialects which have existed as a historical tradi- 

tion. The former, by definition, should be either eliminated entirely or cer- 

tainly minimized since that is definitely the purpose of the standard. For 

several reasons the existence of dialects has actually been somewhat less of 

a problem than with other languages, most notably ALGOL. First, within 

IBM it was possible to control the language specifications and so no dialects 

in the sense of language deviations really appeared (although there were 

differences based on implementation); secondly, the major reason that other 

manufacturers implemented FORTRAN was to permit their customers to 

transfer FORTRAN programs originally written for IBM equipment, so of 

course the manufacturers would go to great lengths to avoid dialects; thirdly, 

dialects would defeat the purpose of the standard; a fourth reason is that 

since FORTRAN was designed for direct input on a computer, there have 

not been transliteration problems nor any particular reasons to deviate from 

that set of specifications. These comments about dialects, however, do not 

apply at all when considering extensions. Historically, the greatest deviations 

among FORTRAN systems were extensions rather than dialects. As stated 

above, other manufacturers were highly motivated to retain the exact IBM 

FORTRAN notation for their customers; on the other hand, they were 

competitively motivated to provide additional features beyond those avail- 

able in IBM compilers. Thus whole classes of particular implementations 

added new features of one kind or another and in a few cases FORTRAN 

II was extended to include some of the features of FORTRAN IV but in 

a compatible fashion. In some cases, extensions to the standards are being 

implemented. Probably the greatest difficulty in obtaining compatibility 

stems from implementation of slightly different sets of features; this is a 

chronic problem with all languages, although the COBOL standard has been 

created in a way which will recognize and define this problem. (See Section 

V.5.3.2.) Discussions of some of these issues are given by Heising [HE64a], 

McCracken [MR65], Oswald [OS64], and Wright [WR66]. 

As part of the subsetting characteristics, it should be noted that I have 

no first-hand (or even reliable second-hand) knowledge of FORTRAN 
being used to bootstrap its own compiler. What has been done in a few cases 

was to add some character and string-handling subroutines (coded in



IV.3. FORTRAN 153 

machine language) to FORTRAN and use these together with FORTRAN 

to do some bootstrapping. By defining extensions to FORTRAN, it can 

compile itself; but FORTRAN itself does not contain the necessary 

character-handling facilities to obtain even moderate efficiency. 

Interestingly enough, in spite of the much more rigorous definition of 

ALGOL, there seems to have actually been less incompatibility in FOR- 

TRAN based on misunderstanding of the language definition. Most of the 

incompatibilities in FORTRAN have stemmed from idiosyncracies of 

individual compilers. Both FORTRAN standards have been written in 

straight narrative prose, without any attempt at formalization. 

In a preprint, Rosen [RO61] describes a few of the problems in con- 

verting from FORTRAN on the 704 to ALTAC on the Philco 2000. He says 

there “To the best of my knowledge this is the first time that a compiler has 

assumed the major burden of transition from a large scale computer of one 

manufacturer to an even larger scale computer of another manufacturer.”® 

I also believe that this is certainly one of the first, if not the first, serious and 

practical attempt at doing this. (In December, 1960, two COBOL programs 

were run on UNIVAC II and the RCA 501, with only minor changes re- 

quired. This was a demonstration, however, rather than a practical attempt 

to do this on a large scale. See Section V.3.2 for further discussion of this.) 

Rosen describes some of the incompatibilities that actually arose as follows: 

Some which were based on idiosyncracies of the 704 FORTRAN compiler, 

e.g., handling negative integers; differences among the subroutines, e.g., 

attempting to find the square root of a negative number; permission (or 

lack thereof) of entering FORMAT statements at object time; differences 

caused by the primary use of on-line card readers and printers in the 704 

versus off-line equipment with ALTAC; and larger range of exponents in 

the 2000 which affected the E conversion and the FORMAT statements. 

More recent work in this area is described by Olsen [OL65]. It seems to me 

that a number of these problems still remain, even with the existence of the 

standard. Nevertheless, in spite of this, there have undoubtedly been more 

FORTRAN programs converted to run from one machine to another than 

all other languages put together. 

The word SIFT, standing for Share Internal FORTRAN Translator, 

has become a somewhat generic term, as indicated in Section II.4.2. However, 

its original usage was the program which would do some translation between 

FORTRAN II and FORTRAN IV described in Allen, Moore, and Rogoway 

[AX63]. As those authors point out, most of the incompatibilities between 

FORTRAN II and FORTRAN IV could be resolved by simple translitera- 

tion. There were three areas, however, which required more analysis: The 

EQUIVALENCE - COMMON interaction, double-precision and complex arith- 

  

8 Rosen [RO61], p. 2B—2(1).



154 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

metic declarations, and Boolean statements. SIFT was a program primarily 

written in FORTRAN which would provide the necessary changes in 

a FORTRAN II program to make it work correctly as a FORTRAN IV 

program. It apparently worked successfully as a practical tool. 

Various attempts have been made to translate FORTRAN to other 

languages but the tendency has been more toward the other way; in other 

words, because FORTRAN had been so popular and implemented on so 

many other machines, there is much more of a need to translate other 

languages to FORTRAN than vice versa. In particular, a number of 

ALGOL programs have been hand-translated to FORTRAN in order to 

test them when no ALGOL compiler was available. The most outstanding 

example of translating FORTRAN was to MAD (see Section IV.5.2), 

using a program called MADTRAN. This was done to take advantage of 

the fast MAD compiler. 

FORTRAN has the distinction of being the first programming language 

to be standardized through the normal ASA (now USASIJ) procedures. For 

that reason, it is worth describing in some detail just how this was accom- 

plished. The following material is taken intact from the writeup by W. P. 

Heising [HE64] which appeared preceding the publication of the proposed 

FORTRAN and Basic FORTRAN specifications [CC64]. 

The American Standards Association (ASA) Sectional Committee X3 
for Computers and Information Processing was established in 1960 under 
the sponsorship of the Business Equipment Manufacturers Association. 
ASA X3 in turn established an X3.4 Sectional Subcommittee to work in 
the area of common programming language standards. On May 17, 1962, 
X3.4 established by resolution a working group, X3.4.3-FORTRAN to 
develop American Standard FORTRAN proposals. 
RESOLVED: 
That X3.4 form a FORTRAN Working Group, to be known as X3.4.3- 
FORTRAN, with the 

Scope. To develop proposed standards of FORTRAN language. 

Organization. Shall contain a Policy Committee and a Technical 
Committee. The Policy Committee will be responsible to X3.4 for the 
Working Group’s mission being accomplished. It will determine general 

policy, such as language content, and direct the Technical Committee. 

Policy Committee Membership. Will be determined by the X3.4 
Steering Committee subject to written guidelines which may be amended 
later and including the following: 

a. For each FORTRAN implementation in active development or 

use, One sponsor voting representative and one user voting repre- 

sentative are authorized. 

b. A representative who is inactive may be dropped.



IV.3. FORTRAN 

c. Associate members, not entitled to vote but entitled to participate 
in discussion, are authorized. 

Technical Committee. Will develop proposed standards of FOR- 
TRAN language under the Policy Committee direction. The Technical 

Committee will conduct investigations and make reports to the Policy 
Committee. 

On June 25, 1962 invitations to an organizational meeting of X3.4.3 
were sent to manufacturers and user groups who might be interested in 
participating in the development of FORTRAN standards. The first 
meeting was held August 13-14, 1962 in New York City. X3.4.3 decided 
to proceed because (1) FORTRAN standardization was needed, and 

(2) a sufficiently wide representation of interested persons was partici- 
pating. 

A resolution on objectives was adopted unanimously on August 14, 
1962. 

“The objective of the X3.4.3 Working Group of ASA is to produce 
a document or documents which will define the ASA Standard or Stan- 
dards for the FORTRAN language. The resulting standard language will 
be clearly and recognizably related to that language, with its variations, 
which has been called FORTRAN in the past. The criteria used to con- 
sider and evaluate various language elements will include (not in order 
of importance): 

. Ease of use by humans, 

. Compatibility with past FORTRAN use, 

. Scope of application, 

. Potential for extension, 

. Facility of implementation, i.e., compilation and execution effi- 

ciency. 

“The FORTRAN standard will facilitate machine-to-machine transfer 
of programs written in ASA Standard FORTRAN. The Standard will 
serve as a reference document both for users who wish to achieve this 
objective and for manufacturers whose programming products will make 
it possible. The content and method of presentation of the standard will 

recognize this purpose.” 
It was the consensus of the group that (1) there was a definite 

interest in developing a standard corresponding to what is popularly 
known as FORTRAN IV, and (2) there was interest in developing for 
small and intermediate computers a FORTRAN standard near the power 
of FORTRAN II, however suitably modified to be compatible with the 

associated FORTRAN IV. Accordingly, two Technical Committees, 
designated X3.4.3-IV and X3.4.3-II, respectively, were established to 
create drafts. Most of the detailed work in developing drafts has been 

done by technical committees. 
The X3.4.3-II Technical Committee completed and approved a draft 

in May, 1963. A Technical Fact Finding Committee was appointed and 
reported in August, 1964 on a comparison of the X3.4.3-II approved 
draft and an approved working draft of the X3.4.3-IV Technical Com- 
mittee. This brought to light stylistic, terminological, and content differ- 

o
a
n
 

o
m
 

155



156 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

ences and conflicts. In April, 1964 the X3.4.3-IV Technical Committee 
completed a draft of FORTRAN. In June, 1964 X3.4.3 received and 
compared the two drafts and (1) resolved conflicts in content, and 
(2) resolved the conflicting style and terminology. This was accomplished 
by recasting the X3.4.3-II document to reflect the style of the X3.4.3-IV 
document while retaining the original content. To reduce confusion, 
X3.4.3 decided to call the languages Basic FORTRAN and FORTRAN.? 

The standards were approved March 7, 1966 and became ASA Stan- 

dards X3.9-1966 [AA66] (=FORTRAN) and X3.10-1966 [AA66a] (= Basic 

FORTRAN). Within a year after approval, significant questions of inter- 

pretation had arisen, and so the X3.4.3 Committee had to be reactivated 

to deal with them. 

An international standard was accepted for most practical purposes 

in October, 1965 but its final official approval has been delayed by adminis- 

trative problems and errors. It added another subset (based on the ECMA 

work) to the two existing levels. 

As indicated under the history, FORTRAN was initially designed by 

a group of individuals (who were listed earlier), most of whom worked for 

IBM; the objectives of the language were also stated earlier. The initial 

implementation of the language was done by the people who designed it, 

and they also did much of the implementation of FORTRAN II. Since then, 

an enormous number of people have become involved, both in and outside 

IBM. FORTRANSs have been implemented by a large number of different 

people in IBM, by most computer manufacturers, and by virtually every 

independent software house. The maintenance of the language (prior to the 

standard) was done for IBM by various groups and for those outside of 

IBM in no central place. As indicated earlier, however, most manufacturers 

attempted to follow the IBM specifications. 

FORTRAN was initially defined simply through the use of English 

prose and examples. When it came time to define the standards, those who 

were most heavily involved and had the strongest influence had no interest 

In using any type of formalized notation. Thus both standards have been 

written in narrative English with formats shown where appropriate. Some 

attempts (e.g., Rabinowitz [RN62] and Burkhardt [BU65]) have been made 

to provide a formal definition of FORTRAN but these are of necessity 

somewhat incomplete. Since here we are defining the characteristics of the 

Standard FORTRANs, there is only one form of documentation, namely 

[AA66] and [AA66a]. Readers who are interested in obtaining a somewhat 

better understanding about the documentation of the earlier IBM versions 

are referred to Heising’s article [HE63]. 

Some version of FORTRAN has been made available on virtually every 
  

9 Heising [HE64], p. 590. By permission of Association for Computing Machinery, 

Inc.



IV.3. FORTRAN 157 

computer ever made—see [CC63] for a list in 1963. Fortunately, by now 

FORTRAN has been clearly evaluated on the basis of its language facilities 

rather than on the basis of its compilers. The obvious advantages to 

FORTRAN are its practical effectiveness for solving numerical scientific 

problems and its subsequent widespread use with reasonable compatibility 

and conversion facilities. Its largest disadvantages stem from attempts to 

use it outside of the realm for which it was intended, namely for any type of 

alphanumeric data handling. (Even there it has occasionally succeeded—see, 

e.g., Fimple [FP64] and Robbins [RM62].) Thus, FORTRAN’s largest 

disadvantages actually stem from its popularity; since so many people are 

used to it and like to program in it, they would like to use it for everything 

and when it does not supply their needs, it is (unjustly) criticized. The biggest 

disadvantage to FORTRAN is that it could not truly be extended in any 

type of clean way to provide the additional facilities that the state of the 

art now permits. Thus, although the original hope, when the development of 

(the now-called) PL/I was started, was to extend FORTRAN IV to provide 

the facilities that were needed, this rapidly turned out to be impossible. 

In other words, both Basic FORTRAN and FORTRAN suffer from the 

fact that they are based on a language developed in 1954 which did not have 

all the facilities that were desired 10 years later. What is perhaps most amaz- 

ing is that, although it was developed in 1954, FORTRAN (in various forms) 

is still quite acceptable and widely used. 

History and more recent developments have taught us some of the 

mistakes to avoid in the future. 

IV.3.3. TECHNICAL FEATURES OF ASA (USASI) Basic FORTRAN 

The character set used in Basic FORTRAN (as defined in [AA66a]) 

consists of the 26 capital letters, the 10 digits, and the following 10 symbols: 

+—-*x /)(C=., blank 

Octal digits are used in the STOP and PAUSE statements. 

A data name consists of a letter followed by zero to four alphanumeric 

characters. Statement labels consist of from one to four digits. There are no 

reserved words so that any string of characters (subject to the definition 

above) can be used as a data name. One or two subscripts are allowed on 

data names; they are shown in parentheses, separated by commas, ©€.g., 

X(I, J), and they can be of the form (constant * variable) + constant. 

There are no nonnumeric literals permitted except in the FORMAT statement. 

The only operators are the five arithmetic ones, where a double asterisk 

denotes exponentiation. There are no delimiters. The only punctuation iS 

a comma, which is simply used to separate lists of items and, of course,



158 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

the parentheses, which are used in specified places. Blanks have no sig- 

nificance except in a few special cases. There are no noise words permitted. 

The input form is highly card-oriented. The actual standard refers to 

the significant unit of a line, which is a string of 72 characters containing 

character positions called columns. A statement label can only be placed 

in columns | to 5. The statement appears in columns 7 to 72. The physical 

format permits continuation lines so that a statement can consist of an 

initial line optionally followed by up to five ordered continuation lines. 

A continuation line is any line that has a character other than zero or blank 

in column 6 and does not contain the character C in column 1. 

The language is not highly formalized nor is it strongly English-like. 

Basic FORTRAN has a number of declarations which are described 

later. The smallest executable unit is a single statement. In the sense used 

in Section III.3.1, there are no groups of smallest executable units. Loops 

are handled by the DO statement or by the tests in an /F statement. 

There are actually four categories of procedures defined in Basic 

FORTRAN: Statement, intrinsic, and external functions; and external 

subroutines. The first three are normally called functions or function proce- 

dures. The statement function is defined internal to the program unit in 

which it 1s referenced and consists of a single statement of the form 

F(a;, a2,...,Q,) = E where F is the function name, E is an expression, 

and the ag; are the dummy arguments. This statement function must precede 

the first executable statement of the program unit and must follow the 

declarations. Aside from the dummy arguments, the expression E can only 

contain constants, variables, references to intrinsic functions and previously 

defined statement functions, and external functions. Intrinsic functions are 

the specific functions of absolute value, float, fix, and transfer of sign. An 

external function is defined externally to the program that references it. 

Comments are designated by having the letter C in column 1. There is 

no interaction with the operating system or the environment specified in 

the Basic FORTRAN standard. There is no provision for direct inclusion 

of machine language but external procedures can be written in other 

languages. 

All language units (i.e., declarations and executable units) are assumed 

to start with an “initial line” which requires a zero or blank in column 6. 

A statement or declaration can have up to five ordered continuation lines. 

There is no definitive end of a unit—rather it is determined by recognizing 

the beginning of the next unit. There is no type of recursion permitted. 

Parameters are called by location. Functions can be embedded into assign- 

ment statements but that 1s the only type of embedding permitted. 

Declarations must precede statement function definitions, which must 

precede the executable statements. The former must be in the order



IV.3. FORTRAN 159 

DIMENSION, COMMON, EQUIVALENCE. A complete program consists of 

an initial line, any number of statements, and an END line. 

There is no provision for recursion in the language. A programming 

technique to achieve some of this effect is described by Ayers [A Y63]. 

The only data type permitted is arithmetic, and this can be either 

integer or real (1.e., floating point). The type of a variable is determined by 

its name; any name beginning with one of the letters 1, J, K, L, M, or N, 

denotes an INTEGER type; while all others imply type REAL. The executable 

commands are able to access only the variables, and it is generally assumed 

that these will take up a single machine word. 

The only arithmetic done is integer or floating point. Use of real and 

integer variables (or constants) in the same expression is not permitted; 

thus there is no need for any conversion rules. The standard specifically 

disclaims all intent to specify precision or range of numerical quantities; 

however, there are some rules indicating sequence of evaluations. 

The scope of a data name is the entire program, except that dummy 

arguments with names duplicating others can be used in function and 

subroutine definitions. There is often a need to use the same variable, 

however, in several subroutines or in the main program and a subroutine. 

In order to accomplish this, the COMMON declaration is used. This has the 

form COMMON aj, a2,..., a, Where each gq; is a data name. For each 

given COMMON statement, the items on this list are declared to be in 

COMMON storage and thus accessible by any part of the program, including 

all subroutines. 

There is exactly one assignment statement, of the form v=e where v is 

a variable name and e is an arithmetic expression. Conversion is automatically 

performed if the v and e are of different types; if e is real, the result is trun- 

cated to create the necessary integer; while if e is integer, then it 1s floated. 

For example, the statements 

l 

A 

) 

I+ 2 

would cause A to be assigned the value 7 in floating point form. 

There are no character data-handling statements. 

The normal flow of control is to the next physical statement in sequence. 

Thus the statement numbers provide labels only and have no inherent 

meaning. 

The primary unconditional control transfer statement is the GO TO 

statement, which can be either unconditional of the form GO TO k, where 

k is a statement label, or can be a switch control. The latter is called a com- 

puted GO TO statement and is of the form GO TO (ki, k2,.- +, Kn), i where



160 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

k; is a Statement name and j is an integer. In this case, it is assumed that j has 

been computed independently; and if it has the value j, then control is 

unconditionally transferred to k;. Thus, writing J=3 followed by GO TO 

(17, 20, 2, 5), J would cause control to be transferred to statement 

label 2. 

Subroutines are invoked by writing CALL s(a;, a2,...,a,) OF CALL s 

where s is the name of a subroutine and the a’s are actual arguments. These 

arguments can be variables, names of arrays, a single element in an array, 

or an expression. They must agree in order, number, and type with the 

corresponding dummy arguments. However, the subroutine can actually 

define or redefine one or more of these arguments, so as to return results, 

which can have the net effect of destroying the original value that existed 

before calling the subroutine. This is essentially the call by location discussed 

in Section III.3.2.3. A subroutine has its logical end marked by a RETURN 

statement, which causes control to return to the next executable statement 

after the CALL. 

The CONTINUE statement only causes continuation of the normal 

execution sequence. It 1s used as the last statement in the range of a DO loop 

to permit alternate paths within the range to terminate at the end of the 

range. 

The only conditional statement is the arithmetic IF, which is of the form 

IF (e) ki, kz, k3 where e is an arithmetic expression and the k’s are state- 

ment names. Control is transferred to k;, ko, or k3 as the value of e 1s less 

than zero, zero, or greater than zero, respectively. For example, 

A=5 

B=A-—/7 

IF (B) 9, 15, 20 

causes control to go to statement 9. 

The loop control in Basic FORTRAN is handled by the DO statement 

which is of the form DO ni = ny, nz, n3 where the , n3 can be omitted 

if it is equal to the integer 1. The range of the DO consists of the sequence 

of statements physically following the DO, through and including the state- 

ment with the label n. There is a single parameter, namely the one designated 

as i, which is varied by assigning it first value n, and incrementing by n3 after 

control reaches statement n. The loop is considered finished only when the 

parameter exceeds the value designated by nz. The terminal statement cannot 

be a GO TO of any form nor an /F, RETURN, STOP, PAUSE, or DO statement. 

It is permitted to leave the range of the DO statement by executing a control 

transfer of some kind; in this case the parameter is defined and is equal to 

the most recent value obtained. It is not legal, however, to cause control



IV.3. FORTRAN 161 

to be passed into the range of the DO from outside its range. It is legal to 

have a DO statement nested within another DO statement; in fact, they 

can have the same range, which then causes the net effect of looping on 

several parameters in succession. Overlapping of ranges is not allowed. 

For example, the program 

DOTZTM = 2, 9, 2 

A (M) = M xx 2 
DO 4 J = 1, 100 

4 BU, M) = J+ M 

7 C(M+1)=3%*M 

would cause B(1,2), B(2,2), B(3,2),..., B(100,2), B(1,4), B(2,4),..., 

B(100,4),..., B(1,8), B(2,8), ..., B(100,8) to be assigned the values 
3, 4, 5,..., 102, 5, 6, ..., 104, ..., 9, 10, ..., 108 respectively. Fur- 

thermore, A(2)=4, A(4)=16, A(6)=36, A(8)=64 and C(3)=6, C(5)=12, 
C(7)=18, and C(9)=24 would be assigned. It would be illegal to have the 

statement numbers 4 and 7 interchanged because then the ranges would be 

overlapping. 

There are two types of input/output statements: The READ and WRITE 

statements, and the auxiliary input/output statements, namely BACKSPACE, 

REWIND, and END FILE. The READ and WRITE statements themselves can 

involve either formatted or unformatted records. The formatted READ 

statement is one of the forms READ (u,f)k or READ (u, f) where k is a list 
(defined below). The formatted WRITE has an identical format, except for 

using the word WRITE, of course. In both cases, the information is con- 

verted as specified by the FORMAT declaration (identified by the label f) 

described under declarations. The unformatted READ is one of the forms 

READ (u)k, where the k can be omitted. In this case, the next record is read 

from the input unit and if there is a list of names, the values read are assigned 

to the sequence of elements specified by the list. The unformatted WRITE 

must have a list associated with it; otherwise there would be no way of 

knowing what information was to be put out. The list specifies names of 

variables and array elements and can be a simple list, e.g., a, b, c, a simple 

list enclosed in parentheses, e.g., (a, b, ¢), 42 DO implied list, or two lists 

separated by a comma. A DO implied list is a list followed by a comma and 

then followed by something of the form i = m,, mz, m3 where the m; are 

defined the same as in the DO statement; if m3 is omitted, it is assumed 

to be 1. The range of this DO specification is the set of names preceding it 

and the elements are specified for each cycle of the implied DO. Thus 

(A, B, | = 1, 3) means Aj, Bi, Az, Ba, Az, Bs. 
The REWIND statement causes the specified unit to be positioned at its



162 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

initial point; the BACKSPACE causes backspacing to the preceding record 

of the specified unit (if it is already positioned at its initial point, the state- 

ment has no effect); the END FILE statement causes an end of file record 

to be put on the specified unit. 

A FORTRAN processor is required to provide two different types of 

library functions, called intrinsic and basic external functions. They are 

shown in Figs. IV-7 and IV-8, respectively. Each can be used in an arith- 

metic expression, where the types must agree. Other than these fixed func- 

tions, there is no provision for library references except through the 

mechanism of subroutines. 

There are no specific debugging or storage-allocating statements in 

FORTRAN, although there are some declarations relating to storage. There 

  

Number Type of: 
of Symbolic 

Intrinsic Function Definition Arguments Name Argument Function 

Absolute value la| 1 ABS Real Real 

1ABS Integer Integer 

Float Conversion from integer 1 FLOAT Integer Real 

to real 

Fix Conversion from real 1 IFIX Real Integer 

to integer 

Transfer of sign Sign of a, times | a, | 2 SIGN Real Real 

ISIGN Integer Integer 
  

Figure [V-7. List of intrinsic functions in Basic FORTRAN. 
Source: [AA66a], p. 19. 

  

Number Type of: 

of Symbolic 
Basic External Function Definition Arguments Name Argument Function 

Exponential e@ 1 EXP Real Real 
Natural logarithm log, (a) i ALOG Real Real 

Trigonometric sine sin (a) 1 SIN Real Real 

Trigonometric cosine cos (a) 1 cos Real Real 

Hyperbolic tangent tanh (a) 1 TANH Real Real 

Square root (a)'/? 1 SQRT Real Real 

Arctangent arctan (a) 1 ATAN Real Real 
  

Figure IV-8. List of basic external functions in Basic FORTRAN. 

Source: [AA66a], p. 20.



1V.3. FORTRAN 163 

are two statements which involve interaction with the operating system. 
The first is the STOP statement, which may be followed by an octal digit 
string containing from one to four digits; execution of this statement causes 
termination of the execution of the program. The second executable state- 

ment in this category is the PAUSE, which also can be followed by an octal 

digit string; the execution of the PAUSE statement causes the program to 

stop temporarily but execution must be resumable; the decision to do this 

is not under the control of the program itself but rather under the control 

of the operating system or the operator. If execution is resumed without 

otherwise changing the state of the processor, then the normal execution 

sequence is continued. 

There are no data or file descriptions. There is a complicated FORMAT 

description which is used in conjunction with the READ and WRITE commands. 

This provides information on the form of the data, e.g., use of exponents, 

number of decimal places, and number and width of columns. 

Storage allocation is partially controlled by the DIMENSION, COMMON, 

and EQUIVALENCE statements. The DIMENSION statement is of the form 

DIMENSION v(i) or DIMENSION v(i,j) where v is a data name and 
j and j are the maximum values that the subscript of that variable can 

assume, and any number of variables can be listed, e.g., DIMENSION A(10), 

C(5,9), M(2,8). Interestingly enough, the (Basic) FORTRAN standard 
actually specifies the way arrays are to be stored by defining their subscript 

values as follows: Assuming dimensions A and £, then subscript (x, y) has 

the value x + A(y — /), considering the array as a linear string. 

The EQUIVALENCE statement has the form EQUIVALENCE (k;), (kz), ..., 
(k,) where each k; is a list of the form aj, az,...,a, Where each q;is a data 

name. The EQUIVALENCE statement is used to permit sharing of storage by 

two or more variables (or arrays). Thus each element in a given list is as- 

signed the same part of storage by the compiler. When two variables share 

storage because of the EQUIVALENCE statement, the names cannot both 

appear in COMMON statements in the same program unit. It is important 

to note that the primary difference between EQUIVALENCE and COMMON 
is that the former permits several variables to share the same storage loca- 

tion, whereas the latter simply makes the designated variables accessible 

to all parts of the program. 

There are different ways of declaring the four types of procedures 

which are permitted. The simplest is the statement function, which is defined 

internally to the program unit in which it is referenced. It is defined by a 

single statement of the form f(a;, az,...,a,) = e, where f is the function 

name, e is an expression, and the a, are dummy arguments. Note that since 

statement function definitions must precede the first executable statement 

in the program, it is logically possible to distinguish this from an ordinary 

assignment statement.



164 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

An external function is written as FUNCTION f(a, a2, ..-, Gn) where 
f is the name of the function and the a; are dummy arguments. This is then 

followed by the code for the procedure, which must contain the function 

name as a variable name, and at least one RETURN statement. The value of 

the former at the time of execution of any RETURN statement is the value 

of the function. 

An external subroutine is defined similarly by writing SUBROUTINE 

s(a}, @2, ..., Gn) OF SUBROUTINE s. The name of the subroutine cannot be 

used in the body of the subroutine. 

Basic FORTRAN does not permit any self-modification of the program 

nor any self-extension of the language. There are no specific compiler 

directives. 

With regard to the ability to write a compiler for FORTRAN (any 

level) in FORTRAN (any level), this is utterly impractical to do because 

FORTRAN has no facilities for handling parts of words or for doing 

character manipulation. However, some people have written subroutine 

packages to do these things, and then used FORTRAN for the rest of the 

work and for the logic. For example, the SIFT program described earlier 

was written primarily in FORTRAN. 

FORTRAN is a language which has tended to sacrifice compile time 

efficiency in order to obtain object time efficiency. An early illustration of 

this (which has long since disappeared) was the FREQUENCY statement that 

appeared in FORTRAN I and II; this was dropped in FORTRAN IV and 

in the creation of Basic FORTRAN. This statement required a tremendous 

amount of analysis at compile time and it did not yield enough benefits at 

object time. FORTRAN has no restrictions on naming of variables and 

simultaneously does not have any significant blanks; these facts make com- 

pilation quite inefficient in some cases (the former is the more significant 

problem). For example, if the compiler encounters something of the form 

DO 5 J = 7 it cannot tell whether that is an assignment statement or really 

a DO loop; in fact, this is only determined by the presence or absence of 

a comma after the number following the equal sign. In spite of this, several 

compilers which concentrated on rapid compilation have been written e.g., 

Rosen, Spurgeon, and Donnelly [RO65] and Schantz, et al. [SY67]. 

‘There are no debugging aids or error checking required in the language. 

Actually, there has been no opportunity to use Basic FORTRAN 

outside its primary application area because it is relatively new. Earlier 

versions of FORTRAN (often with special machine language coded sub- 

routine packages) have been used, however, for just about anything that 

one would care to name, e.g., list processing, polynomial handling, data 

processing, and phases of compiler writing. (See, respectively, the work de- 

scribed by Weizenbaum [WZ63] and Sakoda [SA65], Fowler and MacMasters 

[FH64], Robbins [RM62], Allen, Moore, and Rogoway [AX63].) Thus there 

is no doubt about FORTRAN ’s versatility, whether forced or inherent, in 

the language.



IV.3. FORTRAN 165 

Comments about the distinction between Basic FORTRAN and 

FORTRAN are given in the next section. 

IV.3.4. TECHNICAL FEATURES OF ASA (USASI) FORTRAN 

It should be explicitly understood that all the characteristics and 

properties of Basic FORTRAN apply also to FORTRAN unless specifically 

stated otherwise. A discussion and summary of the restrictions on Basic 

FORTRAN are at the end of this section. 

The $ is added to the character set as a currency symbol. 

Data names can have six characters and three subscripts instead of 

two. Statement labels can have five digits. The first significant addition to 

FORTRAN is the set of relational and logical operators as follows: 

-LT. Less than 

-LE. Less than or equal to 

-EQ. Equal to 

-NE. Not equal to 

GT. Greater than 

-GE. Greater than or equal to 

-OR. Logical disjunction 

-AND. Logical conjunction 

-NOT. Logical negation 

Since there are now relational operators, they are used between two 

arithmetic expressions to produce the values true or false for Boolean 

(logical) variables. In this case, either arithmetic expression may be of type 

real or double-precision, or both arithmetic expressions may be of type 

integer. (See the description of new data types below.) 

The restriction on the sequence of the declarations which exists in 

Basic FORTRAN is removed here. 

In addition to the four types of arguments for procedures permitted 

in Basic FORTRAN, one can also use the name of an external procedure 

and a Hollerith constant; the latter is an exception to the rule requiring 

agreement of type. If an actual argument is an external function or sub- 

routine name, the corresponding dummy argument must be used as an ex- 

ternal function or subroutine name, respectively. 

The most significant additions to Basic FORTRAN are in the area 

of data variables and the arithmetic performed upon them. Boolean (logical), 

complex, and Hollerith (i.e., alphanumeric) variables are permitted in 

FORTRAN. As a result, complex and Boolean arithmetic are performed.



166 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

In addition, “double-precision” floating point variables and constants are 

permitted; hence double-precision arithmetic is done. However, this is not 

required to be twice the precision of floating point but merely greater. 

There is no relaxation on the rules of not permitting integers and real vari- 

ables in the same expression. However, real numbers can be combined with 

double-precision or complex numbers, with either of the latter resulting. 

Boolean arithmetic is done in the normal manner by using the operators 

OR, AND, and NOT, resulting in a logical variable. 

More flexibility on scope of variables is permitted since it 1s possible 

in a COMMON statement to have a block name assigned to a set of variables 

which are to be in a COMMON block. This block name is defined locally 

only for the variables it is associated with and has no meaning other than 

that. Hence the same block name can appear more than once in a COMMON 

statement. 

In FORTRAN there are now three types of assignment statements: 

arithmetic, logical, and go to. The first is the same as in Basic FORTRAN, 

except that more complicated conversion rules for the results are required; 

these are shown in Fig. IV-9. The logical assignment statement is of the 

form v=e, where v is a logical variable and e is a logical expression; the 

right-hand side is evaluated and its value assigned to the logical variable v. 

The go to assignment statement is of the form ASSIGN k TO i, where 

k is a statement name and j is an integer variable name. The net effect of 

this statement occurs only for subsequent execution of any assigned 

go to statement (which is a new and additional type of control transfer 

added in FORTRAN). An assigned go to statement is of the form 

GO TO i, (ki, kz, ...,k,) where j is a variable of type integer and the k; 

are statement labels. The effect of this is to cause the transfer of control to 

that variable k; which has the exact value that has been assigned to i. Thus 
if we wrote ASSIGN 17 TO M and then somewhat later executed GO TO M, 

(15, 902, 17, 21), there would be an unconditional transfer to statement 17. 

A logical JF statement has been added and it is of the form IF(e)s where 
e is a logical expression and s is any executable statement except a DO 
statement or another logical JF statement. If the value of e is true, then s is 

executed; if e is false, then s is executed as if it were a CONTINUE statement. 

Further flexibility on transfers back into a DO nest are permitted in 

FORTRAN. For details, see Section 7.1.2.8 of the FORTRAN standard 

[AA66]. 

There are more functions provided in the library. 

One of the primary additions to FORTRAN is the type statements, 

which are of the form tv;, v2,..., v, Where ¢ is one of the following: 

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL and each 

v is the name of a variable, an array, a function, or an array declaration. 

Most significant of all, type statements can be used to override the implicit 

typing (i.e., variables beginning with the letters |, J, K, L, M, or N are



IV.3. FORTRAN 167 

  

If v Type Is And e Type Is The Assignment Rule Is 

Integer Integer Assign 

Integer Real Fix & assign 

Integer Double precision Fix & assign 
Integer Complex P 

Real Integer Float & assign 
Real Real Assign 

Real Double precision DP evaluate & real assign 
Real Complex P 

Double precision Integer DP float & assign 
Double precision Real DP evaluate & assign 

Double precision Double precision Assign 

Double precision Complex P 

Complex Integer P 

Complex Real P 

Complex Double precision P 
Complex Complex Assign 
  

1. P means prohibited combination. 

2. Assign means transmit the resulting value, without change, to the entity. 

3. Real Assign means transmit to the entity as much precision of the most significant 

part of the resulting value as a real datum can contain. 
4. DP Evaluate means evaluate the expression according to the rules of 6.1 (or any 

more precise rules) then DP Float. 

5. Fix means truncate any fractional part of the result and transform that value to 

the form of an integer datum. 

. Float means transform the value to the form of a real datum. 
7. DP Float means transform the value to the form of a double precision datum, 

retaining in the process as much of the precision of the value as a double precision 

datum can contain. 

ON
 

  

Figure IV-9. Rules for assignment of e to v in FORTRAN. 

Source: [AA66], p. 13. 

integers, while the others are real). The array declaration is of the form 

v(i), where (i) itself represents the subscript and can be composed of one, 

two, or three expressions. Thus the type statement can also include the 

DIMENSION information, e.g., LOGICAL | (3, 5). The DIMENSION statement 
(or the equivalent information which can appear in a type statement or in 

a COMMON statement) is more flexible. An array with an integer variable 

name can appear in a subroutine; the variable names are called adjustable 
dimensions. The dummy argument list of the subroutine must contain these 

two items. Values of the actual dimensions must be defined prior to calling 

the subroutine and cannot be redefined during the execution of the sub- 

routine.



168 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

The COMMON statement permits the naming of different blocks and 

is of the form COMMON/x,/a1/. ../xn/a, Where each x; is a symbolic name 

or empty and each gq; is a nonempty list of variable names, array names, or 

array declarations. 

An EXTERNAL statement is of the form EXTERNAL v;, vo,...,V, Where 

each v; is an EXTERNAL procedure name. The basic purpose of an EXTERNAL 

procedure is to write in languages other than that of the standard. If an 

EXTERNAL procedure name is used as an argument to another EXTERNAL 
procedure, it must appear in an EXTERNAL statement program unit in which 

it is so used. 

A FUNCTION declaration is of the form t FUNCTION f (a;, a2, ..., Qn) 
where ¢ is one of the type declarations. | 

A data initialization statement has been provided and is of the form 

DATA ki/di/, k2/d2/, ..., k,/d, Where each k; 1s a list containing data 

names and each qd; is a list of constants, any of which may be preceded by 

j*, where j is an integer constant and means that the constant is to be 

specified j times. The purpose of the data initialization statement is to define 

initial values of variables or array elements. There must be a one-to-one 

correspondence between the list of specified items and the constants. 

A statement of the form BLOCK DATA can appear as the first statement 

of subroutines that are called block data subroutines and that are used to 

enter initial values into elements of labeled common blocks. This special 

subroutine contains only type statements and EQUIVALENCE, DATA, 

DIMENSION, and COMMON statements. If any entity of a given common 

block is being given an initial value in such a subroutine, a complete set of 

specification statements for the entire block must be included, even though 

some of the elements of the block do not appear in DATA statements. Initial 

values may be entered into more than one block in a single subroutine. 

The following list is taken directly from Appendix C of USA Standard 

FORTRAN [AA66];'° it summarizes the principal differences between the 

two Standards: 

USA Standard Basic FORTRAN (as compared to USA Standard 
FORTRAN) has: 

1. A maximum of five continuation cards (instead of 19 continua- 
tion cards). 

2. A maximum of five characters in a symbolic name (rather than 
Six). 

3. Neither logical type, logical nor relational expressions, logical 
IF statement, nor “L” format descriptor. 

4. No “$” in its character set. 

5. Neither complex type, double precision type, type-statement, 

  

10 USA Standard FORTRAN [AA66], p. 35.



IV.3. FORTRAN 169 

double precision and complex constants and expressions, nor 
“D” and “G” format descriptors. 

6. No EXTERNAL statement. 

. No 3-dimensional arrays, subscripts. 

8. A prohibition on FUNCTION subprograms, in that they may 
not define nor redefine any of their arguments nor any entity 
in common. 

9. No array declarator permitted in a COMMON statement. 

10. No labeled common blocks. 

11. No ASSIGN nor assigned GO TO statements. 

12. No DATA statement nor BLOCK DATA programs. 

13. A maximum of four (rather than five) octal digits in the PAUSE 
statement. 

14. No print carriage control for formatted output records. 

15. No Hollerith datum nor the “A” format descriptor and therefore 
no FORMAT can be read in during execution. 

16. No provisions in a FORMAT statement for (a) scale factor, 
(b) data exponent on input for “F” descriptor, (c) second level 
parentheses. 

17. A restriction on external functions that they may not alter 

variables in common or variables associated with common via 
an EQUIVALENCE statement. 

18. A requirement that all DIMENSION statements must precede 
all COMMON statements, which must in turn precede all 
EQUIVALENCE statements. 

19. A statement label may contain only 4 digits rather than S. 

~]
 

1V.3.5. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

FORTRAN has probably had more significant impact on computing 

than any other single development. However, the most significant con- 

tribution made by FORTRAN is its usage rather than its technology. 

Because it was designed so early, better ways have been found to do almost 

everything that is currently in FORTRAN. Lest this be considered too 

cynical an attitude, the most important technological contributions seem 

to be (1) the development of a language which could be used on available 

hardware, (2) the use of EQUIVALENCE statements to give the programmer 

some control over storage allocation, (3) the nondependence on blanks 

(which might also be considered a hindrance), and finally (4) the relative 

ease of learning the language and its palatability to a large group of people. 

In addition to these, considerable thought was given to the possibilities of 

compiler optimization of object code, and the language design showed It. 

For example, the inclusion of the FREQUENCY statement to facilitate flow 

analysis, the fixed limitation on the number of subscripts, and the various



170 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

concerns with storage allocation all contributed to potential compiler 

efficiency. The fact that the first two of these examples became unimportant 

is not a reflection on the value of the initial technological contribution. 

IV.3.6. SIGNIFICANT EXTENSIONS OF FORTRAN 

Because FORTRAN is the most widely used language, it is not sur- 

prising that people have extended it for use in areas other than that for 

which it was originally intended. Some of these extensions are minor in 

concept and character, while others are far-reaching in both practical usage 

and implication. It should be emphasized that what is being considered here 

are specific extensions of the language and not of facilities which can be 

handled through the use of subroutines (which included things as different 

as character handling, list processing, recursion, and packages for doing 

data processing. Specific citations for these were given in Section IV.3.3). 

The only items being included here are actual language extensions to 

FORTRAN. There are surprisingly few of these, primarily because most 

of the additions were made as subroutine packages. In some of these cases 

the extensions were implemented by writing a preprocessor to translate the 

additional statements to FORTRAN (e.g., proposal writing language and 

FORMAC); while in other cases new translators have been written (e.g., 

QUIKTRAN). 

1. Proposal Writing Language 

A rather unusual extension to FORTRAN is the proposal writing 

language developed by Carleton, Lego, and Suarez [CT64]. They have added 

the 12 statements shown in Fig. IV-10 to FORTRAN II as it existed for 

the IBM 704 in 1959. All FORTRAN statements are used, except for the 

STOP which 1s modified somewhat to control the termination of the proposal 

writing process. The system is implemented by a preprocessor which con- 

verts all new statements to CALLs to appropriate subroutines. 

Many of the statements are self-explanatory, in particular LEFT MARGIN, 

RIGHT MARGIN, TABULATE, SINGLE SPACE, DOUBLE SPACE, RESTORE PAPER, 
and END PARAGRAPH. The meanings of the others are as follows: 

ALPHABETIC INPUT causes the computer to read from card format, 

searching for as many alphabetic variables as are named in the list. 

The m characters of Hollerith information 1s interpreted by having the 

characters within the set of parentheses inserted into the text immediately 

following the material previously prepared for printing. A similar result 

occurs when using ALPHABETIC INSERT, except that in this case the state- 

ment provides the names of variables whose values are inserted into the 

text. The NUMERIC INSERT causes the insertion of the value of the



IV.3. FORTRAN 171 

  

ALPHABETIC INPUT list of olphabetic variable names 

RIGHT MARGIN m 

LEFT MARGIN m 

TABULATE m 

SINGLE SPACE 

DOUBLE SPACE 

RESTORE PAPER 

ALPHABETIC INSERT alphabetic variable 

(m characters of Hollerith information) 

NUMERIC INSERT FORTRAN variable, constant or expression, 

Conversion type, n FIGURES, COLUMN m 

PARAGRAPH n, list of variables 

END PARAGRAPH 

PREPARE PARAGRAPH on, list of arguments 

STOP 
  

Figure IV-10. List of statements in Proposal Writing Language. 

Source: Extracts from Carleton, Lego, and Suarez [CT64]. 

FORTRAN variable, constant, or expression into the current line of the 

proposal. The numbers can be converted to integers or to the FORTRAN E 

type floating point format. The optional clause n FIGURES specifies the 

number of digits desired to the right of the decimal point and the COLUMN 

can be used to line up a decimal point under previous numbers. 

The PARAGRAPH statement allows the user to define a subprogram; 

the latter is generally used to produce a single paragraph of text describing 

individual items such as motors. The n is simply the identification number 

for the subprogram, and the fist of variables provides the parameters. 

However, information cannot be passed back to the main program from a 

paragraph subprogram. 

The PREPARE PARAGRAPH serves to invoke the subprogram and add its 

text to the body of the proposal, with the appropriate substitutions made 

for the parameters. 

The STOP statement initiates a completion phase of the proposal writing 

system. 
A simple illustration of a program written in this language is given in 

Fig. IV-11. 

2. FORMAC (cross-reference only) 

A significant extension of FORTRAN to do formal algebraic man - 

ipulation on the computer 1s FORMAC . It is described in detail in Section 

VII.3.



172 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

  

ALPHABETIC INPUT DESCPT, INPUT3, BETA 

RIGHT MARGIN 72 

LEFT MARGIN 15 

TABULATE 40 

SINGLE SPACE 

DOUBLE SPACE 

RESTORE PAPER 

(DC, SERIES WOUND) 

ALPHABETIC INSERT DESCPT 

NUMERIC INSERT HP, DECIMAL, 2 FIGURES, COLUMN 14 

PARAGRAPH 7, ID, COMNT, XC 

END PARAGRAPH 

PREPARE PARAGRAPH 7, ITEMNO-+1, DESCPT, X+Y 

STOP 
  

Figure IV-11. Program in Proposal Writing Language. 

Source: Carleton, Lego, and Suarez [CT64], p. 460. 

3. QUIKTRAN (cross-reference only) 

An on-line version of FORTRAN was developed, initially for the 

IBM 7040. The primary extensions were in the area of the control functions 

for the time-sharing system and debugging facilities for the user. The overall 

features of the system and the debugging facilities are described in Section 

IV.6.3. 

4. GRAF (cross-reference only) 

An extension of FORTRAN to handle graphics is defined in GRAF. 

A new data type called a display variable is added, and various commands 

and declarations are defined which apply to this. GRAF is described in 

Chapter IX.3.3.1. 

5. DSL/90 (cross-reference only) 

An extension of FORTRAN to simulate block diagrams is defined in 

DSL/90. See Section IX.2.4.5. 

IV.4. ALGOL 

IV.4.1. HISTORY 

1. ALGOL 58 

There are two major nontechnical firsts contributed to the computing 
community by ALGOL: (1) It was the first major language to be designed



Iv.4. ALGOL 173 

by a committee of people from different organizations, and (2) this committee 

was in fact international. (The PACT system was designed by an intercom- 

pany committee, but it is not considered either major or up to the level of 

the programming languages in this book. References are given in Chapter I.) 

The following is a description of the creation of what was originally 

called IAL (/nternational Algebraic Language) and subsequently became 

known as ALGOL 58 (ALGOrithmic Language). It is quoted directly from 

the report by Perlis and Samelson [PR58].'! Although this report was defined 

as preliminary and the committee anticipated preparing a more complete 

description of the language for publication, they never did (until the ALGOL 

60 report). However, the ALGOL 58 (nee IAL) report spawned a number 

of significant languages and implementation technique developments. 

In 1955, as a result of the Darmstadt meeting on electronic com- 

puters, the GAMM (association for applied mathematics and mechanics), 

Germany, set up a committee on programming (Programmierungsaus- 
schuss). Later a subcommittee began to work on formula translation and 
on the construction of a translator, and a considerable amount of work 
was done in this direction. 

A conference attended by representatives of the USE, SHARE, and 
DUO organizations and the Association for Computing Machinery 

(ACM) was held in Los Angeles on 9 and 10 May 1957 for the purpose 
of examining ways and means for facilitating exchange of all types of 
computing information. Among other things, these conferees felt that a 

single universal computer language would be very desirable. Indeed, the 
successful exchange of programs within various organizations such as 
USE and SHARE had proved to be very valuable to computer instal- 
lations. They accordingly recommended that the ACM appoint a com- 
mittee to study and recommend action toward a universal programming 

language. 
By Oct 1957 the GAMM group, aware of the existence of many 

programming languages, concluded that rather than present still another 

formula language, an effort should be made toward unification. Conse- 
quently, on 19 Oct 1957, a letter was written to Prof. John W. Carr III, 
president of the ACM. The letter suggested that a joint conference of 
representatives of the GAMM and ACM be held in order to fix upon a 
common formula language in the form of a recommendation. 

An ACM Ad-Hoc committee was then established by Dr. Carr, which 

represented computer users, computer manufacturers, and universities. 
This committee held three meetings starting on 24 Jan 1958 and discussed 
many technical details of programming language. The language that 

evolved from these meetings was oriented more towards problem language 
than toward computer language and was based on several existing pro- 
gramming systems. On 18 April 1958 the committee appointed a sub- 
committee to prepare a report giving the technical specifications of a 

proposed language. 
A comparison of the ACM committee proposal with a similar pro- 

posal prepared by the GAMM group (presented at the above-mentioned 

  

11 Perlis and Samelson [PR58], pp. 8-9. By permission of Association for Computing 
Machinery, Inc.



174 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

ACM Ad-Hoc committee meeting of 18 April 1958) indicated many 
common features. Indeed, the GAMM group had planned on its own 
initiative to use English words wherever needed. The GAMM proposal 
represented a great deal of work in its planning and the proposed language 
was expected to find wide acceptance. On the other hand the ACM 
proposal was based on experience with several successful, working 
problem oriented languages. 

Both the GAMM and ACM committees felt that because of the 
similarities of their proposals there was an excellent opportunity for 
arriving at a unified language. They felt that a joint working session 
would be very profitable and accordingly arranged for a conference 
in Switzerland to be attended by four members from the GAMM group 
and four members from the ACM committee. The meeting was held in 
Zurich, Switzerland, from 27 May to 2 June 1958 and attended by 
F. L. Bauer, H. Bottenbruch, H. Rutishauser, and K. Samelson from 
the GAMM committee and by J. W. Backus, C. Katz, A. J. Perlis, and 
J. H. Wegstein for the ACM Committee. 

It was agreed that the contents of the two proposals should form the 
agenda of the meeting, and the following objectives were agreed upon: 

I. The new language should be as close as possible to standard 
mathematical notation and be readable with little further 
explanation. 

II. It should be possible to use it for the description of computing 
processing in publications. 

Ill. The new language should be mechanically translatable into 
machine programs. 

Although not stated explicitly in the report, it was intended by the 

designers that the language should be a standard. The publication of the IAL 

report created a significant stir in the computing community. A number of 

groups in Europe started to implement it and found a number of omissions, 

ambiguities, etc. A few implementations were started in the United States 

but only one really became successful and widely used—namely the Bur- 

roughs version for the 220, known as BALGOL [QG61]. (See comments on 

usage in Forest [FS61].) A large series of dialects and derivatives began to 

spring up, e.g., CLIP, JOVIAL, MAD, and NELIAC; these are discussed 

in other sections. Springer-Verlag (a publishing firm) announced a plan to 

publish a series of books on numerical computation in which all the algo- 

rithms would be written in ALGOL. (However, they did not release any- 

thing until the fall of 1967, and that volume dealt only with the definition and 

translation of ALGOL 60.) SHARE announced support of IAL (ALGOL) 

and formed a working committee. 

Articles and correspondence by individuals and committees appeared, 

indicating areas of difficulty. See, e.g., Green [GT59], Kanner [KF59], Irons 

and Acton [IR59], and the SHARE committee report [CC59]. In March, 

1959 the first issue of the ALGOL Bulletin was issued at Regnecentralen,



Iv.4. ALGOL 175 

Copenhagen, with Peter Naur as the editor. The impetus for this bulletin 

came from a meeting held in Copenhagen in November, 1958, where about 

forty interested people from several European countries held an informal 

meeting to discuss implementation. A group was formed to implement 

ALGOL for several machines, with agreement to be reached on everything 

down to and including the paper tape code used; this later became known 

as the ALCOR (ALgol COnverteR) group. The ALGOL Bulletin was ini- 

tially used for communication primarily by Europeans, while Americans 

sent their comments to the ACM Communications for publication. This 

bulletin continues, although it stopped for 2 years after Naur’s resignation; 

it was revived in 1964 by IFIP with Fraser Duncan as editor. The ALGOL 

Bulletin serves as a very effective means of communication among people 

strongly interested in ALGOL. 

Among the more intriguing technical features of ALGOL 58 were its 

essential simplicity; the introduction of the concept of three levels of lan- 

guage, namely a reference language, a publication language, and hardware 

representations; the begin... end delimiters for creating a single (com- 

pound) statement from simpler ones; the flexibility of the procedure 

declaration and the do statement for copying procedures with data name 

replacement allowed; and the provision for empty parameter positions in 

procedure declarations. While ALGOL 58 is not an exact subset of ALGOL 

60, the only items of significance which are in the former but not the latter 

are the do which was removed as a concept (although the word was used 

for something else) and the empty parameter positions. Because of this major 

carry-over, specific technical description of ALGOL 58 is not necessary. 

The avowed purpose of ALGOL 58 was “to describe computational 

processes”. For this reason, there were no input/output facilities provided, 

and this situation was not remedied in the ALGOL 60 report. 

2. ALGOL 60 

At the UNESCO sponsored International Conference on Information 

Processing held in Paris in June, 1959, several noteworthy events occurred. 

There was an open discussion of the weaknesses of ALGOL, and the now 

famous paper by John Backus [BS60] appeared. This paper presented a formal 

method of defining syntax—later referred to as Backus Normal Form (BNF)— 

and gave the proposed definition for ALGOL, using this technique. Although 

the paper created some excitement, its full significance for language definition 

and interface point with computational linguistics became obvious only later. 

That paper marked the beginning of a more rigorous approach to program- 

ming languages and is one of the major landmarks in the field. 

It was agreed that there should be an international meeting in January, 

1960 for improving the language and preparing a final report. At a European



176 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

ALGOL conference in Paris in November, 1959, the following people were 

selected to attend the January, 1960 conference: F. L. Bauer, P. Naur, H. 

Rutishauser, K. Samelson, B. Vauquois, A. van Wijngaarden, and M. 

Woodger. They represented the following organizations: Association 

Francaise de Calcul, British Computer Society, Gesellschaft fiir Angewandte 

Mathematik und Mechanik, and Nederlands Rekenmachine Genootschap. 

The seven individuals held a final preparatory meeting at Mainz in December, 

1959. 

In the United States, the ACM Committee on Programming Languages 

met in November, 1959 to consider all the comments on ALGOL which 

had been sent to the ACM Communications. See for example the items cited 

earlier and those given in [CC6la]. The following representatives were 

selected to attend the January, 1960 conference and they held a final pre- 

paratory meeting in Boston in December, 1959: J. W. Backus, J. Green, 

C. Katz, J. McCarthy, A. J. Perlis, J. H. Wegstein, and W. Turanski (killed 

just prior to the January, 1960 conference). 

The 13 representatives from Denmark, England, France, Germany, 

Holland, Switzerland, and the United States met in Paris from January 11 to 

16, 1960. Prior to that meeting, P. Naur had prepared a completely new 

draft report from (1) the preliminary report, (2) recommendations, and (3) 

Backus’ notation. The committee strove for agreement on each item of the 

draft report, and the “Report on the Algorithmic Language ALGOL 60” 

[NA60] “represents the union of the Committee’s concepts and the inter- 

section of its agreements.”?? 

Thus, IAL became ALGOL, which became ALGOL 58, and eventually 

disappeared into ALGOL 60, which was a substantial improvement over 

ALGOL 58, although still retaining much of the flavor of the original version. 

In February, 1960 an “Algorithms” section appeared in the ACM 

Communications. For a few months the ALGOL 58 language was used, but 

from the time of the issuance of the ALGOL 60 report that language was 

used. Although FORTRAN has been much more widely used in the United 

States than ALGOL, it was not until September, 1966 that algorithms written 

in FORTRAN were considered acceptable for publication in this section. 

(By the end of 1967 no FORTRAN algorithms had been published.) The 

section itself has proved to be a useful catalog of a number of procedures 

and techniques, many of which have been tried on computers and certified 

as being correct (or had the errors indicated). In 1966 the ACM collected 

them and issued a notebook [AC66] which is updated periodically. It is inter- 

esting to note that in many cases the only practical method of computer 

checking available was to write a FORTRAN program to correspond to the 

ALGOL algorithm and check that; this situation occurred (and still does) 

  

12 Naur [NA60], p. 299.



Iv.4. ALGOL 177 

because relatively few installations in the United States have ALGOL 
compilers. 

3. Revised ALGOL 60 

During the early part of 1960, an informal working group on ALGOL 
existed in the United States primarily for the purpose of discussing imple- 
mentation techniques. This group was greatly enlarged and organized itself 

as an ACM ALGOL Maintenance Group. This committee contained about 

60 members from 28 organizations and concerned itself with interpretation 

and the philosophical (and technical) issues of changes to the ALGOL 60 

report. Most of its work was done by mail, and the results were also com- 

municated through the ALGOL Bulletin. 

At the same time, considerable work on implementation was being done 

in Europe. This served to highlight ambiguities and develop new implementa- 

tion techniques. Few compilers attempted to implement the entire language; 

in fact, the battle as to who had implemented more, or at least more efficiently, 

became a favorite game of ALGOLers. 

In January, 1962 a rather detailed questionnaire was included in ALGOL 

Bulletin No. 14. Its purpose was to solicit opinions on a number of technical 

ambiguities and also on the philosophy of specific proposed extensions and 

subsets. 

On April 2 to 3, 1962, the following authors of the ALGOL 60 report 

were present at a meeting in Rome: F. L. Bauer, J. Green, C. Katz, R. Kogon 

(representing J. W. Backus), P. Naur, K. Samelson, J. H. Wegstein, A. van 

Wijngaarden, and M. Woodger. Also present were W. L. van der Poel (as 

an observer) and the following people as advisors: R. Franciotti, P. Z. 

Ingerman, P. Landin, M. Paul, G. Seegmiiller, and R. E. Utman. The 

purpose of the meeting was to correct known errors, attempt to eliminate 

apparent ambiguities, and to provide other needed clarification of the ALGOL 

60 report. There was no consideration of extensions. The results of the ques- 

tionnaire in ALGOL Bulletin No. 14 were used as a guide. 

There were two main results from this meeting: First, the issuance of 

“Revised Report on the Algorithmic Language ALGOL 60” (Naur [NA63]) 

and, secondly, the transferal by the authors of any collective responsibility 

they might have had with respect to the development, specification, and 

refinement of the ALGOL language to the IFIP Working Group on ALGOL 

(WG 2.1). The revised (i.e., Rome) report was reviewed by IFIP TC 2 

(Technical Committee on Programming Languages) in August, 1962 and was 

approved by the IFIP Council. The (Rome) report itself completely incor- 

porated the ALGOL 60 Report, with only an editor’s footnote to indicate 

the places in which the new report differed from the 1960 one. In addition, 

the Rome report contained a brief description of the April, 1962 conference



178 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

(edited by M. Woodger), indicating that there were still five areas which re- 

quired further study. 

The ALGOL Bulletin continues to be used for discussions of ALGOL 

60 (revised), although the attention of WG 2.1 has been devoted more 

toward various extensions of ALGOL. 

4. ALGOL 6X 

For years the ALGOL community has heard about the possibility of a 

new version of ALGOL, presumably to be issued during the 1960’s and 

hence known as ALGOL 6X. In the spring of 1968, a draft report describ- 

ing ALGOL 68 (van Wijngaarden [VW68]) was issued. Its short and long 

range fate are unknown. 

1V.4.2. FUNCTIONAL CHARACTERISTICS OF REVISED ALGOL 60— 

PROPOSED ISO STANDARD 

ALGOL 1s a moderately general language with as much succinctness 

and similarity with mathematics as is reasonable. It is internally consistent 

and has a general “cleanliness.” It 1s easy to read and write (except for some 

of the very subtle points). It is easy to learn and is not particularly error 

prone. 

SAMPLE PROGRAM—ALGOL 60 

  

Problem: Construct a subroutine with parameters A and B such that A and 
B are integers and 2 < A < B. For every odd integer K with A < K < B, compute 
S(K) = BK + sin (X))'” if K is a prime, and f(K) = (4K + cos (K))!” if K is 
not a prime. For each K, print K, the value of f(K), and the word PRIME or 

NONPRIME as the case may be. 
Assume there exists a subroutine or function PRIME (XK) which determines 

whether or not K 1s a prime, and assume that library routines for square root, 

sine, and cosine are available. 

Program: 

procedure problem (a, b); 
value a, b; integer a, b, k; 

begin integer k: real e; 
for k:=2 X (a/2) + 1 step 2 until b do 

begin 

e := if prime (k) then sqrt(3 X k + sin(k)) 

else sqrt(4 X k + cos(k)); 
if prime (k) then putlist(k, e, ' prime’) 

else putlist(k, e, ‘nonprime’) 
end 

end



Iv.4. ALGOL 179 

The stated purpose of the language is to describe computational pro- 

cesses. It has also turned out to be very useful for teaching an introduction 

to the concepts of computational processes. It is definitely a problem-solving 

language and uses the concept of all three language types: Publication, 

reference, and hardware. In fact ALGOL was the first language to introduce 

this trichotomy and the only one in this book to use these distinctions. Since 

the primary objective of the language is to state algorithms, somewhat less 

attention was paid to the definition of the proposed user; any person with 

a computational process to describe who wishes a computer-oriented higher 

level language can use ALGOL with varying degrees of effectiveness. It is 

definitely designed for use in a batch environment. 

ALGOL provides a significant amount of compatibility through the use 

of its reference language. Conversions to a particular machine tend to be 

completely incompatible because of differences in the hardware representa- 

tion. There is also a problem about arithmetic precision because no specifica- 

tions are given relative to the amount to be carried in any computation, and 

there is no provision for double-precision arithmetic. Like any other higher 

level language, ALGOL is compiler dependent for those areas in which the 

language specifications are somewhat unclear and also for those areas in 

which the result is left undefined in the language specifications. However, 

the user should only employ these at his own risk. 

ALGOL has probably spawned more major outgrowths and fewer 

major dialects than any other language. This is partly because some of the 

“dialect deviations” really show up in the hardware representation and 

partly because of the historical development described earlier. There were 

several significant outgrowths from ALGOL 58 (primarily MAD, NELIAC, 

and JOVIAL which are described elsewhere). It is my firm contention that 

these are not dialects of ALGOL in any reasonable meaning of the word. 

They were motivated by ALGOL 58 but differ so markedly from it (and of 

course from ALGOL 60) that they should not be called dialects any more 

than PL/I is a dialect of ALGOL 60. There has been amazingly little of the 

minor kind of dialect, and the dialects have been caused almost entirely 

because of the problem of hardware representation. 

It is in the area of subsetting prior to the existence of the proposed 

standard that the major differences exist. Virtually no two implementations 

handled the same subset of the language. The criterion for excluding features 

usually was based on machine limitations or compiler design, which makes 

certain features hard to handle, or the desire for great efficiency of either 

object code or compilation time. The varying subsets in general were not 

nested. The major features that have been omitted from a significant number 

of compilers are recursive procedures, integer labels, and own variables. 

These subsets also have extensions for input/output, most differing from 

each other.



180 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

The four major subsets which have been defined over a period of time are 

SMALGOL, the ALCOR, IFIP, and ECMA subsets. These are defined, 

respectively, in [CC6Ib], [CC63a, CC64d], [CC64c], and [CC63b]. There are 

three subsets defined in the ISO standard: Levels 1 and 2 are the ECMA 

subsets with and without recursion, respectively, while level 3 is the IFIP 

subset. Each subset is wholly contained within the one of next higher num- 

ber. 

Some early ALGOL compilers have been partially bootstrapped, but 

it would be logically impossible to do this completely because of the lack of 

input/output facilities in the language. In some cases, procedures for character 

handling and input/output were coded in machine language and these were 

used with ALGOL to accomplish bootstrapping. 

Because of the essential simplicity of ALGOL, and more importantly 

because of the formalism of the syntactic definitions, there has been less of 

a problem of compatibility based on incomplete language definition than 

in some other languages. This does not mean that the language interpretation 

problem is nonexistent, as a wide variety of correspondence in the ALGOL 

Bulletin and elsewhere proves otherwise. 

The problem of converting an ALGOL program from one machine to 

another is basically a problem in different hardware representations, as well 

as normal difficulties accruing from machine and compiler differences. There 

have been no significant attempts at translating ALGOL programs to 

another language, except by hand to FORTRAN primarily for the purpose 

of checking out algorithms. 

Because ALGOL was created by an international committee and, in 

fact, has received wider usage and attention in Europe than in the United 

States, it is only natural that the standardization effort in the United States 

would subordinate itself to that of the international organization, ISO. The 

basic policy adopted by X3.4 was to wait until an international standard was 

developed and then to see whether or not this was appropriate as an American 

standard. However, the X3.4.2 (and then X3.4.8) subcommittees of X3.4 

contributed to the ISO standard in several ways. They proposed solutions 

of the issues left unresolved by the Rome meeting and took strong positions 

on the necessity for a subset and for input/output. The ACM Programming 

Languages Committee sponsored the committee to produce a specific pro- 

posal for standard input/output (see [CC64a]). This was adopted, along with 

the independent IFIP proposal [CC64b]. The international standard was 

accepted for most practical purposes in October, 1965, but its final official 

approval has been delayed by administrative problems and errors. 

The designers of the language were indicated in the historical section. 

The essential sponsorship for this effort came from professional computer 

societies in the United States and Europe. This contrasted with COBOL, 

where the development was by an American committee, heavily dominated



Iv.4. ALGoL 181 

by computer manufacturers initially, under essentially Department of 

Defense sponsorship. As stated earlier, the basic objective of ALGOL was 

to allow the specification of computational processes. For this reason, very 

little concern was given to the problem of inputting the language directly 

to a computer. The greatest concession to this problem was in the recognition 

of the concept of a hardware language. However, a direct translation of the 

reference language character set was far beyond any existing or even pro- 

posed equipment available at the time that the language was defined. Hence 

various techniques had to be devised to permit the definition of a hardware 

language on punched card and paper tape equipment. 

There have been a large number of implementations of significant and 

small subsets of the language. No up-to-date list of these is available. (See 

[CC63] for an early list.) By the end of 1967 there was no implementation of the 

standard known to me. The maintenance of the language has been traced in the 

historical development and currently resides with IFIP Working Group 2.1. 

It is in the area of the technical definition of the language that ALGOL 

shines. This is the first language in which the syntax was defined with a formal 

notation, and this has given rise to a number of very significant developments, 

in particular the syntax-directed compilers. While many people interested 

in the problems of language definitions thoroughly appreciated the formal 

notation used in the ALGOL report, a significantly large class of people 

who were only concerned with using the language found the notation dif- 

ficult to read. Thus, the very value of the formal definition contributed to 

a lesser usage of the language simply because it discouraged people. This 

unfortunate situation is being remedied over a period of time. It must be 

noted that even with the formalism of the syntax, there were a few incon- 

sistencies, errors, and ambiguities, and of course the semantics were no 

better defined for ALGOL than for any other language. Interestingly enough, 

no formal definition of a program appeared in the 1960 version, although 

an informal definition was given. This omission was corrected in the revised 

report. 

There are five major types of documentation that have existed. The 

first is the set of official reports (Naur [NA60] and [NA63]). The second is 

the ALGOL Bulletin, which is completely informal and extremely valuable. 

The third are various attempts at pointing out ambiguities and/or clarifying 

them; see some of the references at the end of the chapter. Fourth, there 

have been a number of proposals for extensions and/or changes, e.g., Strachey 

and Wilkes [SQ61], Haynam [HN65] and several by Wirth. The last two 

categories appear primarily in the ALGOL Bulletin and/or ACM Communica- 

tions. Finally, a number of descriptive or tutorial articles have appeared, 

e.g., Schwarz [QN62] and Bottenbruch [BH62], as well as several books, 

e.g., Baumann et al. [BN64]. A general discussion of ALGOL documenta- 

tion appears in Naur [NA63a]. A number of references not specifically cited



182 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

in the text—although by no means a complete list—is given at end of the 

chapter. 

In my opinion, the evaluation of ALGOL has taken somewhat the 

opposite course from many other languages. The problem that exists in 

many other situations is that the faults of the compiler are blamed on the 

language. In the case of ALGOL, very often faults of the language are 

actually blamed on the compiler. Praise for the language has been much 

higher than praise for the compiler, although the latter has generally tended 

to be fairly good, particularly as better implementation techniques were 

gradually developed. 

ALGOL was defined as being primarily useful in the area of numerical 

mathematics and certain logical processes and it has certainly proved its 

use in these areas, but not outside these areas. Since the phrase logical 

processes covers a number of widely different areas, e.g., sorting and com- 

piling, ALGOL has actually been used to specify solutions to many differing 

types of problems. However, because the input/output facilities were not 

defined for many years after the basic language, ALGOL in its pure definition 

was not a computer usable language. ° 

The primary advantage to ALGOL seems to be its universality and the 

effectiveness for stating a very wide class of algorithms for numerical 

mathematics and for some logical processes (e.g., sorting). It has also proved 

valuable as a method of teaching basic computing processes. The primary 

disadvantages are its lack of ability to handle alphanumeric data or com- 

plicated data structures and the (at least initial) lack of input/output specifica- 

tions. It was originally argued by devotees of ALGOL that the programmer 

is free to write his own input/output procedures; while this is true, he is also 

free to write in assembly language all the other features that might happen 

to be in ALGOL and so this seems to be a very specious argument. The 

primary mistakes to be avoided in the future are in fact the two disadvantages 

just cited, namely the lack of adequate data-handling facilities and the lack 

of specified input/output. The second of these has already been corrected 

in the ISO proposed standard and the former will probably be corrected in 

a later version of ALGOL (presumably ALGOL 68). A further facility will 

need to be added to carry out list and string-handling processes. 

1V.4.3. TECHNICAL FEATURES OF REVISED ALGOL 60— 

ProposeD ISO STANDARD 

The language which is being defined here is the proposed ISO Standard 

[1065], of which official copies were not generally available at the time of this 

writing. Since [[065] is itself primarily based on, or a concatenation of, many 

documents, primarily Naur [NA63], [CC63b], [CC64a], [CC64b], and [CC64c],



Iv.4. ALGOL 183 

the basic information is actually available. Since ALGOL is conceptually 
composed of the three languages—reference, publication, and hardware, that 

which is being described here is the reference language. 

The character set is composed of the 52 upper-and lower-case letters, 

the 10 digits, the logical values true (true) and false (false), and the following 

characters, which are called delimiters in ALGOL: 

+ — x / + f 

= £#£ < 3S > 2 
= V A TD 

C( ) — Jt ce, te Gi = wo U 

go to for own switch 

if step Boolean string 

then until integer label 

else while real value 

begin comment array procedure 

end do 

Note that although many of the items look like words, e.g., step, begin, and 

label, they are really considered single characters. This means that from the 

point of view of the compiler there is no difference between the single letter 

a, a period . and the (apparent) word if; each is considered a single character. 

(Key words in ALGOL are customarily printed in boldface to emphasize 

this point.) 

Because most items which would intuitively be considered key words 

are defined as single characters, e.g., if, there are no fixed words in the lan- 

guage. This causes no trouble in the reference language but it is a source of 

difficulty in creating a hardware representation and implementing it. The 

graphic operators for the categories arithmetic, relational, and logical are 

shown in the first three lines in the list of characters. 

Both data names and program unit labels can consist of an unlimited 

string of letters and/or digits, but the first character must be a letter. As far 

as reserved words are concerned, there is (only) a strong recommendation 

that the following identifiers be reserved for the standard mathematical 

functions; these identifiers would be expressed as procedures and could be 

used without explicit declaration: abs, sign, sqrt, sin, cos, arctan, In, 

exp and entier. A variable can have subscripts; they are written within 
square brackets and are separated by commas. There are no restrictions 

on the form of subscripts; in particular, subscripts can be arithmetic 

expressions and conditional expressions; they can have subscripts; and 

there is no limit on the number or depth of subscripts allowed, eg., 

ALPHA [X+2, 3*YZ[2+I[3+J[2]]]]. Since there is no data structure in 

ALGOL, there is no qualification needed or permitted.



184 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

In normal terminology, there are three kinds of operators (arithmetic, rela- 

tional, and logical), although ALGOL defines a fourth called sequential. There 

are actually six arithmetic operators—the normal five plus the division sign, 

+, which has a separate meaning. The relational operators are <, S, =, 

>, 2, #. The logical operators are >, V, A, 1, =. Although ALGOL 

defines a great many delimiters (including what are called operators here), 

the only ones within the meaning of Chapter III are the begin, end, and 

punctuation symbols. 
Literals are defined as strings which can be any sequence of basic symbols 

except the delimiters ‘and’ which must be properly paired. 
Blanks have no significance outside of strings. There are no noise words 

in ALGOL. 

There are several punctuation symbols used (and referred to in ALGOL 

as separators), namely the comma, colon, semicolon, and colon equals, 

:=, which is considered a single character. The semicolon is used only 

to separate different statements or declarations from each other (e.g., 

integer x; real y; x := y + 2). The comma is used in some cases to separate 

items in a list. The colon is used to identify statements by preceding them 

with an identifier and a colon, e.g., case 2:x:=5 and also to separate 

identifiers from their semantic descriptions in the parameter list of a procedure 

declaration, e.g., procedure order: (a, b) result: (y); it also separates the up- 
per and lower bounds of the subscriptvalues in an array declaration, e.g., 

array a, b[5:8, 2:n]. The := is used primarily to designate assignment 

statements, e.g., a:= b +c +5, and then to apply an assignment concept 

in a for list and a switch list. 

The physical input form is generally considered to be a continuous 

string; thus there are no concepts of card columns or images. The primary 

difficulty is the one which has been mentioned before; namely the hardware 

representation can be very awkward relative to the actual reference language. 

This occurs primarily, although not exclusively, from the use of what are 

really English words as basic symbols. One way of handling the hardware 

transliteration of these is to provide a specific escape character that is used 

before every occurrence of one of these basic symbols; another way is to 

restrict the use of labels and identifiers so as to exclude these words and to 

use the concept of reserved words in the hardware representation. Some of 

the specific hardware representations that have been used or advocated are 

given in [QG66], [CC63a and CC64d], and [IB66i]. The conceptual form of 

ALGOL is essentially one of simplicity, one of reasonable correspondence 

to mathematics, and one with as much flexibility as the designers felt was 

needed for the intended classes of applications. 

There are a number of nonexecutable statements in ALGOL, ranging 

from those which essentially relate to the type of arithmetic to be done with 

the variable (e.g., real and integer) to those involving procedures. The com-



Iv.4. ALGOL 185 

plete list of declarations (used in the sense of this book, not necessarily 

agreeing with ALGOL terminology) permitted is as follows: own, Boolean, 

integer, real, array, switch, procedure, string, label, and value. These 

declarations apply only to the block in which they appear (and also to 

blocks included within that block). 

The smallest executable unit is a single statement of the form x := y. 

From this simple statement a complex structure can be built up. Individual 

statements can be combined into compound statements by enclosing the 

sequence in the delimiters begin, end, ¢.g., begin x := y + z;p:=r+1 end. 

The begin-end pair causes the groups of individual statements to be 

treated as a single statement. A larger type of subunit is a block which 

consists of a series of declarations and statements, again completely enclosed 

within the begin-end pair, e.g., begin real x, y; integer z; x: = y end. 

A block is itself a statement, and thus one or more of the statements which 

constitute a block may themselves be blocks. 

Loops in ALGOL can be handled by the conditional statements and by 

the for statement. 

ALGOL provides for both functions and procedures, and the procedures 

are really the backbone of the practical use of the language. Most algorithms 

are written as procedures so that they can be invoked from other programs. 

As is standard, the functions are a special kind of procedure, namely one 

in which there is a single numerical or logical result. 

The symbols ;, begin, and end can be replaced by the following, re- 

spectively, to permit writing comments: 

; comment < any sequence not containing ; > ; 

begin comment < any sequence nof containing ; > ; 

end < any sequence not containing end or ; or else > 

Comments can therefore also be put into the procedure declaration. 

ALGOL does not include any interaction with the operating system or 

the environment. There is no provision for references to other languages. 

A program is a block or a compound statement which is not contained 

within another statement and which makes no use of other statements not 

contained within it. Declarations appear in a block immediately after the 

begin symbol and can then be followed by any number of statements until 

the end symbol designates the termination of the block. 

A statement in ALGOL is normally ended by the use of a semicolon. 

A compound statement and a block are both delimited by the symbol begin 

at the beginning and the symbol end at the end. Declarations (considered 

to include the identifiers to which they apply) are delimited at the end by a 

semicolon. A procedure declaration is preceded by the symbol procedure 

and normally ended by the symbol end which refers to the block within the 

procedure which is accomplishing the desired task.



186 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

ALGOL is almost the only (and was the first) language to allow recur- 

sive procedures. There is no requirement that the procedure be defined 

specifically as being recursive; this leads to inefficiency at object time in 

many implementations because the compiler must prepare to cope with a 

procedure which might be recursive but in fact is not. 

ALGOL introduced the concept of two different types of parameter 

passage for procedures—call by name and call by value. It also permits con- 

siderable embedding, most notably, if statements in arithmetic expressions. 

The language allows arithmetic and logical variables and arrays of them. 

String variables are defined, but there are no operations defined on them. In 

addition, there are two other elements which ALGOL defines as data types, 

namely label and switch. 

There are no hardware data units accessible as such in an ALGOL 

program; this 1s quite consistent with the concept of machine independence 

and a reference language. All the variable types can be either declared and/or 

operated on, except for strings. 

Two types of numerical arithmetic are provided in ALGOL, namely 

integer and real (i.e., floating point.) A special division operation designated 

by + 1s defined only if the variables involved are of type integer. Boolean 

arithmetic is also provided. 

Real and integer numbers can be intermingled, and the result of the 

arithmetic operations is an integer (only) if the operands are integers. 

Boolean expressions can be embedded in arithmetic ones. The normal 

precedence rules for arithmetic and logical operations apply in the evaluation 

of arithmetic and Boolean expressions, respectively. 

General arithmetic expressions can include if clauses in which one out 

of several simple arithmetic expressions is selected on the basis of the actual 

values of the Boolean expressions. In this case, the Boolean expressions are 

evaluated one by one in sequence from the left until the one having the value 

true is found. The value of the arithmetic expression is then the value of the 

first arithmetic expression following this Boolean expression. Thus if Ab < C 

then 17 else gq [if w <O then 2 else nj +r is a meaningful arithmetic 

expression. 

There are two special functions, sign and entier, which yield integer 

results. The sign (e) equals 1, O or —1 if e is greater than 0, equal to 0, or 

less than 0, respectively. The value entier (e) is defined as the largest integer 
not greater than e. There are no rules given for precision. There are a number 

of rules relative to the computation in various modes, and in particular 

there is a real problem relative to side effects if procedures involving call 

by name are used in expressions. 

ALGOL was the first language to introduce and define significant scope 

rules for data variables. The main unit considered for this purpose is the



Iv.4. ALGOL 187 

block. The basic principle is that the data named by an identifier occurring 

within a block is usually specified to be local to the block and is always local 

to the block if declared within the block. Thus the (data’s) identifier has no 

existence outside the block, and conversely this identifier can be used else- 

where but is not accessible inside the block. At the time of exit from a block, 

all local identifiers lose their local significance, and in particular their values 

are not available at the next reentry to the block. All identifiers except labels 

and formal parameters of procedure declarations must be declared. If the 

user desires to retain the meaning and value of an identifier throughout 

significant portions of a program, this must be declared as an own variable, 

which means that when the block is reentered, the previous values are 

available. Nonlocal variables are those which are used 1n a block but declared 

in a larger (i.e., containing) block. Global variables are those defined only 

in the outermost block. 

The assignment statement in ALGOL can be both single and multiple. 

Thus A:=B:=C:=D+E; means that the variables A, B, and C, are all 

assigned the value D + E. It is assumed that in the case of a multiple assign- 

ment statement the type associated with all variables and procedure identifiers 

on the left must be the same. If the type is Boolean, the expression must also 

be Boolean; if the type is real or integer, the expression must be arithmetic. 

If the types of the arithmetic expressions on the left and right do not match, 

then the appropriate transfer functions are understood to be automatically 

invoked to go from the right to the left. 

There is no character data handling. 

Normal sequence of control is from one statement to the next. There 

is an unconditional control transfer designated by the single symbol go fo. It 

is also possible to have this symbol go fo followed by a subscripted identifier, 

e.g., go to K(I], where K has been previously identified as a switch by means 

of a switch declaration. The value of the subscript designates which of the 

possible labels is chosen. Designational expressions are rules for obtaining 

statement labels as values and can be written as subscripts. Designational 

expressions can be if statements, e.g., 

goto if A = O then ALPHA else BETA 

causes control to transfer to ALPHA if A equals O and to BETA otherwise. 

Functions are invoked by writing them, with their actual parameters, 

wherever the value is needed, e.g., in expressions. Procedures are invoked 

by writing the procedure name, with the actual parameters, where the pro- 

cedure body is to be executed. The procedure given on p. 191 is invoked by 

writing 

Spur (ALPHA) ORDER: (5) Result to: (ISH)



188 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

and the function might be used as follows: 

y := z + Step(line) x Value 

A conditional statement in ALGOL can have one of three forms: The 

simplest is just if B then U, where B is a Boolean expression and U is an 

unconditional statement; the second form is if B then U else V, where V is 

any kind of a statement and in particular can itself be a conditional statement; 

the third form is if B then F, where F is a for statement which is described 

below. Any of these conditional statements can have labels. In the latter 

case it is possible to have something as complicated as the following: 

ifs<0O V p>QthenALPHA: begin if a> v then a: = v/s 

else y :=a+bend 

else if v< sthena:=v+t+q 

else if v= s — 1 then go to S; 

y:=a-—b 

In somewhat more general terms, a conditional statement can have the form: 

if B; then S, else if B. then S2 else if B; then S; else if B, then S,; S,, 

where the B; are Boolean expressions, the §; are unconditional statements, 

and there 1s no limit on j. The statement 1s executed by evaluating the Boolean 

expressions in sequence from left to right until one yielding the value true 

is found. Then the unconditional statement following this Boolean is executed 

and, unless this statement defines its successor explicitly, the next statement 

to be executed is (in the example above) §,,, i.e., the statement following 

the complete conditional statement. 

The basic loop control statement in ALGOL is the for statement; this 

consists of a for list, followed by a do, followed by a statement. The for 

statement can be labeled. The range is the siatement following the do. The 

for list consists of a single parameter which is to be varied, followed by the 

list over which it is being varied, possibly followed by more parameters and 

their values with termination criteria, e.g., a complete loop control state- 

ment might be 

for i:= 2*j step 2 until 71, 3 + k while k = p do X{[i] := Y[i] + 5; 

The list over which a variable may assume values can be expressed in one of 

three forms: It can be just a regular arithmetic expression; it can be something 

of the form A step B until C where A, B, and C are arithmetic expressions, or 

finally the form E while F, where E is an arithmetic and F is a Boolean expres- 

sion. The last two of these can be described, respectively, most concisely



Iv.4. ALGOL 189 

in terms of additional ALGOL statements as follows: 

V :=A; 

L1: if (V — C) x sign(B) > 0 then go to Element exhausted; 

statement S; 

V:=V+B; 

go to L|; 

and 

L3: V:= E; 

if V # F then go to Element exhausted; 

statement S; 

go to L3; 

where in both cases V is the controlled variable, and Element exhausted 

points either to the evaluation using the next element in the for list or to 

the next statement in the program if it 1s the last element of the list. 

There are no provisions in ALGOL for error condition statements. 

There are also no facilities for handling symbolic data of any kind. 

The proposed ISO standard provides for two types of input/output 

procedures—one is a very small subset of the other. The difference in philos- 

ophy is that the user of the small subset is assumed to program most of the 

things that he wants himself, whereas the larger system should provide 

virtually everything that is needed. 

The small subset assumes that the following primitive procedures are 

available to the user: insymbol, outsymbol, length, inreal, outreal, inarray, 

and outarray. Communication between the external media and the variables 

of the program is provided by the procedures insymbol and outsymbol. The 
appropriate correspondence is established between the basic symbols given 

in a string parameter of those procedures with the variables given in an integer 

parameter. The length procedure defines the value of the length of the string 
as equal to the number of basic symbols of the string enclosed between the 

outermost string quotes. The procedures inreal and outreal cause the appro- 
priate correspondence to take place between the next value on the external 

medium and the destination parameter. The procedures inarray and out- 

array cause the transferal of the numbers forming the value of the array in the 
procedure declaration. The elements of the array are transferred in an order 

which corresponds to the lexicographic order of the values of the subscript. 

The major and quite complete input/output facilities given in the pro- 

posed ISO standard can be subdivided into two major categories: Formats 

and input/output procedures. The former bear a strong resemblance in con- 

cept, and even in some places in detail, to the picture description in COBOL. 

Whenever input or output is done, certain standard operations are



190 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

assumed to take place unless otherwise specified. These nonstandard opera- 

tions are specified through the use of a /Jayout procedure which provides for 

horizontal and vertical control; although it is assumed that the output 1s for 

a page prepared by a high-speed printer, the concepts are applicable to other 

devices. The descriptive procedures format, h end, v end, h lim, tabulation, 

and no data set one of seven “‘hidden variables” to a particular value, and 

the total description is provided by this set. 

There are some list procedures which describe the sequence of items 

which are to be transmitted for input or output. The actual transmission 

between the external medium and the program variables are handled through 

the input/output procedures and calls which were mentioned in the abbre- 

viated version. However, these input/output procedures and calls are extended 

to include the ability to specify layouts and lists as provided in this more 

elaborate input/output system. 

ALGOL has no provision for library references other than through the 

mechanism of procedures and the “standard” functions. There are no 

debugging statements in the language, nor are there any direct statements for 

allocating storage or segmentation. However, because the size of arrays can 

vary at object time, because of scope problems, and because of the provisions 

for recursive procedures, the compilers themselves must generate fairly 

elaborate object time storage allocation facilities. This has generally tended 

to be the area in which the most experimentation in ALGOL implementation 

has been done, particularly on small computers where this is critical. 

The language contains no provisions for interaction with the operating 

system or for making effective use of specific machine features; to do this 

would be definitely contrary to the fundamental spirit of ALGOL, which 

is to be machine independent and serve as a good communication mechanism 

for algorithms. 

There is no separate data description as such. The data types allowed 

in the language were described earlier. The actual specification for each type 

is given as part of the block head in which the variable is to be used. The 

array declaration provides for dimension information on data. The upper 

and lower bound for each dimension are separated by colons, and the dif- 

fering dimensions are separated by commas; all this is contained within 

square brackets, e.g: 

array A[7:n, 2: mJ], B[—2, m+ 5] 

real array nif c < 0 then 2 else 3 : 20] 

There is no separate file description since files as such are not an allowable 

entity in ALGOL. There are some specific format descriptions included in 

the large input/output specifications. There are no declarations in the lan- 

guage specifically about storage allocation, although information of this 

type is conveyed to the compiler through array declarations and is implied



Iv.4. ALGOL 191 

in the block structure. There are no separate compiler-directing statements. 

In order to give the reader some flavor of formalism used to define 

ALGOL, the following definition of a procedure declaration is copied from 

Section 5.4.1 in [1065] or [NA63], using their notation: 

<formal parameter» ::= <identifier> 
<formal parameter list) ::= <formal parameter) 

| <formal parameter list) <parameter delimiter) 
<formal parameter) 

<formal parameter part) ::= <empty> | (<formal parameter list>) 

<identifier list) ::= <identifierS | <identifier list), identifier) 
<value part> ::= value <identifier list); | <empty> 
<specifier> ::= string | <type> | array | <type> array | label 

| switch | procedure | <type> procedure 

<specification part) ::= <empty> | <specifier> <identifier list); 
| <specification part) <specifier> «identifier list); 

<procedure heading» ::= <procedure identifier) 
<formal parameter part>; <value part» <specification part» 

<procedure body» ::= <statement> | <code> 

<procedure declaration» ::= procedure <procedure heading» 

<procedure body> | <type> procedure < procedure heading» 

<procedure body» 

Examples of such declarations (taken from [IO65] or [NA63]) are as 

follows: 

procedure Spur (a) Order: (n) Result: (s); value n; array a; 

integer n; real s; 

begin body of procedure end 

integer procedure Step (u); real u; 

Step := if OSuAussl then 1 else 0 

The procedure body always acts like a block even if it does not have 

the form of one. A function declaration has the same form as a procedure 

declaration except that in the body of the former there must be an assignment 

statement with the procedure identifier on the left. 

The switeh declaration is specifically defined. It consists of a sequence 

of values (which can be defined by general arithmetic expressions) which are 

called the switch list; e.g., 

switch A := 3,S1, Q[4+m], if v=3 then S2 else 4 

A switch is used as the argument in a go to statement. Thus, writing



192 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

go to A[3] would cause control to be transferred to the switch referenced 

by Q[4 + mn]. 

ALGOL does not have the facility for modifying itself. There are no 

provisions for self-extension of the language, although proposals for doing 

this have been put forth. (See, for example, Galler and Perlis [GA67] and 

Garwick, Bell, and Krider [GW0O0].) With regard to writing ALGOL in 

itself, this was impossible in the strict sense prior to the time of the proposed 

ISO standard because there was no input/output; in addition, there were 

no character-handling facilities. However, a number of compilers, or specific 

algorithms needed in compiling, have been written in ALGOL with the 

necessary machine language procedures added, e.g., Huskey and Wattenburg 

[HU61], Stone [TS67]. 

Relatively little of the language design contributes directly to implemen- 

tation efficiency. This is truer of the object code than of compilation. Such 

facilities in the language as integer labels, own variables, recursive procedures, 

and arrays whose size is not known until object time all tend to lower the 

efficiency of the object program and also to hamper maximum compilation 

speed because of the need to cope with these things. Thus although ALGOL 

has great generality in many of its specifications, some of these had to 

actually be restricted in order to provide reasonable implementations. For 

example, while the language specifications do not put an upper limit on the 

size of an identifier, most implementations do; similarly, most implementa- 

tions must put restrictions on the numbers of variables, and some imple- 

menters have chosen to omit some of the features which cause the most 

difficulty. Fortunately, new techniques which minimize these difficulties are 

continually being developed. 

Like the compilers for any other language, some implementers chose 

to put in good error checking at compile time, while others ignored or 

minimized this problem. 

ALGOL was defined as being primarily useful in the area of numerical 

mathematics and certain logical processes, and it has certainly proved its use 

in these areas, but not outside these areas. Since the phrase logical processes 

covers a number of widely different areas, e.g., sorting and compiling, 

ALGOL has actually been used to specify solutions to many differing types 

of problems. However, because the input/output facilities were not defined 

for many years after the basic language, ALGOL in its pure definition was 

not a computer usable language. 

1V.4.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

ALGOL has made a large number of significant contributions to the 

technology; among the more important are (1) block structure and defining



Iv.4. ALGOL 193 

the scope of variables; (2) formal language definition; (3) recursive proce- 

dures; (4) significant embedding capability for differing subunits; (5) a 

general simplicity combined with power for stating computational processes; 

(6) concepts of separate reference, publication, and hardware languages; 

(7) a requirement for the development of better implementation techniques; 

and (8) spawning a significant number of languages as outgrowths. Although 

in a somewhat different category, the collection of algorithms written in 

ALGOL [AC66] is certainly a significant contribution. 

The block structure was the first occurrence of the concept of 

unlimited levels of nesting of executable units. For example, FORTRAN 

had none, COBOL allowed three, but ALGOL permitted any number. This, 

of course, led to a series of problems about the scopes of variables which 

had to be solved. 

Probably the greatest contribution accruing from ALGOL 1s some- 

thing which is actually not directly related to the language, namely the use 

of a formal syntactic definition for the language and the publication of a 

report in that form. This in turn has led to increased studies in methods of 

language definition and, in a parallel fashion, to the development of syntax- 

directed compilers. 

Recursive procedures were introduced by ALGOL. They certainly should 

be considered a significant contribution to the technology, but it is not clear 

how great a one. The advocates of this facility claim that many important 

problems cannot be solved without it; on the other hand, people continue 

to solve numerous important problems without it and even in a few cases 

manage to handle (sometimes in an awkward way) some of the problems 

which the recursion proponents claim cannot be done. 

The fourth point is a general one, namely that ALGOL is a clean 

language of great power for expressing algorithms to solve a wide class of 

problems. This is quite different from the practicality of ALGOL as a lan- 

guage for use on a computer. Because of the significant difference between 

the appearance and usage of the reference and hardware languages and 

because for many years there were no input/output facilities, the contribu- 

tion seems to be much more in the area of expressing algorithms than in 

direct use on a computer. 

The introduction of the concept of a reference language with translitera- 

tions to publication and hardware languages is considered by me to be quite 

significant, although it has not actually been used to any real extent by any 

language development since then. However, the development of a program 

to go from a hardware representation to the reference language, with the latter 

on a paper tape for controlling a photocasting device, has been done by 

von Sydow [VS67] and might prove to be of major significance. 

Finally, many of the features in ALGOL forced the development of 

new or better implementation techniques. Problems such as handling recur-



194 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

sive procedures, own variables, dynamic storage allocation, and the distinc- 

tions between call by name and call by value have all been solved to varying 

degrees of efficiency. Furthermore, the implementation of ALGOL on a 

number of small computers has created a body of useful compilation tech- 

niques for this class of machine. 

At least as significant as ALGOL itself is the fact that ALGOL 58 

engendered enough interest to cause the creation of several other languages. 

While this 1s a disadvantage in adding to the proliferation, each of the direct 

outgrowths (JOVIAL, MAD, NELIAC) has itself contributed to the 

technology. Furthermore, the specific features mentioned in the first para- 

graph of this section have been at least considered by almost every language 

designer since 1960. (Of course this does not mean that all the features can or 

should be put into new languages.) 

ALGOL has had an impact on programming language development 

that far exceeds its direct practical usage in the United States. It has been 

used far more in Europe than in the United States, but even in Europe it 

appears that FORTRAN is more widely used for practical problem-solving. 

IV.4.5. EXTENSIONS OF ALGOL 

Just as some practical language extensions, and even more sets of 

subroutine packages, have been added to FORTRAN, so there has been 

continuing discussion of extensions to ALGOL. These discussions have 

tended to range from “it would be helpful if ALGOL added improvements 

such as” string handling (e.g., Wegstein and Youden [WG62]), list pro- 

cessing (e.g., Peck [PK67]), and minor improvements (e.g., Strachey and 

Wilkes [SQ61]), to major full-fledged additions or rewrites, e.g., EULER 

(Wirth and Weber [WT66a and WT66b]), subcommittee reports, etc., and 

of course ALGOL X and ALGOL Y. These terms have been used for years 

by the IFIP ALGOL committees to denote future versions. It is possible 

that by the end of 1968 a new version of ALGOL, which will include some 

character-handling facilities, will have been defined and the information 

officially disseminated. 

The major extensions of ALGOL (where the term extension is inter- 

preted very loosely) are cited and cross-referenced to where they are covered 

in detail. A few minor extensions of ALGOL are described very briefly and/or 

cross-referenced. Only implemented systems are included. 

1. Formula ALGOL (cross-reference only) 

Formula ALGOL is discussed in detail in Section VIII.5. Basically, 

it adds to ALGOL not only string and list processing facilities, but also the



IV.4.5. EXTENSIONS OF ALGOL 195 

concept of a formal variable on which algebraic manipulation can be per- 

formed. Languages with only the concept of formal variable type (e.g., 

FORMAC) are discussed in Chapter VII. 

2. LISP 2 (cross-reference only) 

LISP 2, which is described in detail in Section VIII.6, is a curious 

anachronism in that its name does not give any indication of its relationship 

to ALGOL. It is really an ALGOL-like extension, with as much LISP 

facility at the outer language level as possible. It is the inner level, as well 

as the philosophy and structure which are heavily LISP-oriented. At an open 

meeting, I asked one of the active workers on LISP 2 why the system was 

called LISP 2 instead of having ALGOL in the title. The answer received was 

that if the name involved ALGOL, the reader or user would expect certain 

things; whereas if it were LISP, the same person would expect something 

quite different. 

3. AED (cross-reference only) 

The addition of string and list processing facilities to ALGOL, plus 

the concepts of plex structures and other facets of the computer-aided design 

work, is represented in the AED System. It is discussed in Section IX. 3.4.2. 

4. SFD-ALGOL (cross-reference only) 

The SFD-ALGOL (System Function Description-ALGOL) is a lan- 

guage which permits the user to describe synchronous systems. It is dis- 

cussed in Section [X.2.3.7. 

5. SIMULA (cross-reference only) 

SIMULA is an extension to ALGOL to provide facilities for doing 

discrete simulation. It 1s discussed in Section [X.3.1.7. 

6. DIAMAG 

The DIAMAG system is an on-line version of ALGOL which adds 

a number of language elements to permit communication with the time- 

sharing system. See Auroux, Bellino, and Bolliet [AU67]. 

7. GPL 

The GPL (General Purpose Language) manual by Garwick, Bell, and 

Krider [GW00] appeared too late to permit a thorough discussion. The 

language has some additions to, and deviations from, ALGOL, e.g.,



196 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

BYTE and pointer (PTR) data types, more general block structure, and user 

ability to define a MACRO (for in-line object code). However, the most inter- 

esting aspect of this language is its facility to allow the user to define new 

operators and new data types. 

8. Extended ALGOL 

The Extended ALGOL for the Burroughs B5500, as described in 

[QG66], is quite powerful and has added many useful features to ALGOL. 

Among the major ones are the following: 

1. The ability to access a partial word by giving the beginning and ending 
bits. 

2. A TIME function which can yield either the current date, or various 
elapsed times. 

3. A concatenate expression which provides an efficient method of forming 
a primary (or Boolean primary) from selected bits of two or more pri- 
maries (or Boolean primaries). 

4. A FILL statement which permits assignment of specified values to one row 
of an array. 

5. A DOUBLE statement which causes assignment of the double-length 
result of operations on double-length variables. 

. STREAM procedures which manipulate words, characters, and bits. 

. Edit and move statements. 

. Specific hardware and efficiency-oriented input/output statements. 

. An ALPHAbetic data type. 

10. A DEFINE declaration to permit use of a single identifier for a longer legal 
program string. 

11. SORT and MERGE statements. 

Oo 
CoO 
N
N
 

This language appears to have a great many facilities which are useful in 

business data processing and in character-handling applications, e.g., com- 

piler writing. It is definitely a multipurpose language and has apparently 

been used to write its own compiler. 

IV.5. LANGUAGES MOTIVATED BY ALGOL 58 

Although ALGOL 58 itself had only a very short life-span, its importance 

transcends its actual usage. Aside from its obvious role in the development 

of ALGOL 60, it motivated the creation of several other languages which 

have become quite significant. Two of these, namely NELIAC and MAD, 

are described in this section since their basic purpose, flavor, and general 

facilities fall primarily in the class of languages for numerical scientific 

problems. However, JOVIAL is an outgrowth of the CLIP effort, which



IV.5.1. NELIAC 197 

itself was based on ALGOL 58, and both are far more general. JOVIAL is 

discussed in Section VIII.3 and CLIP in Section IX.2.5.2. 

The role played by ALGOL 58 in the development of each of the 
languages is described within the discussion of the history. It will presumably 

be clear, however, that although each of these languages may have started out 

being based on ALGOL 58, the end results bear little resemblance; if it were 

not for the historical statements, I doubt whether the reader would recognize 

any connection with ALGOL 58. This comment is in no way meant to be a 

criticism of any of these efforts; it merely points out that objectives and 

achievements are often far from motivations. 

1V.5.1. NELIAC 

The language known as NELIAC (Navy Electronics Laboratory /nterna- 

tional ALGOL Compiler) was developed concurrently with the creation of 

ALGOL 58. The work started at the Navy Electronics Laboratory in San 

Diego, California in the summer of 1958 because NEL was expecting deliv- 

ery of some large computers for which there were no compilers. Professor 

Harry Huskey served as a consultant toa NEL group headed by Dr. Maurice 

Halstead. An attempt was made to follow ALGOL 58 as it was developing, 

but since the people concerned with NELIAC were anxious to get a system 

running and could not wait for the official specifications, they put in facilities 

or syntactic features of their own. 

The key references for this language are Halstead’s book [HS62], Hal- 

stead’s article on documentation [HS63], and the article by Huskey, Love, and 

Wirth [HU63]. Without indicating specific quotation marks except where 

direct quotes are being made, the reader should assume that the information 

described here is obtained from one of these three sources. 

In July, 1958 the work on the first compiler was started and it was 

finished within 6 months. Table IV.1 shows Halstead’s list of the implementa- 

tion status in 1962. Since then, at least the following have been developed: A 

version called the BC NELIAC was implemented on the 7094 and versions 

on the UNIVAC 1107/1108, CDC 3100, 3600, 3800, Burroughs D825, and 

IBM System/360. Associated with one or more of these implementations or 

other aspects of the NELIAC developments were R. Johnson, W. Landen, K. 

S. Masterson, Jr., R. McArthur, C. B. Porter, S. W. Porter, R. Rempel, R. T. 

Stelloh, J. B. Watt, and W. Wattenburg. In spite of the large number of 

versions that exist, there is really no standard definition of NELIAC. There 

was a NELIAC users conference held in January, 1963 which appointed a 

committee to develop such a standard, but it never came into being. As a 

result, and due to the relative ease of writing and documenting NELIAC 

compilers (about which more will be said later), there are as many versions



198 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

as there are physical compilers. The language described will be that discussed 

in Halstead’s book [HS62]. Certain improvements to this language were made, 

however, by Huskey et al. [HU63]. 

During much of 1962 and part of 1963, there was a great deal of con- 

Table IV.1. MACHINES HAVING NELIAC COMPILERS* 

  

  

Machine Date Operational Implementor 

RRU M-460 February 1959 NEL 

CDC 1604 (Basic) February 1960 NEL-USNPGS 

Burroughs 220 May 1960 NEL 

IBM 704 September 1960 NEL-UC 
IBM 709 November 1960 NEL-AEPG, Ft. 

Huachuca 

IBM 7090 March 1961 UC-Lockheed 
tPhilco CXPQ April 1961 NEL 
TPB 250 September 1961 NEL 
CDC 1604 (Expanded) October 1961 NEL 

TRW AN/UYK April 1962 NEL 
RRU M-490 May 1962 NEL-NOTS 

+Philco BasicPac May 1962 AEPG, Ft. Huachuca 

TCDC 160A June 1962 NEL 
Sylvania Mobidic In process AEPG, Ft. Huachuca 

NRL NAREC August 1962 NEL-NRL 
*RRU SS80 In process Frankfort Arsenal 

IBM 7070 In process NOL-NEL 

Burroughs 825 In process NEL 
  

*Halstead [HS63], p. 92. By permission of Association for Computing Machinery, Inc. 
tNote—Compilers marked with a dagger are of the intermediate type, running on a larger machine. 

troversy centering around NELIAC and its potential competition with 

JOVIAL. Some comparisons which I feel were not too meaningful were 

made, and a significant political battle ensued when a decision was made 

(and carried out) by the Navy to use JOVIAL for some of its command and 

control problems. 

The language is general, with notation that is both formal and succinct. 

It is easy to learn, read, and write, but its usage appears to me to be error 

prone because of the large number of specialized punctuation rules. 

The language was designed to be used for mathematics and engineering 

problems, business problems, command and control problems, and systems 

programming. It is procedure-oriented, problem-oriented, and problem- 

solving and simultaneously a hardware, reference, and publication language 

if special typewriters are available. It was meant to be used by all types of 

programmers, both professional and nonprofessional. It was definitely a 

batch system but requires typewriters with the defined character set or 029



IV.5.1. NELIAC 199 

SAMPLE PROGRAM—NELIAC 

  

Problem: Construct a subroutine with parameters A and B such that A and 
B are integers and 2 < A < B. For every odd integer K with A < K < B, com- 

pute f(K) = (3K + sin (K))'” if K is a prime, and f(K) = (4K + cos (K))'” if K 
is not a prime. For each K, print K, the value of f(K), and the word PRIME or 

NONPRIME as the case may be. 
Assume there exists a subroutine or function PRIME(K) which determines 

whether or not K is a prime, and assume that library routines for square root, 

sine, and cosine are available. 

Program: 

SAMPLE NELIAC (A,B,K=0000;F =00000.000): 

{A(0—0)=D:A+1—K;A>K; 

K=K(2)B{PRIME(K)=1:SQRT(3 X K+SINI(K)) > F,(PRINTER<K,F<PRIME> >}; 

SQRT(4X K+COSI(K))— F, {PRINTER<K,F<NON—PRIME>>};}} 
  

key punches which then require a hardware representation for some of the 

characters. 

The compatibility of NELIAC is something about which one could 

write an entire book (and to some extent Halstead did). It was meant to be 

machine independent, particularly since the NELIAC compilers were written 

in NELIAC except for the initial bootstrapping. However, the ability to 

allocate variables to particular bits or characters in words makes this impos- 

sible. Furthermore, differing input/output facilities made NELIAC obviously 

dependent upon particular machines. Since the compilers were readily 

changed, it is not clear if the results obtained on one compiler could neces- 

sarily be obtained on the other; there does not appear to be any significant 

substantive data on this. There were definitely subsets created to permit 

bootstrapping, but much less was done in the way of providing direct clearly 

identifiable extensions; most of the latter appeared in the form of removing 

certain restrictions, which of course can be considered a form of extension. 

There is no doubt but that a NELIAC program can be very easily converted, 

if not directly at least with a very small amount of effort, to run on another 

machine with a NELIAC compiler. NELIAC can be transliterated fairly 

easily into ALGOL publication language, but in my view its external ap- 

pearance does not resemble ALGOL 58 very much. 

Any consideration of NELIAC compatibility must take into account 

the basic philosophy that the language is meant to be easy to modify for any 

particular implementation or application. In Halstead’s words, “In short, 

itis a dynamic language, with compatibility preserved by the ease with which 

desirable features can be added to any implementation as it becomes useful 

to do so.”'? While recognizing the validity of such an approach for solving 

problems, I do not feel that this philosophy addresses itself to compatibility 

13 Private communication, 1967.



200 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

difficulties in any realistic way, where compatibility 1s meant to ensure ease 

of running a program on more than one computer. 

As indicated before, there was no official group standardization effort, 

and the closest thing to such a standard is Halstead’s book. Unfortunately 

that does not contain a complete description of the language, except through 

the actual listings of one of the compilers. The language was designed by a 

group at the Naval Electronics Laboratory under the guidance of Huskey and 

Halstead, with the objectives indicated above. It has been implemented by 

a number of different people, but the language is not being maintained in 

an official way. According to Halstead’s description, the official documenta- 

tion for any given compiler is the listing of the NELIAC statements com- 

prising that compiler. The primary source document for the language is 

Halstead’s book [HS62]. Other references are shown in the bibliography 

at the end of the chapter. One of the interesting facets of the documentation 

is that Halstead’s book serves not only to define the language but also to 

cover the methods in writing NELIAC compilers as well. 

NELIAC has been implemented in varying degrees of completeness 

on many computers (which were listed earlier). The language has apparently 

been most effective for relatively small programs but less so for extremely 

large ones; however, programs containing 100,000 words of object code 

have been successfully written. NELIAC has proved easy to use and the 

compilers are fast because of the simplicity of the language. 

The character set consists of the 52 upper- and lower-case letters, the 10 

digits, and the following 26 characters: 

( ) — 1 € ) 
+ — x / 

= ££ < > = 2B 

N U 
8 (subscript) 

Various hardware representations exist. 

There are key words but in most cases they are optional. The graphic 

operators and punctuation are shown above. 

Identifiers must begin with a letter of the alphabet; they can contain 

only letters, spaces, numbers; they must be uniquely determined within 

the first 15 characters. Upper- and lower-case letters are interchangeable, 

1.e., ABC and abc represent the same name. The words IF, IF NOT, DO, GO, 

TO, and FOR are both reserved and noise words. They can be omitted in 

certain cases, but when present, they must be preceded and followed by at 

least one space. They cannot be used as identifiers. The six single letters 

l, J, K, L, M, N, when standing alone, are used as counters and cannot be



IV.5.1. NELIAC 201 

used for identifiers. An identifier can have one subscript which consists of 

one of those letters or an integer, or a letter with an integer added to it; 

some compilers permit the use of a variable as a subscript. Generally only 

one subscript is permitted. 

The operators consist of the five arithmetic operators, the absolute 

sign, and the six relational operators. There are also two Boolean operators. 

Punctuation is extremely critical and used as the delimiters in most cases, as 

seen from the following rules. 

(1) The comma is used to delimit executable statements. (2) A semicolon 

can be used for this purpose also except in conditional statements, where 

the true and false parts must end with either semicolons or periods. (3) A 

semicolon also delimits the dimension statement. (4) A comma following 

a single identifier denotes a subroutine call. (5) A period following a single 

identifier denotes an unconditional control transfer. (6) A double period 

denotes the end of the program. (7) A colon is used to delimit a statement 

label and also to delimit the comparison in a conditional statement. (8) 

Braces are used to enclose a subroutine, to delimit the range of a loop, and 

to delimit either alternative of a comparison statement. Braces are also used 

to specify parts of a word in both the dimension statement and the exe- 

cutable statements. 

As indicated in the rules for naming, blanks are significant. Although 

in many cases both fixed words and punctuation may be written, it is the 

punctuation which is critical and the words can be omitted. In general, noise 

words are not permitted, except for the cases of this type. Literals are 

enclosed in quote marks "' which appear in some hardware representations, 

but they are often limited to one machine word. 

Since there are differing devices—although primarily paper tape in the 

earlier systems—used for input, the physical input form depends on the 

device somewhat. The conceptual form is certainly free form to the largest 

extent possible. 

There is really no smallest executable unit considered as a separate 

entity because the language is completely based on the concept of a triplet 

consisting of two operators and an operand between them. Thus there is 

no grouping. Looping is controlled by either conditional statements or by 

the FOR statement. Both subroutines and functions can be defined with 

input and output parameters; they are called by location. Delimiting is 

normally accomplished by the specification of the meaning of each triplet. 

However, function and subroutine definitions must be enclosed in braces. 

Functions can be embedded in expressions. There is no language provision 

for recursion. The noun list which contains the dimensioning information, 

and can contain initial values, must appear at the beginning. Other languages 

can be entered through the use of the crutch operator, which serves as a flag 

to the NELIAC compiler that some other language is to be processed.



202 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

Only arithmetic variables, and vectors of them, are permitted. Perhaps 

the most interesting aspect about NELIAC is the facility to assign names to 

parts of computer words. Thus the programmer can pack several variables 

within a single word, and this is shown in the noun list, e.g., Unit Cost: (cost 

per apple (0-5), cost per orange (6-11), cost per lemon (12 17),}. These 

character limits can overlap. In addition to that, even if the programmer 

has not specified a partial word in his noun list, he can nevertheless refer to 

a part of any named noun by the use of parentheses and an arrow; e.g., 

Code (0-10) —~ Form (15-25), 

List A[l] (3-7) > B, 
C(15+20) + D (25-30) > C(0+6), 

Note that this reduces or eliminates compatibility between binary and 

decimal machines, or even between machines of different word lengths. 

Only fixed and floating point numbers are allowed. All variables are 

considered integers by default, unless they appear in the noun list with some 

floating point number to set the mode. Boolean arithmetic is done with the 

relational operators and the use of the cap and cup characters. 

In some (but not all) of the compilers, integer and floating point numbers 

are permitted in the same expression, and the computation is done in floating 

point. In some compilers, arithmetic expressions cannot contain grouping 

parentheses, but normal precedence is used. 

Scope is handled in a rather interesting way. If a variable is to be used 

in several programs, the most recent value will be taken unless an absolute 

sign (i.e., vertical bar) is placed after the first letter of the noun or verb; in 

this case it has only local significance. For nouns the absolute sign is used 

only in the Noun List or Dimensioning statement. For verbs or verb phrases, 

it should be used only at the point where the verb is being defined. 

There is a single type of assignment statement which assigns the value 

of an arithmetic expression to a variable or to parts of a variable. Thus 

writing AB (1-5) would store the contents of A in positions 1-5 of 

word named B and leave the rest untouched. However, A(1>5) — B would 
set all of word B to zero before carrying out the assignment. It is possible to 

have assignment statements concatenated; hence A[I] + B[J] ~ C - D 

would store A[I] + B[J] in both C and D. In most systems, converting 

variable types across the arrow is not automatic. 

There is no provision for handling alphanumeric information. 

An unconditional transfer is actually shown by means of punctuation; 

the rule is that whenever a name is preceded by a nonarithmetic operator 

and followed by a period, control will pass to the indicated name. However, 

if a comma follows the name then this serves as a subroutine jump. Thus 

for example, writing ,ABC. or A + B — C; ABC. will cause an uncondi- 

tional control transfer to the statement named ABC. By writing ,ABC, FIND 

NEXT WORD: X1 — Y —> Z, the instructions in subroutine ABC will be



IV.5.1. NELIAC 203 

executed and then the statement X1 — Y — Z will be executed. Subroutines 

and functions are invoked by writing the parameter list in parentheses after 

the name, separating the arguments by commas, and following this with a 

comma, e.g., SUM(I, GAMMA, 4),. The comma is not used when the func- 

tion is included in an expression. 

The conditional statement is written in the form 

IF relation: statement-for-true-path; IF NOT , statement-for-false-path. 

Several points need to be made about this general form. First, the relation 

can have only a single variable on the right of the relation sign. Thus, the 

following are legitimate: 

IF A(2>7) <B <C: 
IF A + (B/C) > U=V: 

whereas 

FA+B=B+1: 

is incorrect. In some compilers it 1s possible to include Boolean ands and 

ors, thus permitting 

IFA<BNC=DUA=D: 

Second, the words IF NOT are not required; the semicolon or period fol- 

lowing the statement for the true path is the defining character for the nega- 

tive path. Third, the executable statements can themselves be conditional, 

provided they are stated completely within either the true or false path. 

Finally, the actual sequencing rules are controlled by punctuation. Since 

either a period or a semicolon can terminate the true or false path, these 

paths can contain subroutine calls or unconditional transfers. For example, 

one can write 

IF Y <2: Y + 1 > Y, ROUTINE 1, ROUTINE 2, ETC. IF NOT , 

Y — 1-— Y, CASE 1, CASE 2; 

Loop control is handled by the FOR statement, which has the following 
format: 

FOR variable = initial value (increment) final value {range} 

As an example, the user can write 

FOR | = 0(1)20 {NR[I] + COST[I] > TOTAL COST[I], 
COMPUTATION: A + B[I] > C[I],)



204 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

In some compilers there was a restriction that the final value must be 

reached precisely by adding increments to the initial value. 

Since ALGOL did not have any input/output statements, it is not sur- 

prising that NELIAC did not originally. Many of the early compilers just 

created subroutines or borrowed existing input/output packages. However 

a semi-machine-independent technique has been implemented on a few of 

the NELIAC compilers. This technique makes use of the < and > symbols 

to serve as quotation marks. Three forms exist, of which the first specifies 

the output of headings, the second the output of numerical data, and the 

third calls for the reading of data into the computer, as shown below: 

Form 1. ,A{B<<C >>) 
Form 2. ,A(B<C>} 
Form 3. »A{(B>C <) 

The letter A can be replaced by any appropriate comment, B refers to a 

particular piece of peripheral equipment, and C represents names of nouns 

or noun lists. If B is either omitted or calls for equipment not available, some 

fixed equipment designated by each installation will be used. Thus for 

example, the user can write 

, Print Headings { Flex << List >> } 

, Print Result { HSP < Answer > } 
, Read Data { > Temperatures < } 

There are no library facilities or built-in functions, debugging state- 

ments, storage-allocating statements, nor interaction with the operating 

system, although certain systems provide some of these facilities. 

The only declaration is the noun list which appears at the beginning of 

the program and in which every variable to be used in the program must 

be listed. Initial values can be given here, and dimensioning is handled by 

simply writing the dimension enclosed in parentheses after the name of the 

variable, e.g., COST (3) = 10, 15, 8. Also within those declarations are 

specified the part of the word that the user is applying to the variable, e.g., 

LENGTH (O—5). The dimension and word portion can be given at the 

same time. 

Subroutines and functions are defined by following the name with a 

colon, then a parameter list in parentheses, and then the body of the routine 

enclosed within braces and terminated by a comma, e.g., FUN: (X, Y) (body). 

Types and numbers of parameters depend on a particular implementation. 

The strongest feature of NELIAC is the ease with which it can be used 

to write its own compiler. There has been a very definite interaction between 

the language design and the implementation. In fact the syntax of the



Iv.5.2. MAD 205 

language is built entirely on the implementation technique, which is what 

they call the Co-No (current operator—next operator) Tables. There are 

actually 676 combinations in the Co-No Table, but of course some of these 

are errors. Furthermore, a number of the combinations require the same code 

generation. 

The self-compilation feature produces an interesting effect on object 

code efficiency. As the compiler is improved, it may improve both the object 

time and compile time efficiency simultaneously because the compiler is 

run through itself. Hence, any differences in the relative effect on compile 

time and object code efficiency would tend to be caused by the logic of the 

compiler rather than by the code generation phase. 

One of the applications for which NELIAC has been used is the rather 

interesting Blood Bank Program described by Singman ef al. [S165]. An 

older application was its use to write a very simple compiler for the 1401 

(see Watt and Wattenburg [WJ62]). An ALGOL system at the University 

of California at Berkeley has been written in NELIAC. A successful com- 

mand and control application was the Command Ship Data System for the 

Navy, whose object program contained over 100,000 instructions. NELIAC 

has also been used to help program a search procedure (see Halstead, Uber, 

and Gielow [HS67]). Unfortunately, public documentation of actual applica- 

tions of NELIAC is very scarce and the descriptions seem to be internal 

documents of the using installation. As somebody noted facetiously, the 

main use of NELIAC has been to write other NELIAC compilers. 

NELIAC has made several contributions to the technology. It was 

the first language used consistently to create all its own compilers, and it 

was used several times to compile programs on one machine, producing 

object code for another. For example, the NELIAC on the CDC 1604 pro- 

duced code for the CDC 160A. The use of the partial word designations in 

the executable statements is still unique to NELIAC, except for the JOVIAL 

BIT and BYTE, which are not as powerful or flexible. The use of the clearly 

defined tables of operators and operands formalized the compiling technique 

but simultaneously caused a more stilted language. 

IV.5.2. MAD 

The Michigan Algorithm Decoder (MAD) is a system which was 

developed at the University of Michigan originally for the IBM 704 and then 

for the 709/90/94. The work was started in the spring of 1959 by R. Graham, 

and subsequently he, B. Arden, and B. Galler produced the first version of 

MAD; this required about two man-years of work. Their original intent was 

to implement ALGOL 58. However, they found there were things they did 

not like in ALGOL 58, so some changes were made. In the summer of 1959



206 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

they felt a fast compiler was needed for their IBM 704. A system which was 

very much along the spirit of GAT (see Section IV.2.2.3) was finished 

around February, 1960 and given to SHARE. It was designed to be a fast 

translator for the 704 and expected to be used primarily by students. The 

main objectives were speed of translation, generality, ease of use, few rules 

to learn, and ease of adding to the language. 

As with many other such systems, it is still being improved by the 

University of Michigan, and there have been numerous versions (each 

containing the previous one as a subset). It has also been heavily used at 

M.I.T., but that version was frozen in a manual dated November, 1964. 

The source document used for this description is the 1966 MAD manual 

[UM66]. 

It is interesting to see that the MAD compiler has served a rather 

inverted purpose relative to compatibility. Because a number of people were 

interested in using the FORTRAN language and yet wanted to obtain the 

speed of the MAD compiler, a system called MADTRAN (written in MAD) 

was developed. MADTRAN was simply a translator from FORTRAN to 

MAD, which then of course compiled machine code. It was distributed 

through SHARE and used at several places. MADTRAN assumes correct 

FORTRAN programs, so it provides no diagnostics; thus if the programmer 

has errors, he is in trouble. It is believed, however, that any correct 

FORTRAN program will be correctly translated by the MADTRAN 

system. 

The basic purpose of MAD was stated by Arden, Galler, and Graham 

[AR6la] as being “developed for the specific purpose of training large 

numbers of university students and handling the large volume of university 

research problems. The primary motivation for writing this rapid translator 

may be traced directly to the special environment of a university computing 

center.” They then go on to say that “ALGOL 58 provided the basic pattern 

for the language and to the extent that ALGOL 58 is like ALGOL 60, MAD 

is an ALGOL translator.”!4 In my opinion, MAD is no more of an ALGOL 

translator than a FORTRAN translator. MAD was motivated by ALGOL 

58, but it does not resemble ALGOL 58 in any significant way. 

The original language was primarily designed and implemented by the 

people noted at the start of this section. Maintenance and improvements 

have been made by these and a few other people at the University of Michi- 

gan since then. The primary documentation has been a sequence of official 

manuals, each including some extensions which were originally documented 

as addenda and minor revisions to the many printings of the first edition 

[UM60]. The source used for the description in this book is the August, 

1966 version [UM66]. Because of the way these manuals were printed, no 

14 Arden et al. [AR6la], p. 27.



IV.5.2. MAD 207 

SAMPLE PROGRAM—MAD 

  

Problem: Construct a subroutine with parameters A and B such that A and 
B are integers and 2 < A < B. For every odd integer K with A < K < B, com- 
pute f(K) = (3K + sin (K))'” if K is a prime, and f(K) =.(4K + cos (K))!'? if K 
is not a prime. For each K, print K, the value of f(K), and the word PRIME or 
NONPRIME as the case may be. 

Assume there exists a subroutine or function PRIME(K) which determines 
whether or not K is a prime, and assume that library routines for square root, sine, 

and cosine are available. 

Program: 

EXTERNAL FUNCTION (A,B) 
ENTRY TO PRINTER. 
INTEGER A, B, K, HOL 
BOOLEAN PRIME 
THROUGH LOOP, FOR K = 2%(A/2)+1, 2, K.G.B 
WHENEVER PRIME.(K) 

1 F = SQRT.(3*K+SIN(K)) 
2 HOL = $ $ 
OTHERWISE 

] F = SQRT.(4*K+COS(K)) 
2 HOL = $NO$ 
END OF CONDITIONAL 

LOOP PRINT FORMAT ALPHA, K, F, HOL 
FUNCTION RETURN 

ALPHA 1 VECTOR VALUES = $3H K=, I5, 3H,F=, F10.5, 4H, , 
2 C2, SHPRIME$ 
END OF FUNCTION 
  

individual(s) is shown as an actual author, although indications of those 

involved are given on the title page. 

Variations of the language have been implemented for at least the IBM 

7040, Philco 210-211, and the UNIVAC 1107. These are not necessarily 

compatible with the version described in the manual or in this section. 

The character set consists of the 26 upper-case letters, the 10 digits, and 

the following special characters: 

+ — x* f= )(., $' blank 

There are a number of key words. 

Constants can be either integer, floating point, logical (1B = true and 

OB = false), octal (written as up to 12 octal integers followed by the letter 

K), or alphabetic. The alphabetic constants are normally called literals and 

consist of up to 6 characters of any kind preceded and followed by the dollar 

sign, $, e.g., $ABC$, $D + 3 = $, etc. Any of the constants above can 

be declared to be a mode (e.g., integer, logical, etc.) other than the normally



208 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

declared one (floating point) by following it with the letter M and a code 

number. 

Both data names and statement labels have the same form, namely a 

letter followed by zero to five letters or digits. The same name cannot be 

used for a variable name and a statement label. Both variable and statement 
labels can be subscripted, and the latter are enclosed without parentheses. 

There is no limit on the number of subscripts. For one- or two-dimensional 

arrays, data name subscripts can consist of any arithmetic expression and 

can themselves be subscripted. However, the expressions for subscripts in 

an array with more than two dimensions must be integers. There are a few 

reserved words, primarily some function and system names. The bulk of 

the key words in the language are not reserved words since they are longer 

than six letters and the other symbols are surrounded by periods. There is, 

however, a standard set of abbreviations which can be used to replace the 

longer words. This consists of the first and last letters with an apostrophe 

between them, such as W'R for WHENEVER and D'N for DIMENSION. 

All operators except those represented by single nonletter characters 

are surrounded by periods. The operators include the five arithmetic ones, 

+ — * / and .P. (for exponentiation); the absolute value .ABS.; nega- 

tion —, and the relational and logical operators. The relational operators 

include equal, not equal, greater, greater than or equal, less than, and 

less than or equal; these are designated, respectively, by .E., .NE., .G., 

.GE., .L., and .LE.. The Boolean operators are .NOT., .OR., -AND., .THEN., 

-EQV., and .EXOR., where the last three represent, respectively, implies, 

equivalence, and exclusive or. There are also operations for full words, 

consisting of bitwise negation .N., logical and .A., logical or .V., and exclusive 

or .EV.. Punctuation as such has no meaning, except for commas to separate 

lists of items. Blanks are not significant except in literals. There are no noise 

words. 

The input form is designed for cards, with the statement labels any- 

where in columns | to 10, the statements beginning anywhere in columns 

12 to 72, and a continuation symbol permitted in column 11. A statement or 

declaration must start on a new card. In my opinion, the conceptual form 

is a mixture of ALGOL and FORTRAN. 

There are several declarations and they are described later. The smallest 

executable unit is any of the specific statements that exist. There is no way 

of grouping them. There is loop control by means of the THROUGH state- 

ment and by the use of conditional statements. 

There are two main types of functions, the internal and external. AMAD 

procedure is merely a function with multiple inputs and/or outputs. State- 

ment labels and function names may be used as arguments. The external 

functions are normally called subroutines or procedures; i.e., they are headed



Iv.5.2. MAD 209 

by the declaration EXTERNAL and the statements that follow are to be 

translated independently of the main program in which they are used. Internal 

functions are translated as they occur relative to the other parts of the pro- 

gram. A one-sentence definition of internal functions is permitted; e.g., the 

user can write 

INTERNAL FUNCTION COSUM. (A,B,C) = A*B+B*xC+Ax*C 

Comments are indicated by the letter R in column 11. Declarations 

and comments can appear anywhere in the program. The program must end 

with the statement END OF PROGRAM. There is a provision for an ERROR 

RETURN statement which will then transfer control to the operating system. 

Declarations and statements are delimited only by their card position, 

i.e., new statements and declarations must start on a new card. Recursive 

procedures and functions are permitted, although the user must do some of 

the saving and restoring work himself. Parameters are passed by value and 

can be expressions. 

There are arithmetic, Boolean, statement label, function name, and 

alphanumeric variables. There is also a facility for performing certain opera- 

tions on the bitwise representation of integers. The arithmetic done is integer, 

floating point, and Boolean. Fixed and floating point variables and constants 

can be combined in a single expression. When they are, the expression is 

considered to be in floating point mode. However, parts of the computation 

may be performed in integer arithmetic; as a consequence, the final results 

may differ from those which would be obtained by having the entire com- 

putation done in floating point. 

There is no problem with the scope of data because there are only single 

statements in the language, i.e., no groups of executable units. 

The basic assignment statement consists of a variable on the left followed 

by an equal sign and an expression on the right, e.g., ALPHA=X+3+F.(X,Y). 

These must be of the same type, except that an integer or floating point 

expression on the right will be converted to a floating point or integer ex- 

pression on the left if necessary. 

The basic control transfer is of the form TRANSFER TO S where § is 

any statement label or any expression which defines the label of an executable 
statement. In particular, it is legitimate to write TRANSFER TO BETA (K + 2) 
since statement names can be subscripted. A subroutine is invoked either 

by direct use of its name or by using the word EXECUTE, with or without 
arguments, e.g., EXECUTE SORT. (A, B, C) or SORT. (A, B, C). A function 
can be used in an expression, e.g., Z = A + COS.(X)/SIN.(X—.5). 

The CONTINUE statement serves as a function point in the program 

but causes no computation to take place.



210 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

There are two types of conditional statements. The first is the simple 

conditional of the form WHENEVER B, Q where B is a Boolean expression 

and Q is any executable statement except the END OF PROGRAM, another 

conditional, an iteration, or a function entry; e.g., WHENEVER X .LE. 1, 

Y = A + B is legal but WHENEVER X .LE. 1, WHENEVER Y .LE. 2,A =B+C 

is not. This is an illustration of a place where a comma must be written, as 

is true in other statements. A compound conditional is of the following form: 

$1 WHENEVER BI 

executable statements 

$2 OR WHENEVER B2 

executable statements 

OR WHENEVER Bn 

executable statements 

Sn END OF CONDITIONAL 

Often the last condition is one for which the condition is always true, and 

in this case the programmer may write OTHERWISE. The Si are optional 

statement labels. The executable statements can be simple or compound 

conditional statements. Testing starts with the first Bi, and as soon as some- 

thing with the value true is encountered, then the set of statements following 

it up to the next S(j + 7) are executed. Computation then continues from 

the first statement after the END OF CONDITIONAL statement. Note that 

this means only one of the alternative computations is performed. 

The loop control is handled by the THROUGH statement which has 

one of the two following forms: 

THROUGH S, FOR VALUES OF V = €), E2,..., E 

THROUGH S, FOR V = €,, Ez, B 

where § is a statement label. In the second case, B is a Boolean expression. 

Thus we can have something of the form THROUGH POLY, FOR J = N, 

—,J.L.0 which means that N is to be decreased by 1 until it is less than 0. 

These loops can all be properly nested, and there are no restrictions on 

jumping into or out of the statements in the range of the iteration. A form 

of the iteration statement may be assigned a value and embedded into 

expressions. 

The only error condition statement is the ERROR RETURN, which can 
be put into function, subroutine, and procedure definition programs. 

The following is a list of input/output statements, where F is the name 

of a format specification vector or a literal giving the format itself, N is an 

expression whose value is a tape number, L is an input/output list, and the



Iv.5.2. MAD 211 

square brackets designate an optional clause: 

PRINT FORMAT F, L 
PRINT ON LINE FORMAT F, L 
PUNCH FORMAT F, L 
READ FORMAT F, L 
READ BCD TAPE N, F, L 
WRITE BCD TAPE N, F, L 
READ BINARY TAPE N, L 
WRITE BINARY TAPE N, L 
LOOK AT FORMAT F, L 
REWIND TAPE N 
END OF FILE TAPE N 
BACKSPACE RECORD OF TAPE N |, IF LOAD POINT TRANSFER 

TO S| 
BACKSPACE FILE OF TAPE N [, IF LOAD POINT TRANSFER TO S| 
SET LOW DENSITY TAPE N 
SET HIGH DENSITY TAPE N 
UNLOAD TAPE N 

There are also some simplified input/output statements, namely 

READ DATA 

where the variable names and their values are punched on 

cards in the form V; = m, V2 = no,...,Vn = Mn OF even as 

values in an array written V(j) = m, n2,... , Mn 
READ AND PRINT DATA 

PRINT COMMENT $string starting with carriage control$ 

PRINT RESULTS L 

PRINT BCD RESULTS L 

PRINT OCTAL RESULTS L 

If any type of error occurs during an input/output statement, the 

subroutine ERROR is automatically entered; the subroutine sets a flag and 

returns control to the operating system. There is also a way for the pro- 

grammer to obtain control. Flexible format specifications are provided; 

they bear a strong resemblance to those of FORTRAN. The list L can be a 

single variable or array name, a list defined by an iteration statement includ- 

ing some logical expressions, or various other items. 

There are no facilities for library references, except the normal use of 

subroutines, nor any debugging statements. There are a few built-in func- 

tions of rather special kinds, e.g., SETDIM, which updates dimension informa- 

tion; SYMM and TRANSP, which involve matrices. There apparently is no 

set of basic mathematical functions officially defined in the language. There



212 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

are a number of system subroutines available to the user which provide 

some connection either with the operating system or the input/output system. 

There are a number of interesting statements which are included to 

facilitate the writing of recursive functions and procedures. These statements 

cause the designation and actual use of a vector for the temporary storage 

of data and function returns. The statements are as follows: 

SET LIST TO U[,E] U is an array element name which designates 

the initial temporary storage location. The optional E is an ex- 

pression defining the upper limit of the length of the list. 

SAVE DATA L L is a list of variables or arrays and the list is 

stored in order in the current temporary storage vector. 

SAVE RETURN This causes the reentry point to the calling 

program to be stored as the next available element of the 

current temporary storage vector. 

RESTORE DATA L The most recent n elements become the values 

of the n variables in the list L and are available for use by 

a SAVE statement. 

RESTORE RETURN This restores the reentry point to the pro- 

gram calling the function. The last element of temporary 

storage is then made available for use by successive SAVE 

statements. 

The data description declarations are handled by assuming all variables 

and function values have normal mode unless declared otherwise, and this 

normal mode is considered floating point unless stated otherwise. Any of 

the other modes may be specified as the normal one by writing the declara- 

tion NORMAL MODE IS M where M is one of the following: INTEGER, 

BOOLEAN, STATEMENT LABEL, FUNCTION NAME, FLOATING POINT or no, 

where n is a code number. Only one such declaration can appear in a program 

and it applies to the entire program. Anything which is to override this 

normal mode must be put into a specific declaration. Format descriptions 

are similar to those of FORTRAN. 

Storage allocation declarations are DIMENSION, EQUIVALENCE, 

ERASABLE, and PROGRAM COMMON. The DIMENSION statement is quite 

flexible. It permits negative subscripts. Among other things, it also allows 

changing the dimensions at object time; it permits the programmer to vary 

the location of the initial element in an array within the overall block which 

has been set aside for the array; and it allows an arbitrary storage mapping 

to be specified. 

The EQUIVALENCE declaration has essentially the same meaning as 

the one in FORTRAN;; 1e., the named variables are to occupy the same 

storage locations. The ERASABLE declaration assigns the indicated variables 

to a special storage area which eliminates the effective previous assignments



Iv.5.2. MAD 213 

to this separate storage area. There is also a PROGRAM COMMON declara- 

tion which allows a main program and several EXTERNAL function programs 

to refer to variables and arrays by the same name. There is no interaction 

among EQUIVALENCE and these other declarations. 

The general form of a function declaration is 

INTERNAL 

{EXTERNAL 

body of the routine 

FUNCTION RETURN expression 

END OF FUNCTION 

FUNCTION name. (parameter list) 

An alternate way of writing the first two lines is by omitting the function 

name on the first line and writing ENTRY TO NAME. on the second. A 

procedure which provides several output values as parameters omits the 

expression. Functions can also have multiple entry points. The same func- 

tion definition can be used to define any number of functions and/or pro- 

cedures. They must use exactly the same set of arguments, however. Thus, 

the functions CPADD. (X,Y,A,B) and CPMPY. (X,Y,A,B) can be defined by 

one definition, but the functions SIN.(A) and COS.(B) would require 

separate definitions. 

An interesting compiler directive is the PARAMETER declaration, which 

permits the assignment of values to symbols at compile time. The user 

writes PARAMETER Aj(B2), A2(B2),..., An(B,) Where A; 1s an identifier and 

B; is an identifier or a constant. The effect is to replace A; by B; in any later 

occurrence in the program. This is of course a special case of the more 

general macro facility concept. 

A rather unusual declaration (for its time) in MAD is the presetting of 

vectors; this is done by writing VECTOR VALUES A(i) = Co, Ci,..., Cas 
where A is an array with each element’s position reduced to a single sub- 

script value. The values of the C; are assigned. The C; can be constants, 

statement labels, or character strings. 

Probably the most interesting facility in MAD is its ability to allow 

some language extension by permitting the user to redefine existing operators 

or define new operators or modes for a particular program. This can be done 

because of the basic philosophy that is used in the implementation of MAD, 

namely the concept of an operator code number followed by modes of the 

variables and an address where the instruction sequence for that particular 

operator number begins. The exact format is as follows: 

operator no. mode a modeb moder2 moder! address 

where r? and r2 represent results (although there is normally only one). 

Operators have a precedence associated with them, and this must be 

defined for a new operator. This provides the necessary information to the



214 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

translator so it can understand how to handle something with a new operator 

in it. Three new modes may be added to the existing five: Floating Point, 

Integer, Boolean, Function Name, and Statement Label. It is also possible 

to change the meaning of some of the existing operators. To help clarify 

this, note the above display which shows a single entry in the operator-mode 

table. The relevant concept here is that an additional mode is introduced to 

facilitate the operation of conversion wherever this is necessary. For example, 

if A + B is to be computed, where A is an integer and B is a floating point 

number, then a preliminary conversion must be undertaken to make the 

operands compatible for addition. The table indicates r] and r2 as new values 

of A and B, respectively, where one or both may be in modes different from 

their original form. The actual sequence of instructions that correspond 

to this table can be changed in certain cases. Thus any of the arithmetic 

operators, as well as some of the other operators, can be redefined to have 

a different meaning. As an example (taken from [UM66],'* suppose that .EV. 

was not in the language. In order to define a binary operation .EV. with 

integer operands, where the result is a bitwise exclusive or of the two 

operands, the programmer would write 

DEFINE BINARY OPERATOR .EV., PRECEDENCE SAME AS .V. 

MODE STRUCTURE 1 = 1 .EV. 1 

This would be followed by the sequence of instructions necessary to carry 

this out. Another possibility would be to define a binary operator which had 

double-precision operands and which produced a double-precision product. 

By means of an INCLUDE statement, definition packages may be called from 

a disc for matrix, complex, and double-precision arithmetic. 

The general formats for adding or changing operators and modes are 

shown in Figure IV-12. 

There are two main reasons for the speed of the MAD compiler. The 

first is its rather unique requirement that the key words all contain more 

than six letters, thus making it fairly obvious when a data name is encoun- 

tered. The use of abbreviations in the form indicated on p. 208 makes 

it easier for the programmer to write and still permits the compiler to retain 

its speed. Abbreviations are expanded in the compiler-produced listing. 

Other reasons depend specifically on the internal techniques that are used. 

MAD has proved to be quite successful in the universities because it 

provides some interesting features that are not available in other languages 

and the speed of compilation makes it a very useful tool for running a large 

number of student problems. It has not received much industrial usage. 

One contribution to the technology made by MAD is that it provided 

a language which made a very fast translator easy to develop. However, the 

more significant contributions are some of the features which have been 

15 [UM66], p. 118.



IV.6. ON-LINE SYSTEMS 215 

  

SAME AS a 
(1) DEFINE {Uae} OPERATOR [cofnes] , PRECEDENCE LOWER THAN? [°*isIing 

BINAR op HIGHER THAN op 

move structure [ede] = [mode] [defined] mode’ 
no. no. op no. 

defining sequence 

SAME AS- - 
(2) DEFINE {pnagy| OPERATOR [FRE] , pRECEDENCE {LOWER THAN? [°*!sting 

BINARY ° HIGHER THAN op 

MODE stRucTuRE [™0?] = [mode] [“enre] [moc’*] , SAME SEQUENCE 
no. 

AS mode! [esting] [moe?] 

mode] __ mode existing mode 
(3) MODE STRUCTURE oe | = ae [emis ] [me e] 

defining sequence 

mode] [existing] [more] , SAME SEQUENCE 

mode [isting] [more] 

(4) MODE STRUCTURE mode 
no. 

> Nn 

  

Figure IV-12. Format for changing operators and modes in MAD. Braces 

indicate that a choice is to be made from the enclosed material. Square 

brackets have no logical significance. 

Source: [UM66], p. 114. 

put into other languages (although of course in a different form), notably 

VECTOR VALUES and the PARAMETER declarations; one feature (definitions 

of new operators and data types) is just beginning to be appreciated (see 

Section III.7.2). 

IV.5.3. JOVIAL (cross-reference only) 

JOVIAL is based on CLIP, which in turn was motivated by ALGOL 

58. Both these languages (only JOVIAL has actually survived) are far more 

general than the others in this chapter and therefore are not described here. 

JOVIAL is discussed in Section VHI. 3 and CLIP in Section 1X.2.5.2. 

IV.6. ON-LINE SYSTEMS 

1V.6.1. INTRODUCTORY REMARKS 

This section considers languages that are designed to be used in on-line 

systems to do primarily numerical scientific work. In most cases the language 

is embedded in a stand-alone system rather than as part of a general purpose 

time-sharing system. In each case, the language has been designed to provide



216 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

the user at a remote terminal with some facilities for doing numerical com- 

putations. The scope of these ranges from something slightly above a desk 

calculator (the original JOSS!*) to small programming languages (BASIC, 

CPS) to a virtually full-fledged version of FORTRAN (QUIKTRAN) to 

systems involving special keyboards and scopes (Culler-Fried, AMTRAN) 

to systems providing high level language primitives (MAP, Lincoln Reckoner) 

to a system with many unusual operations (APL/360) and one using a stylus, 

push button, and scope but no input typewriter (DIALOG). 

The only parts of these languages which are being discussed here are 

those which relate to the actual computations and/or the debugging facilities 

that are available to the user. Any aspects associated with the language which 

are primarily (or constitute a major set of) control functions to the time- 

sharing system itself are dealt with in Section IX.3.6. If the language can 

coexist with other languages or systems, this factor is considered irrelevant 

in this section. Languages originally designed for use in a batch environment 

which might be available under general time-sharing systems (e.g., MAD 

is available under CTSS—see Crisman [ZR65]) are not considered on-line 

languages. 

A description of one organization’s experience with a variety of systems 

is given by O’Sullivan [0U67]. 

The differences in the philosophy of the first four systems discussed in 

this section must be emphasized. In the case of JOSS and BASIC, the idea 

was to produce as simple a system as possible to do useful work. However 

JOSS was slightly more oriented to an industrial environment with working 

engineers and scientists, while BASIC was created for use on a college campus 

with a multitude of students doing small jobs that might only be experiments. 

There is a provision for execution of lines immediately when entered in JOSS, 

but there must be a full program in BASIC. There was no concern in either 

case for connection with other languages. There are a number of versions of 

JOSS implemented in varying places, but they will not be included here 

because they are not significantly different. A partial list of these dialects 

appears in Section IV.6.2. 

QUIKTRAN represents the opposite end of the spectrum, in the sense 

that it took an existing and widely used language, namely FORTRAN, and 

adopted it for use on a remote terminal. This was done by omitting a few of 

the language features which made it hard to implement in the environment 

used and adding a number of features to facilitate debugging in a remote 

console type operation. A further factor in QUIKTRAN was the need to 

maintain compatibility with FORTRAN, so that programs checked out 

at the terminal could be compiled with a regular compiler for production 

runs. 

  

16 JOSS is the trademark and service mark of The RAND Corporation for its com- 
puter program and services using that program.



Iv.6.2. joss 217 

CPS (and RUSH) adopted a philosophy which was somewhere between 

these two extremes. CPS is a PL/I-like small extended subset of PL/I which 

attempted to retain the ease of learning and usage of JOSS but the syntax 

of PL/I. Much more so than in the QUIKTRAN case, it was found impos- 

sible to maintain strict compatibility with PL/I and still provide a language 

to meet the other objectives. However, it provides the user with a funda- 

mental grounding in PL/I syntax, and from this he should be able to go on 

easily to learn more of PL/I. 

A good comparison of the four systems, AMTRAN, Culler—Fried, 

Lincoln Reckoner, and MAP, is given by Ruyle, Brackett, and Kaplow 

[RU67]. MAP provides some high level mathematical operations to the user 

and is the only system in this section (except for the Lincoln Reckoner) 

which runs under a general purpose time-sharing system. The Lincoln Reck- 

oner provides high level operations to the user and concentrates on a concept 

of coherent programming, which makes it practical for many people to create 

and use each others’ programs. The Culler-Fried work pioneered in the use 
of display scopes and specially designed push-button keyboards to build up 

operations. AMTRAN has a number of features from different stylistic 

approaches, e.g., push buttons to build up high level operations, some FOR- 

TRAN-like programming facilities, and the use of the scope. 

DIALOG involves the use of a display scope and input stylus very 

heavily, but it has a fairly conventional algebraically oriented language with 

some display features. 

APL/360 (and PAT) are implemented subsets of the more general 

language defined by Iverson (see Section X.4). 

IV.6.2. JOSS 

JOSS is a system which was first developed by J. C. Shaw, T. O. Ellis, 

I. Nehama, A. Newell, and K. W. Uncapher to run on the JOHNNIAC 

(now in a museum) at the RAND Corporation. JOSS has been in daily use 

since January, 1964. (An earlier but simpler version was running during 

most of 1963.) A description appears in Shaw [JC64]. A later version was 

implemented on the PDP6 in 1965 and is described in Baker [BK 66]. While 

officially the name JOSS applies to both versions, in practice JOSS I and 

JOSS H are used. This discussion will use the numeral only where it is neces- 

sary to distinguish them. Because of the significance of JOSS I as the first 

on-line system of such simplicity, it will be described; the additional facilities 

of JOSS II will then be given. 

There are a number of versions of JOSS implemented in varying places, 

with differing amounts of deviation. A partial list of the names of these 

dialects is as follows (references have been included where possible): CAL, 

CITRAN, ESI, ISIS, PIL/I, and TELCOMP.



218 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

SAMPLE PROGRAM—JOSS IIt 

  

Program Explanation 

*Program to find the mean (M) and standard 

  

* deviation (S) of N numbers. Ny 
Let M=sum(i=1(1)N:p(i))/N. M = (x P(i)\/N 

Let V=sum(i=1(1)N:p(i)*2)/N — M*2. Ne, 

Let SmeartlV} NPG" v= [d, PO)VN —M? 

N=10 S=/S/V 
3.1 Demand pili). \ 

Do part 3 for i=1(1)N. 

p(1) = 7.5 
p(2) = 3.5 

oa) = 7/3 The easy way to type in 

p(5) = 10 \ many values. 

p(6) = 11 
p(7) = .8* Cancelling an error. 

p(7) = 8.2 
p(8) = 5.5 
p(9) = 7 

p(10) = 8.2 

Type MS. 
= 7.13333333 

$s = 2.55812431 

*We can also get the geometric mean, if we 
* want it: 

Type prod[i=1(1)N:p(i)]*(1/N). NO 

prod[i=1(1)N:p(i)|*(1/N) = 6.53141414 [LT p@y* 
Comment: Boldface characters represent information typed out by the 

computer. 

tInformal memorandum by D. C. McGarvey, March 24, 1966. 
  

The goal of the JOSS experiment (JC64] was to demonstrate “the value of 

on line access to acomputer via an appropriate language”. “It was designed 

to give the individual scientist or engineer an easy, direct way of solving his 

small numerical problems without a large investment in learning to use an 

operating system, a compiler, and debugging tools, or in explaining his 

problems to a professional computer programmer and in checking the latter’s 

results.”!8 It has unquestionably served this purpose. 

The main published documentation of JOSS I is Shaw [JC64]. Numerous 

talks have been given on the subject, and much of the training of new people 

17 Shaw [JC64], p. 456. 

18 Shaw [JC64], p. 455.



Iv.6.2. Joss 219 

in its use is done by either a movie (whose scenario is in Baker [BK64]), 

examples or direct on-line use. There was no single document which gave 

a complete description of the language, although the one-page summary 

shown in Figure IV-13 served as a good checklist. 

The input/output device is a specially designed typewriter. The character 

set consists of the 26 upper-case letters, the 10 digits, and the following 27 

characters: 

/ * blank 
$s >< > = ¥¢ 

] ’ ; ¢ | — 

The centered dot is used for multiplication and the pointed star for exponen- 

tiation. Parentheses and square brackets are interchangeable wherever group- 

ing is needed. 

Data names consist of a single upper- or lower-case letter which can 

have two subscripts separated by commas. The values of subscripts must 

be between 0 and 99. 

Statement labels consist of numbers which can have decimal points in 

them to allow for insertion of lines since every line must be numbered. When 

referring to them, the word step is used for a single line, e.g., 3.2, while 

part refers to all lines with the designated number at the left of the decimal 

point, e.g., 3.1, 3.3, or 3.4. A period is used to denote the end of a statement. 

Blanks are significant in some places. 

The input is free form. However, a step cannot exceed a single line, nor 

can there be more than one step on a line. The first word on a line must be 

capitalized. _ 

Only arithmetic variables are permitted; they can be either integers or 

mixed numbers. However JOSS represents all numbers internally as floating 

point numbers to the base 10. 

Statements are executed immediately after they are typed, or they may 

be stored. 

The basic assignment statement in JOSS is designated as 

Set var = expression 

with an optional period after the expression. Thus the user writes 

Set Y = 123+456. 

Or 

Set Y = Ceexp(—x * 2/2). 

Arbitrarily complex expressions can be used on the right-hand side. The



DIRECT or INDIRECT 
  

DIRECT (only): 

  

Set »a. Cancel. 

Do step 1.1. Delete step 1.1. 
Do step 1.1 for x = a, b, c(d)e. Delete part 1. 
Do part 1. Delete form 2. 
Do part 1 for x = a(b)c(d)e, f£, g. Delete all steps. 

Delete all parts. 
Type a,b,c,_. Delete all forms. 
Type a,b in form 2. Delete all. 
Type 'ABCDE",. 
Type step 1.1. Go. 
Type part i. 
Type form 2. Form 2: 
Type all steps. dist. © ......+462. accel, ™  , 
Type all parts. 
Type all forms, x=a 
Type all values, 
Type all. RELATIONS : 
Type size. 
Type time, a7#S2<> 
Type users. 

OPERATIONS : 
Delete x,y. 

Delete all values. +--/*() 0) Il 

Line. CONDITIONS : 

Page. if a<b<c and dee or frg 

INDIRECT (only): FUNCTIONS ;: 

1.1 To step 3.1. sqrt (a) (square root) 
1.1 To part 3. roBta (natural logarithm) 

exp (a 
1.1 Done. sin(a 

cos(a 
1.1 Stop. arg(a,b) (argument of point [a,b]) 

ip(a (integer part 
1.1 Demand x. fp(a fraction part) 

dp (a digit part) 
xp(a exponent part) 
sgn(a) sign) 
max(a, 
min(a,b,c) 

PUNCTUATION and SPECIAL CHARACTERS : 

sb 2 #$ 7? 
. indicates 

cocceesee indicates 
# is the strike-out 
$ carries the value 

a field for a number in a forn. 
scientific notation in a form. 
symbol. 
of the current line number. 

* at the beginning or end kills an instruction line. 
Brackets may be used above in place of parentheses. 
Indexed letters (e.g. v(a), wfla 
Arbitrary e 

in place o a, b, 

b)) may be used above in 

Figure IV-13. Short summary of JOSS I. 
Source: Shaw [JC65], p. 10. 

220 

place of x, y- 
ressions ( e.g. 3-[sin(2-p+3)-q]er ) may be used above 

cy ooo @



Iv.6.2. joss 221 

word Set can be omitted in an abbreviated form of direct input, but it is 

required in the stored program, e.g., 

Set x = sqrt(z) + y. 

or 

x = sart(z) + y. 

or 

1.23 Set x = sart(z) + y. 

but not 

1.23 x = sqrt(z) + y. 

The unconditional transfer is of the form 

To step 1.35. 

or 

To part 4. 

Built-in functions are invoked by writing the function name with the param- 

eter(s) in parentheses. Conditions can be attached to the end of steps. Thus 

one can write 

Set y = q + 4.2 if a > b. 

Or 

To 3.9 if c = d + 1. 

Numerical relations can be combined with the words and, or, €.g., 

Set y = a—b if c>d or d<e or a<b<c. 

It is possible to write loops by writing 

Do part n for x = a(b)c. 

where a and ¢ are the initial and terminal values and b is the increment. 

The range can either be a single line (using step) or many lines (using part). 

The parameters can also be specified as a sequence of values separated by 

commas after the equals sign, e.g., 

Do step 3.1 for x=1, 2, 3, 100. 

Expressions requiring computation can also be used, e.g., 

Do step 3.1 for x=sin(.5) (.0001), sin (.9)-



222 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

There are no direct error condition statements in the language, although 

typing errors can be corrected by strikeovers before releasing the input line. 

The output command is Type, which can be followed with any number 
of expressions, a format number, literals, or even the phrase all values, etc. 

There are two types of fields provided for formatted numeric output: A 

string of underlines with an optional decimal point is used to indicate fixed 

point, while a string of periods specifies tabular form for floating point 

numbers. The number of digits typed is determined by the length of the 

field. The user can also specify page and line to control format and, in fact, 

can put conditionals after some of these; thus he can write 

Page if $ equals 50. 

where the $ carries a numerical value equal to the line number of the type- 

writer’s current position on the page. He can also refer to a form with condi- 

tional, e.g., 

Type t, a in form 6 if a=b+2ec. 

Thus there is great output flexibility, considering the basic simplicity of the 

system. 

The functions available to the user include the basic mathematical 

routines sqrt, log, exp, sin, and cos, as well as the following: 

arg (a,b) Argument of point (a, b) 
ip(a) Integer part 
fp(a) Fraction part 
dp(a) Digit part 
xp(a) Exponent part 
sgn(a) Sign 
max(a,b,c,...) 

min(a,b,c,...) 

In addition, absolute value is denoted using vertical bars, e.g., |x—3]. 

There is obviously considerable interaction with the system. There is 

a Delete command which can contain any number of variables or can 

delete al! variables. Higher aggregates can be deleted by using expressions 

such as all steps, all parts, all forms, all values, and all. The system pro- 

vides error messages of two kinds. The first involves language violations, 

and the message is fairly explicit. The second involves malformed expressions, 

steps, etc. In this case, the system responds by writing Eh2 thus leaving it 

to the user to find the difficulty; this method was chosen as being preferable 

to one in which some attempt was made to pinpoint (perhaps erroneously) 

the error.



Iv.6.2. Joss 223 

There is no doubt but that some of the language constraints are imposed 

by implementation considerations. Since JOSS is interpretive and was 

originally implemented on an old, small, slow machine, some user con- 

veniences could not be provided. What is probably the most amazing aspect 

of the whole JOSS activity is that it provided such a useful tool to so many 

people at the RAND Corporation. 

JOSS II has been implemented on the PDP-6. A summary of its com- 

mands is given as Figure IV-14. The discussion below is based on indicating 

the additions to JOSS I. 

Data names can now have up to 10 subscripts instead of the previous 2. 

Logical expressions were formerly allowed only after the /f. In JOSS IIT 

they can appear in a number of other places, e.g., in a Type statement and 

in a Let statement (discussed below). In addition to the operators and and or, 

the word not can be used; parentheses may be used for grouping, thus per- 

mitting such statements as 

To 3.2 if x = y + 1 and not (x < zorr > s). 

A library function tv has a single argument consisting of a Boolean expres- 

sion and converts it into the number 1 if true and 0 if false. This can be used 

in an expression, e.¢g., 

Set a = 5 + tv(x>3.1 or x<y). 

Conditional expressions can be written as the following, where the 

pi represent logical expressions and the e; are functions: 

(pi: Ci; Pa: C2; ~- + Pn: en) 

(This is of course similar to LISP 1.5—see Section VI.5.) This is interpreted 

as if p; then e, else if p2 then e2, etc., where the evaluation proceeds from left 

to right until the first true p; is found. These conditional expressions can 

be used anyplace that arithmetic expressions are valid. 

The Do statement has been extended to permit execution of a part or 

step n times by writing 

Do part 3, 5 times. 

It is now possible to nest Do statements to any depth by enclosing all but 

the outer one in parentheses. The variables of the interrupted Do are not 

changed. 

One of the most significant additions in JOSS II is the provision for 

user-defined functions. These are defined using the Let statement and a single-



Appendix A--JOSS COMMANDS AND FUNCTIONS 

  

  
e@ An expression, e.g., 3+sqrt (2), has a numerical value. 

L = letter tnt = 
S = subscripted letter num = 
P = proposition rng = 
F = formula 

has a truth value (true or false). 

expression with integer value 
expression with numerical value 

range of values of a letter, 
such as 1(.1)3,3.64,4 

A proposition, e.g., asb, 

An if P clause can be appended to any command except a short Set. 
A conditional expression may be used wherever an expression is allowed; e.g., 

define f(x) by a conditional expression: Let f(x)=(x<0:0;0<x<1:x*2;1) defines f(x) 

to be 0 for x<0, x*2 for 0<x<1l, and otherwise 1. 

  

TYPE COMMANDS 
Type nwn. 
Type S. 
Type S(int,int). 
Type P. 
Type "any text". 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 
Type 

form int. 
step num. 
part int. 
formula F. 
F(nun). 
F(P). 
all steps. 
all parts. 
all formulas. 
all forms. 
all values. 

all. 

time. 

timer. 
size. 
users. 
item-list. 

JOSS COMMAND LIST 

e Several individual Type 
commands may be combined 
in one, except for Type 
"any text''. and Type item- 
list. . 

e in form int may be appended 
to Type commands that specify 
individual values. 

SET COMMANDS 
Set L=nwn. 
Set L=P. 
Set S(int,int)=num. 
Set S(int,int)=P. 

SHORT SET COMMANDS 

L=numn 
L=P 
S(int,int)=num 

S(int,tnt)=P 

  

224 

DELETE COMMANDS 
Delete L. 
Delete S. 
Delete S(int,int). 
Delete form int. 
Delete step nun. 
Delete part int. 
Delete formula F. 
Delete all steps. 
Delete all parts. 
Delete all formulas. 
Delete all forms. 
Delete all values. 
Delete all. 

e Several individual Delete 

commands may be combined in 

one, such as 
Delete LZ, form int, all parts. 

LET COMMANDS 
Let F=nwn. 

Let F=P. 
Let F(L)=nun. 
Let F(L)=P. 

DO COMMANDS 
Do step num. 
Do step nun, tnt times. 
Do step num for L=rng. 
Do part int. 
Do part int, int times. 
Do part int for L=rng. 

TO 

To 

To 

COMMANDS 
step num. 
part int. 

DEMAND COMMANDS 
Demand L. 
Demand S(int,int). 
Demand L as "any text". 
Demand S(int,int) as "any text". 

 



FILE COMMANDS 

Use file tnt (ident). 
File ... as item int (code). 
Recall item int (code). 
Discard item int (code). 

file int and tdent are assigned 
by the Computer Sciences 
Department. 
item int and code are assigned 
by the user at time of filing. 
l<ints25. code, if used, <5 
letters and numbers. 

  

  

"..." stands for any combination 
of elements that can be deleted 
by a Delete command. 

SINGLE-WORD COMMANDS 

Page. 
Line. 
Go. 
Stop. 
Done. 

Quit. 
Cancel. 

  

PARENTHETICAL COMMANDS 

Cancel or any Do com- 
mand may be enclosed in 
parentheses. 

  

SPECIAL COMMANDS 
Reset timer. 
Let S be sparse. 

JOSS FUNCTION LIST 
  

ip(x) 
fp(x) 
dp (x) 
xp (x) 

sgn(x) 

sqrt (x) 

log (x) 
exp(x) 

sin(x) 
cos (x) 

arg(x,y) 

sum(x,y,z) or sum[i=rng:nwn] 
prod(x,y,z) or prod{i=rng:nwn) 

min(x,y,z) or minfi=rng:nun) 
max(x,y,2) or max(li=rng:nun] 

conj(p,q,r) or conjli=rng:P] 
disj(p,q,r) or disjli=rng:P] 

first[i=rng:P] 

tv(P) 

integer portion of x 
fraction portion of x 
digit portion of x 
exponent portion of x 
-1 if x<0, 0 if x=0, +1 if x>0 

square root of x for x20 
natural logarithm of x for x>0 

x e 

sine of x, x in radians, |x|<100 
cosine of x, x in radians, |x]<100 
angle in radians formed by the positive 
x-axis and the line from the origin to (x,y) 

sum of values in argument list 
product of values in argument list 

minimum of values in argument list 
maximum of values in argument list 

true if and only if P is true for all i 
true if any P is true 

first i for which P is true 

the truth value of P; 0 if P is false, 
1 if P is true 

e@ num or P is evaluated for each value of 7 in the range 
rng; 7 usually appears in num or P. 

Figure IV-14. JOSS II commands and functions. 
Source: Marks and Amerding [ZL67], p. 37. 

225



226 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

letter name. Up to 10 parameters may be used, and they are local to the 

definition, e.g., 

Let h(a,b,c) = (a+1)*(b+2)+(c+3). 

The function can be invoked by writing its name and arguments in an expres- 

sion such as 

Set y = x + 3/h(3, 2, 4.1). 

Two new operators, sum and prod are similar to the mathematical 

operators >} and II. Thus 

10 

sum[i=1(1)100:i * 2] =>) i? 
i=1 

A new function called first gives the value of the first index which sat- 

isfies the proposition which is its argument. Its format is similar to that of 

sum, €.g., 

first[i=1(1)10:i>4] = 5 

There are statements permitting the user to file (and retrieve) programs 

and/or data. 

As stated in the introduction to this entire section, there have been a 

number of variations of JOSS developed. Some of these are available com- 

mercially to on-line users. 

IV.6.3. QUIKTRAN 

The work on QUIKTRAN was started in IBM in 1961 by a group under 

the direction of John Morrissey. Key individuals included T. Dunn, J. Keller, 

E. Strum, and G. Yang. The original objective was to improve user-debugging 

facilities. This objective eventually took the form of a dedicated system which 

was essentially FORTRAN, but with powerful debugging and terminal 

control facilities added. The two major constraints that the designers imposed 

upon themselves were to use only existing standard equipment configurations 

(which turned out to be the 7040/44 computers and 1050 terminal) and to 

use and to stay consistent with an existing language (which turned out to 

be USASI Basic FORTRAN). A first version was running in mid-1963. The 

best references for an overall view of the system and its objectives are Dunn 

and Morrissey [DM64] and Keller, Strum, and Yang [KR64]. The official 

manual for the system as it was made available for customer use is [IB66d]. 

The system was designed to handle most legitimate Basic FORTRAN



IV.6.3. QUIKTRAN 227 

SAMPLE PROGRAM—QUIKTRANT 

  

101. —READY PROGRAM ROOTS 
102. +READY ROOTI— 

CANCL PREV LINE 
READ 0,A,B,C, 

103. +READY D=Bx*k2—4.xA*C 
104. -+-READY ROOT! =(—B+SQRT(D)/(2.*A) 
104. +RJECT UNPAIRED PAREN 
104. +READY ROOTI =(—B+SQRT(D))/(2.*A) 
105. +READY ROOT2=(—B—SQRT(D))/(2.*A) 
106. +-READY START(0) 
102. =1 00 1./—5./6. 
105. =HALT END OF PROGRAM ENCOUNTERED DURING EXECUTION 
106. -+READY PRINT 0, ROOTI, ROOT2 
107. +-READY ALTER (106., 106.) 
107. +NOTE MODE RESET — ALTER LINE NUMBER 106. HAS REACHED UPPER BOUND 
106. +-READY PRINT 0 ROOTI, ROOT2 
107. +READY START(O) 
102. =1 00 1./—5./6. 
106. =0O 00 0.30000000E 01 0.20000000E 01 
106. =HALT END OF PROGRAM ENCOUNTERED DURING EXECUTION 
107. +READY START(0) 
102. =1 00 1./1./1. 
104. =XEQER THE SQUARE ROOT OF: A NEGATIVE NUMBER IS IMAGINARY 
107. +READY ALTER(103.1) 
103.1 +ALTER IF(D)20,30,30 
103.2+ALTER ALTERX 
107. +READY 20 PAUSE 
108. +READY START(O) 
102. =1 00 1./1./1. 
107. =PAUSE 
108. +-READY START(0) 
102. =1 00 1./—5./6. 
103.1=XEQER TRANSFER POINT 30 DOES NOT EXIST 
108. +READY ALTER(104.,104.) 
104. +ALTER 30 ROOTI =(—B+SQRT(D))/(2.*A) 
104.1 -+ALTER ALTERX 
108. +READY START(O) 
102. =1 00 1./—5./6. 
106. =O 00 O.30000000E 01 0.20000000E 01 
107. =PAUSE 
108. +READY START(0O) 
102. =1 00 1./1./1. 
107. =PAUSE 
108. --READY SAVE 
108. +READY LIST 
101. = CF PROGRAM ROOTS 
102, = CF READ 0,A,B,C 
103. = D=Bx*2—-4.%xA*C 

103.1= IF(D)20,30,30 
104, = 30 ROOTI =(—B+SQRT(D))/(2.%A) 
105. = ROOT2=(—B--SQRT(D))/(2.%A) 
106. = CF PRINT O,ROOTI,ROOT2 
107. = 20 PAUSE 

t[IB67e], extracts from pp. 56-57. Reprinted by permission from Fundamentals of Using 

QUIKTRAN. © 1967 by International Business Machines Corporation. 
 



228 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

programs, as defined in [AA66a]. The main places in which QUIKTRAN 

does not accept legitimate Basic FORTRAN are the following: No arithmetic 

function statements; statement numbers must not exceed 199; some restric- 

tions on the form of the EQUIVALENCE statement; library function names 

and built-in function names are reserved; some restrictions on functions, 

subroutines, and their arguments; and restrictions on the input/output. 

The terminal can be in either the COMMAND or the PROGRAM mode; in 

the former case, each statement entered by the user is executed immediately 

upon entry and the result is printed at the terminal; this is the desk calculator 

mode and the statements are not retained by the system. In the PROGRAM mode, 

the statements are saved and executed only at the request of the user through 

process codes. They permit the user to do such things as execute and print 

the result of the statement on the same line, execute the last assignment or 

input/output statement that was entered, execute and print or execute all 

subsequent assignment and input/output statements, or execute and print 

all subsequent statements entered. In addition to the two modes just men- 

tioned which control execution, there are a number of program control 

statements which assist in debugging. Several involve changes between com- 

mand and program mode or handling entries and deletions from the users’ 

library. The START initiates execution of the current active program, while 

the RESET cancels the effect of this execution. The XEQER statement specifies 

options for the system when an error is encountered. The AUXOP statement 

provides control over additional terminal devices. The DELTA allows differing 

incrementing rules for the system to use in generating line numbers. The 

EDIT statement specifies an output format for all variables not under con- 

trol of a FORMAT statement. 

The user can add, change, delete, and renumber program statements 

by using appropriately the statements ALTER, ALTER X, and NUMBER. 

The user has five test statements available to him: SNAP, TRAP, GUARD, 

STEP, and TRAIL. An X appended to such a test statement will cancel it. The 

SNAP causes the printing of the value of the variable on the left of an assign- 

ment statement whenever that value changes during execution. The TRAP 

prints the origin and destination of every control transfer that takes place 

during execution of a region. (A region represents a portion of the program 

specified by parameters in the test statement.) The GUARD statement specifies 

a region or statement that 1s protected during execution so that the system 

does not execute it but prints a message and returns control to the user. 

The STEP statement permits the user to execute one statement at a time. The 

TRAIL statement prints the source and destination of subprogram linkages. 

There are a number of display statements which permit the user to print 

selective information; these are all designed to permit the user to interrupt 

their execution. For example, the LIST statement causes a listing of the state- 

ments in the user’s program. The COPY does the same thing without the



1v.6.4. BASIC 229 

line numbers. The PDUMP statement produces an alphabetical listing of each 

variable in a specified region, together with its current value or an indication 

that it does not have one. The QDUMP is like the PDUMP except that it prints 

only those variables which have changed in values since the beginning of 

the program or since the last execution of a PDUMP or QDUMP statement. 

The INDEX statement produces a cross-reference listing of the statement 

numbers and variables used in a program, together with the line numbers 

of the statements in which each appears. The CHECK statement produces 

a listing of variables and line numbers which have not been defined or referred 

to. The AUDIT statement produces a listing of all unexecuted regions and 

unreferenced variables. 

QUIKTRAN was significant from several viewpoints. It was the first 

on-line system using standard equipment; it retained compatibility with an 

existing language and thus made it possible for the user to debug a program 

on line and then to use a regular FORTRAN compiler for batch production 

runs. 

IV.6.4. BASIC 

BASIC (standing for Beginner’s All Purpose Symbolic /nstruction 

Code) is a system developed at Dartmouth College in 1965 under the direc- 

tion of J. Kemeny and T. Kurtz [K M66]. It was implemented for the G.E. 

225. It was meant to be a very simple language to learn and also one that 

would be easy to translate. Furthermore, the designers wished it to be a 

stepping-stone for students to learn one of the more powerful languages such 

as FORTRAN or ALGOL. The reader can understand the BASIC language 

constituents merely by looking at the list in Figure IV-15. There are only 

a few other significant points which are not fairly self-evident from that list. 

Data names are single letters possibly followed by a single digit. Single letter 

data names can have one or two subscripts and can be the same as unsub- 

scripted data names, e.g., A and A(2) have no connection with each other. 

Subscripts can be expressions and can themselves be subscripted. A dimension 

statement is not needed if the value of a subscript does not exceed 10. Each 

statement must be numbered, and the program is executed in the numerical 

sequence of the statement identifiers. 

The relational operators are: =, <<, <=, >, >=, and <>. The last 
symbol represents not equal. 

Declarations need not appear in any particular sequence. The program 

must terminate with an END. 

The LET and GOTO are the assignment and control transfer statements, 

respectively. The GOSUB is a subroutine call. Functions are invoked by 

enclosing the parameter in parentheses following the function name. The



230 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

SAMPLE PROGRAM—BASIC 

  

Problem: Find greatest common divisor using Euclid’s algorithm. 

Program: 
100 PRINT yt A", i] B"’, Vs Cc", "GCD" 

110 READ A, B, C 
120 LETX =A 
130 LET Y = B 
140 GOSUB 500 

150 LET X = G 
160 LET Y = C 
170 GOSUB 500 
180 PRINT A, B, C, G 
190 GO TO 110 
200 
300 DATA 60, 90, 120 
310 DATA 38456, 64872, 98765 
320 DATA 32, 384, 72 
330 
500 LET Q = INT(X/Y) 
510 LET R = X — QxY 
520 IF R = O THEN 560 
530 LET X 
540 LET Y 
550 GO TO 500 
560 LET G = Y 
570 RETURN 
580 
999 END 
  

IF...THEN allows a single relational operator between expressions, and 

control passes to the statement number following the THEN on the true path. 

The NEXT is used to terminate the range of the FOR statement and must use 

exactly the same variable as in the FOR statement. If the third expression is 

omitted, it is assumed to be one. 

The READ assigns to the listed variables the values obtained from a 

DATA statement. The latter is used to specify all the values needed for the 

variables. For output, the user can specify variable names or literals; the 

literals are enclosed within quotation marks. Thus the statement PRINT '"' THE 

SQUARE ROOT OF" X, "'IS’’ SQR(X) might cause the following to be 
printed: THE SQUARE ROOT OF 625 IS 25. For normal printing purposes, 

the output line is divided into five zones of 15 spaces each. The user can 

change the width of these zones, however, through the use of commas and 

semicolons. A PRINT command without anything following it signals a new 

line. The program terminates with the END statement; the STOP acts like



IV.6.4. BASIC 231 

  

LET <variable> == <expression> 

GOTO <statement number) 

GOSUB <statement number» 

RETURN 

IF <expression> <relation> <expression) THEN <statement number» 

FOR <unsubscripted variable> == <expression> TO <expression> STEP <expression> 

NEXT <unsubscripted variable» 

READ <variable>, <variable>, . . . , <variable> 

PRINT <literal or expression), <literal or expression>, .. . 

STOP 

END 

DIM <variable> (<integer> [, <integer>}) 

DATA <number>, <number>, .. . 

REM <any string of characters» 

DEF FN <letter> (<unsubscripted variable>) = <expression> 
  

Figure IV-15. Summary of BASIC statements. The angular brackets are 
used to define metalinguistic variables. Square brackets denote an optional 

element. 

a GOTO where the statement number represents the END command. In 

addition to eight mathematical functions, the INT and RND functions are 

provided. The former is [x], i.e., the greatest integer not greater than x; the 

latter produces a random number between 0 and 1. 

The DIM is used for subscripts whose value exceeds 10. The DATA 

specifies values. The REM is used for comments. Subroutines must terminate 

with a RETURN, but they have no special way of indicating their beginning. 

Functions are defined by the DEF statement; the function name consists of 

the letters FN followed by a letter. Any expression which fits on one line 

can be used to define a function, including another function. They cannot, 

however, be recursive. 

In addition to the commands shown, there is also a set of 11 matrix 

commands. The user can write MAT C =A +B or MAT C = TRN(A) 
where the latter represents the transpose. Vectors can also be used, as long 

as the dimensions are correct. 

The original compiler included a large number of error messages at 

both compile and object time. 

A newer version on the 635 added the following features: (1) Functions 

can have any number of input parameters as long as the definition fits on 

one line. (2) A computed GOTO with the form ON var = expression GO TO 

Si, S2,... , Sn Where as many S’s as will fit on one line can be used and 

the value of var designates which § is used. (3) Additional formatting facilities 

can be used for output. (4) Multiple assignment statements are permitted,



232 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

e.g., LETX = Y3 = Z(2, 1) = 5 + A. (5) Strings of up to 60 alphanumeric 
characters are permitted and can be named, and a vector of strings is per- 

mitted; the name is followed by a $ and the string itself 1s enclosed in quotes 

(and cannot contain any quotes); the strings can be used 1n LET and IF... THEN 

statements as well as in input/output commands, e.g., 

10 LET Y$ = " YES” 

20 IF Z7$ = " YES" THEN 200 

and strings can be compared. (6) Additional flexibility is allowed in defining 

and using matrices. 

IV.6.5. CPS 

CPS (Conversational Programming System) is a small PL/I-like on-line 

extended subset. It was developed jointly by the Allen-Babcock Corporation 

(primarily involving J. D. Babcock and P. R. DesJardins) and the IBM 

Corporation, under the overall direction of N. Rochester of IBM with 

significant participation by D. A. Schroeder (IBM). It was started early in 

1965, and the initial version became operational in the fall of 1966. The 

philosophy of the system was to provide a language that was in the middle 

area between JOSS and QUIKTRAN. This meant that it should have as 

much simplicity as possible for the terminal user, but the language should 

have as much of the syntax of PL/I as possible. Considering the time scale, 

the major objective of simplicity, and the size of PL/I, the amount of PL/I 

which was included naturally had to be small. (This does not mean that CPS 

itself is small.) 

A second major objective of the system was to investigate the effective- 

ness of microprogramming. The system was originally implemented on an 

IBM 360/50 with a special Read-Only store which was used for special 

machine instructions to make the language interpreter more efficient. How- 

ever, subroutines were also written to replace the microprograms and thus 

avoid the necessity for special hardware. 

A version of the system called RUSH (Remote Use of Shared Hardware) 

was the basis of a commercial time-sharing service offered by the Allen- 

Babcock Corporation, while the system in use by IBM was called CPS. 

Starting from the same base, the two systems added different facilities. CPS 

was released as a Type III system in September 1967. (A Type HI program 

is one issued by the authors or developers as individuals and is not part of 

IBM’s regularly delivered software.) A “one-page” summary of its commands 

is shown in Figure IV-16. (It requires only one physical page in the 84” x 

11’ source manual [IB67a].)



Iv.6.5. cPS 233 

SAMPLE PROGRAM—CPS 

  

#1,1 /* start automatic line numbering with 1 and */ 

2. L* with increments of 1 */ 
3. L* This is a CPS program to calculate mean and */ 
ky i* standard deviation of a table of numbers */ 

5. DECLARE p(10),psqr(10) 
6. LET s(€x)=sqrt(x/n-MN**2) /* define standard deviation*/ 
7. GET LIST(n,p) 
8. psqr=p**2 /* square the entire array */ 

9. sum#=0 
lu. suin2=0 
ll. label: DO i=l TO n 

12. sum#=sum#+p(i) 

13. sum2=sum2+psar(i) 
14, END label 

15. PUT IMAGE(sum#/n,s(€sum2)) Ciml) 
16. iml: IMAGE 

Mean=.ccccevecces Standard Deviation=--.----c----- 

17. L*® ceveeeee indicates scientific notation*/ 
18. Leer tcc indicates decimal conversion*/ 

19. GO TO start 
20. 

p(10)=7/3 /* Set value requiring arithmetic operation*/ 
execute 1 thru ... /* execute entire program */ 
n 

10 
p{1) 
7.5,35.5,8.1,10,11,8.2,5.5,7,8.2,, 

15. 6911 VALUE OF M IS NOT OEFFINED 

wowe-e-e XEQ ERROR. 
14.5 M=sum#/n /* Insert correction after statement 14s/ 
execute 9 thru ... /* Run program from statement 9 to end */ 

Mean=.7133333E01 Standard Deviation= 2.5581243128 

koko kok 19. "GOTO" OPERAND NOT LABEL. 

7 start: GET LIST (n,p) 
Z* Correct statement number 7 «/ 
D=p-M /* As a test, calculate distance to mean.*/ 

xeq 9 thru ... /* and do a rerun */ 
Mean=.444089E-15 Standard Deviation= 7.5781557416 

koko kok 19. "GOTO' TARGET OUTSIDE XEQ RANGE. 

  

The character set consists of the 26 upper- and lower-case letters, the 

10 digits, the 3 special characters, $, @, and # (which together with the 

letters and digits are called alphameric), and the following 21 symbols: 

+ -—-* /() => < + ,' 2 5 % 
iL ¢ 

( 
& | blank 

Some pairs of special characters are used to denote special operations. These



PE
T 

CPS - ONE PAGE SUMMARY 
  

  

  

pien ON AND SIGN OFF 

ZLOGINCacct, subacct); ZLOGINCacct, subacct, CPS): 01 

ZLOGOUT(OFF); ZLOGOUTCOFF,ACCT); 02 

ZLOGOUTCRESUME); ZLOGOUTCRESUME, ACCT); 

  

TATEMENTS THAT ARE DIRECT ONLY 
    ZEXECUTE; /*This may be abbreviated as %XEQ;#/ 03 

2XEO linenumber; %XEQ Iinenumber THRU I'tnenumber; 

ZXEQ THRU 1! nenumber; 2XEQ label; 

  

ZLIST;  &LIST Tinenumber THRU 1Inenumber; 04 
  

ZRESEQ Tinenumber THRU lI nenumber FROM snare BY STEP; 

ZRESEQ THRU Tinenumber FROM start BY ste 
ZRESEQ 1tnenumber; /*RESEQ means RESEQUENCE®/ 05 

  

QERASE Vinenumber; ERASE lt nenumber THRU 1 tnenumber; 
ZERASE THRU 1 i nenumber; ZERASE label; 06 

  

  

  

  

ZLOAD(member); ZLOAD(member, key); 07 

ZSAVE(member); ZSAVE(member, longkey); 08 

ZLIB LIST; /eLIB means LIBRARY®/ 09 

ZLIB LIST,member; ZLIB LIST,member, longkey; 10 
  

2L1B SCRATCH,member; %LIB SCRATCH,member, longkey; 11 

STATEMENTS: DIRECT WITH 2%; COLLECT WITH LINENUMBER 

/*assignments/ 12 
Identiflersexpression;/*as In the following examples*/ 
XmAae2eP/(5.630eW); NelF=-3; ROOT#SOQRTC(ABS(CA=B)); 

L,M,N@#0; ARRAYI@ARRAY2+ARRAY3; RSLT#A#(X>0)+Be(X< 20); 
B(1l)=@R; BC2)#S; B(3)=T; 

  

  

“A +A -A AwaB AeB A/B A+B <A-B 13 
A=8 A>=B A<=B A™>8 A™=B A“<B A>B ASB 
A&B Al8 

  

GET LIST(varlable); GET LIST(varlable); 14 

  

PUT LIST(varlable); PUT IMAGE(varlable)(lahel); 15 
ZPUT LIST(varlable); PUT IMAGFE(varlable)( label); 

  

  

PTATEMENTS THAT ARE COLLECT ONLY AND NEED LINENUMBER 

    GO TO label; 16 
  

1F expression THEN statement; ELSE statement; 17 

IF expression THEN statement; 

  

label :N0; label:DO WHILECexpresstion); 18 
label:DO varlablesspecification,specification,...3 

/*Follow one of the above with other statements*/ 
/*Then writes/ END label; 

  

LET functlon(varlable) expression; 19 

  

STOP; 20 

  

label: IMAGE; 
Image specification; /*for example, the followings/ 
TEMP: ---.-DEG. PRESSURE:.....BARS. MEAS NO:--- 

  

DECLARE varlable(dimension list) DECCInteger); 22 

/*examples below show some possibllitiess/ 
DECLARE A(3);> DCL B(4&,5)3; DCL Cl-1:2); 
DCL D DEC(6); DCL E(6,-3:4) DEC(B8); 
DCL C(-1:2), D DEC(6), E(6,-3:4%) DEC(8); 

  

  

  

/*comments (like this) may replace blankse/ 23 

purtT-TN FUNCTIONS | 

ATAN(e) ATAND(e) 24 
ATAN(e,e) ATAND(e,e) 25 
cose) cosD(e) SINCe) SIND(Ce) 26 
EXP(e) LOG(e) 27 

ABS(e) sort(e) 28 
MINCe,e,...,08) MAX(e,e,...,64) 29 

MOD(e,e) SIGN(e) FLOOR(e) CEIL(e) TRUNCCe) 30 

PTATEMENTS FOR REMOTE JOB ENTRY - DIRECT ONLY | 
  

  

  

  

  

ZLOGINC acct, subacct, RJE); 31 

ZIMAGE 029; ZIMAGE TEXT; ZIMAGE ?; 32 

ZSCHEODULE(member); %SCHED(member | |member); 33 

ZFIND( jobname); 34 

  

ZERASE; 3RESEQ; LIST; SAVE; LOAD; LOGOUT; 35 
ZLIB LIST; ZLIB SCRATCH; 
 



St
e 

01 

03 

05 

07 

12 

13 

NOTES FOR ONE PAGE SUMMARY 

In the one page summary, lower case letters form names 
of things you may write while other characters stand 
for themselves. You may use upper and lower case 
letters, digits,$,@,and @ for Identifiers. 

In CPS and RJE write exactly one statement per line. 

You may omit the final semicolon on any line because 

CPS wlll provide ft. 

BACK SPACE kills a character. ATTN kills a line. 

acct and subacet are Identiflers assigned to you. 
After computer requests AUTO-SAVE parameter, type 

Identifier or hit ATTN. 

Identifiers must start with a letter or with $,@,or @ 
and may have up to sIx alphanumertc characters. 

A linenumber begins with 1 to & digits followed by an 
optional decimal poltnt and up to 2 fraction digits. 
A Is an Identifier that labels part of a 
program. 

You may use ... Instead of a lIinenumber after THRU. 

Anywhere In EXECUTE,LIST,RESEQ, and ERASE you may use 
a label In place of a lInenumber. 

The first linenumber after resequencing Is start and 
the next linenumber Its start+ . 
You may omit ‘FROM start’ and/or ‘BY step’. 

A member Is an Identifier used to name a member of a 
flle; It Is the name of a filled program. 

A key Is a one to four character Identifler used to 
read a protected member of a file. 

A longkey Is a one to s!Ix character Identifier used 
to protect a member. The longkey Is needed to change 
this member. The first four characters of a longkey 
are the corresponding key. 

Any ordinary algebralc expression may be used on the 
right side of an statement. Bracket com- 
plex divisors. You may use bulltin functions, 
functlons you have defined, assign the same value to 
several varlables, and use logical operators. 

Operators grouped by order of evaluation. 
The logical operators™, 4, | are not, and, or. 
A varlable Is an Identifier. 

14 

17 

18 

19 

21 

22 

2h 
25 

27 
28 

30 

32 

33 

34 

35 

With GET and PUT you may replace the vartlable with 

a list of varlables separated by commas. 

in PUT you may replace vartable with expression. 
In PUT IMAGE label refers to an !MAGE statement. 

An expression Is considered true If tts absolute 
value Is 1.0 or greater and false otherwise, 
A logical expression has the value of 1.0 or 0.0. 
Nested IF statements require you to Include all 

ELSE clauses. 

e stands for expression. 

A specification may be elther of the following: 
"‘e BY e TO e WHILE e' or 'e TO e BY e WHILE e’. 
Any TO,BY or WHILE phrase may be omitted. 
A DO statement must have a label. 

tn LET, function Is an Identifier that you use to 

name the functlon you are defining and Its argument 
may be a single varlable or a list of varlables 
separated by commas. 

Five or more dots - floating point. 
One or more dashes - Integer. 
One or more dashes with a polnt - decimal. 
Other characters stand for themselves. 

OCL and DEC stand for DECLARE and DECIMAL. 

A ts a3 element vector and B Is a & by 5 array. 
C ts a & element vector:C(-1),C(0),C(1),C(2). 
D ts single precision; others are double. 
You may declare several arrays at once. All arrays 

In an expression have [Identical bounds, 
Array varlables are OK In assignment, GET, PUT. 

arctangent In radians and degrees 
arctangent In radians and degrees of x,y coord!inates 
cosine, sine; of radians and degrees 
exponential and natural logarithm 

abselute value and square root 
minimum and maximum of list of expressions 
first expression modulo the second 
stgn (41,0,-1) 
largest Integer not exceeding expression 
smallest Integer not exceeded by expression 
Integer part of expression, with stgn 

Follow IMAGE with specification as above ustIng: 

"card fold, | tab, - Input character, # 1lIne number 
You may uSe as many members as you wish. 

CPS will tell you what Jobname to use. 

These are the same as described [In 2-11. 

Figure IV-16. Summary of CPS facilities (one-page summary with notes). 
Source: [IB67a], pp. 131-132. Reprinted by permission from Conversational Programming System. © 1967 by 
International Business Machines Corporation.



236 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

are 

>= Greater than or equal to 

<= Less than or equal to 

1= Not equal to 

** Exponentiation 

11> Not greater than 

1< Not less than 

The 1, &, and | represent not, and, and or respectively. Exponentiation is 

denoted by *x. As seen by referring to Section VIII.4, this is exactly the 

PL/I character set, except that in CPS both upper- and lower-case letters 

are allowed. 

Identifiers used for both data names and program unit labels consist 

of an alphabetic character followed by zero to five alphameric characters. 

Identifiers can be the same as key words. In addition, line numbers consisting 

of up to four digits followed optionally by a decimal point and one or two 

digits can also be written. (These are used for referencing and changing 

statements in the program.) Subscripts are shown separated by commas, 

contained in parentheses after the data name. Subscripts can be expressions 

and can themselves be subscripted. Punctuation is significant in a number 

of cases. Blanks are used as delimiters and can also follow punctuation 

symbols. (In general, the PL/I rules are followed.) 

The input is free form, but a statement cannot extend over one line; 

only one statement may appear on one line. 

The basic concept in writing a CPS program is that there are two forms 

of statements: Collect and direct. The former define the steps to be executed; 

while the latter specify control functions. A collect statement must be preceded 

by a line number and is automatically inserted in the correct sequence 

determined by the numerical value of the line number. It will replace any 

earlier statement with the same line number. A direct statement is imme- 

diately preceded by a percent sign, %. Some statements can be written in 

both modes. Single statements can be written and also grouped by a 

DO...END pair. Loops are written using either JF... THEN or a DO state- 

ment. Built-in functions are provided, and the user can also define his own. 

Both kinds can be used in expressions or in user-defined functions. The 

latter can have an arbitrary number of parameters but can contain only a 

single statement. Statements are terminated by either a carriage return or 

a semicolon followed by a carriage return. A statement label can immediately 

precede a collect statement and is itself followed by a colon. 

Arithmetic floating point variables are the only type permitted. The 

net effect of Boolean variables can be obtained by appropriate combining 

of conditions, e.g., A>B & C<=D. Individual relations and their logical 

combinations are assigned the values 1 or O for truth or falsity, respec-



Iv.6.5. CPS 237 

tively. The relations permitted are >=, <=, =, 1=, <, >. In addition, 

A|B evaluates to +1 if either [A] >= 1 or |B] >= 1 and to O otherwise. Both 

single- and double-precision floating point arithmetic is done; the system 

automatically retains 14 significant digits in all computations. If an expres- 

sion contains a variable naming an array, the operations are performed on 

all corresponding elements of these arrays. 

The assignment statement permits array variables on both sides of the 

equals sign and also permits multiple assignments, e.g., 

F(3xa — b), G(2 + B(3, 5)) = A + SQRT(xx*2 + yxx*2) 

The unconditional transfer is written as GOTO or GO TO label. Func- 

tions are invoked by writing them in expressions. Although subroutines as 

such are not allowed in the program, there is a convenient way of causing 

execution of groups of statements. This is done by the direct command 

EXECUTE (which can also be written as XEQ). This has the following format, 

where braces { } denote a choice and square brackets [ ] indicate something 

optional: 

line-number-2 
ro | eee THRU 2label-name-2 
XEQ label-name-] 

It is required that line-number-1 be less than or equal to line-number-2. The 

option of three dots (. . .) represents the end of the program. If a line-number 

is not specified, execution resumes at the line following the last line executed 

by the previous EXECUTE. When an EXECUTE specifying only an initial label 

name is used and it is the label of a DO group, the entire DO group is executed. 

The conditional statement is of the form IF expression THEN statement-1; 

[ELSE statement-2;|. The expression is true if its absolute value is greater 

than or equal to 1 and false otherwise. Both statement-] and statement-2 can 

be any collect statements except DO, END, LET, IMAGE, or DECLARE. For 

example, 

IF a=b & c=d THEN x = 3.14/b; ELSE x=c; 

IF at=b | SQRT(C**2) < d THEN GO TO end; 

If nested /Fs are used, the ELSE clause must be written explicitly. 

The loop control is handled by means of a DO statement. This is of 

the form 

‘ 

label: DO er = spec-], spec-2, ..., spec-n} 

WHILE (expression) 

END label;



238 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

where the range is denoted by the first succeeding END statement that has 

the same label as the DO. The spec-i can be any of the following forms: 

expr-1 [WHILE (expr-4) | 
expr-] BY expr-3 [TO expr-2]| [WHILE (expr-4) | 
expr-] TO expr-2 [BY expr-3]| [WHILE (expr-4)| 

If BY is omitted, the value +1 is assumed; if TO is omitted, the largest posi- 

tive value representable is assumed. The following examples show a few 

cases: 

A: DO X = 1 WHILE (Y<A), 5 BY 2; 

B: DO WHILE (K <= 4); 
C: DO | = —4 TO —19 BY —3 WHILE (J = 0) 

END C; 

END B; 

END A; 

Note that it would be illegal to reverse the position of the END statements. 

The input/output statements are GET, PUT, and LIST. Their formats are 

as follows: 

GET LIST (var-1, var-2, ..., var-n); 

LIST 
PUT ‘eace| (e-1, e-2, oes e-n) [label]; 

line-number-2 

label-1 ’ 
LIST et THRU ee 

The GET causes the system to obtain (or prepare to obtain since GET can be 

both collect and direct) data from the terminal. Values can be assigned to 

both single variables and arrays. The PUT provides output to the terminal, 

with optional formatting and spacing, and allows expressions rather than 

just variable or array names. The IMAGE option in the PUT is a format state- 

ment providing various types of numeric conversion, specific number and 

placement of characters, or other text reproduced as it was input. The physi- 

cal placement of the carriage while typing the [MAGE statement is used to 

specify the output positioning, so the user can easily see his format. 

The LIST command causes printing of the specified portion of the pro- 

gram. 

There are a number of built-in functions provided. In addition to the 

fairly standard mathematical ones, there are functions for determining



Iv.6.5. cps 239 

maximum, minimum, absolute value, floor, ceiling, truncation, si gn, and remainder. 

The routines for sine, cosine, and arctangent are available in both radians 
and degrees. 

The ERASE command has the same format as the LIST command and 

causes the deletion of the specified statement(s). 

The STOP terminates execution. It can be resumed with the statement 

following the STOP by using one of the EXECUTE forms in which the line num- 

ber 1s omitted. 

An interesting command is the RESEQ, which causes immediate rese- 

quencing of a program based on the information shown in the command; 

the format is 

RESEQ | line-1] TRS fine? [BY incr] [FROM line-3]; 

where the line numbers identify the beginning and ending lines of the set 

to be resequenced and the increment to be used is shown. The line-3 specifies 

the first line number to be assigned. Standard values are defined for each 

optional parameter. Thus the user can write 

% RESEQ 2 THRU... 

% RESEQ 7. THRU 105 BY 10 FROM 1; 

% RESEQ BY 100; 

There are three declarations: DECLARE, IMAGE, and LET. The DECLARE 

(also written DCL) provides the dimension information for arrays, e.g., 

DCL A(2:15, —2:8, 7). The dimension ranges from the first number to and 
including the second number in steps of 1. The second number must be 

greater than or equal to the first. If a single number is shown, it is treated as 

the upper dimension with an implied first number of 1. 

The IMAGE provides formatting information; this was mentioned earlier. 

The LET provides for function definitions by writing 

LET function-name (p;|,p2, ...+ Pn|) = expression; 

where the p; are parameters, e.g., 

LET ROOT (A,B,C) = (—2*A + SQRT(B**x2 — 4%xAxC) 

Other commands provided in CPS relate to its usage as an on-line 

system. 

Of the statements which have been discussed here, the following can 

only be used as direct statements (which means they must be preceded by



240 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

a % when used): ERASE, EXECUTE, RESEQ, LIST. All other executable 

statements can be either collect or direct. The three declarations can be used 

as collect statements only. 

CPS provides a very small PL/I-like subset with some additional com- 

mands to make the terminal usage more efficient. It thus can provide a non- 

trivial introduction to a complex programming language to someone who 

has never programmed before. It is also a useful on-line system for expe- 

rienced programmers with small problems, and has been successfully used 

by administrators for simple clerical, bookkeeping, and budgeting activities. 

IV.6.6. MAP 

MAP (Mathematical Analysis Program) is a system developed to run 

under M.I.T.’s Compatible Time-Sharing System (see Crisman [ZR65]) by 

R. Kaplow, S. Strong, and J. Brackett, all of M.I.T. It provides a higher level 

of required (and permitted) interaction and higher level mathematical com- 

mands than most of the other systems. The manual by Kaplow, Strong, and 

Brackett [K P66] states in the introduction that “The system is intended for 

the solution of mathematical problems. It should be usable by a person 

with no knowledge of computers or programming and little knowledge of 

numerical analysis.” That manual, together with the paper by Kaplow, 

Brackett, and Strong [KP66a] constitute the primary documentation of the 

system. MAP has been used by Professors Averbach and Kaplow in several 

physics courses to permit the students to do computational problems related 

to the subject of the lectures or the experiments. A comparison of this system 

with AMTRAN (Section IV.6.11), Culler-Fried System (Section IV.6.9), 

and the Lincoln Reckoner (Section IV.6.7) is given by Ruyle, Brackett, and 

Kaplow [RU67]. 

The system is designed for use with the normal communication devices 

for CTSS, namely teletypes and IBM 1050’s. There is also provision for using 

two types of display equipment: The M.I.T. Electronics Systems Laboratory 

terminal (see Stotz [UU63]) or storage oscilloscopes (see Stotz and Cheek 

[UU67]). These are not generally available, however, because of the cost. 

The arithmetic operators are the five basic ones. Data names consist 

of one to six characters, but they must not end in the letter f and must not 

conflict with a few specified key words. Arrays play a very important role 

in MAP but the system makes a distinction between what would normally 

be considered a subscript and what is really the argument of a function. It 

is the latter which is used in MAP. 

Although there are provisions for stored programs (as seen later), the 

primary usage of the system is through constant communication with the 

computer. Up to 72 characters per line can be used and each message by



1V.6.6. MAP 241 

user and system is terminated by a carriage return; if the expression to be 

computed is too long for one line, the user gives a carriage return anywhere 

prior to the end (but not in the middle of a name). The computer will then 

respond by noting that the number of left and right parentheses do not 

match and the user has the option of continuing the expression or correcting 

a mistake. The system also has a very elaborate set of printouts which convey 

information to the user and/or tell him what input is needed; these messages 

can be cut short by the user who is familiar with the system. 

There are two basic types of statements initiated by the user. The first 

requests the computation of an expression or a function; the second specifies 

one of the higher level mathematical operations to be performed. In the 

first case, the user would type something of the form 

(v=3.295 xx (a * 3. * 10 xx (—5)) 

where the outer parentheses are required to indicate that an assignment is 

involved. If no value has been assigned to a, then the system responds with 

DECIMAL VALUE OF CONSTANT A PLEASE 

The user then types in the value of the parameter and the system then 

responds 

COMMAND PLEASE 

This means that the computation has been completed; the results are not 

automatically printed out. 

The basic element of data is a mathematical function of a single variable. 

If the user types an assignment statement involving functions which are 

undefined, e.g., 

(g(y) = h(y) * cosf(i(y))) 

then the system will type back’® 

H(Y) IS NOT DEFINED. IF IT HAS A DIFFERENT NAME, TYPE THE 

NAME. IF YOU WANT TO TYPE IN NUMERICAL VALUES NOW, 

TYPE THE WORD INPUT. OTHERWISE, GIVE A CARRIAGE RETURN 

AND DEFINE THE FUNCTION BEFORE USING THE NAME AGAIN. 

The user is thus given the opportunity either to define the function in terms 

of some known quantities or to define it by means of tabulated values which 

are typed into the computer. If he chooses the latter, the system asks him to 

19 Kaplow et al. [K P66], p. 13.



242 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

specify the minimum, maximum, and incremental values for the independent 

variable y. These are used to compute the subscripts. Thus if the user specifies 

—3.5, 1.5, and .5, the system will have the subscripts range from —7 to 3 

in steps of 1. The user can specify a different set of values of the independent 

variable for each occurrence of a different function using that variable; the 

system will automatically use the old values if no new ones are given. 

After the values of the independent variable are specified, the system 

gives a five-line message telling the user how to type in the values of the 

function. There is an editing command which permits corrections to be 

made and a provision for filing the data for later use. This process is repeated 

for each function as needed. The user can suppress the five-line message by 

typing the word no after the word input. 

The specific mathematical functions of a single argument available for 

use in expressions include sine, cosine, tangent, cotangent, arcsine, arccosine, 

arctangent, hyperbolic sine, cosine and tangent, exponential and logarithm 

(base e), absolute value and square root. The code name for each of these ends 

in the letter f. 

There are functions whose argument is an expression containing at 

least one function. These are?° 

sumf(expr(y)) | Sums over all values of expr(y) from the minimum 

to the maximum. 

intf (expr(y)) Computes the definite integral over the whole 
range of expr(y) using Simpson’s rule. 

derif(expr(y)) Computes derivative of expr(x) at the same values 

of y for which expr(y) is tabulated. 

In addition to these, there are other more complex mathematical com- 

mands, which the user invokes by writing the name of the command. Among 

those available are?! 

integrate (between fixed or variable limits.) 

basis G(y)—>G (any function of y). 

transform Fourier sine, cosine, or sine and cosine. 

convolv Folding of two functions. 

least square Least square analysis. 

minimax Changes the range of definition of a function. 

select Manipulation of a portion of a function. 

There are also matrix operations similar to those in the Lincoln Reckoner 

(see Section IV.6.7). 

70 Kaplow et al. [K P66], p. LS. 

21 Kaplow et al. [K P66], p. 16.



  

least square 

1 CAN FIT EQUATIONS OF THE FORM 

V(Y)=XAXFA(Y) + XBXFB(Y) -- XCXFC(Y) + XDXFD(Y) + XEXFE(Y) 

WITH A MAXIMUM OF 5 UNKNOWNS, XA, XB, ETC., AND 100 DATA POINTS. 

WHAT IS THE NAME OF THE VARIABLE COMPARABLE TO V(Y). data(x) 

HOW MANY FUNCTIONS, FA(Y), FB(Y), ETC., WILL BE REQUIRED TO FIT THE DATA. 4 

PLEASE PRINT ON THE NEXT LINE THE NAMES OF THE 4 FUNCTIONS REQUIRED. 

a(x) b(x) c(x) d(x) 

THE EQUATIONS RESULTING FROM THE LEAST SQUARE ANALYSIS ARE 

-3133E03 = .9455E02 *XA+ wee + .3137E02 *XD 

.9072EO02 = .8074E01] *XA+ tee + .2993E01 *xXD 

I911EO2 = .1806E02 *XA+- we + .7587E01 *XD 

-1123E03 = .3137E02 *XA+ toes + .1231E02 *XD 

LEAST SQUARE SOLUTION. THE FOLLOWING ARE THE 4 UNKNOWNS CORRESPONDING 

TO XA, XB, ETC. 

-2162E 01 -1309E 01 -3399E 01 .1273E 01 

ESTIMATES OF THE ERROR IN THESE VALUES ARE 

.1426E—04 -1O91E—03 -6910E—04 -1344E—03 

DO YOU WANT THE VALUES OF THE FITTED CURVE PRINTED. THESE VALUES ARE 

AVAILABLE FOR FURTHER CALCULATIONS AS THE FUNCTION ‘FITTED (X)’. TYPE YES OR 

NO AND GIVE A CARRIAGE RETURN. yes 

THE FOLLOWING ARE THE VALUES OF THE FITTED CURVE AT VALUES OF X FOR WHICH 

DATA (X) IS TABULATED. 

-2583E01 wee .4656E01 

.9091E01 we -6745E01 * 

-6926E01 wee -7160E01 

.7123E01 wae -6984E01 

.6870E01 wee -6999E01 

DO YOU WANT THE DIFFERENCES BETWEEN THE FITTED AND ORIGINAL CURVES PRINTED. 

yes 

— .2498E—01 we -1683E—01 

-1164E—0O1 wae .1398E—01 

— .1469E—01 oe -1398E—01 

-1585E—0O1 ... —=.8650E—02 

—.1400E—01 tee .9052E—02 

COMMAND PLEASE 
  

Figure IV-17. Example of the use of Least Square command in MAP. Words 
and symbols in lower case are input by the user. Upper-case characters and 

all of the numbers are typed out by the system. Dots are used in place of 

numerical results which were omitted in this figure, although they appeared 

in the actual example. 

Source: Kaplow, Strong, and Brackett [K P66], pp. 22-23. 

243



244 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

The most interesting thing about these commands is that the user does 

not have to know what information is to be supplied. For example, see 

Figure IV-17, where the upper-case characters are those printed by the sys- 

tem and the lower-case ones are user input. (The dots represent actual values 

which would be typed out.) On the other hand, if the user is familiar with the 

system, he can merely type in 

least data(x) 4 a(x) b(x) c(x) d(x) 

which accomplishes the same thing as the first eight lines in Figure 1V-17. 

Input is either typed in directly upon request from the system or it can 

be loaded off-line and then retrieved and referenced by the user. 

The user obtains output by writing print and the name of the function; 

he can also specify the range desired. MAP can be used to generate graphs 

either on the ESL display console or on storage oscilloscopes, and the user 

can use the plot command with a choice of linear, log-log, linear-log, or log- 

linear scale. By using the compare command, a scaled graph 1s obtained by 

plotting the designated function(s) on the vertical axis and the values of 

another function on the horizontal axis. 

Commands for examining and handling data are as follows: 

data System types list of all temporary files. 

data restore Types data list and then erases all data on the list. 

delete Erases files from disc storage. 

data update Moves information from temporary to permanent 

storage. 

data delete Equivalent to data update and data restore. 

Although the facilities above do not provide stored programs, they 

can be formed. By writing create, the user can define a sequence of 18 or 

fewer lines of MAP statements to be defined and stored. There are no con- 

trol sequence statements, however, e.g., IF, GOTO. When retrieved, each 

command is handled as if it had just been typed by the user. These command 

sequences can themselves contain references to other stored programs, with 

a restriction to a nesting of three such references. 

The user is able to execute programs written in other languages by 

writing execute prog. Hence routines can be written in MAD, FAP, 

AED, or any other language available under CTSS. The MAP routines are 

available as subroutines and can be invoked from those languages. 

Work on a newer version of MAP started around the middle of 1967 

with participants from M.I.T. and Bell Telephone Laboratories (Whippany, 

N. J.). It is initially being implemented on the GE645 under MULTICS. 

Among the planned major differences or improvements are the following:



IV.6.7. LINCOLN RECKONER 245 

1. The command help is used to request detailed interrogation and explana- 
tion. Otherwise, the input must be correct or a brief (but mnemonically 
understandable) message will be typed out. This contrasts with the ver- 
bosity of the first system if any assistance is needed. 

2. All entities have a single name. No information about the dimension or 
type of the data is contained in the name. The data type can be integer, 
real, or complex, and real numbers can be single- or double-precision. 

. Arrays of two and three dimensions can be handled. 

4. The equation format is extended to include operations on matrices and 
functions of two variables. Matrix operations similar to those provided 
in the Lincoln Reckoner (see Section IV.6.7) are provided. 

5. Control facilities of the type normally appearing in a complete program- 
ming language are provided, e.g., control transfers, logical operations, and 

parameter passage for subroutines. 

6. The user is able to obtain time estimates for certain operations after sup- 
plying information about his data. 

7. Expanded graphical capabilities are made available. 

8. An attempt is being made to provide a framework and design to permit 
the addition of symbol manipulation operations (e.g., differentiation and 

substitution). 

Ww 

IV.6.7. LINCOLN RECKONER 

The Lincoln Reckoner is an on-line system developed at Lincoln 

Laboratory under the direction of D. B. Yntema by R. A. Wiesen, A. N. 

Stowe, J. Forgie, and others. It runs on the experimental computer TX-2, 

under the APEX time-sharing system (see Forgie [FY65]). In the words of 

Stowe et al. [SW66], “The Reckoner is primarily a facility for making use 

of routines, not for writing them”. Furthermore, rather than providing a 

general facility, “it offers a library of routines that concentrate on one par- 

ticular application, numerical computations on arrays of data.”.” A compiler 

called Junior for a small language with some of the facilities of FORTRAN 

or ALGOL is also available. The intended users of the system are engineers 

and scientists who wish to work with data from a laboratory experiment or 

explore small- or medium-sized computations. In the paper by Stowe et al. 

[SW66], three user case studies are described. A comparison of this system 

with AMTRAN (see Section IV.6.11), the Culler-Fried system (see Section 

IV.6.9), and MAP (see Section IV.6.6) is given by Ruyle, Brackett, and 

Kaplow [RU67]. . 

A name can be 50 characters long and may contain any combination of 

digits, periods, and Roman capital letters, except that it must contain at 

least one letter. Because of the internal workings of the system, it is unwise 

22 Stowe et al. [SW66], p. 433.



246 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

to choose a name beginning with a period or a digit. There is a command for 

typing a synonym for a given name, thus permitting easy abbreviations for 

long names. 

The basic data element is an array, and the basic operations of the sys- 

tem are those which operate on one or more than one array, e.g., transpose, 

multiply, invert, etc. 

The statements available are relatively high level mathematical opera- 

tions and can operate on arrays. For example, to multiply two matrices, 

the user might write 

MATMUL YANS ZANS RESULT 

INVERT RESULT NEWRESULT 

which causes the name RESULT to be assigned to the product of the matrix 

YANS by ZANS, and this is inverted and given the name NEWRESULT. Arrays 

can be added, subtracted, multiplied, and divided. The functions of reciprocal, 

square root, log (base e or 10), exponent, sine, and cosine can be applied 

to a single array. Individual elements can be extracted and operated on. 

Other types of operations available include array shuffling (copy part of an 

array, join arrays), matrix operations (e.g., calculate determinant, eigen- 

vectors), control (synonym, drop an array), and input/output. A lengthy list 

is given in Stowe et al. [SW66]. The format for invoking each of these usually 

consists of a key word followed by a sequence of variables relevant to the 

routine. 

In order to create subroutines, the user writes 

BUILD NAME 

and the system responds 

GO ON 

whereupon the user types the body of the subroutine. When finished, he types 

FINIS 

and the system responds 

OK 

Statements are written one on a line and executed immediately. They 

can be numbered, with up to four digits before and after the decimal point. 

If the user does not type line numbers, the system will automatically 

supply integers, i.e., 1, 2, 3, etc. Lines are replaced and deleted by numbers, 

and new lines are inserted by giving intermediate line numbers. Conditional 

and unconditional jumps are identified by a pointing finger gag . Thus



IV.6.8. APL/360 AND PAT 247 

7.3 BETA = GAMMA 

means transfer control to line 7.3 if BETA equals GAMMA. 

To define formal parameters, the user types their names preceded by 

a code p as 

p VARI VAR2 VAR3 

Temporary variable names in the subroutine are written with a period pre- 

ceding the name and the system automatically assigns the name of the 

subroutine as a local name. 

The subroutine is invoked merely by writing its name (and the param- 

eters if there are any). While executed, a subroutine may be interrupted by 

the interrupt button, an error message, or something in the subroutine itself. 

The subroutine execution is suspended, control is returned to the keyboard, 

and the user can print results, do other calculations, or define and/or execute 

other subroutines. If desired, he can then resume the interrupted subroutine. 

One of the main concepts in the Reckoner is that it is really a collection 

of programs which can work together; this concept is referred to by the 

developers as coherence, which means that the results of any program in the 

set can be used as inputs by any other program for which the results are 

meaningful. 

IV.6.8. APL/360 AND PAT 

APL (standing for A Programming Language) was originally developed 

by Iverson [IV62] and is discussed in Section X.4. It is pointed out there 

that the greatest handicap to any widespread use of the language is its nota- 

tion, including a large character set and proliferation of unusual symbols. 

Some of this difficulty has been eliminated in the on-line subset denoted by 

APL/360 which runs as a stand-alone interpretive system on the IBM 360/50 

at the IBM T. J. Watson Research Center; it is described in Falkoff and 

Iverson [FA67] and [FA67a]. The key people in developing this running 

system were K. E. Iverson, A. D. Falkoff, L. M. Breed, P. S. Abrams, R. D. 

Moore, and R. H. Lathwell. The full language was used by Rose [RJ66] 

to describe an assembly language, and a small portion was actually run on 

APL/360. The latter was also used to program and run algorithms to detect 

logic circuit failures (see Roth, Bouricius, and Schneider [RQ67]), to help 

solve mathematical computations arising in physics, and also to program 

COGO (described in Section IX.2.2.1) for inclusion in the system itself. 

In fact, it is somewhat misleading to place this discussion in a chapter on 

languages for numerical scientific problems since APL is actually useful in 

many other areas. Its inclusion here, however, makes it easier for the reader



248 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

SAMPLE PROGRAM—APL/360t 

  

Problem: Matrix inversion by Gauss-Jordan elimination with pivoting. 

Program: 

C1] 
C2] 
C3] 
C4] 
C5] 
C6] 
C7] 
C8] 
C9] 

V BeREC A3P3K3I3d38S 

(10) 
[11] 
[12] 
[13] 
C14] 
[15] 

V 

+3x1(2=ppA)A=/pA 
+O0=p0+'NO INVERSE FOUND' 

P«1 K+«S¢1ppA 

A+((S5p1),0)\A 

ACL ;St+1J)+«Sal 

Ted if /J#{ACik31) 
P{1,Z7J«P{I,1] 

ACL1,7231S)]*ACI,1315] 
+2x11EF 30>(A(131]#f/1,A 
AC13;J+AC13;)+AC13;1] 
A+A-((~Sa1)xA0L31J])°.xAC1;] 
A+19[1]14A 

P+19P 
>5x10<K+«K-1 

B+A(3P115] 

t Falkoff and Iverson [FA67a]. By permission of Association for Computing Machinery, Inc. 
  

to contrast it with other small on-line systems. Further references for the full 

language are given Section X.4. 

The input device is an IBM 1050 or 2741, with a very special Selectric 

typewriter ball. The character set consists of the 26 upper-case letters, the 

10 digits, and the following 52 characters: 

+ 
Qg

@m
4<

-.
 

E
m
r
 

> 

x 

nN 
%
i
—
 

f
e
 

+ * < §$§ S= SF > # 

; ~ ¢« ) € J? ' © © 
+ > *€ \ Sf 

Nn VU OF C¢ 

A Vo 

Oo 

The five arithmetic operations are denoted by the first five characters 

shown. The use of these and other operators (called scalar functions in APL) 

are shown in Figure IV-18. Most of the symbols involved are both unary 

and binary; in the latter usage the symbol is considered binary wherever it 

is preceded by an operand. 

A data name or function name can be any string of letters and/or digits 

beginning with a letter. Literals are enclosed in quote marks. Mathematical 

expressions are evaluated from right to left within parentheses and therefore



IV.6.8. APL/360 AND PAT 249 

  

  

Name Symbol Definition or Example 

Multiplication AxB 

Addition A+B 

Division A+B 

Subtraction A—B 

Negation — B 

Exponential AxB 
Natural 

exponential *B ex B, where e = 2.71828... 

Minimum ALB 
Maximum AT B 

Floor LB Integer part of B [3.14=3 [3=3 L—3.14= -4 

Ceiling [B —[—B f3.14=4 [3=3 fF —3.14= —3 
Residue AlB B—AX|B+A 314=1 313=0 31-4=2 
Absolute value 1B Bf — B 
Less than A<B ) 

Less than or Relations: result is 0 if the relation does not hold and is 1 

equal A<B if it does. Examples: 

Equal A=B I = J is the Kronecker Delta function 
Greater than For logical arguments (0 or 1) A # B is the exclusive-or 

or equal A>B 3<4=1 4<4=0 14#0=1 

Greater than A>B 3>4=0 =3=1 1#1=0 

Not equal to AX#B } 

And ANB AB ~ ALB For arguments A and B restricted to the 

Or AVB AV B=ATB values 0 and 1 
Not ~B ~B=18 

Combinationsf A!B B things taken A at a time: 1!4=3!14=4; 

2!15=3!15=105!14=0 
Factorialf 1B !B= BX !B—1 if B is an integer. In general !B =[B+ 1 

tThe symbols for most standard functions are single characters, but some (such as !) are 
formed by backspacing and overstriking. 
  

Figure IV-18. Standard scalar operators in APL. 

Source: Falkoff and Iverson (FA67], p. 25. 

do not obey the normal arithmetic precedence rules; ie., A x B + C is 

evaluated as A x (B + C). Parentheses should be used to ensure the proper 

grouping. Square brackets are used to enclose subscripts. 

Expressions put into the system will be evaluated immediately and the 

result printed out. If a name is assigned, the result is not displayed but can 

be obtained upon request. Thus 

3.x 4 

will cause 12 to be typed, whereas 

A<3xX4



250 LANGUAGES FOR: NUMERICAL SCIENTIFIC PROBLEMS 

does not; the left-pointing arrow is used to denote an assignment statement. 

By typing the statement 

A 

the result 12 is printed out.?° 
The user types in a single statement and it is immediately executed, 

unless he defines a function. Hence, branching is meaningful only within 

functions, whose method of definition is described later. A branch is des- 

ignated by —. 

There are a number of operations on vectors and matrices, many of 

which can be extended to higher-rank arrays. Catenation of vectors is defined 

as the concatenation of the elements of the vectors; catenation is denoted 

by acomma; i.e., X, Y is the catenation of vectors X and Y. A vector is defined 

by using an assignment statement, and components can be obtained using 

subscripts. Thus 

X<-2,3,5,7 

followed by X[3, 1,4] yields the value 5,2, 7. The dimension of a vector 

Z is denoted by pZ. 
The expression eN yields a vector of the first N positive integers, while 

NpxX yields a vector of dimension N whose components are the successive 

elements of X, repeated cyclically if necessary. Thus 6pv4 is the vector 

1,2,3,4,1,2. 

Component-by-component addition (or any other arithmetic operation) 

of two vectors with the same dimension is indicated with the plus sign (or 

the appropriate operator), e.g., X+Y. 

The sum-reduction of a vector X is denoted by +/X and it is the sum of 

all the components of X. More generally, for any binary scalar function #, 

the expression #/X 1s equivalent to 

X[1]#X[2]F# ... #X[ex] 

Thus 

+/2,4,5,9 

equals 20. 

The statement M<(A, B)pX defines M as a matrix of A rows and B 
columns whose elements in row-major order are the successive components 

of X replicated cyclically if necessary. Writing M[; J] yields the Jth column, 

while M[/;] selects the /th row. The expression @M produces the vector 

(A, B). For example, 

23 The examples in this section are taken from Falkoff and Iverson [FA67].



IV.6.8. APL/360 AND PAT 25] 

M<-(3,4) p412 

defines M as 

1 2 3 4 
5 6 7 8 

9 10 11 #12 

Then M[3; ] yields 

9,10,11,12 

and +/M yields 

| 10 , 26 , 42 

and + /[1]M yields 

15,18, 21 

A vector X can be compressed by writing Y~—U/X where U is a logical 

vector, 1.e., it contains only 1’s and 0’s; the result Y consists of the elements 

of X corresponding to the 1’s in U, and the dimension of Y is obviously 

+/U. The converse operation of expansion is denoted by X-—U\Y and defined 

by U/X = Y and (~U)/X = (+/~U), pO (where = means equivalence). If x 

is a matrix, then U/X compresses each row of X by the vector U. Similarly, 

U/[1]X denotes column compression. One of the uses of compression is in 

a conditional branch since + (X < Y)/5 branches to 5 if X is less than Y (but 
does not change the sequence otherwise). 

A logical vector of dimension N with N|J leading 1’s is called a prefix 

vector and is obtained from the expression Na J. Similarly, the suffix vector is 

obtained from N@ J using trailing 1’s. Thus 7@3 yieldsO,0,0,0,1,1,1. 

Cyclic left and right rotations of a vector X by K places are denoted by 

KtX and K|X, respectively. If A-—1,2,3,4,5, then 2tA yields 3,4,5, 

1, 2. 

The expression R1X denotes the value of the vector X evaluated in a 

number system with radices R[1], R[2], etc. Thus (RLX)=+/WxX where W 
is the weighting vector determined as follows: W[p W]= 1 and W[!—1]= 

R[!] x W[1I]. The representation function RTN denotes the base represen- 

tation of the scalar N; thus if Z=RTN, then ((x/R)|N—R1Z)=O0. For 
example, writing (24, 60, 60)11,2,3 yields 3723 seconds. 

Operations of ranking, transposition, and reversal are also defined. 

The regular matrix (i.e., inner) product is denoted by C-A+.xXB 

and defined by 

Cll;JJ=+/A[I;] x B[;J]



252 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

The outer product is denoted by 

Z<XO.x Y 

Other operators can be used in both the inner and outer product forms. 

Set theoretic operations of membership, intersection, difference, and 

union are defined as follows: If X and Y are vectors, then Xe Y produces a 

logical vector U of dimension px such that U[!] = 1 if X[/] is a member of 
Y. The intersection of X and Y is denoted by XN Y and defined by 

XnNY=(KXeEY)/X 

The difference is denoted by X ~ Y and defined as 

X~Y=(~XEY)/X 

The union of X and Y is denoted by X U Y and defined as 

XUY=X,Y~X 

Function definitions are delimited by writing the character V at the begin- 

ning and end. Statement numbers are typed automatically by the system, but 

they may be input by the user by typing [n] where n is an integer and can 

be followed by a decimal point and up to four digits. Statements are ordered 

according to their statement numbers, and so they can be easily replaced, 

deleted, or inserted. The method of invoking the function is defined in the 

first line, e.g., 

VD<-ABC 

Functions can have 0, 1, or 2 arguments and 0 or 1 results. The use of the 

right-pointing arrow denotes a branch to the indicated statement number. 

The arrow can be followed by any expression, and its value determines the 

statement to which control is transferred. A variable name followed by a 

colon can precede a statement; in such a case, the variable is given the value 

of the statement number and is called a label. 

A trace of a function P can be obtained by writing 

AP i,j,... 

and then statements ;,j,... will have the value of the result variable printed 

out each time P is executed. 

A much earlier attempt to implement a subset of the programming 

language defined by Iverson was the Personalized Array Translator (PAT)



IV.6.9. CULLER-FRIED SYSTEM 253 

System described by Hellerman [HH64]. This was implemented on a 1620 

which permitted a single user on-line interaction through typewriter-entered 

console commands as well as sense switches. 

The data types permitted are Boolean, floating point, and alphanumeric. 

Each variable denotes one- or two-dimensional arrays. The executable 

commands are primarily designed for use on vectors and/or matrices rather 

than single elements. Blanks are critical. Each statement contains a single 

operator, and each of the common ones automatically applies to arrays of 

the same dimension on an element-by-element basis. Thus, writing A=B+C 

causes the corresponding elements of B and C to be added, producing a cor- 

responding element for A. To permit a large number of statements, the 

special character @ is used, followed by a specific code for each operator. 

The relations equal, not equal, less than, less than or equal, greater than, 

and greater than or equal are each designated by three bits. In addition to 

four arithmetic and three logical operators, the system includes some ele- 

mentary mathematical functions, matrix transposition, left and right rota- 

tion, reduction, base value polynomial evaluation, residue, compression, 

input/output, and a few other miscellaneous ones. There is a statement 

comparing two scalars with a three-way branch and a statement which 

increments one of the variables by 1 and then compare-branches. There is 

no unconditional transfer; its effect is obtained from the conditional control 

transfer. 

1V.6.9. CULLER-FRIED SYSTEM 

As so often happens, the work originally done by G. Culler and B. 

Fried has appeared in several versions and under differing names. Quoting 

Ruyle, Brackett, and Kaplow 

The Culler-Fried system is one name for two physically separate but 
direct descendants of the system developed by Glen Culler and Burton 
Fried at Thompson Ramo Wooldridge, Canoga Park, California, begin- 
ning in 1961 [Culler, Fried [CU63]; [CU65]]. The first of these is the 
On-Line Computer System (OLC) at the University of California at 
Santa Barbara (UCSB) [Winiecki [WN66]] which operates on the same 
computer as the original system. The OLC system is used for research 
and teaching on the Santa Barbara campus as well as from remote ter- 
minals at UCLA and Harvard. The second, an expanded version of the 
original system, has been implemented at TRW Systems (formerly 

Space Technology Laboratories) in Redondo Beach, California for the 
use of scientists and engineers and has been operating since late 1964 
(Fried, Farrington, Pope [FQ64], Fried [FQ66]]. The original system, which 
in some ways was more sophisticated than the present versions, was



254 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

widely used by a variety of scientists and numerical analysts [Culler and 
Huff [CU62]], and significantly influenced the initial development of 
AMTRAN.”4 

A comparison of the Culler-Fried system with AMTRAN (see Section 

IV.6.11), the Lincoln Reckoner (see Section IV.6.7), and MAP (see Section 

IV.6.6) is given in the paper cited above. 

Only a brief description of the basic ideas will be given here, without 

concern to which system is being described, because the concepts are com- 

pletely dependent upon very special equipment. For that reason, it completely 

violates the characteristic of relative machine independence which was cited 

in Chapter I as a defining characteristic for programming languages. Never- 

theless, this work is of sufficient interest to be mentioned briefly. 

The system is implemented on an RW-400 and has two special key- 

boards. One is used for inputting alphanumeric information (1.e., operands), 

while the other is a set of push buttons representing the operators; both 

are in the system on each of several “levels”. The basic levels are 

I —Real functions or vectors. 

II —Matrices. 

III —Display operations. 

IV —Complex functions or vectors. 

V & VI—Systems management and data transfer. 

The operations on levels I and IV include, in addition to normal arithmetic, 

the elementary functions (exp, sin, log, square root, etc.) for functional 

operands. Thus, an addition on level I would involve N + 1 additions of 

real numbers, and the operation EXPON would yield the exponential of all 

N + 1 values constituting the argument function. There are also operations 

which apply only to functions, such as differentiation and integration. (Note 

that these are definitely numeric, not symbolic.) Facilities for displaying a 

curve in graphical form, showing the scale of a curve, obtaining numerical 

values of individual points, etc., are available on Level III. All these are 

shown on a display scope. “The total capability provided to the user is a fair 

representation of that part of mathematics known as classical analysis which 

forms the mathematical basis for most theoretical work in the physical 

sciences and engineering.”?° 

As an illustration?® of an elementary operation to be performed, the 

user might push the INTERVAL button on Level III and type in some num- 

24 Ruyle, Brackett, and Kaplow [RU67], pp. 151-52, but presenting the reference 

citations in the form that is being used in this book. By permission of Association for 

Computing Machinery, Inc. 

25 Culler [CU65], p. 70. 

26 Based on examples in Culler and Fried [CU65], pp. 71-72.



IV.6.10. DIALOG 255 

ber, say 99. Until this number is changed, operations will deal with functions 
represented by 100 points. To define a variable T with the range 0 < T < J, 

the following 10 keys are pushed: 

IJ + 10.5 = T 

which defines the variable T. To compute functions of T, the LOAD BUTTON 

and the subsequent appropriate keys are pressed. For example, to form 

S = sin 4e” 

the following keys are pushed: 

I LOAD T SQUARE EXPON-4 SIN = S 

The results can be displayed in either discrete or continuous form. One of 

the significant features of this system is its ability to create programs which 

can be quickly invoked by pushing a single button. This is done by using a 

key called Program and then specifying a particular button which will be 

defined by the program which immediately follows it. Each of these keys 

can in itself be used as components in a new program, thus making it very 

easy for the user to create complex programs and simply execute them by 

pushing a single button. 

The emphasis in this system is on allowing the engineer or scientist with 

a complex problem to use an interactive system, with the minimum of physi- 

cal effort on his part. The values and advantages of this system are most 

appreciated by people with mathematical problems which are referred to as 

fixed point problems. | 

A low level list processing facility has been added to this by Blackwell 

[QK67] and is discussed in Section VI.9.3. 

IV.6.10. DIALOG 

The DIALOG system is an interesting and unusual approach to the 

use of an on-line system. It has been in experimental operation at the I.I.T. 

(Illinois Institute of Technology) Research Institute since February, 1966. 

It runs under the UNIVAC 1105 time-sharing monitor, and a batch version 

was implemented on an IBM 7094. Descriptions of the system are given by 

Cameron, Ewing, and Liveright [CS66] and [CS67]; the former contains a 

(not very rigorous) syntactic definition of the language. 

DIALOG is an algebraic language which uses a stylus and single push 

button for input; it displays programs and results on a display screen; it 

also has provisions for obtaining hard copy for the programs and results; 

and it uses paper tape input. 

The user points with the stylus to one of the available characters dis-



256 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

played on the screen; these consist of the 26 upper-case letters, the 10 digits, 

and the following special characters: 

i
!
™
N
 t 

A Vv 
) I 

C
l
i
t
 + 

\ 
A
y
 

x 

~o 
—
 

A 

e 

’ 4 

The characters [~ and <= represent space and backspace, respectively. The 

2 is used to remove all characters from the line being created. 

The DIALOG interpreter accepts and acts on one character at a time. 

The character is shown on a line on the screen immediately above the display 

of the character set. Then the system determines what the legally allowable 

next characters are and displays only those on the screen for the user to 

choose from. The screen permits the display of portions of the program in 

addition to the line being created. A summary of the language elements is 

given in Figure I[V-19. 

There is a list of key words, and each is surrounded by '. Wherever 

logically possible, the system will automatically provide the whole word 

when the initial character is given. Thus, if 'P is entered, the system auto- 

matically supplies LOT' since this is the only legal sequence permitted after 

the 'P. 

Variable names begin with a letter followed by up to five alphanumerics. 

One or two subscripts are permitted, where any expression can be used and 

the value of the expression is rounded to an integer. Subscripts are enclosed 

within square brackets and separated by a comma. Literals are delimited by 

square brackets; the context distinguishes between literals and subscripts. 

Statements can be entered with a line number for later execution or 

without a number for immediate execution. The numbers can contain a 

decimal point. Sequence of execution is based on the value of the statement 

number. All statements are terminated by a semicolon. Comments are of 

the form 

statement-number) [any character string]; 

Assignment is designated by < and control transfer by GOTO. A 

conditional statement is of the form '‘IF' (conditional expression) ‘GOTO' 

number; where the statement is executed if the conditional expression is 

true or nonnegative, e.g., 'IF‘ (A>B) V (A<C)) 'GOTO' 3.5;. The EXECUTE 
command causes execution of a single statement or a set of statements, 

with control returning to the line under the EXECUTE (unless there is a 

control transfer out or another EXECUTE). 

A PLOT command is followed by two expressions separated by a comma. 

Their values are used as the horizontal and vertical coordinates, respectively,



IV.6.10. DIALOG 257 

  

DIALOG Elements DIALOG Functions 

E represents any expression. ‘SIN' (E) 

L represents a string of keyboard 'COS' (E) 

characters. "ARCTAN' (E) 

N represents a line number. ‘ARCTAN' (E;, Eo) 

S represents any statement. 'LN' (E) 

V represents a variable. ‘ROUND' (E) 

DIALOG Operations Type Format Execution 

+ — x / f Console S Immediate 

> < A VV Program NS Future 

DIALOG Statement Formats 

‘CLEAR’ Fy, F2, . . . Fn; ‘LOAD’; 

where F; may be Nj; or N;j ‘PLOT’ Fy, Fa, ... Fn; 

‘THRU' Nj or 'ALL' or 'PLOT' where F; may be (Ej, &j) 
‘DISPLAY’ Fy, Fa, . - - Fa: or [L] (Ei, Ej) 

where F; may be V or [L] or ‘'PLOT' ‘REQUEST’ V7, V2, .- + Vn; 

‘EXECUTE’ Ni; "SAVE'; 

‘EXECUTE’ Nj ‘THRU’ Nj; ‘SENSE’ (V7, V2), (W3, V4),--- (Vn, Vm); 

“FREE-MODE'; ‘STEP-MODE'; 

‘GOTO’ Ni; VEE; 
‘HALT’; VIFJCE 
IF’ (E) S; where F may be &; or &j, Ej 

where S$ is executed if E is not ‘WRITE F7, F2, .. - Fn: 

negative or if E is true where Fj; may be V or [L] 
  

Figure IV-19. Summary of DIALOG facilities. 

Source: Cameron [CS67], p. 357. By permission of Association for 

Computing Machinery, Inc. 

in an image automatically associated with the PLOT; i.e., the command is 

used to define points. The SENSE command senses the coordinates of the 

stylus and assigns the values to the variables named in the SENSE command. 

A DISPLAY command displays on the screen a cited list which can contain 

literals, variables, or a plot. In the latter case, the information previously 

prepared by the PLOT command is used. 

Built-in functions are SIN, COS, ARCTAN, LN, and ROUND. 

The CLEAR statement erases the designated portion of the program or 

the PLOT. The HALT returns control to the user from the stored program. A 

STEPMODE causes line-by-line execution; in this mode the result of each 

assignment statement is automatically displayed. The FREEMODE restores 

the system to normal operation after the STEPMODE. 

A REQUEST command requires input from the console for the variables 

in the list, e.g., ‘REQUEST’ A, B[Y,2];. 

A LOAD command permits input from a photoreader of a paper tape



258 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

prepared off line, normally consisting of a stored program. The SAVE pro- 

gram causes punching out on paper tape of the stored program in a form 

suitable for reentry by the LOAD command. A WRITE command prepares 

a magnetic tape for off-line printing. 

There are no declarations required, even for type or dimension informa- 

tion. 

IV.6.11. AMTRAN 

The AMTRAN (Automatic Mathematical TRAWNslation) system was 

developed at NASA (National Aeronautics and Space Administration), 

Huntsville, Ala. The work was initiated by R. N. Seitz, and the key people 

involved were L. H. Wood, P. L. Clem, Jr., J. Reinfelds, and M. A. Sparks. 

All except Clem and Sparks were from NASA Marshall Space Flight Center. 

The basic objective of the work was to provide an on-line system to 

facilitate the solution of mathematical problems by nonprofessional pro- 

grammers. Although the developers state that one of the basic goals is “To 

use the natural language of mathematics as a programming language without 

any arbitrary restrictions whatsoever”,”’ it is clear that this objective at least 

is not achieved. 

The overall system was inspired by the work of Culler and Fried (see 

Section IV.6.9) and was influenced by JOSS (Section IV.6.2) and the work 

at the Hudson Laboratories of Columbia University by Klerer and May 

(Section IV.7.5). The documentation of the system appears in a number of 

NASA reports and in published articles by Clem et al. [CM66], Reinfelds 

et al. [RF66], Wood et al. [WD66], and Seitz et al. [UV67]. A comparison 

of this system with MAP, Lincoln Reckoner, and the Culler-Fried system 

is given by Ruyle, Brackett, and Kaplow [RU67]. 

Unfortunately, any discussion of AMTRAN is clouded by the dif- 

ficulty of separating what has actually been accomplished from what 1s 

planned and from what is claimed; the published reports do not agree in 

their technical descriptions. While I have made an attempt to make this 

delineation, there is far less certainty of accuracy than in most of the other 

descriptions in this book. 

An operational version of the system was implemented as an interpreter 

on the IBM 1620, which is rather surprising since this seems a rather complex 

system for such a small machine. There is one large specially designed key- 

board with 224 push buttons that includes a typewriter keyboard with a 

special character set. The user can define operations besides those automati- 

cally provided by the system (approximately half the total number) and 

27 Reinfelds, et al. [RF66], p. 469.



IV.6.11. AMTRAN 259 

SAMPLE PROGRAM—AMTRAN?t 

  

Problem: Adaptive Runge-Kutta-Simpson’s rule integration. 

Program: 

N,A1,X1,X2,Y, ENTRY, H=(X2—X1)/10,X=X1,Y2=Y,1=0. 
J=0,REPEAT N,Y3 SUB I=Y SUB J AND I[=I+1 AND J=J+1. 
IF X GT=X2, THEN GO TO 19. 
Y1=Y. 

RUN,A=H Z,X=X+H/2,Y=Y1+A/2,F=A. 
RUN,B=H Z,Y=Y1+8B/2. 
RUN,C=H Z,X=X+H/2,Y=Y1+C. 
RUN,D=H Z,Y2=Y=Y1+(A+2 B+2 C+D)/6. 
RUN,A=H Z,X=X+H/2,Y=Y2+A/2,G=A. 

10. RUN,B=H Z,Y=Y2+B/2. 
11. RUN,C=H Z,X=X+H/2,Y=Y2+C. 
12. RUN,D=H Z,Y=Y2+(A+2B+2C+D)/6,RUN,D=H Z. 
13. E=ABS(Y—Y1—(F+4 G+D)/3)/(.000001 ABS Y+A1), F=LOG MAGNITUDE K+1. 
14. IF E GT 1, THEN X=X—2H AND Y=Y1 AND IF E GT 2,H=H/(EXP(F LN 

1.5848931)) 
14.¢C AND GO TO 3,OTHERWISE H=H((.5/E)*«x.2) AND GO TO 3. 
15. IF E LT=.016,THEN H=2 H,OTHERWISE H=H((.5/E)*x.2). 
16. J=0,REPEAT N,Y3 SUB 1=Y2 SUB J AND [=!+1 AND J=J+1. 
17. J=0,REPEAT N,Y3 SUB I=Y SUB J AND I=I+1 AND J=J+1. 
18. GO TO 3. 
19. Y3. 
20. NAME.THIS RUNGE] 104. 

C
O
O
N
A
N
 
P
Y
W
N
 

SD 

Seitz, Wood, and Ely [UV67]. By permission of the Association for Computing Machin- 

ery, Inc. 
  

assign these to a specific button. One version of the system called the 

Sampler uses only the regular console typewriter and card reader of the 

1620; mnemonic labels are used to call the operations otherwise provided 

by the special keyboard. It is the (larger) combined system which is being 

described here. It includes 5-inch display scopes. The program (or other 

desired information) can be displayed on the scope and also printed as hard 

copy. 

The typewriter has the following character set (in addition to the 26 

upper-case letters and the 10 digits): 

e
A
 +
 

ae
 

~w |
|
 

xX 

4
+
V
v
™
 

~ 
t 
V
 # 

_



260 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

Greek letters: 

0 xX 

gv w 

Miscellaneous characters: 

So fIAV 

The special keyboard contains at least the buttons shown in Figure 

IV-20. The meaning of some of these is discussed later. 

The system is said to be approximately equivalent to FORTRAN II 

in overall capability (although definitely not in notation), plus of course 

having all the additional facilities from the push-button keyboard. Although 

provides “picturebook” integer and floating point formatting, it does not 

afford the extensive formatting capabilities of FORTRAN II nor does it allow 

for fixed point or variable-precision arithmetic. 

A data name can consist of a single letter, one of six Greek letters, or 

a letter followed by up to three digits. (This permits implicit multiplication.) 

Subscripts are permitted and can themselves be subscripted. However, they 

are designated by following the variable name with the word SUB, e.g., 

Y SUB I. Any operand read into the system is dimensioned automatically, 

and array arithmetic is performed automatically in future operations. Thus, 

if B has been defined to be an N-dimensional vector, then multiplying a 

scalar A by B will automatically cause the result to be an N-dimensional 

vector. 

The assignment statement in AMTRAN 1s denoted by an =. The con- 

ditional statement is of the form 

IF condition THEN statement-1 OTHERWISE statement-2 

where condition apparently involves two variables and a relation (e.g., GT 

or GT=); statement-] is either an assignment statement or a GO TO and 

statement-2 can be an assignment followed by GO TO. A more generalized 

form is available to provide operations on dimensioned variables automati- 

cally. For example, the statement 

IF |Y|>.5, THEN Y SUB IF.INDEX=O. 

causes each subscripted value of X to be tested and to be set equal to 0 if 

the absolute value of Y is greater than .5. 

The push-button keyboard has fixed buttons, some of which are shown 

in Figure IV-20. It has the facility to allow the user to assign either operands 

or sequences of existing commands (or operators) to the undefined buttons. 

Thus, for example, he could define a button for Runge-Kutta or for Legendre 

polynomials. Some of the less obvious operators have the following mean- 

ings. LABELS will list the names of all the user-defined procedures which are 

currently resident in the machine. CORE tells how much program space is



IV.6.11, AMTRAN 261 

still available. The — (mnemonic: REPLACES) indicates replacement: 

N+1—-N. MINIMAX locates relative extrema by cubic interpolation. 

MAGNITUDE gives the power of 10 for a number. LET changes variables 

(numerically). SUM.OF.SERIES is used in series expansions. REPRESENT 1s 

part of the mathematical problem-solving package. TYPE.OUT is used for 

format control. X.LOG, Y.LOG, POINT.PLOT, INCREMENTAL, LINEAR, POLAR, 

VS and DISPLAY.DATA are used as modifiers in the PLOT.ON.SCOPE routine. 

REPEAT has the form REPEAT (scalar expression), (compound statement); the 
result of the evaluation of the scalar expression is rounded to the nearest 

integer. ENTRY and RUN provide for the acceptance of code strings 1n proce- 

dures. TRANSFER is a crude symbol transfer operator 

The user can either work in a direct execution mode, in which the state- 

ments are executed as entered, or he can merely enter statements for execu- 

tion later. In either case, the user can request permanent retention by entering 

NAME this label, where label is the name he assigns. Various facilities for 

designating different types of scopes for variables are provided. Recursive 

calls are permitted but only to a certain level of depth. Effort has been made 

to extend subroutine definition to facilitate bootstrapping of the language 

to higher levels. These extensions consist of a crude facility to pick up code 

strings for subsequent execution (i.e., similar to call by name facilities), the 

ability to define dyadic operators (at only one level of hierarchy), and the 

ability to start executing a procedure called from the keyboard before all 

the parameters have been passed to the procedure. The latter examines 

parameters or code strings interactively to determine the number and kind 

of additional parameters to request from the user. Assuming compatible 

parameter strings, such subroutines can then be embedded in other sub- 

routines without reprogramming. 

Significant use of the scope is made, including the display of the pro- 

gram and instructions to the user. JOSS-like standard format operators such 

as TYPE, SET, PUNCH, and SCOPE are available. 

Later versions of AMTRAN are said to be running on a Burroughs 

5500 computer and an IBM 1130. The Burroughs 5500 implementation 

utilizes a reentrant time-sharing monitor written in ALGOL 60 that initially 

ran from teletypes. An experimental keyboard-typewriter terminal is also 

running. This uses a version of the typewriter with controls for subscripts 

and superscripts, similar to the machines for the languages described in 

Section [V.7. Differences in syntax exist, such as allowing AND, OR, ~, —, 

NOT in conditional clauses, an additional array JF test, and the use of square 

brackets for subscripts. ALGOL procedures may be attached to the system. 

Future plans call for the inclusion of some symbol manipulation capability, 

provision for graphic input and output, and other extensions and modifica- 

tions. 

The 1130 implementation, like the B5500 system, executes interpretively 

from pseudo object code. It was written in FORTRAN IV, and FORTRAN



Control Operators Specific to the Interactive Mode 

SUPPRESS/EXECUTE 
DELETE 
BACKSPACE 
EDIT 
RESET 
CLEAR 

S
*
 

l
t
~
x
 

1+ 

SQ 
* (exponentiation) 

ABS 

SIN 

cos 

ARCTAN 

TAN 

TYPE 

PRINT 

PUNCH 

PLOT.ON.SCOPE 

TYPE.OUT 

PRINT.OUT 

PUNCH.PROGRAM 

IF 
< 

> 

THEN 
OTHERWISE/ELSE 
AND 
IF.INDEX 

LIST 

LABELS 

CORE 

TRACE 

MOVE PROGRAM 

FULL TYPEOUT 

Mathematical Operators 

= 
Af 
Ab 

d/dx 

Array 

Left (shift) 

Right (shift) 
MINIMUM 

MAXIMUM 

MINIMAX 

MAGNITUDE 

INTERPOLATE 

REFLECT 

ZEROES 

INVERT 

LET 

Input-Output Operators 

TYPE.ON.SCOPE 

WRITE.SCOPE 

ERASE 

PUNCH.PROGRAM 

READ.CARDS 

*® 

SET 

Programming and Logical Operators 

SWITCH 

DIV.ZERO 

EXIT 

GO 

TO 

REPEAT 

INPUT 

262 

HALT 

GENERAL INSTRUCTIONS 

SPECIFIC INSTRUCTIONS 

TURN PAGE 

STEP.FCT 

CUBIC 

SUM.OF.SERIES 

ERF 

LAPLACE 

SOLVE 
AVERAGE 

SIGMA 

MOMENTS 

REGRESSION 

CORRELATION 

LEAST.SQUARES 

(all the TRIG and 

HYPERBOLIC fects.) 

SUB 

REPRESENT 

X.LOG 

Y.LOG 

POINT.PLOT 

LINEAR 

INCREMENTAL 

VS 

POLAR 

DISPLAY.DATA 

ENTRY 

RUN 

TRANSFER 

ACC 

CALL 

NAME.THIS



B
O
D
 

HM
R 

D
M
R
 

LINE 

ARC 

ROTATE 

TRANSLATE 

MAGNIFY 

AXES 

RESISTOR 

CAPACITOR 

INDUCTOR 

PARALLEL 

SERIES 

TIMES 

OVER 

POWER 

Special Variables and Data Operators 

ar REG 

§ ‘ (prime) 
7 INSERT 
X.MIN CONCATENATE 

X.MAX SORT 
INTERVALS ORDER 
ROW 

Basic Graphics Operators 

AUTOSCALE YZ.CURVE 

SYMBOL XZ.CURVE 

THREE.D.MATRIX XY.CIRCLE 

THREE.D.AXES YZ.CIRCLE 

XYZ.CURVE XZ.CIRCLE 

XY.CURVE 

Graphic Circuit Elements 

GROUND FILTER 

BATTERY 

NODE 

Special Operators 

WYE.DELTA DETERMINANT 

DELTA.WYE QUADRATIC 

SIMPSON 

Complex Routines 

SIN EXP 

COs LN 

ARCTAN CONJUGATE 

POLAR.CONV 

Figure IV-20. List of AMTRAN operations. 
Source: Seitz, Wood and Ely [UV67]. By 

permission of the Association for Computing 

Machinery, Inc. 

263



264 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

IV subroutines may be added to the system. Input and output were initially 

limited to card, printer, and the console keyboard/printer. 

This system seems to have a great many excellent features combined 

in a convenient way. The fact that it can be implemented on a small computer 

gives it a reasonable possibility of becoming a significant language (system.) 

IV.7. LANGUAGES WITH FAIRLY NATURAL MATHEMATICAL NOTATION 

IV.7.1. INTRODUCTORY REMARKS 

As noted in all the languages described earlier in this chapter, the user 

is seriously handicapped, both in writing the language and looking at the 

form in which it is put into the computer, by the constraints of the hardware 

equipment that has been most commonly available, namely the key punch. 

The use of a typewriter has proved of some advantage because of a larger 

character set, but it still does not provide naturalness of notation. The pri- 

mary disadvantage is the lack of two dimensions, which would permit 

subscripts and superscripts to be written where they belong. There have 

been small but significant efforts devoted to developing languages which 

have a format that is closer to normal mathematical notation. Because the 

inherent difficulty is one of hardware rather than software, each system has 

involved either the construction of a special typewriter or the major modi- 

fication of existing equipment.?® 

In discussing languages with natural mathematical notation and 

nomenclature, there are three factors which should be kept in mind. The first 

are the notational problems which can be corrected or improved by special 

equipment. In this category fall such things as the ability to write exponents 

above and subscripts below the line; ease of displaying fractions; and 

existence of special symbols such as partial differentiation, integral, and 

sigma signs. The second factor involves ease of learning and writing programs 

in the language. This can be relatively independent of the hardware facilities. 

In particular, some work was done under my direction to see how natural 

a language could be defined using only key punch equipment (Boyer 

[QI65]). The third factor, namely ease of readability, is more readily achieved 

than ease of learning and writing. Reading and understanding a program 

which was written based on use of this special equipment is usually quite 

28 Since writing this, a manual for a system called MAC-360 has appeared ([MT67]). 
This system basically provides the user with three input lines for a single equation in a 

manner that can be keypunched, as shown by the following example (from page 1 of the 
manual) to represent the equation R; = A?e?* + Bie-2 

E 2 2 Pl 2 —2 Pl 

M R =A E + BE 

Ss 1 l I



IV.7.2. COLASL 265 

simple; whereas at least in the COLASL case (Section IV.7.2), the rules for 

writing it are extremely complicated. It is my contention that a mathematical 

language (for use on computers) which is truly natural in notation and 

nomenclature will convey to a prospective user about 85 percent of the 

information that he needs to write correct programs merely from a large 

series of well-chosen examples. This hypothesis assumes the user is not trying 

to trick the system and is not making any effort to obtain maximum efficiency. 

A partial proof of this contention is given by the two-page manual of Klerer 

and May (Section IV.7.5). 

All the systems in this section involve special hardware, and they have 

usage limited to one or just a few places. They are included because they 

represent a significant potential direction for development of more natural 

languages. The primary interest, however, is due to the special input/output 

characteristics and not the new language concepts. With the exception of 

some facilities in MADCAP (Section IV.7.3) which are significant and 

have not appeared in any major way elsewhere, the languages in this section 

do not provide conceptual new ideas. However, the availability of special 

input/output equipment coupled with concepts that are impractical on stan- 

dard equipment could eventually cause a major breakthrough in languages 

for scientific problems. 

IV.7.2. COLASL 

COLASL is one of two systems which were developed at the Los Alamos 

Scientific Laboratory of the University of California; the other is 

MADCAP (Section IV.7.3). They were developed by different groups, and 

COLASL tended to be used in a more production-oriented environment 

than MADCAP. Source materials available for COLASL are the paper by 

Balke and Carter [BQ62] and the unpublished programmer’s manual by 

Carter, Balke, and Bacon [CA63]. COLASL runs on the IBM 7030 

(STRETCH). 

COLASL is moderately general and has very good notational facilities 

for mathematics. It is easy to read a written program, but the specifications 

on how to write programs are very complicated. | 

The application area is numerical scientific problems. The language is 

procedural and problem-solving. It is a hardware language for use with 

special equipment (described below) but it is also a good publication lan- 

guage. The intended user is a nonprogrammer. 

The language is completely designed for use with special prototype 

hardware known as the IBM-9210 Scientific Descriptive Printer (4) which 

was available at Los Alamos in May, 1961. It contains 132 characters, many 

of which can be easily combined to provide additional symbols, and 15



266 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

carriage control functions, including the ability to turn the carriage up and 

down for superscripts and subscripts. Because of the special hardware and 

the localized usage, all other functional characteristics are insignificant 

except that the language was designed and implemented by the same people, 

and seems to have been useful. 

The COLASL character set is shown in Figure IV-21. All the items in 

  

Basic Letters Digits 

a through z 0123 45 67 8 9 

A through Z o 
a Ry Setnknr LE Punctuation Marks 

PTP XY @ pb FE v&tn 

TrT@®A® Q Algebraic Symbols 

ae + —- xX ° f/f =F > < Vv Superprinting Characters : 
++ 2 728s ¢ F¢ 

0 
Special Symbols 

Overprinting Characters A od # + 

t+ —- X ° = keh AT DH Grouping Symbols 

ct () Lf) }t 
Extended Letters Formed from Miscellaneous 

the Ab a 6 amore NUuCcCDdDSZxf[fsy 
© wy — 

> | @ = Reserved for Future Use in the Language 
a 

P =u 

@ B+
 

Ge
t 

Rl
 ° 

  

Figure IV-21. The COLASL alphabet. 
Source: Balke and Carter [BQ62], p. 506. 

the alphabet are either direct characters on the typewriter or can be formed 

from them, e.g., 

= - £# 

There are 16 key words, namely and, attach, end, exit, for, from, 

function, go, if, or, range, routine, stop, then, through, to. The graphic 

operators and punctuation symbols appear in Figure [V-21. The formation 

rules for data names and program unit labels are significantly different. 

Data names consist of a single letter (in the extended sense of Figure IV-21), 

together with descriptive subscripts, and this string may be prefixed by either 

a A or Q. The total length must not exceed eight symbols. For example, 

the following are data names:



IV.7.2. COLASL 267 

A AB OW 74 

Ynut Ag Com3g4 

Statement labels contain eight or fewer characters and are of two different 

forms: (1) The # followed by one to seven digits; (2) an extended letter 

followed by extended letters or digits, with or without a numeric subscript. 

Examples are as follows: 

#012 #1234567 #3 

Temp Heatz3 yA512 

The reserved words can be used for statement labels since the latter appear 

in a fixed place, but it is not advisable. Variables can have descriptive and 

numeric subscripts. The former are for mnemonic purposes only. The latter 

are variable or constant subscripts to denote elements in vectors or matrices, 

and they are separated by commas. There is no stated limit to the number 

of subscripts, and they can be subscripted but the expression must all fit 

on one line. Subscript variables can have constants added to them and can 

take on negative values. 

The operators are not clearly defined as such, but they are the fairly 

obvious ones from the COLASL alphabet shown in Figure IV-21. Note 

particularly the square root symbol, which is an operator with the obvious 

meaning. The delimiters are the punctuation marks and some of the reserved 

words. The punctuation characters are those shown in Figure IV-21, and 

although a sentence can (and must) be terminated by a period, exclamation 

point, or question mark, there is no syntactic distinction among these. 

Commas, colons, and semicolons are also used for punctuation. Blanks may 

not be used in some places but are permitted in others. Use of noise words 

is permitted ; however, see the discussion on comments in the next paragraph, 

and on p. 269. The only literals that are permitted are numeric constants. 

The input form is an interesting combination of very natural free form 

but with three fixed fields prior to the main part of the statement. The first 

field cannot be used, the second one denotes class, and the third contains the 

statement name. The reason for choosing this format was to permit the 

programmer to interject statements from the STRETCH assembly program 

into a COLASL program. The only reason for the class column is to permit 

markers which cause the compiler to ignore the material between them. 

The conceptual form is maximum naturalness, partially caused by the free- 

form interspersion of comments with the meaningful program. The following 

device to accomplish this has been used: The programmer writes his 

program using a red pencil and a black one. Everything appearing in red is



268 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

typed in this color on the IBM-9210 and is completely ignored by the 

COLASL translator. As an illustration, see Figure IV-22, where the material 

originally written in red has been set in italics to make it understandable in 

printing. 

The only declaration is to specify the dimension, which is done by the 

use of the words Range or Ranges. The smallest executable unit is called a 
phrase, and phrases may be grouped through the use of commas as separators 

into clauses which in turn may be grouped into sentences through the use of 

colons, semicolons, or if ... then statements. Sentences end with a period. 

  

We are given the coefficients of a set of quadratic equations of the form: 

ax? + bx +c=0. 

We wish to find those equations which have real roots, and print their coefficients 
and roots; and to print the coefficients of those equations having complex roots. Let 

there be a marker, m, for each equation such that mi = 0 if the roots are real and 

mi =1 if the roots are complex. We read (according to format F1) the number of sets 

of coefficients, |. \f (10 or I>100) then the data are incorrect, and we stop. Otherwise 

we read (per format F2) the coefficient triples, a(i), b(i), and c(i); we also set the initial 
value of each m;=0, for (i==1, 2, ..., 1). 

We now compute the discriminant of the current equation, which we will call d, from 

#1 d=b? — 4aijcj. 

If (d<O) then mi=1, and we continue from #2. Otherwise, we compute the roots, 

Xpos and Xneg, from the relations: 

_ bi + vd 
Xpos; = oa, 

_ ~—bi — vd Xneg, = a 

#2 To complete the calculation repeat the above from #1 for (i=I, I—1,..., 1). 

The subscripted variables have the ranges: 100 to 1 for a, b, c, m, Xpos, and 

Xneg. When the calculation is complete, print ( format F3) which provides headings; then 
print the coefficients and roots as indicated in the following. 

#3 If (mj=0) then print (using F4) each of the variables , ali), b(i), c(i), xpos (i), and xneg (i); 
then proceed from #4. Otherwise, print (per F3), the variables a(i), b(i), and c(i). 

#4 Do everything from #3 for (i=1, 2, ..., 1); then stop. 

Fl is the format for reading I. It is (EO*3). 
F2 is the format for reading the coefficients and printing them where the roots are complex. 

It has the form (3€2.1.13.3). 

F3 is the heading format, (SO, X27, HkCOEFFICIENTS*, X50, HkROOTSx*, 52). 

F4 is the last format, which controls printing of coefficients which have real roots. It is 

(3E2.1.13.3, X3, 2E2.1.13.3). To make it accessible to the input-output package, we 

attach i fo an index register; this is the end of the problem. 
  

Figure IV-22. Example of COLASL program including heavy commentary. 

Information which is normally typed in red by the user to indicate commen- 

tary has been set in /falics here. 

Source: Balke and Carter [BQ62], p. 520.



IV.7.2. COLASL 269 

Loops can be written in three ways. Both functions and subroutines in the 

FORTRAN sense are permitted. COLASL has an extremely flexible method 

of specifying comments because any material which does not conform to 

defined syntactic units in the language is treated as noise and discarded. 

However the designers quite wisely caution the user to use some dis- 

cretion in taking advantage of this facility, because it is easy to change the 

meaning of a program by inserting an extra key word or a punctuation 

mark in a critical place (i.e., the user might inadvertently create correct 

syntactic units even though he was only writing commentary). To avoid this 

difficulty, the use of the red and black pencils as described earlier 1s recom- 

mended. 

Assembly language can be written in the midst of COLASL programs 

and will be appropriately handled. 

The only types of data variables and constants are arithmetic. “An 

expression in the COLASL language is translated into a machine code which, 

when executed, will produce the same number for the value of the expression 

as a human computer might be expected to produce if he worked to the 

same significance as the machine.”® 

The most interesting aspect of COLASL is the flexibility of the expres- 

sions which can be created. Examples are given in Figure [V-23. There are 

complicated rules for creating these expressions so that the scope of under- 

lines, radical signs, absolute value signs, etc., 1s correctly defined. Since 

variable names are only a single letter, juxtaposition can be used to denote 

multiplication. 

There are two kinds of assignment statements, called algebraic and 

parametric. Algebraic is the standard type, but it also allows multiple naming 

on the left-hand side, e.g., X=Y=C+5. The parametric type is identified by the 

equivalence sign, e.g., g=l + 5. Parametric variables must ultimately be 

defined in terms of constants; they are evaluated at compilation time. 

Unconditional control transfers are written as either GO TO #5 or 

FROM #S, which are equivalent. A GO TO statement appearing at the begin- 

ning of the sentence has its action deferred until the end of the sentence. 

Thus, in GO TO #3, X=5 the variable X will be assigned the value 5 before 

transferring control to statement #3. A facility for computing switch control 

is provided. Functions are invoked from within expressions. Subroutines 

are invoked by writing the name in a phrase under the same circumstances 

as a key word. The conditional statement is of the form IF B THEN S, where 

B has a truth value and § itself can be conditional; e.g., 

IF (x>y>z, or P#3) then Z=X2+Y?2, 

IF (x>2) then IF (P=3) then X=Y+3. 

29 Balke and Carter [BQ62], pp. 511 and 513.



270 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

  

  

  

Division Exponentiation 

ctdet+f) b+e | etf y3 -yt#3_— ez? 
ghi(kk—1) dd g nty yt 4 9 

Ap*Y yupz 

4ac/37 

Radication Function Calling 

Jb xb Yb sin(y) Cosy) 
o/b+e exp [ sin (Gi) | 
d—e cos _ 

bi 

Absolute Value Indication 

or Knit | lol—[b} $2815 
(Ja}—]b])| 

Subscripting with Constants 

XO X25 Ptemp_. 

X1,5 Premp,, _, X—5,—10 

Subscripting with Variables and Constants 

Piemp, 2 X2, i X—2I, — sub, j 

Xisub +2 Premp_.44 Xj—5 

Premp_,_1 Xi+2, (+4 X—i—4, ksub—3 

Premp, 41, i+2, ksub+3 

Figure [V-23. Expressions in COLASL. 

Source: Balke and Carter [BQ62], pp. 512-13. 

Loops in COLASL are indicated in one of three ways. The first is by 

specifying the parameter and its values in the same sentence with the scope 

of the loop; e.g., 

Xi ;=3 cos(yi), (i=0, 1, ..., 5); z=] sin (jw;'*3), (j=5, 4, ..., 0). 

A constant increment or decrement can be implied from the notation; Le., 

writing J=5,4,...,0 is the same as writing J=5,4,3,2,1,0. A second way of 

specifying loops is by the use of the word THROUGH, which operates the 

same as the DO statement in FORTRAN. The word FROM followed by 

the parameter list can also be used. These can all be nested. 

There are no input/output statements specified in COLASL; symbolic 

assembly macros must be used. This was done to permit use of the existing 

input/output package on STRETCH. 

There is a standard set of mathematical subroutines available in the



1V.7.3. MADCAP 271 

library. The word EXIT is defined in functions and routines and has the same 

effect as the RETURN statement in FORTRAN. The command STOP termi- 

nates the execution of the program. 

Dimension information can be written in a flexible format, called the 

range sentence. It must contain the word range or ranges, and all the rest 
of the clauses must be of the form 

m; tO Pi,.--, MM, tO pp, for v1, V2, .--+ Vn 

where the m; and p; represent constants or variable names and the vy; rep- 

resent variables; the word and can precede v,. For example, the following 

are legal: 

A range is: O to 27 for x. 

The ranges of the variables are —2 to 3, 4 to 8, and 3 to —7 

for x, y23, and Z,. 

I have no knowledge about the actual effectiveness of this particular 

system. It appears on the surface at least to have the advantage that accrues 

from being able to write mathematical expressions in a natural notation; 

however, there appear to be many features in the language itself which do 

not entirely lend themselves to naturalness. In general, this seems to be 

a language that is much easier to read than to write. It is apparently no longer 

in use. 

IV.7.3. MADCAP 

Another project at Los Alamos (besides the COLASL system described 

in the preceding section) is MADCAP, which is used on the MANIAC 

II Computer. It tended to be developed and used in a more experimental 

environment than COLASL. The objectives of both projects are quite similar, 

although they vary in detail MADCAP has undergone numerous additions; 

the first two versions did not use a typewriter permitting two-dimensional 

input. Since the main interest in the language 1s because of the natural nota- 

tion, there is no need for a discussion of the early systems. The sources for 

the description of this work are the items listed in the references at the end 

of the chapter, and private communications from M. B. Wells. 

MADCAP is moderately general and certainly more general than the 

other languages discussed in Section IV.7. It has very good notational 

facilities for mathematics. It is easy to read a written program, and not 

too difficult to write one. The application area is numerical scientific 

problems, plus some combinatorial and set theoretic problems. It is a hard-



SAMPLE PROGRAM—MADCAP 

  

"Calculation of Z*-factor coefficients" 

subscript range: r, Ro te 69? Z*, to 10, 1 to 7 

subscript range: Constant, to 4: 21.16, 2.37xK10°°, 

wr, 1/4, 19 

#100 a, b=0 

read: Tax? c 

#1000 read: for 1 = 0 to I,,,,: R 
MAX i 

for i=0, 1, eooo3 J = O,— 3; ese 

if Ry <0, exit from loop 

r. = jit 7 Ry 
1 é 

= . _ 37 
for k — i, i+1, ooelvay! rk — —Ry 

#2000 if a=c: atl > a, go to #4000 "coeff. ng" 

for i = 1 toe 10 

for j=l, Cy cool 

k = [(1/2)]; x = 71i+$ 
e 

coef(r,,x)R, 
  Z* = Constant, + 

1,J k J J 
(Py4y)- (Fy) 

#3000 (20 characters)Format = "ZH y=XXoXXX" 

for i = 1 to 10 

for j=1tov7 

print by Format: 1, Jj, aX yj 

if b = a or sense 3 is on: stop 1 

b+l > b, go to #1000 

#4000 number type: (40 characters)Mess 

print by "M": Mess 

go to #1000 

(0. coef(a,b) 

if b is even 

coef(a,b) = atb 

otherwise 

coef(a,b) = a-b 

oo) 

T[MP64], Appendix I, p. 1. 

272



IV.7.3. MADCAP 273 

ware language for use with special equipment (described below) and also a 

good publication language. The user is meant to be a nonprogrammer. 

The language is completely designed for use with a modified Frieden 

Flexowriter which records all the key strokes on a paper tape as well as 

on the typed page. It does not have nearly the number of characters that are 

available on the machine used with COLASL. Because of the special hard- 

ware and the localized usage, the other functional characteristics are insignifi- 

cant, except that the system appears to have been developed in an experi- 

mental environment and undergone many levels of improvement. 

The characters available from the modified Flexowriter may be printed 

in red as well as black and are as follows: 

Alphabetic: a through z_ A through Z 

Numeric: QO through 9 w 

Punctuation: pe et € YY” |T J blank 
Arithmetic: + —- x Jf _ YY =-7 |> < 

Miscellaneous: A x ' #£# 

There are also a number of control functions available as keys on the type- 

writer. In particular, subscripts and superscripts can be placed where they 

belong through use of control keys. As in COLASL, characters can be 

combined to make syntactically meaningful units. The following are specif- 

ically defined: 

4 > FE Di 

The graphic operators and punctuation symbols are shown in the list above. 

There are a large number of key words in MADCAP. 

Data names and program unit labels are defined quite differently. The 

former can be one of five forms, with the constraint that the name can 

contain only seven characters: (1) A single letter; (2) “letters” composed 

from three basic characters, e.g., 8; (3) a capital letter followed by lower- 

case letters, e.g., Count, Pb; (4) one of the preceding followed by digits, 

prime, double prime, or asterisk, e.g.,a2*,B '', C291; (5) any allowable 

name prefixed by A or #. The data name can be terminated by a space, 

some form of punctuation, or arithmetic operators (including juxtaposition 

for multiplication). Statement labels consist of the number sign, #, followed 

by up to four digits; statement label variables can be subscripted. There is 

a large list of key words in MADCAP, and the formation rules for data 

names do not cause them to coincide. Where key words and products appear 

to coincide, the compiler distinguishes between them from context. The key 

words are usually written in lower case in programs but can be either initial 

or all capitals. The latter will be used here for ease of reading. Data names



274 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

can have any number of subscripts (separated by a comma but no space 

intervening). A subscript can itself be subscripted by any one-line expression 

(i.e., no displayed division). 

The operators are shown in the character set, although several of those 

listed under arithmetic are in the set of relational operators, namely 

=, <, >, Ss, >, ¢, #, #. Punctuation is used for delimiting and is quite 

significant. The characters for comma, colon, and semicolon; the words 

OR and AND; and the blank are all used for punctuation. A comma separates 

elements on a list. It is also used in specific statement formats. In certain 

“natural” cases, the words AND, OR can be used in place of the comma. 

The semicolon is a higher-order delimiter and usually separates items which 

might naturally contain commas. The colon is used when a list is to follow 

or to separate the independent part of a conditional or iterative statement. 

Blanks are significant; the rules are “natural” so that if something looks 

reasonable, then it should work. 

Noise words are permitted; any sequence of five or more letters all in 

the same case, which is not a key word, the result of juxtaposing variables, 

or a subroutine name, is ignored by MADCAP. 

In addition to numeric literals, character strings and bit patterns for 

use in set operations can be defined; the former are delimited by red 

quotation marks, and the latter by red parentheses. 

The physical input form is quite natural. No special coding sheets are 

required. The statements are generally written one per line, with no par- 

ticular rules about the horizontal spacing or the length of the statement. 

There can be more than one statement per line, however, and statements 

can continue on another line. The first statement on a line may have a label 

placed at the left margin. In certain cases, indentation of successive lines 

is either permitted or required to define the scope of control clauses. Tabs 

are critical in some situations. 

The conceptual form is to permit the most normal mathematical 

terminology which could be devised within the limitations of the equipment 

and implementation technology. 

There are declarations for variable type and array dimensions. There is 

no explicitly defined smallest executable unit, although it is similar to state- 

ments in other languages. There is no real concept of grouping the statements. 

Loops are allowed and are often controlled by indentation. If two or more 

statements are written per line, they must be separated. A semicolon is used 

to delimit assignment statements, and a colon delimits control statements 

(i.e., conditional and loop statements). It is also possible to use a comma 

followed by a key word such as GO, LOOP, THEN, LET instead of a colon. 

The word AND may follow a semicolon which is being used to separate 

statements, and it will have no logical significance. 

A MADCAP function or procedure is essentially an independent sub-



IV.7.3. MADCAP 275 

program, 1.e., a block, although the procedure concept is not introduced 

into the main part of the program. 

Comments can be inserted almost anywhere and are delimited by black 

quotation marks. The comment cannot contain a quotation mark, and a line 

cannot end within a comment. 

There is no interaction with the operating system or environment, except 

through some powerful input/output facilities. There is a way of inserting 

machine language instructions at arbitrary points. A program consists of 

statements and procedures; the terminal marker for the program itself is 

punched on the Flexowriter. 

There are a number of data types permitted in MADCAP. Arithmetic 

variables and constants are defined as real, with no distinction between 

floating point and integer. Hexadecimal constants are permitted. There are 

no Boolean variables as such, but there are character strings which can be 

alphanumeric or bit patterns. Complex variables and string variables are 

permitted. There are no formal, list, or hierarchical variables. There is a 

matrix data type (with real elements only). Arrays containing arithmetic 

variables or matrices are permitted. Statement label is considered a data 

type. 

Through the use of set operations on the bit patterns, individual bits 

can be accessed. The rest of the variables or constants occupy one or more 

computer words. All the data types can be accessed by some command, 

but the string variables have only the operations of definition, equality, and 

concatenation (denoted by +). An entire array can be referred to as a single 

entity. 

Arithmetic is done in single- or double-precision. Complex number 

arithmetic is performed. Boolean arithmetic computations are performed 

as set theoretic operations; those available are union, intersection, subtrac- 

tion, symmetric subtraction, and complementation. (Since the customary 

symbols do not exist on the Flexowriter, red symbols for +, x, —, A, _ and’ 

are used, respectively.) Comparisons of equality are carried out on strings. 

Matrix operations of addition, subtraction, multiplication, inversion, and 

transposition are denoted, respectively, by +, —, x or juxtaposition, / or 

exponent —1, and red apostrophe. 

There is no distinction made between floating point and integer arith- 

metic. The real data type is a single-precision number with or without a 

fractional part. If a number with a nonzero fractional part is used as a 

subscript, then only the integer part is used. Expressions of mixed type are 

permitted and can contain real and complex or real and matrix elements. 

The simpler form is interpreted in an appropriate higher form; e.g., a real 

number R appearing in an expression with matrices is interpreted as a matrix 

with R along the main diagonal and zeros elsewhere. Obvious conversions 

are made for mixtures of double-precision and/or complex numbers.



276 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

Appropriate arithmetic is done for each parenthesized level; hence in the 

expression AX(B+C), if B and C are real and A is a matrix, the real sum will 
be computed and then converted to matrix form. While standard arithmetic 

operator precedence applies, the set theoretic operators have no precedence 

defined, so parentheses must be used. 

Mathematical expressions are formed in the normal way, except that 

juxtaposition (with or without a blank) can be used to indicate multiplica- 

tion; if there is any ambiguity because of coinciding with a key word, the 

compiler makes the determination from context. A number of special features 

are also available, e.g., displayed division, vertical lines for absolute value, 

a square root sign, sigma and pi symbols with the scope of the operation 

written as a subscript on the symbol, an integral sign, factorial using!, 

binomial coefficients shown in normal notation, and greatest integer using 

square brackets. 

The assignment statement can be written either with an equals sign 

or a right-pointing arrow. Thus, 

y=qsy = ytl 
and 

q>y; y+l7y 

have the same meaning. There is also an interchange statement written with 

two arrows; thus x«—y causes the values of x and y to be interchanged. 

In the second example above, the positions of /eft and right side are obviously 

reversed. It is possible to have several variables on the /eft side. Unlike most 

other programming languages, if the modes of the variables on the two sides 

differ, the one on the left is assigned the type of the one on the right, unless 

there is a specific declaration to the contrary. Thus, writing Z = 14.2 would 

cause Z to be assigned the real value 14.2, while writing (COMPLEX)Z=14.2 

would assign to a complex number Z the real part 14.2 and the imaginary 

part O. 

There are no direct character-handling statements, although characters 

can sometimes be handled by word-set operations (described below). 

Unconditional control transfer is designated by go to, followed by 
either a statement number or a variable taking on such values, e.g., go 

to #17 or go to r. A procedure is invoked by giving the procedure title 

followed by the arguments enclosed in parentheses, with the arguments 

preceding a semicolon called by value and those following called by name. 

A function call can appear within a statement or as a statement by itself. 

Procedure calls are separate statements. Recursive procedures are not per- 

mitted. 

There are many forms for the conditional control transfer. The one 

which is most similar to those in other languages 1s



IV.7.3. MADCAP 277 

IF condition: statement-] ; OTHERWISE: statement-2 next-statement 

This can also be written with indenting as 

IF condition 

statement-] 

OTHERWISE 

statement-2 

next-statement 

The statements can also be conditionals. The form of conditional transfer 

without the alternative path given is 

IF condition 

statement 

The words UNLESS, WHILE, or UNTIL can be used in place of IF. The con- 
dition following UNLESS is the negation of the one following IF. The 

WHILE causes recycling through the condition as long as it is true. The 

UNTIL has the combined effect of an UNLESS and a WHILE. Thus the following 

four examples are all equivalent: 

#5 if A>2 

B=C 

go to #5 

while A>2 

B=C 

  

  

#3 unless AS=2 

B=C 

go to #3 

until A=2 

B=C 

  

The conditional expression (1.e., condition) is considered a statement by 

itself and must be terminated by the end of the line, a colon, or a comma 

followed by an appropriate key word. The statement follows either on the 

same line or on subsequent lines indented one tab stop to the right of the 

condition. 

The condition can be one of many forms. In the simplest case, it consists 

of two expressions separated by one of the relations =, <, >, Ss, 2, 

#, ¢, }. (For label, string, matrix, and complex variables, only the 

equality and nonequality relations apply.) Another condition is congruence,



278 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

which can only be used between real numbers and is written expr-l=expr-2 

(mod expr-3); this permits such statements as 

if [k/2] = a2xmod 5), go to #24 

Another whole class of conditions are those involving the set theoretic 

operations of equivalence, contains, is contained in, 1s not equivalent, does 

not contain, and is not contained in (all between sets); and is a member of 

and is not a member of (between a real expression and a set). Other condi- 

tions allowed involve various machine status information, including sense 

lights and dials. 

The simple conditions above may be compounded using AND and OR; 

commas or semicolons may be used in place of the words when three or 

more phrases are similarly connected, e.g., (A, B, OR C) AND D and 

[A OR (B, C, AND D)] AND E. 
The looping facility appears to be more powerful and flexible than those 

available in other languages and it may be stated in many alternate ways. 

The range of the loop can be written on the same line if it 1s short enough; 

but since in general it is not, it is written on subsequent lines, each indented 

one tab from the loop-control statement itself. Since the range itself can 

contain loops, this will cause successive indenting to the right. In cases 

where the depth is variable or unspecified, a special notation 1s used. (Further 

details on the point of variably nested iteration can be found in Wells 

[WS64].) The loop statement is usually identified by the key word FOR and 

contains only one parameter. Its variations can be expressed in the following 

ways, where pis a variable, g and b are variables or constants, c is a variable, 

d is a constant, expr is an expression, cond is a condition, anything enclosed 

in square brackets is optional, a brace means to make a choice, and the 

three dots are actually written in the program: 

for p = a, atb, ... [expr] 
for p = a, a—b, ... [expr| 
for p = exprl to expr2 

for p = expr! to infinity 

for p = at+d], a+d2, ... [expr] 

for p = (exprl), (exprl)+a, ... [expr2| 

for p = a, at+(exprl), ... [expr2| 

for p = (exprl), (exprl)+(expr2), ... Lexpr3 | 
for p = d, dta, ... [expr] 

until 

for p = a, a—b, ..., except when ond 
while 

such that 

In the case where the final expression is omitted, the termination condition



IV.7.3. MADCAP 279 

must be handled from within the range of the loop. In the third and fourth 

cases, the increment is +1 unless expr] is a constant greater than expr2, 

which is also a constant. In the fifth case, the increment is d2—d]. 

In addition to the cases above, the parameter variation can be defined 

in terms of sets; in particular, 

for i in S 

for i in S' 

for x in (0, 5, 23, 99} 

for V Cc W 

for V C W' 

where V and W are sets and the ' denotes set complementation. Even a few 

more variations are possible, but they will not be listed here. 

There can be more than one parameter per loop-control statement; 

they are separated by , as e.g., 

for i = 1 to I, as k in S, as j = O, 3,... 

Each parameter is incremented simultaneously, so the loop terminates 

whenever a parameter reaches its terminal value. There is a significant 

difference between the form above, which expresses a single iteration, and 

the following, which expresses an iteration within an iteration: 

fori = 1 tol; k in S: A, = 2i 

In the range of the loop there are no restrictions against entry or exit. 

Furthermore, there is a loop back statement which causes control to return 

to the incrementing and testing part of the loop control from a point other 

than the physical end. Similarly, there is an explicit EXIT FROM LOOP 

statement. For example, 

for i = 3, 5, ..., 21 

a= b + ¢i 

if a = m, loop back 

if light 3 is on, exit from loop 

There is a very flexible input/output and format control system, with 

numerous commands provided to the user to cope with each of the various 

peripheral devices. Since the main interest of this language is in its two- 

dimensional notation and its flexibility in the control statements, there is 

nothing significant to be gained by a discussion of the specific input/output 

commands. However, the following is an example of a print statement: 

print by x: a, b + c, for n = O to [I:Ra, by ''M’: Mess



280 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

There is a library containing the basic mathematical functions, as well 

as others such as numerical integration. 

There are no debugging statements. There are some statements by 

which the programmer can control memory allocation. 

The program is stopped by use of the word STOP optionally followed 

by a label number which appears in one of the computer registers. 

The most unusual facility in MADCAP is its handling of set theoretic 

terms and concepts, the most significant of which have already been de- 

scribed. 

The only declarations are those involving arrays, data types, and the 

format. A subscript range statement defines the extent of arrays, e.g., 

subscript range: Do to 3, 0 to 11 

Variables are assumed to be real, unless they are declared otherwise. These 

declarations can be REAL, PRECISE (=double-precision), COMPLEX, MATRIX, 

LABEL, and STRING. Sets are declared by WORD—SET and SET. The user can 

specify the size of matrices by writing m COMPONENTS and the length 

of the strings by writing n CHARACTERS. Each of these declarations is 

enclosed within parentheses and written immediately preceding the variable 

to which it applies. 

Procedures and functions are declared through the use of the bracketing 

symbols 

(... and ) 

at the beginning and end, respectively. After the opening delimiter, the name 

of the procedure is given, followed by the names of the variables in paren- 

theses. The variables are separated by commas, with the call by value variables 

first and that list terminated by a semicolon. If the procedure (or function) 

will fit on one line, then it can be written this way: 

(... sum(a,b,c) = atb+c ...) 

The stop Y statement terminates execution of the program. 

The most interesting facet of the language relative to implementation 

is the necessity for linearizing the two-dimensional input. This is described 

carefully in Wells [WS61]. Essentially, an internal map of the external page 

is created and then the map is translated. One of the key problems is to 

reduce displayed division to a single line, which is done by inserting paren- 

theses around each numerator and denominator and replacing the corre- 

sponding line of underscores by the slash symbol.



IV.7.4. MIRFAC 281 

Although the language was originally designed for use with numerical 

scientific problems, the addition of the set theoretic notation and facilities 

has made it quite suitable for work with combinatorial problems. It is 

unfortunate that this feature, which is one of the significant technological 

contributions of MADCAP, has not been made available to a larger group 

of users. 

It appears that even though the COLASL character set is larger, the 

language specifications for it are much more complicated. This indicates 

that sheer improvement in the hardware is no panacea nor any guarantee 

of good language design. 

IV.7.4. MIRFAC 

The MIRFAC system, developed in England by Gawlik [GK63], is 

another language which aims at ease of programming through improved 

hardware and has objectives similar to those of other languages in this 

section. Very few details are given in the cited reference, but MIRFAC 

appears to be the simplest of this class of languages. Newer, but unpublished, 

material given in Gawlik and Berry [GK67] shows more detail and power 

in the language, but arrived too late for inclusion here. 

The machine is a Dura Mach 10 with a special sphere providing 88 

symbols and various editing operations which include the facility for print- 

ing subscripts and superscripts and recording that information on paper 

tape. The available symbols can be typed in red and black and are as follows: 

Alphabetical: a to z (lower case only), and 20 lower-case Greek 

letters (excluding 7) 

Numerical: 0 to 9, 7, 00 

Mathematical: + -—- x / += €# > < 2 Ss! ( ) 

(J) Lf) 14 72.~ dad f & 
Others: , x 

Note that —! is a single symbol and is treated as a letter by MIRFAC, 

with obvious simplifications of dealing with inverse trigonometric functions. 

The d is used with {, deletion is denoted by m, and * can be used as a suffix 

to a variable. There are a number of key words, most notably the commands. 

Variables are represented by English or Greek letters. Statement labels 

consist of integers because all MIRFAC statements must be numbered 

consecutively from 1 upwards; fractional numbers, e.g. 17.3 may be inter- 

polated. The symbol . always means a decimal point and may not be used 

for punctuation. The comma is used only for punctuation. Noise words are 

very definitely permitted because the basic philosophy is to have sentences



SAMPLE PROGRAM—MIRFAC 

  

Problem: Construct a subroutine with parameters A and B such that A and 
B are integers and 2 < A < B. For every odd integer K with A < K < B, com- 
pute /(K) = (3K + sin (K))'” if K is a prime, and f(K) = (4K + cos (K))'” if K 

is not a prime. For each K, print K, the value of f(K), and the word PRIME or 

NONPRIME as the case may be. 
Assume there exists a subroutine or function PRIME(K) which determines 

whether or not K is a prime, and assume that library routines for square root, 

sine and cosine are available. 

Program: 

begin 

1 print title sample problem for miss jean sammet. 

2 print 2 blank lines 

3 put Wa=word prime, Wo=nonpr ime 

4 set m=1, r=1, Po=2 

39 cycle for k from 3 to 100 

6 put n=m and k 

7 jump to line 18 if n=0 

rejects even k. 

8 enter section prime 

this section leaves s=-1 if k is prime and s=1 if k is composite. 

9 jump to line 14 if s=1 

10 f=v {3k+sink} 

11 p,=h 

add k to the list of primes 

12 add 1 tor 

13 jump to line 15 

14 f=v{4k+cosk! 

15 print k to 0 decs and f to 5 only 

16 print word | 

17 print 1 blank line 

18 take next k 

19 stop 

Comment: The material shown on unnumbered lines is actually typed in red 

on the input typewriter. 
  

282



IV.7.4. MIRFAC 283 

which begin with a verb and have all the necessary information as fixed 

words but in an arbitrary order. Thus find by newtons method the root 

near x=a of the equation is syntactically equivalent to find newtons method 

root near x=a Or find in the equation the root near x=a by newtons method. 

Note that this is an example of a very high-level command. 

The input has all statement labels starting in the same column, followed 

immediately by the statements, with a single statement per line. 

The smallest executable unit is also the only one, namely a sentence 

which begins with a verb in imperative form and contains one and only one 

operand together with whatever qualifiers are needed to define the required 

operation uniquely. The verb must appear first, but the other information 

can be in any order. (See the example given above.) The sole exception to 

beginning everything with a verb is in the assignment statements which can 

be of the form variable=. Loops are handled by using if or cycle statements. 

Comments are shown by typing in red, as are the names of mathematical 

functions. 

Data variables and constants can be numeric, alphabetic, or bit arrays. 

Juxtaposition denotes multiplication. The computer COSMOS on which this 

system runs has double-precision fixed point arithmetic. Computation 1s 

mixed number, with 40 bits on both sides of the radix point. 

The assignment statement is written in the form 0 = A + B, or 

set 02=2, w=1/3. However, the technique of writing 0=0@+3 is not per- 

mitted, and is replaced by add 3 to @. There are actually two kinds of 

unconditional control transfers, designated by the words jump and return. 

The former is used to go forward (i.e., to higher statement numbers), while 

the latter goes backward, thus permitting the compiler to check such state- 

ments. The most general form of return or jump instruction which 

MIRFAC will accept is of the form return [or jump] to line N if ARB 

where R is one of the comparison symbols =, #, >, <, >, <s. One 

illustration of a loop control statement is given by the use of the word 

tabulate in the two programs shown in Figure IV-24. Note that the print 

  

set a = 0 

d= fi 6 tan-! a dO 

print a@ to 3 figs and @ to 8 

add 0.1 to @ 

return to line 2 if a < 50 M
h
 
W
N
 

—
 

1 tabulate for a = 0(0.1)50 

@ = fi 0 tan-! a dé 

3 print & to 3 figs and @ to 8 

N
 

  

Figure IV-24. Two forms of the same MIRFAC program. 

Source: Gawlik [GK63], p. 547. By permission of Association for Computing 

Machinery, Inc.



284 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

statement shows the number of figures to be used and also permits differing 

variables to be printed to differing degrees of accuracy. 

All the mathematical function subroutines signal an error automatically 

if one occurs, e.g., if the user tries to take the square root of a negative 

number. 

The @ is used to correct punching errors; if an incorrect letter or symbol 

is punched, it may be followed at once by a m and then the correct symbol. 

Two black squares effectively delete the entire line. 

The system is used for mathematical work of various kinds, data reduc- 

tion, design automation (using a plotter), and information retrieval. 

IV.7.5. KLERER-MAY SYSTEM 

The system developed by M. Klerer and J. May at the Hudson Labora- 

tories of Columbia University for use on the GE 225 or 235 is another 

system with special equipment to permit ease of programming for solution 

of scientific numerical problems. Various descriptions of the system are given 

in the references listed at the end of the chapter. The designers here seem 

to be quite interested in general exploration of software-hardware methods 

which seem promising for increasing automation in the problem-solving 

process. In particular, a certain amount of teaching of the user is done by 

having the system print out the way in which it interprets the user input. 

Perhaps the most unusual characteristic of this system is the Reference 

Manual, which consists of one 84 by 11-inch laminated card printed on both 
sides and a one-page addendum, the latter primarily for on-line usage infor- 

mation. See Figure IV-25a, b, and c. When the manual was issued, there was 

insufficient evidence to indicate to the designers whether the two pages would 

be adequate. However, Klerer has stated that after more than three years 

of extensive usage in a scientific research laboratory environment, he feels 

that a one-sheet (two pages) manual is quite satisfactory for normal produc- 

tion programming.*° I feel that while this is probably true for the organization 

involved, it might not be true if the users were 3000 miles from the system 

designers and implementers and were lacking a more lengthy definitive 

language description. 

As with the other languages in this category, the other functional 

characteristics are insignificant except that the language designers were also 

heavily involved with the implementation. 

The original input device is similar to the one in MADCAP (see 

Section IV.7.3) in that it is a Friden Flexowriter modified so that subscript 

30 Private communication; April, 1967.



IV.7.5. KLERER-MAY SYSTEM 285 

SAMPLE PROGRAM—KLERER-MAY SYSTEM? 

  

Problem: Solution of n linear equations in n unknowns for n < 20. 

Program: 

MAXIMUM n=20. 

READ n. 

REAO Ay FROM jel TO n AND i=] TO n. 
J 

READ C, FROM i=1 TO n. 

io} 

Aas) yy 
K=1 
  FROM j=1 TO n AND i=1 TO n IF 13j THEN a, 5 oo) Bey OTHERWISE a = 

k=1 Oss 

4-1 

1) Os Vc 
FROM i=1 TO n COMPUTE y,= ——=+—______._ - 

O54 

n 

FROM i=n BY =] UNTIL 1<1 COMPUTE X,= 7, - 4X « 

kei+l 

PRINT 142}, X, FOR i=l, 2, 00, ne FINISH. 

fKlerer and May [KL6Sa], p. 66. 
  

and superscript positioning can be done automatically under keyboard, 

paper tape reader, or computer control. There are 88 typable symbols 

(which can be printed in red or black), consisting of 26 capital letters, 10 

digits, 14 lower-case letters, 18 Greek letters, and the following characters: 

Arithmetic operators: + — x / | 

Relational operators: > 2= < = = 

(with overtyping permitted, e.g., 4) 

Punctuation: ~ , € ) blank 

and 6 special characters. These latter, shown at the lower right corner of 

Figure IV-25b, have been very carefully designed to permit combining and 

hence the creation of symbols of arbitrary size. Even large-sized integral 

signs can be created. Not only can the newly formed symbols be recognized 

by the compiler, but the strokes can be typed in any order and need not 

be combined neatly; e.g., in typing a summation sign, the lines that make 

up the physical sigma as well as the indication of the limit can be typed in 

any sequence.



REFERENCE 

Vocabulary List 

ABS CARD END LN READ TANGENT 
ABSOLUTE CARDS EOF LOG RETURN TANH 
AND COMPUTE EQUALS LOOP REWIND TAPE 
ARC CONTINUE XP MAXIMUM ROUND THE 
ARCCOS = COS FILE MESSAGE SEC THEN 
ARCCOSH COSECANT FINISH MINUS SECANT TIMES 
ARCCOT COSH FOR OF SECH TO 
ARCCOTH COSINE FORMAT SIN 
ARCCSC §=s- COT FORMULA OTHERWISE SINE TRUNCATE 
ARCCSCH COTANGENT FRACTIONAL PART SINH TYPE 
ARCSEC COTH FROM PAUSE SLEW UNTIL 
ARCSECH CSC GO PERFORM SPECIAL UPPER 
ARCSIN CSCH HEADING PLOT RT VARIABLE 
ARCSINH CYCLE iF PLUS STATEMENT VARIABLES 
ARCTAN DIMENSION = INFINITY PRINT STOP WITHIN 
ARCTANH DIVIDED LABEL PROCEDURE SUBROUTINE WRITE 
BY DO LINE PROGRAM = SWITCH 
CALL ELSE LINES PUNCH TAN 

A period denotes the end of a statement or the end of an implied loop. 
Corrections can be made by overtyping or by pressing the control key 

ERASE when positioned over the error. 
Each program must be terminated by the statement END OF PROGRAM. 

or FINISH. 
More than one statement per typing line is acceptable. 
To continue a statement beyond the maximum typing length for one line, 

press the carriage return as many times as desired. 
Names of variables with more than one character should be defined by a 

SPECIAL VARIABLES statement before use. 
A comma or the word AND may be used to separate computable state- 

ments. 
FROM i=1 TO 10 COMPUTE A;=B;+Cj4,, C;=Ai+,X AND D=SING;. 

Superscripts and subscripts must be in straight line form but forms such 
as (A*)? are permissible. 

Examples of Acceptable Forms 

The letters E, F, G denote an arithmetic expression, e.g., E may denote 
the expression A + 2B + i, otherwise a single variable is meant. Braces 
1 { denote a choice of forms. Square Brackets [ ] denote those forms 
that are optional. 

Note: The horizontal extension 

of the lower limit equation and 

upper limit expression should 

not exceed the corresponding 
arms of the sum symbol. The 

operand of the sum should be 
outside the symbol. 

F F 

Qh 

Ay Ac Ags Ac or 

i= 

i ve 
1, JjxE 

DIMENSION A=(N,M). 
This indicates that A is an (N+1) by (M+1) array 

DIMENSION B=40, Z=30, Q=(10, 50). 
SPECIAL VARIABLE [S}] = DIMENSION 

SPECIAL VARIABLES TEMPERATURE, HUMIDITY, PRESSURE, 
COUNT, LBJ=(14, 200), ay=10. 

UPPER is used in the same manner as DIMENSION and SPECIAL 

VARIABLES except that the indicated arrays are stored in upper memory. 
UPPER C, WEIGHT =56, K=(20, 30). 

MANUAL 

Subscripted variables need not be dimensioned when used in forms such 
as: 

(1) Aik = 85 Qi,k FOR k=0(2)20 AND i= 1 TO5 

or 

(2) MAXIMUM n= 10, J= 15 

Aix = Bi Qik FOR k=4,5,.. 

UNTIL n. 

(3) ay, “T | cy, 
1,J=0 

* (a) READ TAPE C, 2, 2, 10. 

WITHIN i=0 BY 3 

FROM i-E(BY F] tune G 

FROM i =E TO G (Unit steps assumed) 

FROM i =N BY 2.34 UNTIL A+B 
FROM A=B+5 BY 2 UNTIL Q>20 

FROM i =E TO INFINITY 

Note: Any number of dots per- 
missible but no extra spaces 

FOR i=-1,2,...,5 before terminating comma. The 
FOR j= 5(10)55 difference between the first 
FOR i-0,.5,...,7-5 two numbers specifies the in- 

crement in the first FOR form. 

FROM or FOR forms can be used either to begin or end a statement. 

C;=A;= iB; FROM i=1 TO 10. 
FROM i=1 TO 10 COMPUTE A;=iB;. 

TO _ _ 
DO [uve | = LOOP[ ]=CYCLE[ } 

DO STATEMENT 5 FROM J=1 TO 10. 

This indicates that all statements up to but not including 5 will be 
executed. (No two LOOP statements should terminate at the same 
statement number. Otherwise, any number of LOOP procedures within 
or external to other LOOP procedures is permitted.) 

FROM=WITHIN=AND 
FOR ¢=0,5, ..., 90 WITHIN r=1 TO 10 AND o=1 TO § LOOP TO 

FORMULA 6. 

The loop to be performed most often is the first one; the least often is 
the last. 

READ = READ CARD =READ CARDS 
READ A; FROM i=1 TO A,>15. 

Card Format is free field; number of data points may vary from card to 
card and may be in either fixed or floating point form. 

READ X. 
READ A;, Bj4, FROM i=E UNTIL Aj = 93.643. 

Data may be punched into cards in the following forms: 
2 -2 1.596 +3.213 ~4.60 2.78T2[=2.78x10"] 
2.78T—2=2.78x1077] 2.78E—3[=2.78x10~*] 

Each datum should be separated by at least one blank space and the 
value should be within +102’* and not exceed nine significant digits. 

  

Example Three Alternate Formulations Of The Same Problem 

Cun], On15. £a3. Fel. Ge2. Mul. MAXIMUM n=20. DIMENSION x=20, ya20. MAXIMUM Wis20, 

FROM rel UNTIL 4 COMPUTE B,=5-n. READ n. ae0, READ o. READ W.  p=0. 

PERFORM Her FOR rel UNTIL 5. READ Ay, B, FROM 1-0 TO n. FORMAA 1. READ x, ¥,- FROM Xe0 TO W READ uy, Vy- 

awatl. IF asw GO TO FORMULA 1. 0O FORMULA 3 FROM x90 TO W. 
4 4 4 

(8, > *%) a Teas] . 
A= 4 +M . = Jet 

  
= e+ — PRINT X. FINISH, 

PRINT A, 

FINISH, 

Sea=O. STATEMENT 1. fea, Pel. onl. 

STATEMENT 2. PePxgy,, Babel. FROM Yex TO W COMPUTE secuyvy- 

IF BSw THEN GO TO STATEMENT 2. paptu,o. 

FORMAA 3. 

ENO OF PROGRAM. 

SeS+Px, AND aea+l. PRINT p. 

1F wea GO TO STATEMENT 2. 

PRINT S. END OF PROGRAM, 

Figure IV-25a. Page 1 of the Klerer and May Reference Manual. 

Source: Klerer and May [KL65b]. 

286



PRINT X,i TAL Y,tA.BI, Z;- SIN(6;+Yi) FOR i=1,2,...,N. 
PRINT E, F {A.BI, X=GIAI. 

PUNCH E, F 1A.BI, X= GIAl. 

A and B are integers between 0 and 9 but their sum may not exceed 9. F 

and Y; will be printed (or card punched) with A places to the left of the 

decimal point and B places to the right. The value of G and i will be 

printed (or card punched) as an integer of A places. G will be stored in X. 

E, and Z; will be printed (or card punched) in floating point form. 

PRINT Y=E {A.B.Cl. 

Same as above except that E is first divided by 10° to change its range. 

In the print statement a maximum of 8 expressions (including a blank 

between commas) are allowed. Each is centered in a 15 position field. 

PRINT LABEL A, COUNT, X-Y, SIGMA (J). 

PRINT LABEL =LABEL = HEADING = PRINT HEADING 

Each label, separated by commas, in a PRINT LABEL statement may 
be up to 15 characters in length and will be printed in a 15 position 

field. A maximum of 8 labels per statement is permitted and should 
contain only those characters used on the high-speed printer. 

The PRINT FORMAT statement may be used when it is desired to mix 
literals and answers or to have more than 8 answers per line. 

PRINT FORMAT n, E, F, X=G. 
FORMAT nv LLL...L xxxx LLL...L x.xx y. 

n is an integer of up to four places, LLL stands for any literals that are 

printable on the high-speed printer. Small x’s are used to denote the 

actual position and number of digits of fixed point quantities while one 

small y is used for each floating point quantity. The first set of x’s 

denotes the first expression/equation/variable mentioned in the PRINT 

FORMAT statement, the second set of x’s denotes the second expres- 

sion...etc. FORMAT statements may be located anywhere in a program: 

PRINT FORMAT 12, 6;, SIN 0;, 4; = a FROM i=1 TON. 

FORMAT 12 ANGLE (RADIANS) =y SIN THE TA =x.xxxx AND THE 

ANGLE IS xxx DEGREES. 

If 6;=37/4 then the following would be printed on the high speed printer: 

**ANGLE (RADIANS) = .23561945 1 SIN THETA = .7071 AND THE 

ANGLE IS 135 DEGREES.”’ 

SLEW N (Printer paper spaced N lines) 
SLEW [[TO]TOP] (Paper will advance to top of page) 

Messages on the typewriter or printer are printed using the following forms: 

TYPE NEGATIVE SQUARE ROOT. 
PRINT MESSAGE (END OF PROGRAM) AND SLEW. 

IF F=G THEN GO TO STATEMENT 1. 

IF F=G GO TO STATEMENT 1. 
IF F=G THEN B=C+E. 
IF F=G THEN READ... . 

IF F=G THEN CONTINUE. 

E evse | Hy IF F=G THEN... Go To 
forsee COMPUTE ... 

Examples of multiple conditions: 
COMPUTE... 
READ a 

IF r=5 OR G<H OR SIN 6;>8’° THEN § C=D Wee 
GO TO FORMULA 3 

CONTINUE 
IF P=G AND H>¢/2 AND... 

IF U=O OR (G=r SIN @ AND HS Cw)... 

IF E<FSG THEN... 

1) COMPUTE A=B8+2, (IF i=j THEN (IF m=n THEN T=r SIN 6) 

OTHERWISE T=rCOS @) and PRINT T, A. 
2) COMPUTE A=B+2, (IF i=j THEN (IF m=n THEN T=r SINO 

OTHERWISE T=rCOS @) and PRINT T,A. 

In case 1 T=r sin 0 if i=j and m=n 
T=r cos @ when i#j 
T is not computed when i=j and mén. 

In case 2 T=r sin 6 when i=j and m=n 
T=r cos 6 when i=j and mén 
T is not computed when i#j. 

GO=GO[TO]} 
GO TO STATEMENT 20 

PAUSE will cause the object program to go into a loop. Exit out of 
the loop will occur if console switch No. 0 is toggled. 

Comments (non-computable statements) are entered between {| { symbols. 

FROM i=1 TO 10 READ X;{READ VALUES}. 

Yli,jl=i+ 12]. 

Use of the next forms eliminates the necessity of using ““DO"’ or ‘‘).OOP” 
statements. Computable sub-statements within an implied loop are 
separated by a comma or AND. 

FOR i= 1(1)50 AND k=0 BY 2 UNTIL Y > 2000 READ Xix, 

COMPUTE Y= 2X;,, AND PRINT Y. 

FROM i=1 TO INFINITY READ X,, IF X;410 COMPUTE Y-Y+X,, 

n=n+2 OTHERWISE GO TO STATEMENT 1. 

Superscripts that are red are used to form new characters rather than be- 
ing interpreted as exponents. The following is a short program to deter- 
mine the maximum absolute value of a set of positive numbers \. 

oa 
FROM i=1 TO 100 IF |X;|>X™4* THEN XMAX= |X), fred) 

In the following magnetic tape commands L is the number of elements in 
the array V, T is the tape number and P is the controller (plug) number. 

READ TAPE V,, T, P, L. The first L elements of the tape record is 

read into locations V, to V,.;. 
WRITE TAPE V,, T, P, 5. (Locations V2 — Vg ave written on tape) 

REWIND T, P. RWD T, P. 
WRITE END OF FILE T,P. EOF T P. 
IF END OF FILE P THEN... IF EOF PGOTO... 

In the following example Y is the variable to be plotted, X is the ‘‘inde- 
pendent index’’ (i.e. Y=f(X), A=the minimum value of Y and B=the 
maximum value of Y. 

PLOT Y, X, A, B. PLOT Z;, i, 0, 1 FROM i=1 TO 5657. 

EXAMPLES 

READ A,, COMPUTE Ye sy AND PLOT Y, 4, -1, 1 FROM 1=2 
A 

UNTIL Y>1. 

1F a>k COMPUTE xm /(a-k)d , YeB, jX#CyT AND PRINT Y, 

a, T, k, OTHERWISE COMPUTE xe2ak, YeB, ,x4CoTA AND PRINT Y, 
a, T, k FROM a=) TO n WITHIN Te2 BY .O1 UNTIL 3 AND FOR 

i0=0(5)90. 

FROM 11 TO 10 AND Jul TO 10 READ Ayy, 

COMPUTE By yoAy #Xy4¥) AND PRINT Ay yy By ys Xyo Vyo 2, Je 

FOR rel, 2, ..., 10 AND FOR Ge-1(.01)5 COMPUTE S.=rSINZe, 

C= \/r cos te, Ant, = 

TT LOG.e 
2 

‘= a 

A+ z gel eee 

IF (X2¥ AND y>0) OR | 42=-7/e | > (x-¥)? THEN COMPUTE 
Tyyr7 (eng)? AND We(YTy)T® AND PRINT Wy Tyys Xe FROM 
y=2k+3 BY .Olt UNTIL W>5800 AND FROM X=1 TO 100 

OTHERWISE GO TO STATEMENT 2. 

TAN(.199@), 

oe 

AND PRINT r, 0, V_, As 

To define a procedure within a program: 

SUBROUTINE (Name) 
- ++. PROCEDURE AME). cece cece eer ec cece eee e ence eeeees 

RETURN .... [END [(Name)] Eesti 1. 
PROCEDURE 

The name of a subroutine can be an alphanumeric string of any length 
but must begin with an alphabetic character and cannot be identical to 
any item in the vocabulary list. As many RETURN’s as desired may be 
inserted to branch out of the subroutine back to the main program. The 
END statement is optional. A STOP or GO TO should precede sub- 
routines. 
To coll a procedure: 

w. CALL (Name) estes _ 
PROCEDURE 

Relative Positions of Special Characters 

co ~~ - _ —_ - - -_ AN CIMT) 
i7tsruate bot + t tf an | ' 

wwJ Lo Ce Ud led OL OL a | 

Suggested Reference Citation: 

M. KLERER and J. MAY, REFERENCE MANUAL 
Columbia University, Hudson Laboratories 

Dobbs Ferry, New York 
Revised Edition July, 1965 

This work has been supported by the Office of Naval Research and 
the Advanced Research Projects Agency under Contract Nonr-266(84) 

  

      

Figure I[V-25b. Page 2 of the Klerer and May Reference Manual. 

Source: Klerer and May [KL65b].



ON-LINE FLEXOWRITER USE 

To input, turn on the Flexowriter punch and set console 
switch 5 down. For on-line input/output at run time, set 
console switch 8 down. After the computer types "what mode" 
you may reply with "START.*. Start typing your new program 
after the computer types "ready". (Anything typed between 
a period and a carriage return or between two carriage 
returns is defined as a "Statement segment"; anything typed 
between two periods is defined as a "statement". Typing 
"START." anytime during program input will cancel the 
current program and permit a new program input.) 

TAB 

Pressing the "TAB" key omits or “erases" the current 
Statement segment (which may not be complete). 

  

OMIT 

Typing "OMIT." omits the previous statement or all previous 
statement segments. "OMIT. OMIT." omits the previous two 
Statements, and so on. 
Exampie: 

A=B. C=D, E=F. OMIT. G#H, (carriage return) 
IeJ "TAB" K=L. Q=R, (carriage return) 
OMIT. M=N. FINISH. 

The remaining program is: 

A=B. G=H, K#=L. M=N. 

Computer error analysis and interpretation of ambiguous 
Statements will be typed on the Flexowriter. You may 
retype the corrected statement after the computer message 
has been typed. 

READ 

When input data is expected by the program, the word "INPUT" 
is typed, and the data may be typed in any of the linear 
forms used for card input. Corrections may be made in the 
usual manner. Pressing the "TAB" key erases the entire 
line of data. The input data is terminated by pressing 
the carriage return key. 

  

IMAGE 

“IMAGE” and ''FORMAT'" are similar but for the fact that an 
"IMAGE" may be any two-dimensional construction. As in 
"FORMAT", output data is represente y small x's for 
fixed point and a Small y for floating point format. The 
left-uppermost output data fields are given precedence. 

Example. i 

PRINT IMAGE 1, A, B, §, i, ) r, i, J 
x r=0 

A _ XXX.XX L 
IMAGE 1 B” xx.xxx > ¥ ) 

    

  

r=xxx THE SQUARE ROOT 
— OF x EQUALS y. 

r=0 

Note: The "IMAGE" is not permanently stored with the 
object program and therefore the program must be run 
immediately after compilation. 

All other output which usually goes to the printer or 
typewriter is aiso typed on the Flexowriter, i. e., PLOT, 
PRINT, PRINT FORMAT, PRINT LABEL, etc. 

Pressing the "carriage return" key answers all toggle 0 
requests and overrides the PAUSE instruction. 

The program may be interrupted in two ways during execution. 
(1) Press the tape feed button to restart the program. 
(2) Press the stop-code key to stop execution and call 

the compiler. 

LIST 

A listing of the system's interpretation of your entire 
program or "old" program segment may be obtained by 
typing "LIST." anytime. Typing "LIST Axxxxxx.", where 
x may be 0-9 or brank- Starts the listing at statement 
Axxxxxx. You may interrupt listing by pressing the 
“"tape-feed" button. The listing will terminate upon 
completion of the typing of the current statement. 

  

EDIT 

Typing™EDIT."at anytime allows the editing of the "old" 
program, where rota refers to any statements typed after 
the word START or the last program compiled. Statement 
numbers of the compiled program begin with A000010 and are 
stepped by 10. After editing and compiling, all statement 
numbers are readjusted so that the stepping increment in 
the statement number is again 10. 

  

FINISH 

Typing "FINISH.'' causes the edited or listed program to 
be compiled. The last compiled program is always available 
for editing or listing. 

INSERT 

To insert a statement or a set of statements after statement 
A000030, for example, type “INSERT A3Z.™ followed by the 
statement(s). To insert a statement(s)} at the beginning of 
the program, i.e. before statement A000010, type "INSERT 
A4."" followed by the statement(s). 

  

REPLACE 

To remove or replace statement A00Q0050, for example, type 
“REPLACE A0OS0." followed by the statement(s) if any. Note 
that to remove statements 40, 50 and 60, for example, you 
may type either "REPLACE A40. REPLACE ASOQ. REPLACE A60." 
or more simply "'REPLACE A60. OMIT. OMIT.". 

Example 

what mode 

START. 
ready 

SLEW. FROM i=1 TO 3 PRINT i. 

C=D. FINISH. 
.10000000 1 
. 20000000 1 
. 30000000 1 
what mode 

LIST. 
A000010 slew 
A000020 from i=1 to 3 print i 

A000030 c#d 
ready 

EDIT. 
ready 

REPLACE A20. FROM i=l TO 6 PRINT i. 
INSERT A31. E#F. GeH. K=L. LIST. 

A000010 slew 
A000020 from i=] to 6 print i 
A000030 
A000040 e=f 
A0000S0 g=h 
A0N00060 k=1 
ready 

FINISH. 
.10000000 
. 20000000 
. 30000000 
.40000000 
- 50000000 
- 60000000 
what mode 

n 8 
e
e
 e
e 

OFF-LINE USAGE 

To edit a program off-line by paper tape, set console 

switch 18 and read in the program tape. When the paper 
tape has been read in "toggle 19" is automatically typed 
on the console typewriter. Place new paper tape 
containing additions and correcticns in the paper tape 
reader and toggle switch 19. After all corrections 
have been read in, lift switch 18 and toggle 19 to 
compile the program. Note that each time switch 19 is 
toggled a revised program listing is printed. All 
editing should refer to the last (most recent) revised 
listing. 

To define a function: 
~ 

Name / =f£ 
Name (X,Y,Z,...) . 

E may include previously defined functions. X, Y, Z,... 
are dummy variables local to the function definition. 

2 arguments of the function name, if any, may include 
a replacement operator. 

FUNCTION 

  

To call a function: 

Name 
Name (F,G,..) 

Examples: 
(Definition) FUNCTION Q(X) = + } 2 

FUNCTION R(X,Y) XY + O(xY*) 

FUNCTION H = A + B SINE 0 

A = 3 9(2) + R(U+V, TAN H 

x2 

(Calls} 

B = Q(R(Q(m), H)) 
N Y 

= ) >; OF (x) 4% c = XQ (x) L Q 

The range of FOR and FROM statements may be delimited 

by parentheses. 

  

Suggested Reference Citation: 

Working notes addendum (Jan. '66 edition) to: 

M. KLERER and J. MAY, REFERENCE MANUAL 
Columbia University, Hudson Laboratories 

Dobbs Ferry, New York 
Revised Edition July, 1965 

  

    
Figure [V-25c. “Addendum” to the Klerer and May Reference Manual. 

Source: Klerer and May [KL66]. 

288



IV.7.5. KLERER-MAY SYSTEM 289 

A data name consists of a single character, unless defined by a SPECIAL 

VARIABLES statement which permits any number of characters. Statement 

labels are optional and are defined by writing either STATEMENT N or 

FORMULA N, where N is an integer. There is a large list of key words but 

there 1s obviously no conflict. 

Two subscripts are permitted and can be written with or without a 

comma between them, but the subscripts cannot be subscripted. An interest- 

ing situation occurs in writing something of the form A,; because this can be 

interpreted as implied multiplication of the j and j or two different sub- 

scripts. The compiler makes a determination based on context and then 

notifies the user as to which choice is being made. 

Superscripts are interpreted as an index if typed in red and as an expo- 

nent if typed in black. This permits extension of data names without the 

need of explicit definitions. 

A period is used to denote the end of a statement, a sequence of state- 

ments, or an implied loop. Commas are used between numbers or items 

in a list and to separate statements causing computation. The words AND 

or WITHIN may also be used to separate computational statements. Blanks 

are critical in a number of places, including within a FOR statement. Wher- 

ever one blank is permitted, any number can be used. 

The physical input form is free form with more than one statement 

per line. To continue a statement beyond the maximum length of a line, 

only a carriage return is needed. A new statement can start on the same line 

as the termination of another. 

As indicated repeatedly in this entire section, the conceptual form for 

this language is naturalness with respect to mathematical notation, the 

language, and the connectives that are needed to combine expressions. 

The smallest executable unit is a statement. A statement can be preceded 

or followed by FROM or FOR statements. Certain statements can be combined 

into a larger statement, which can conveniently be called a sentence. Loops 

can be stated and controlled in three ways. 

Standard mathematical elementary functions are provided. Subroutines 

(=procedures) can be defined but there are no formal parameters; they are 

global and the values are transmitted from the program. Functions with 

formal parameters can be defined. 

Comments are permitted anywhere in the text by enclosing them in 

braces. 

Executable statements can be terminated by either a period, a comma, 

the word AND, parentheses, brackets, or a space. The end of the program 

is denoted by the word FINISH or the phrase END OF PROGRAM. 

The only data variables are arithmetic and all computation is done in 

floating point. Juxtaposition or an explicit multiply sign is used for multipli- 

cation.



290 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

An assignment statement is designated either by a variable name to the 

left of the equals sign (e.g., A=B+3) or by preceding the statement with 

the word COMPUTE (e.g., COMPUTE A=B+3). 

The unconditional control transfer is written as GO TO FORMULA N 

or GO TO STATEMENT N. Functions are invoked by writing them in expres- 

sions. Subroutines are invoked by writing CALL Subroutine-Name anywhere 

in the statement. The conditional statements are quite flexible. One form is 

represented by 

IF A rel B rel C THEN S; ELSE S2 

where rel is one of the relations <, <, =, >, 2, and S, and S, can be 

one of the statements Y=..., READ, COMPUTE, GO TO, CONTINUE, or 

IF; OTHERWISE can be used in place of ELSE. Parentheses may be used to 

define the scope of subsidary JF statements. More complicated logical 

expressions can be used, thus allowing something of the form IF B-expression 

THEN S, ELSE S, where B-expression is any combination of relations 

separated by AND and ORs. Parentheses (rather than precedence rules) 

are used in case of ambiguity, e.g., IF A=G OR (E<S AND C<D<F) THEN 
(IF Q=R SIN?0 THEN P=Q) ELSE P=R COS260. 

Loops are controlled in one of several ways, namely through the 

FROM, FOR, or DO statements. The words FROM, WITHIN, and AND 

are functionally equivalent and are used to define a loop whose range is 

exactly the sentence containing the loop specifications. The words DO, LOOP, 

and CYCLE are equivalent to each other and to conventional loop control 

statements. The parameter and terminating information can be controlled 

in several ways as follows: 

FOR var = Ist-value, Ist-value + increment, ..., final-value 

FOR vor = Ist-value (increment) final-value 

FROM var = Ist-value [BY increment] TO UNTIL }terminal-condition 

The terminal-condition can be either equality with a variable or a constant, 

or a conditional expression such as Q@>25. The values need not be integers. 

The implicit loop phrase can be “anywhere meaningful” within a statement. 

As illustrations, the following are all equivalent: 

C, = An + 5S FROM n = 4 BY 2 UNTIL 12 

FOR n = 4, 6, ... , 12 COMPUTE C, = A, + 5 

C, = A, + 5 FOR n = 4 (2) 12



IV.7.5. KLERER-MAY SYSTEM 291 

A DO statement permits designation of a range, e.g., DO STATEMENT 5 

FROM J = 1 to 10. means that all statements up to but not including 5 

will be executed. There is a restriction that no two loop statements should 

terminate at the same statement number; otherwise, any number of loop 

procedures within or external to other loops is permitted, e.g., FOR 

A=0, 5,..., 90 WITHIN R = 1 TO 10 AND B = 1 TO 5LOOP TO FORMULA 6. 

The loop nesting is from left to right; 1.e., the first one is performed most 

often. 

The input statement is READ, and it can be used for cards or magnetic 

tape. One acceptable form permits specification of subscript ranges such as 

READ Aj, B; FROM i=E UNTIL A;=17.2. The data can be on cards in 

fixed or floating point without any predefined format except that each 

number should be followed by at least one blank space. 

Output commands include PRINT, PUNCH, PRINT LABEL, SLEW, TYPE, 

PLOT. In some cases the formatting information may be provided within 

the PRINT statement; in other cases it can be specified by a format statement 

permitting two-dimensional output. The latter allows output which is an 

image of the format statement. The user can specify fixed or floating numbers, 

but most importantly vertical control can be specified. In addition, com- 

puted labels may be inserted within constructed pictures formed by the 

special type characters. 

Computation and looping can be included in the PRINT statement, e.g., 

PRINT X, i{A}, Y;, {A.B}, Z;=SIN(@;+Y;) FOR i=1, 2, ..., N. The SLEW 
command provides control of the printer paper. Specific messages can 

be typed using either the word TYPE or the word PRINT followed by the 

message. There is also a simple plotting command, namely PLOT Y, X, A, B 

where A and B specify the minimum and maximum of Y, respectively, as 

a function of xX. 

Standard mathematical functions are available. 

The only declarations available are the DIMENSION, MAXIMUM, and 

SPECIAL VARIABLES. The former need only be given when the information 

is not otherwise deducible from the program. For example, if a statement 

in the program says READ X; FROM i=1 TO 500 then there is no need 

for a DIMENSION statement. In special cases, a DIMENSION statement might 

be needed. Where explicit dimensioning is desirable for several arrays, all 

of which have the same dimension, this can be more easily handled through 

a declaration which is of the form MAXIMUM var), varz,..., Var, = integer 

where var; is the array name. A discussion of cases which do not require 

explicit dimensioning and the implementation technique involved is given 

in Klerer and May [KL67]. Names of variables with more than one character 

can be defined by writing, for example, SPECIAL VARIABLES, HOT, AIR. 

Subroutines are defined by writing the word SUBROUTINE or PROCEDURE, 
followed by the subroutine name (which cannot be one of the key words),



292 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

followed by the body of the subroutine. The word RETURN is used to indicate 

each branch back to the calling program; there can be as many as needed. 

There are several options for indicating the end of the subroutine. 

While there are no specific debugging statements in the language itself, 

there are some separate ones for use with batch and on-line programming. 

The system is designed to provide the user with a significant amount of 

information. In particular, because the user can write statements which have 

more than one interpretation, the system prints out in a modified language 

the particular interpretation that has been given. The user can then decide 

whether the system has chosen the correct meaning. For example, in Figure 

IV-26, there are a number of ambiguities. Not only is A; ambiguous, but 

the argument of SIN might be A or A COS B. Similarly, the argument of 

CSCH— is either A or A—L but which is not obvious. In the summation 

statement, it is not clear whether M is within the summation or not. In this 

particular instance, the system interprets L and M as outside the argument 

of the CSCH~! and the sigma, respectively, but it does interpret Aj as a 

two-dimensional array. In differing contexts, different decisions might be 

made by the compiler. Thus every attempt is made to provide the user with 

reasonable information and judgment. 

Y=SIN A COS B, 

- “1 A Z=SEC TAN BB° 

A=CSCH7! A -L, 

C=A/2B. 

D=Cos3"—24 ~ 3.6 e%. 

E=LOG,, .,4P* + = 
ek+1 2° 

Figure IV-26. Example of expressions with ambiguities in Klerer-May system. 
Source: Klerer and May [KL65a], p. 70.



1V.7.5. KLERER-MAY SYSTEM 293 

THIS IS THE WAY WE INTERPRET YOUR STATEMENTS, 

IF ANY ARE INCORRECT PLEASE RETYPE THE STATEMENT CORRECTLY, 

aoeool XsA SUB (I,J) 

ade002 YeSIN(ajeCOS(B) 

ado00s ZESECCARCTAN(((A)/(20B)))) 

aoo004 ABARCCSCHLA) oL 

ado005 BsSuUM WITHIN (£100,181) OF (a SUB (1)e8 SUB (I) J) eM 

400006 C8A/2eB 

a0c007 De(COS(T))] RAISED TO (3eNnNe2)-3.6eE RaISED TO [{X)} 

a0o008 EsLOG(4eP RAISED TO (2))/LOG(2eKeL}4¢(P13/(2)) 

FINISH. 

Figure [V-27. Interpretation of ambiguities in expressions shown in Figure 

IV-26. 
Source: Klerer and May [KL6Sa], p. 71. 

This system has been designed as a compromise between maximum 

user ease and reasonable efficiency in the compiler. Illustrations of some of 

the tradeoffs are as follows: The restriction on variable names to one charac- 

ter unless specially indicated; if a variable has not been predefined, then the 

system assumes that its initial value is zero; superscripts are distinguished 

from exponents by typing the superscript expression in red; comments are 

enclosed in braces. The authors state that these are not necessary restrictions 

and they could have been avoided but at the expense of a more elaborate 

translator than they wanted to construct. On the other hand, the flexibility 

in statement formats and sequencing allows the user great freedom in what 

he writes. Some of the restrictions in the current version will be eliminated 

in future implementions. 

Among the significant contributions to the technology made by this 

system are (1) the generality of the two-dimensional input/output; (2) the 

analysis and handling of ambiguous source language statements; (3) elimina-



294 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

tion of the requirement for many of the normal dimension declarations; 

and (4) the minimal size of the manual relative to the power of the language. 

In connection with the manual, the reader may wonder why a text 

description of this length was needed. A careful study will show that some 

of the syntactic information in this book is either not shown in the manual 

or is at best implied by examples. However, the requirement for user- 

learning by system interaction is a deliberate design philosophy. More 

specifically, the designers state 

Thus, except for what is outlined in... {the reference manual] we are 
asking the user to “play the game” without first telling him all the rules 
of the game. He learns whatever rules he needs depending on the type of 
game he plays, i.e. the type of problem he presents. In the first place, 
the immediate output of the system is a detailed presentation of how the 
system interprets his presentation of the problem. If the system inter- 
pretation is in disagreement with the intention of the user, then the output 
indicates that he should retype the questionable statement (to which the 
system assigns a code number) in a more explicit form.*! 

IV.8. MISCELLANEOUS 

There are a few languages and/or concepts which seem worth mention- 

ing very briefly, but they do not conveniently fit into one of the preceding 

sections. Hence they are lumped together here in a miscellaneous section. 

IV.8.1. CORC 

CORC is an experimental language developed at Cornell University 

to run on the Burroughs 220 and the CDC 1604. Although conceptually 

derived from FORTRAN and ALGOL, it really bears no relation to them 

since its objective is to be as simple as possible for students and inexperienced 

people. A key feature in the overall system is a very powerful error-correcting 

facility in the compiler. 

In addition to the letters and digits, the following 11 characters are 

used. 

+ —- * f/f $ = ()., blank 

There are 43 reserved words. Data names and statement labels each can 

consist of up to eight nonblank characters and are terminated by a blank 

or special character. All arithmetic is done in floating point, although 

31 Klerer and May [KL64], pp. 291-92. By permission of Association for Computing 
Machinery, Inc. .



IV.8.1. CORC 295 

numbers can be input with the decimal point in any desired place. Variables 

can have one or two subscripts, and subscripts can be nested to any depth. 

The relational operators allowed are EQL, NEQ, LSS, LEQ, GTR, and 

GEQ. 

All executable statements start with a key word. The assignment state- 

ment starts with the word LET. In addition, the statements 

INCREASE variable-name BY expression 

DECREASE variable-name BY expression 

can be used, and the abbreviations INC and DEC are permitted. 

Control transfer is designated by GO TO statement-name. The con- 

ditional control transfer is one of the following forms, where R is one of the 

relations listed above: 

IF expr-] R expr-2 THEN GO TO statement-] ELSE GO TO statement-2 

IF expr-la RI expr-lb AND expr-2a R2 expr-2b...AND expr-na 

Rn expr-nb THEN GO TO statement-] ELSE GO TO statement-2 

IF expr-la RI expr-lb OR expr-2a R2 expr-2b...OR expr-na 

Rn expr-nb THEN GO TO statement-1 ELSE GO TO statement-2 

Loop control can be accomplished by using one of the following forms: 

REPEAT label expression TIMES 

REPEAT label UNTIL expr-la RI expr-Ib AND expr-2a R2 expr-2b... 

AND expr-na Rn expr-nb 

REPEAT label UNTIL expr-la RI expr-Ib OR expr-2a R2 expr-2b... 

OR expr-na Rn expr-nb 

REPEAT label FOR variable = expr-], expr-2, ... , expr-i, expr-j, 

expr-k 

where the latter is a triplet as in the ALGOL for statement. The label which 

appears in the REPEAT statement is used to define a closed subroutine, 

delimited by BEGIN and END using the same label with each. The user writes 

label BEGIN 

body of subroutine 

label END 

These subroutines can only be invoked by the REPEAT statement. There is



296 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

no direct parameter passage, and each variable name has the same meaning 

throughout the program. 

READ and WRITE statements provide for input and output of variables. 

Comments are denoted by NOTE, and the program ends with a STOP state- 

ment. A TITLE command causes the printout of the remainder of the card 

and continuation cards. 

The user is required to declare al/ his variables at the beginning of the 

program and to specify the dimensions for the subscripted variables. 

IV.8.2,. OMNITAB 

It is clearly a borderline case as to whether the OMNITAB system 

developed at the National Bureau of Standards on the IBM 7090/94 satisfies 

the criteria for a programming language. In its basic form, it definitely does 

not since its framework is to simulate the usage of a desk calculator. This is 

done by having the user write such statements as 

ADD 3.257 TO 2 AND STORE IN COL 4 

RAISE 3 TO 4., MULT BY —1.234567, ADD TO COL 3 

where a number with a decimal point is considered a literal; without it, it 

is a column number; and the omission of a specified column number means 

the result is stored in a specific column inherent to the particular command. 

While this facet of the language is not significant, it does provide a large 

package of subroutines which can be addressed in a fairly natural way, and 

it even includes some control statements. The following sample statements 

should provide the reader with the flavor of the language, where the following 

notation is used: 

+ + specifies that a column number must be used. 

* * specifies that a constant must be used. 

$ $ allows either a column number or a constant. 

, specifies that an integer must be used. 

and all words in a statement but the first are optional. The meaning is pre- 

sumed to be intuitively obvious unless specifically shown. 

Matrix operations 

TRACE OF (A) IN ,, ++ R=,, STORE IN COL ++ 

INVERT (A) IN ,, ++ R=,, STORE INVERSE STARTING IN ,, ++



SAMPLE PROGRAM—OMNITABt 

  

Problem: Compute tables of compressibility factors for hydrogen from the 
relations: 

Z=1+B+4+()B + Clo? + (@)B? + BCIp? 

+ [(47)B* + ()C? + (3) B?C)p%. 
where 

B = 0.0055478T-!4 — 0.0368777-*/4 — 0.220047 -54 

and 
C = 0.0047887-?2 — 0.040537 -? 

for 
T = 210° (10°) 600°K. 

and 
ep = 100(100) 500 Amagats. 

Program: 

CMNITAB PROBLEP 9 — 2 COMPRESSIBILITY FACTORS FOR HYDROGEN 
NOSUPMARY 

GENERATE 210.(10.)600. IN 1 
RAISE 1 TC -.25 .0055478 42 

RAISE 1 -.75 -—.036877 2 

RAISt€ 1 -1.25 -0.22004 2 
RAISE 1 -1.5 .004788 3 

RAISE 1 -2. -0.04053 3 

READ 11 12 13 14 15 

10C. ,200.,300.,400.,500.~ 

DUPLICATE 49 1 11 1 5 INTO 2 ll 

ACC O. le 41 

ACC O- 2 42 
ACC 3 0. 43 

MULT 2 @Y 2 BY .5 43 

MULT 2 BY 3 44 
RAISE 2 TO 3- POWER MULT BY .16666666 ADD TO 44 

MULT .5 3 4 

MULT 3 BY 4 45 
RAISE 2 TO 4. FOWER MULT BY .04166667 ADD 45 

MULT 2 2 4 45 

ACC 1. O- 20 
BEGIN 

EXPAND COL 11 TO 4TH POWER IN STEPS OF 1 START STORING IN 21 

INCREMENT 1 BY 10 0 0 
AMULT 1 20 50 5 BY 1 41 1 26 

RGWSUM COLS 26 27 28 29 30 STORE 31 

INCEX 4 BY l 
FINISH 

REPEAT 15 5 
HEAD CCL 1/ T 

HEAD 31/ 100. 

HEAD 32/ 200. 
HEAD 33/ 300. 

HEAD 34/ 400. 
HEAD 35/ 500. 

FIXEC 5 
PRINT 1 31 32 33 34 35 1 

STOP 

ftHilsenrath et al. [HR66], p. 213. 
  

297



298 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

LINEAR EQ COEF IN ,, ++ R=,, RHSIDE IN COL ++, STORE 

SOLUTION IN ++ 

(solves set of N linear equations in N unknowns) 

EIGENVALUES OF (A) IN ,, ++ R=,, STORE ROOTS IN COL ++ 

Special functions 

TSUB ,, OF ++ (Chebyshév polynomial) 

PSUB ,, OF ++ (Legendre polynomial) 

Numerical and statistical analysis 

POLYFIT COL ++ WEIGHTS IN ++ X IN ++ USE ,, DEGREE 

(polynomial fitting) 

GQUAD WITH *«* POINTS A = ** B = ** STORE X IN ++ 

WTS IN ++ 

(Gaussian integration formula) 

HARMONIC ANALYSIS OF COL ++ FOR ,, ORDINATES STORE 

COEF IN ++ : 

Bessel functions 

BEJZERO OF $$, STORE IN COL ++ 

BEKONE OF ++, STORE IN ++ 
(modified Bessel function of the second kind of the first order) 

Special operators 

EXPAND $$ TO ,, POWER IN INTERVALS OF ,, START STORING 

IN ++ 

MOLWT Z=,, AMOUNT=,, Z=,, AMOUNT=,, ... STORE SUM 

IN COL ++ 

(computes molecular weight of indicated molecule) 

Control operations 

BEGIN STORING INSTRUCTIONS 

(system is normally interpretive) 

COMPARE COL ++ AND ++ TO A TOLERANCE OF $$ 
(if comparison is not satisfied, a diagnostic message is given)



1V.8.3. MORE NONPROCEDURAL LANGUAGES 299 

ITERATE X IN ++ Y IN ++ NEW Y IN ++ STORE IN ++ 

REPEAT INSTRUCTIONS ,, THRU ,, ,, TIMES 

Input/output commands and a library of elementary functions are 

also available. 

IV.8.3. MORE NONPROCEDURAL LANGUAGES 

In Chapter I the main concept presented about nonprocedural languages 

was that nonprocedural is a relative term which changes as the state of the 

art changes. For that reason, it is impossible to predict what will be happen- 

ing in this area as this book is being read. It is worth pointing out a few 

attempts, however, which have been made to provide languages which are 

more nonprocedural than the others specifically described in this book. 

These will only be mentioned briefly since their implementation status is 

unclear (as of this writing), and in at least one case there are no plans to 

implement the language. 

The NAPSS (Numerical Analysis Problem Solving System) described 

by Rice and Rosen [R166] is a combination of more flexible language facilities 

and better numerical analysis techniques. The latter will not be discussed. 

As for the former, the basic concept is to allow the user to provide a number 

of statements needed in the solution of the problem and yet allow him to be 

less concerned with the details. For example, he can specify the accuracy 

he wants and he has a command to SOLVE DIFF EQ, and PLOT CURVE, 

and create a TABLE. 

The POSE system described by Schlesinger and Sashkin [QL67] 

permits statements such as INITIAL CONDITION ..., PLOT, RANGE OF..., 

INTEGRAL, and EIGENVALUES and considerable flexibility on sequencing 

of statements. 

COMPROSL (COMpound PROcedural Scientific Language) was 

a project started under my direction, with the objective of giving the scientist 

or engineer an intuitive and natural language with which to program his 

problems. It assumed the use of only the key punch and had obvious restric- 

tions as a result. A complete syntax was worked out and 1s described by 

Boyer [QI65]. Sample legal sentences included the following: 

CALCULATE THE SQUARE ROOT OF ALL MULTIPLES OF 7 FROM 

14 TO 1400 TO 3 DECIMALS, AND PRINT THEM 4 TO A 

LINE. 

FORM THE MATRIX PRODUCT OF A AND B THEN TRANSPOSE 

AND PRINT IT. 

SET Y = LARGEST EIGENVALUE OF X USING JACOBI'S METHOD.



300 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

J = —F(0)/Z + (SUM OF B(M)/(A(M) * (A(M)—Z)) OVER M = 1 
TO N) + F(Z)/Z. 

IF R IS A MULTIPLE OF 5 AND F2 EXCEEDS 1.65, SET X=SQRT 

(1 + F2/R), ELSE REPEAT STATEMENT 14A WITH I=1,2,..., 

20. 

Note that in the fourth case the existence of input equipment which would 

permit a sigma symbol would make the statement an entirely natural mathe- 

matical one. 

Obviously, in order to permit the user to provide less detailed informa- 

tion about his statements and their sequencing, algorithms are needed for 

examining the program and translating it. One attempt at this has been made 

by Homer [HM66]. In this system the user provides (1) arithmetic statements 

defining the problem area, (2) statements to define the available and desired 

data, and (3) control statements. Information from all these statements is 

entered into a matrix. For the arithmetic statements, the variables from 

the right side are put into rows and the left side variables are entered into 

the columns. Variables needed for input or output [category (2) above] 

are entered into rows. Each column is marked as to its nature, and each row 

is marked to show the availability of the variable it represents, e.g., in storage, 

input, and to be computed. The matrix then is scanned to determine what 

can be done. 

REFERENCES 

IV.2.1.1. SHORT CODE 

[RRS5S2] UNIVAC SHORT CODE, Remington Rand Inc., Philadelphia (Oct., 
1952). (unpublished). 

IV.2.1.2. Speedcoding 

[BS54] Backus, J. W. and Herrick, H., “IBM 701 Speedcoding and Other 
Automatic Programming Systems”, Symposium on Automatic Program- 
ming for Digital Computers, Office of Naval Research, Dept. of the 
Navy, Washington, D.C. (1954), pp. 106-45. 

[BS54a] Backus, J. W., “The IBM 701 Speedcoding System”, J. ACM, Vol. 1, 
No. 1 (Jan., 1954), pp. 4-6. 

[IB53] Speedcoding System for the Type 701 Electronic Data Processing 
Machines, IBM Corp., 24-6059-0 (Sept., 1953). 

IV.2.1.3. Laning and Zierler System 

[AD54] Adams, C. W. and Laning, J.H., Jr., “The M.I.T. Systems of Auto- 
matic Coding: Comprehensive, Summer Session, and Algebraic”,



[LA54] 

IV.2.1.4. 

[RR55] 

IV.2.1.5. 

[GR55] 

IV.2.1.6. 

[1B56a] 

[QF57] 

IV.2.2.1. 

[AS57] 

[RR60] 

[TB60] 

IV.2.2.2. 

[RR59] 

IV.2.2.3. 

[GMO00] 

(IB57a] 

REFERENCES 301 

Symposium on Automatic Programming For Digital Computers, Office 
of Naval Research, Dept. of the Navy, Washington, D.C. (1954), 
pp. 40-68. 

Laning, J. H. and Zierler, W., A Program for Translation of Mathe- 
matical Equations for Whirlwind I, M.1.T., Engineering Memorandum 
E-364, Instrumentation Lab., Cambridge, Mass. (Jan., 1954). 

A-2 and A-3 

The A-2 Compiler System, Remington Rand, Inc. (1955). 

BACAIC 

Grems, M. and Porter, R. E., A Digest of the Boeing Airplane Company 
Algebraic Interpretive Coding System, Boeing Airplane Co., Seattle, 
Wash. (July, 1955). 

PRINT 

PRINT 1 (Programmer’s Reference Manual), IBM Corp., 32-7334-1 
(1956). 
Bemer, R. W., “PRINT 1—An Automatic Coding System for the IBM 
705”, Automatic Coding, Jour. Franklin Inst., Monograph No. 3, Philadel- 
phia, Pa. (Apr., 1957), pp. 29-36. 

MATH-MATIC (AT-3) 

Ash, R. et al., Preliminary Manual for MATH-MATIC and ARITH- 
MATIC Systems (for Algebraic Translation and Compilation for 
UNIVAC I and IID, Remington Rand Univac, Philadelphia (Apr., 1957). 
MATH-MATIC (Automatic Programming System), U-1568 Rev. 1, 
UNIVAC, (c) 1960, Sperry Rand Corporation. 
Taylor, A., “The FLOW-MATIC and MATH-MATIC Automatic 
Programming Systems”, Annual Review in Automatic Programming, 
Vol. 1 (R. Goodman, ed.). Pergamon Press, New York, 1960, pp. 
196-206. 

UNICODE 

UNICO DE—Automatic Coding for UNIVAC Scientific Data Automation 
System 1103 or 1105, U-1451 Rev. 3, UNIVAC, (¢) 1958, 1959, Sperry 
Rand Corporation. 

IT, FORTRANSIT, GAT 

Graham, R, and Arden, B., Generalized Algebraic Translator, U. of 
Michigan Statistical and Computing Lab., Ann Arbor, Mich. (unpub- 
lished). 

Programmer’s Reference Manual: FOR TRANSIT, Automatic Coding 
System for the IBM 650, IBM Corp., 32-7842 (1957).



302 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

[PR57] 

[PR57a] 

Perlis, A. J., Smith, J. W., and van Zoeren, H.R., Internal Translator 
(IT)—A Compiler for the 650, U. of Michigan Statistical Research Lab., 

Ann Arbor, Mich. (Jan., 1957). 

Perlis, A. J. and Smith, J. W., “A Mathematical Language Compiler”, 

Automatic Coding, Jour. Franklin Inst., Monograph No. 3, Philadelphia, 
Pa. (Apr., 1957), pp. 87-102. 

IV.3. FORTRAN 

[AA66] 

[AA66a] 

[AX63] - 

[AY63] 

[BS57] 

[BS64] 

[BU65] 

[CC64] 

[(CT64] 

[FH64] 

[FP64] 

[HE63] 

[HE64] 

[HE64a] 

[1B54] 

[1B56] 

USA Standard FORTRAN, United States of America Standards Institute, 
USAS X3.9-1966, New York, Mar., 1966. 

USA Standard Basic FORTRAN, United States of America Standards 
Institute, USAS X3.10-1966, New York, Mar., 1966. 

Allen, J. J., Moore, D. P., and Rogoway, H.P., “SHARE Internal 
FORTRAN Translator”, Datamation, Vol. 9, No. 3 (Mar., 1963), 

pp. 43-46. 

Ayers, J. A., “Recursive Programming in FORTRAN II”, Comm. 
ACM, Vol. 6, No. 11 (Nov., 1963), pp. 667-68. 

Backus, J. W. et al., “The FORTRAN Automatic Coding System”, 
Proc. WICC, Vol. 11 (1957), pp. 188-98. (Also in Rosen [RO67].) 

Backus, J. W. and Heising, W. P., “FORTRAN”, JEEE Trans. Elec. 
Comp., Vol. EC-13, No. 4 (Aug., 1964), pp. 382-85. 

Burkhardt, W. H., “Metalanguage and Syntax Specification”, Comm. 
ACM, Vol. 8, No. 5 (May, 1965), pp. 304-305. 

“FORTRAN vs. Basic FORTRAN—A Programming Language for 
Information Processing on Automatic Data Processing Systems”, 
Comm. ACM, Vol. 7, No. 10 (Oct., 1964), pp. 591-625. 

Carleton, J. T., Lego, P. E., and Suarez, R.S., “A FORTRAN Exten- 
sion to Facilitate Proposal Preparation”, JEEE Trans. Elec. Comp., 
Vol. EC-13, No. 4 (Aug., 1964), pp. 456-62. 

Fowler, M.E. and MacMasters, J. A., A FORTRAN Program for 
Polynomial Manipulation, IBM Corp., TR-24.012, Data Processing 

Division, Kingston, N.Y. (Mar., 1964). 

Fimple, M. D., “FORTRAN vs. COBOL”, Datamation, Vol. 10, No. 8 
(Aug., 1964) pp. 34, 39-40. 

Heising, W. P., “FORTRAN”, Comm. ACM, Vol. 6, No. 3 (Mar., 
1963), pp. 85-86. 

Heising, W. P., “History and Summary of FORTRAN Standardization 
Development for the ASA”, Comm. ACM, Vol. 7, No. 10 (Oct., 1964), 
p. 590. 

Heising, W.P., “FORTRAN: Compatibility & Standardization”, 

Datamation, Vol. 10, No. 8 (Aug., 1964), pp. 24-25. 

Preliminary Report: Specifications for the IBM Mathematical FORmula 

TRANslating System, FORTRAN, IBM Corp., Programming Research 

Group, Applied Science Division (1954). 

The FORTRAN Automatic Coding System for the IBM 704 EDPM 
(Programmer’s Reference Manual), IBM Corp., 32-7026 (Oct., 1956).



[1B57] 

[B58] 

[1B60] 

[IB61] 

[IB62] 

[[B64a] 

[IB66h] 

[1C62a] 

[JU65] 

[M067] 

[MR65] 

[OL65] 

[OS64] 

[QH66] 

[RM62] 

[RN62] 

[RO61] 

[RO65] 

[SA65] 

[SY67] 

REFERENCES 303 

Programmer’s Primer for FORTRAN Automatic Coding System for the 
IBM 704, IBM Corp., 32-0306-1 (1957). 

FORTRAN II for the IBM 704 Data Processing System (Reference 
Manual), IBM Corp., C28-6000 (1958). 

IBM 709-7090 FORTRAN Monitor, IBM Corp., C28-6065 (1960). 

FORTRAN (General Information Manual), IBM Corp., F28-8074, Data 
Processing Division, White Plains, N.Y. (1961). 

IBM 1620 FORTRAN (Reference Manual), IBM Corp., C26-5619-0 
Data Processing Division, White Plains, N.Y. (1962). 

IBM Operating System/360: FORTRAN IV, IBM Corp., C28-6515-2, 
Data Processing Division, White Plains, N.Y. (1964). 

IBM 7090/7094 IBS YS Operating System—Version 13: FORTRAN IV 
Language, IBM Corp., C28-6390-3, Data Processing Division, White 

Plains, N.Y. (Apr., 1966). 

“General Panel Discussion: Is a Unification ALGOL-COBOL, 
ALGOL-FORTRAN Possible? The Question of One or Several Lan- 
guages”, Symbolic Languages in Data Processing. Gordon and Breach, 
New York, 1962, pp. 833-49. 

Junker, J. P. and Boward, G. R., “COBOLvs. FORTRAN: A Sequel”, 
Datamation, Vol. 11, No. 4 (Apr., 1965), pp. 65-67. 

Moulton, P.G. and Muller, M. E., “DITRAN—A Compiler Empha- 
sizing Diagnostics”, Comm. ACM, Vol. 10, No. 1 (Jan., 1967), pp. 45-52. 

McCracken, D. D., “How to Tell If It’s FORTRAN IV”, Datamation, 
Vol. 11, No. 10 (Oct., 1965), pp. 38-41. 

Olsen, T. M., “Philco/IBM Translation at Problem-Oriented, Sym- 
bolic and Binary Levels”, Comm. ACM, Vol. 8, No. 12 (Dec., 1965), 
pp. 762-68. ; 

Oswald, H., “The Various FORTRANS”, Datamation, Vol. 10, No. 8 
(Aug., 1964), pp. 25-29. 

Budd, A. E., A Method for the Evaluation of Software: Procedural 
Language Compilers—Particularly COBOL and FORTRAN, Mitre Corp. 
(DDC) AD651142, Commerce Dept. Clearinghouse, Springfield, Va. 
(Apr., 1966). 

Robbins, D. K., “FORTRAN for Business Data Processing”, Comm. 
ACM, Vol. 5, No. 7 (July, 1962), pp. 412-14. 

Rabinowitz, I. N., “Report on the Algorithmic Language FORTRAN 
II’, Comm. ACM, Vol. 5, No. 6 (June, 1962), pp. 327-37. 

Rosen, S., “ALTAC, FORTRAN, and Compatibility”, Preprints, ACM 
16th Nat’l Conf., 1961, pp. 2B-2(1)-(4). 

Rosen, S., Spurgeon, R.A., and Donnelly, J.K., “PUFFT—The Purdue 
University Fast FORTRAN Translator”, Comm. ACM, Vol. 8, No. 11 
(Nov. 1965), pp. 661-66. (Also in [RO67].) 

Sakoda, J.M., DYSTAL Manual— Dynamic Storage Allocation Language 
in FORTRAN, Brown U., Dept. of Sociology and Anthropology, Prov- 
idence, R.I. (1965, revised). 

Shantz, P. W. et al., “WATFOR—The University of Waterloo FOR- 
TRAN IV Compiler”, Comm. ACM, Vol. 10, No. 1 (Jan., 1967), pp. 

41-44.



304 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

[WR66] Wright, D. L., “A Comparison of the FORTRAN Language Imple- 
mentation for Several Computers”, Comm. ACM, Vol. 9, No. 2 (Feb., 

1966), pp. 77-79. 

[WZ63] Weizenbaum, J., “Symmetric List Processor’, Comm. ACM, Vol. 6, 

No. 9 (Sept., 1963), pp. 524-44. 

[YS62] McMahon, J.T., “ALGOL vs. FORTRAN”, Datamation, Vol. 8, 

No. 4 (Apr., 1962), pp. 88-89. 

IV.4. ALGOL 

[AC66] “Collected Algorithms, from the Comm. ACM”, Association for Com- 
puting Machinery, Inc., New York (1966ff.). 

[AR61] Arden, B. W., Galler, B.A., and Graham, R.M., “Criticisms of 
ALGOL 60” (letter to editor), Comm. ACM, Vol. 4, No. 7 July, 1961), 

p. 309. 

[AU67] Auroux, A., Bellino, J., and Bolliet, L., “DIAMAG: A Multi-Access 
System for On-Line ALGOL Programming”, Proc. SJCC, Vol. 30 
(1967), pp. 547-52. 

[BH62] Bottenbruch, H., “Structure and Use of ALGOL 60”, J. ACM, Vol. 9, 

No. 2 (Apr., 1962), pp. 161-221. 

[BN64] Baumann, R. et al., Introduction to ALGOL. Prentice-Hall, Inc., Engle- 
wood Cliffs, N.J., 1964. 

[BS60] Backus, J. W., “The Syntax and Semantics of the Proposed International 

Algebraic Language of the Zurich ACM-GAMM Conference”, Proc. 
Internat’! Conf. Information Processing, UNESCO, Paris, 1959, R. 

Oldenbourg, Munich; Butterworths, London, 1960, pp. 125-32. 

[CCS9] “Recommendations of the SHARE ALGOL Committee”, Comm. ACM, 
Vol. 2, No. 10 (Oct., 1959), pp. 25-26. 

[CC61] “ACM?’s ALGOL Resolution”, Comm. ACM, Vol. 4, No. 11 (Nov., 
1961), p. 476. 

[CCéla] “ALGOL References in Communications of the ACM, 1960-61”, Comm. 
ACM, Vol. 4, No. 9 (Sept. 1961), p. 404. 

[CC6lb] “SMALGOL-61”, Comm. ACM, Vol. 4, No. 11 (Nov., 1961), pp. 499- 

502. 

[CC63a] “ALCOR Group Representation of ALGOL Symbols”, Comm. ACM, 

Vol. 6, No. 10 (Oct., 1963), pp. 597-99. 

[CC63b] “ECMA Subset of ALGOL 60”, Comm. ACM, Vol. 6, No. 10 (Oct., 

1963), pp. 595-97. 

[CC64a] “A Proposal for Input-Output in ALGOL 60 (A Report of the Sub- 
committee on ALGOL of the ACM Programming Languages Com- 

mittee)”, Comm. ACM, Vol. 7, No. 5 (May, 1964), pp. 273-83. 

[CC64b] “Report on Input-Output Procedures for ALGOL 60 (IFIP)”, Comm. 

ACM, Vol. 7, No. 10 (Oct., 1964), pp. 628-30. 

[CC64c] “Report on SUBSET ALGOL 60 (IFIP)”, Comm. ACM, Vol. 7, No. 10 

(Oct., 1964), pp. 626-28. 

[CC64d] “CORRIGENDA: ‘ALCOR Group Representations of ALGOL 

Symbols’”, Comm. ACM, Vol. 7, No. 3 (Mar., 1964), p. 189.



[FS61] 

[GA67] 

[GTS9] 

[GW00] 

[GW64] 

[HN65] 

[HU61] 

[1B66i] 

[1C62a] 

[1065] 

[IR59] 

[IR61] 

[IV64] 

[KF59] 

[KN61] 

[KN67] 

[LD65] 

[LD6S5a] 

[LR67] 

[MR61] 

[NA60] 

REFERENCES 305 

Forest, B., “BALGOL at Stanford”, Datamation, Vol. 7, No. 12 (Dec., 
1961), pp. 24-26. 

Galler, B. A. and Perlis, A. J., “A Proposal for Definitions in ALGOL”, 
Comm. ACM, Vol. 10, No. 4 (Apr., 1967), pp. 204-19. 

Green, J., “Possible Modifications to the International Algebraic 
Language”, Comm. ACM, Vol. 2, No. 2 (Feb., 1959), pp. 6-8. 

Garwick, J. V., Bell, J. R., and Krider, L. D., The GPL Language, 
Control Data Corp., TER-05, Palo Alto, Calif. 

Garwick, J. V., “Remark on Further Generalization of ALGOL”, 
Comm. ACM, Vol. 7, No. 7 (July, 1964), pp. 422-23. 

Haynam, G. E., “An Extended ALGOL Based Language”, Proc. ACM 
20th Nat’! Conf., 1965, pp. 449-54. 

Huskey, H. D. and Wattenburg, W.H., “Compiling Techniques for 
Boolean Expressions and Conditional Statements in ALGOL 60”, 
Comm. ACM, Vol. 4, No. 1 (Jan., 1961), pp. 70-75. 

IBM System/360 Operating System: ALGOL Language, IBM Corp., 
C28-6615-0, Data Processing Division, White Plains, N.Y. (1966). 

“General Panel Discussion: Is a Unification ALGOL-COBOL, 
ALGOL-FORTRAN Possible? The Question of One or Several Lan- 
guages”, Symbolic Languages in Data Processing. Gordon and Breach, 
New York 1962, pp. 833-49. 

ISO Draft Recommendation on the Programming Language ALGOL, 
International Organization for Standardization, Technical Committee 
ISO/TC 97 Subcommittee 5, Programming Languages (Oct., 1965). 

Irons, E. T. and Acton, F. S., “A Proposed Interpretation in ALGOL”, 
Comm. ACM, Vol. 2, No. 12 (Dec., 1959), pp. 14-15. 

Irons, E. T., “A Syntax Directed Compiler for ALGOL 60”, Comm. 
ACM, Vol. 4, No. 1 (Jan., 1961), pp. 51-55. (Also in [RO67].) 

Iverson, K.E., “A Method of Syntax Specification”, Comm. ACM, 
Vol. 7, No. 10 (Oct., 1964), pp. 588-89. 

Kanner, H., “Letter to Editor”, Comm. ACM, Vol. 2, No. 6 (June, 
1959), pp. 6-7. 

Knuth, D. E. and Merner, J. N., “ALGOL 60 Confidential”, Comm. 
ACM, Vol. 4, No. 6 (June, 1961), pp. 268-72. 

Knuth, D. E., “The Remaining Trouble Spots in ALGOL 60”, Comm. 
ACM, Vol. 10, No. 10 (Oct. 1967), pp. 611-17. 

Landin, P. J., “A Correspondence Between ALGOL 60 and Church’s 
Lambda-Notation: Part I’, Comm. ACM, Vol. 8, No. 2 (Feb., 1965), 
pp. 89-101. 

Landin, P. J., “A Correspondence Between ALGOL 60 and Church’s 
Lambda-Notation: Part II”, Comm. ACM, Vol. 8, No. 3 (Mar., 1965), 
pp. 158-65. 

Leroy, H., “A System of Macro-Generation for ALGOL”, Proc. SJCC, 
Vol. 30 (1967), pp. 663-69. 

McCracken, D.D., “Basic ALGOL”, Datamation, Vol. 7, No. 12 
(Dec., 1961), p. 29. 

Naur, P. (ed.), “Report on the Algorithmic Language ALGOL 60”, 
Comm. ACM, Vol. 3, No. 5 (May, 1960), pp. 299-314.



306 

[NA63] 

[NA63a] 

[PK 67] 

[PR58] 

[(QG61] 

[QG66] 

[QN62] 

[SM6]] 

[SQ61] 

[SS63] 

[TA61] 

[TS67] 

[UE67] 

[VS67] 

[VW63] 

[VW68] 

[WG62] 

[WL65] 

LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

Naur, P. (ed.), “Revised Report on the Algorithmic Language ALGOL 
60”, Comm. ACM, Vol. 6, No. 1 (Jan., 1963), pp. 1-17. (Also in [RO67].) 

Naur, P., “Documentation Problems: ALGOL 60”, Comm. ACM, 

Vol. 6, No. 3 (Mar., 1963), pp. 77-79. 

Peck, J.E., “A List Processing Extension of ALGOL”, Symbol Manip- 
ulation Languages and Techniques, Proceedings of the IFIP Working 
Conference on Symbol Manipulation Languages (D.G. Bobrow, ed.). 

North-Holland Publishing Co., Amsterdam (1968), pp. 254-59. 

Perlis, A.J. and Samelson, K. (for the committee), “Preliminary Report— 
International Algebraic Language”, Comm. ACM, Vol. 1, No. 12 

(Dec., 1958), pp. 8-22. 

Burroughs Algebraic Compiler (Reference Manual), Bulletin 220-21011-P, 
Equipment and Systems Marketing Division, Burroughs Corp., Detroit, 

Mich. (Jan., 1961). 

Burroughs B 5500 Information Processing Systems Extended ALGOL 
(Language Manual), Equipment and Systems Marketing Division, 

Burroughs Corp., Detroit, Mich. (1966). 

Schwarz, H. R., “An Introduction to ALGOL”, 
No. 2 (Feb., 1962), pp. 82-95. 

Sammet, J. E., “A Method of Combining ALGOL and COBOL,” Proc. 

WICC, Vol. 19 (1961), pp. 379-87. 

Strachey, C. and Wilkes, M. V., “Some Proposals for Improving the 
Efficiency of ALGOL 60”, Comm. ACM, Vol. 4, No. 11 (Nov., 1961), 

pp. 488-92. 

Sanders, N. and Fitzpatrick, C., “FORTRAN and ALGOL Revisited”, 
Datamation, Vol. 9, No. 1 (Jan., 1963), pp. 30-32. 

Taylor, W., Turner, L., and Waychoff, R., “A Syntactical Chart of 

ALGOL 60”, Comm. ACM, Vol. 4, No. 9 (Sept., 1961), p. 393. 

Stone, H.S., “One-Pass Compilation of Arithmetic Expressions for 
a Parallel Processor”, Comm. ACM, Vol. 10, No. 4 (Apr., 1967), pp. 
220-23. 

deBakker, J. W., Formal Definition of Programming Languages with 
an Application to the Definition of ALGOL 60. Mathematical Centre 

Tract 16, Mathematisch Centrum, Amsterdam (1967). - 

von Sydow, L., “Computer Typesetting of ALGOL”, Comm. ACM, 

Vol. 10, No. 3 (Mar., 1967), pp. 172-74. 

van Wijngaarden, A., “Generalized ALGOL”, Annual Review in Auto- 
matic Programming, Vol. 3 (R. Goodman, ed.). Pergamon Press, New 

York, 1963, pp. 17-26. 

van Wijngaarden, A. (ed.), Draft Report on the Algorithmic Language 

ALGOL 68 (Supplement to ALGOL Bulletin 26), Mathematisch 

Centrum MR93, Amsterdam, (Jan., 1968). 

Wegstein, J. H. and Youden, W. W., “A String Language for Symbol 
Manipulation Based on ALGOL 60”, Comm. ACM, Vol. 5, No. 1 

(Jan., 1962), pp. 54-61. 

Weil, R. L., Jr., “Testing the Understanding of the Difference Between 

Call by Name and Call by Value in ALGOL 60”, Comm. ACM, Vol. 

8, No. 6, (June, 1965), p. 378. 

Comm. ACM, Vol. 5,



[W064] 

[WT63] 

[WT66] 

[WT 66a] 

[WT66b] 

[Y E66] 

[YS62] 

REFERENCES 307 

Woodger, M., “ALGOL”, IEEE Trans. Elec. Comp., Vol. EC-13, No. 4 
(Aug., 1964), pp. 377-81. 

Wirth, N., “A Generalization of ALGOL”, Comm. ACM, Vol. 6. No. 9 
(Sept., 1963), pp. 547-54. 

Wirth, N. and Hoare, C. A. R., “A Contribution to the Development 
of ALGOL”, Comm. ACM, Vol. 9, No. 6 (June, 1966), pp. 413-31. 

Wirth, N. and Weber, H., “EULER: A Generalization of ALGOL, 
and its Formal Definition: Part I’, Comm. ACM, Vol. 9, No. 1 (Jan., 
1966), pp. 13-23. 

Wirth, N. and Weber, H., “EULER: A Generalization of ALGOL, 
and its Formal Definition: Part II’, Comm. ACM, Vol. 9, No. 2 
(Feb., 1966), pp. 89-99. 

Yershov, A. P., ALPHA—An Automatic Programming System of High 
Efficiency”, J. ACM, Vol. 13, No. 1 (JJan., 1966), pp. 17-24. 

McMahon, J. T., “ALGOL vs. FORTRAN”, Datamation, Vol. 8, No. 4 
(Apr., 1962), pp. 88-89. 

IV.5.1. NELIAC 

[HS62] 

[HS63] 

[HS67] 

[HS67a] 

[HU60] 

[HU63] 

[JO60] 

[L066] 

[MS60] 

[S165] 

[SX66] 

[WJ62] 

Halstead, M. H., Machine-Independent Computer Programming. Spartan 
Books, Washington, D.C., 1962. 

Halstead, M. H., “NELIAC”, Comm. ACM, Vol. 6, No. 3 (Mar., 1963), 
pp. 91-92. 

Halstead, M.H., Uber, G. T., and Gielow, K.R., “An Algorithmic 
Search Procedure for Program Generation”, Proc. SJCC, Vol. 30 
(1967), pp. 657-62. 

Halstead, M. H., “Machine-Independence and Third-Generation Com- 
puters”, Proc. FJCC, Vol. 31 (1967), pp. 587-92. 

Huskey, H. D., Halstead, M.H., and McArthur, R., “NELIAC—A 
Dialect of ALGOL”, Comm. ACM, Vol. 3, No. 8 (Aug., 1960), pp. 

463-68. 

Huskey, H. D., Love, R., and Wirth, N., “A Syntactic Description of 
BC NELIAC”, Comm. ACM, Vol. 6, No. 7 (July, 1963), pp. 367-75. 

Johnsen, R. F., Jr., Implementation of NELIAC for the IBM 704 and 
IBM 709 Computers, U.S. Navy Electronics Lab., TM-428, San Diego, 
Calif. (Sept., 1960). 

NELIAC Users Guide: UNIVAC 1107/1108 NELIAC, Lockheed Mis- 
siles & Space Co., Sunnyvale, Calif. (Mar., 1966). 

Masterson, K. S., Jr., “Compilation for Two Computers with NELIAC”, 
Comm. ACM, Vol. 3, No. 11 (Nov. 1960), pp. 607-11. 

Singman, D. et al., “Computerized Blood Bank Control”, Jour. AMA, 
Vol. 194 (Nov., 1965), pp. 583-86. 

Saxon, J. A. et al., Programming in NELIAC Mod 7 with Mod 7 Star 
Operating System, U.S. Navy Electronics Lab., AD 635 179, San Diego, 
Calif. (Feb., 1966). 

Watt, J. B. and Wattenburg, W. H., “A NELIAC-Generated 7090-1401 
Compiler”, Comm. ACM, Vol. 5, No. 2 (Feb., 1962), pp. 101-102.



308 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

[V.5.2. MAD 

[AR6la] 

[UM60] 

[UM66] 

Arden, B. W., Galler, B. A., and Graham, R. M., “MAD at Michigan”, 
Datamation, Vol. 7, No. 12 (Dec., 1961), pp. 27-28. 

TheMichigan Algorithm Decoder (The MAD Manual), U. of Michigan 
Computing Center, Ann Arbor, Mich. (Sept., 1960). 

The Michigan Algorithm Decoder (The MAD Manual), U. of Michigan 
Computing Center, Ann Arbor, Mich. (Aug., 1966). 

IV.6.1. ON-LINE SYSTEMS: INTRODUCTORY REMARKS 

[0U67] 

[RU67] 

O’Sullivan, T. C., “Terminal Networks for Time-Sharing”, Datamation, 
Vol. 13, No. 7 (July, 1967), pp. 34-43. 

Ruyle, A., Brackett, J. W., and Kaplow, R., “The Status of Systems for 
On-Line Mathematical Assistance”, Proc. ACM 22nd Nat’! Conf., 1967, 
pp. 151-67. 

IV.6.2. JOSS (AND RELATED SYSTEMS) 

[BK64] 

[BK 66] 

[DD66] 

[JC64] 

[JC65}] 

[M Y66] 

[UJ67] 

[UJ67a] 

[UJ67b] 

[WK67] 

[ZL67] 

Baker, C.L., JOSS: Scenario of a Filmed Report, RAND Corp., 

RM-4162-PR, Santa Monica, Calif. (June, 1964). 

Baker, C.L., JOSS: Introduction to a Helpful Assistant, RAND 
Corp., Memorandum RM-50580-PR, Santa Monica, Calif. (July, 1966). 

Preliminary Reference Manual for CAL. Dial-Data, Inc. (Oct., 1966). 

Shaw, J.C., “JOSS: A Designer’s View of an Experimental On-Line 
Computing System”, Proc. FJCC, Vol. 26, pt. 1 (1964), pp. 455-64. 

Shaw, J.C., “JOSS: Experience with an Experimental Computing 
Service for Users at Remote Typewriter Consoles”, RAND Corp., 
P-3149, Santa Monica, Calif. (May, 1965). Also in Proceedings of the 
IBM Scientific Computing Symposium on Man-Machine Communication, 
IBM Corp., 320-1941-0, Data Processing Division, White Plains, N.Y. 

(1966), pp. 23-32. 

Myer, T.H., Manual for Users: TELCOMP Computation Service, 
Bolt Beranek and Newman Inc., Cambridge, Mass. (Oct., 1966). 
Bryan, G.E., “JOSS: 20,000 Hours at the Console: A Statistical 

Summary, Proc. FJCC, Vol. 31 (1967), pp. 769-77. 

Bryan, G.E. and Smith, J. W., JOSS Language: Apergu and Précis, 

Pocket Précis, Poster Précis, RAND Corp., Memorandum RM-5377-PR, 

Santa Monica, Calif. (Aug., 1967). 

Bryan, G. E. and Paxson, E. W., The JOSS Notebook, RAND Corp., 

Memorandum RM 5367-PR, Santa Monica, Calif. (Aug., 1967). 

Waks, D. J., “Conversational Computing on a Small Machine”, Data- 

mation, Vol. 13, No. 4 (Apr., 1967), pp. 45-49. 

Marks, S.L. and Armerding, G. W., The JOSS Primer, RAND Corp., 

Memorandum RM-5220-PR, Santa Monica, Calif. (Aug., 1967).



REFERENCES 309 

IV.6.3. QUIKTRAN 

[AA66a] American Standard Basic FORTRAN, American Standards Association, 
ASA X3.10-1966, New York, Mar., 1966. 

[DM64] Dunn, T. M. and Morrissey, J. H. “Remote Computing: An Experi- 
mental System Part 1: External Specifications”, Proc. SJCC, Vol. 25 
(1964), pp. 413-23. 

[IB66d] Information Marketing QUIKTRAN User’s Guide, IBM Corp., E-20- 
0240, Data Processing Division, White Plains, N.Y. (1966). 

[[B67e] Fundamentals of Using QUIKTRAN, IBM Corp., J20-0002-0, Data 
Processing Division, White Plains, N.Y. (1967). 

[KR64] Keller, J. M., Strum, E.C., and Yang, G.H., “Remote Computing: 
An Experimental System Part 2: Internal Design”, Proc. SJCC, Vol. 
25 (1964), pp. 425-43. 

[MJ65] Morrissey, J. H., “The QUIKTRAN System”, Datamation, Vol. 11, 
No. 2 (Feb., 1965), pp. 42-46. 

IV.6.4. BASIC 

[GZ66] ‘BASIC’ Language Reference Manual, General Electric Information 
Systems Division (Sept., 1966, revised). 

[KM66] Kemeny, J.G. and Kurtz, T. E., BASIC (User’s Manual) (3rd ed.), 
Dartmouth College Computation Center, Hanover, N. H. (JJan., 1966). 

[KM67] Kemeny, J.G. and Kurtz, T. E., BASIC Programming. John Wiley & 
Sons, Inc., New York, 1967. 

IV.6.5. CPS (AND RUSH) 

[AB66] RUSH Terminal User’s Manual, Allen-Babcock Computing Inc. (Nov., 
1966, plus updating material). 

[AB67] “RUSH: An Interactive Dialect of PL/I’, (presented at ACM spon- 
sored PL/I Forum, Aug., 1967) (unpublished). 

[IB67a] Conversational Programming System, IBM Corp., Contributed Program 
Library #360D 03. 4. 016, Program Information Dept., Hawthorne, 
N.Y. (Sept., 1967). 

[IB67h] CPS—Terminal User’s Manual, IBM Corp., Technical Report TM 
48.67.006, Boston Programming Center, Cambridge, Mass. (Sept. 1967). 

IV.6.6. MAP 

[KP66] Kaplow, R., Strong, S., and Brackett, J., A System for On-Line Mathe- 
matical Analysis, M.1.T., MAC-TR-24, Project MAC, Cambridge, Mass. 
(Jan., 1966).



310 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

[K P66a] 

[UU63] 

[UU67] 

Kaplow, R., Brackett, J., and Strong, S., “Man-Machine Communi- 
cation in On-Line Mathematical Analysis”, Proc. FJCC, Vol. 29 (1966), 
pp. 465-77. 

Stotz, R.H., “Man-Machine Console Facilities for Computer-Aided 
Design”, Proc. SJCC, Vol. 23 (1963), pp. 323-28. 

Stotz, R. H. and Cheek, T. B., A Low-Cost Graphic Display for a Com- 
puter Time-Sharing Console, M.1.T., ESL-TM-316, Electronic Systems 
Lab., Cambridge, Mass. (July, 1967). 

LV.6.7. LINCOLN RECKONER 

(FY65] 

[SW66] 

[W U67] 

Forgie, J. W., “A Time- and Memory-Sharing Executive Program for 
Quick-Response On-Line Application”, Proc. FJCC, Vol. 27, pt. 1 
(1965), pp. 599-609. 

Stowe, A. N. et al., “The Lincoln Reckoner: An Operation-Oriented, 
On-Line Facility with Distributed Control”, Proc. FJCC, Vol. 29 (1966), 
pp. 433-44. 

Wiesen, R.A. et al., “Coherent Programming in the Lincoln Reckoner”, 
Proceedings of the Symposium on Interactive Systems for Experimental 
Applied Mathematics, Washington, D. C., August 26-28, 1967, Academic 
Press, Inc., New York (1968). 

1V.6.8. APL/360 AND PAT 

[FA67] 

[FA67a] 

[HH64] 

[1V62] 

[RJ66] 

[RQ67] 

[UD67] 

Falkoff, A. D. and Iverson, K. E., The APL Terminal System: Instruc- 
tions for Operation, IBM Corp., T. J. Watson Research Center, York- 
town Heights, N.Y. (Mar., 1967). 

Falkoff, A. D. and Iverson, K. E., “APL/360 Terminal System”, Pro- 
ceedings of the Symposium on Interactive Systems for Experimental Ap- 
plied Mathematics, Washington, D.C., August 26-28, 1967, Academic 

Press, Inc., New York (1968). 

Hellerman, H., “Experimental Personalized Array Translator System”, 

Comm. ACM, Vol. 7, No. 7 (JJuly, 1964), pp. 433-38. 

Iverson, K. E., A Programming Language. John Wiley & Sons, New 
York, 1962. 

Rose, A. J., The Use of APL for Describing Programs at Many Levels 
of Detail, IBM Corp., RC 1700, T. J. Watson Research Center, York- 
town Heights, N.Y. (Oct., 1966). 

Roth, J. P., Bouricius, W. G., and Schneider, P. R., Programmed AI- 
gorithms to Compute Tests to Detect and Distinguish Between Failures 
in Logic Circuits, IBM Corp., RC 1764, T. J. Watson Research Center, 

Yorktown Heights, N.Y. (Feb., 1967). 

Bouricius, W. G. et al., On-Line Reliability Calculations to Achieve a 
Balanced Design of an Automatically Repaired Computer, {BM Corp., 
RC 1800, T. J. Watson Research Center, Yorktown Heights, N.Y. 

(Apr., 1967).



REFERENCES 311 

IV.6.9. CULLER-FRIED 

[(CU62] 

[CU63] 

[(CU6S5] 

[CU67] 

[FQ64] 

[FQ66] 

[QK67] 

[RU67] 

[WN66] 

Culler, G. J. and Huff, R. W., “Solution of Nonlinear Integral Equa- 
tions Using On-Line Computer Control”, Proc. SJCC, Vol. 21 (1962), 
pp. 129-38. 

Culler, G.J. and Fried, B.D., An On-Line Computing Center for 
Scientific Problems, Thompson Ramo Wooldridge Inc., MI9-3U3, 
TRW Computer Division, Canoga Park, Calif. (June, 1963). 

Culler, G. J. and Fried, B. D., “The TRW Two-Station On-Line Scien- 
tific Computer: General Description”, Computer Augmentation of 
Human Reasoning (M. Sass and W. Wilkinson, eds.). Spartan Books, 
Washington, D.C., 1965, pp. 65-87. 

Culler, G. J., “User’s Manual for an On-Line System”, On-Line Com- 
puting (W. J. Karplus, ed.), McGraw-Hill, New York, 1967, pp. 303-24. 

Fried, B. D., Farrington, and Pope, STL On-Line Computer: General 
Description and User’s Manual, Thompson Ramo Wooldridge Inc., 
9824-6001-RU-000, Redondo Beach, Calif. (1964). 

Fried, B.D., On-Line Problem Solving, Thompson Ramo Wooldridge Inc., 
9863-6001-ROO0, Redondo Beach, Calif. (1966). 

Blackwell, F. W., “An On-Line Symbol Manipulation System”, Proc. 
ACM 22nd Nat’! Conf., 1967, pp. 203-209. 

Ruyle, A., Brackett, J. W., and Kaplow, R., ‘‘The Status of Systems for 
On-Line Mathematical Assistance’’, Proc. ACM 22nd Nat’l Conf., 1967, 
pp. 151-67. 

Winiecki, K. (ed.), Culler On-Line System User Manual, Harvard U. 
Computation Lab., Cambridge, Mass. (1966). 

IV.6.10. DIALOG 

[CS66] 

[CS67] 

Cameron, S. H., Ewing, D., and Liveright, M., DIALOG: A Conver- 
sational Programming System with a Graphical Orientation, 1.1.T. Re- 
search Inst., Tech. Note No. 109, Computer Sciences Division, Chicago 
(Sept., 1966). 

Cameron, S. H., Ewing, D., and Liveright, M., “DIALOG: A Con- 
versational Programming System with a Graphical Orientation”, Comm. 
ACM, Vol. 10, No. 6 (June, 1967), pp. 349-57. 

IV.6.11. AMTRAN 

[CM66] 

[RF66] 

[UV67] 

Clem, P. L., Jr. et al., “AMTRAN—A Conversational-Mode Computer 
System for Scientists and Engineers”, Proc. IBM Scientific Computing 
Symposium on Computer-Aided Experimentation, IBM Corp., Data 
Processing Division, White Plains, N.Y. (1966), pp. 115-50. 

Reinfelds, J. et al., “AMTRAN, A Remote-Terminal, Conversational- 
Mode Computer System”, Proc. ACM 21st Nat’! Conf., 1966, pp. 469-77. 

Seitz, R.N., Wood, L.H., and Ely, C.A., “AMTRAN—Automatic 
Mathematical Translation”, Proceedings of the Symposium on Interactive 
Systems for Experimental Applied Mathematics, Washington, D.C., 
August 26-28, 1967, Academic Press, Inc., New York (1968).



312 LANGUAGES FOR NUMERICAL SCIENTIFIC PROBLEMS 

[WD66] Wood, L.H. et al., “The AMTRAN System”, Datamation, Vol. 12, 
No. 10 (Oct., 1966), pp. 22-27. 

IV.7.1. LANGUAGES WITH FAIRLY NATURAL MATHEMATICAL 

NOTATION: INTRODUCTORY REMARKS 

[QI65] 

[MT67] 

Boyer, M. C., COMpound PROcedural Scientific Language, IBM Corp., 
TRO0.1242, Data Systems Division, Development Lab., Poughkeepsie, 

N.Y. (Feb., 1965). 

Users Guide to MAC-360, M.I.T., Instrumentation Laboratory, Cam- 

bridge, Mass (Sept., 1967). 

IV.7.2. COLASL 

[BQ62] 

[CA63] 

Balke, K.G. and Carter, G.L., The COLASL Automatic Coding 
Language, Symbolic Languages in Data Processing. Gordon and Breach, 
New York, 1962, pp. 501-37. 

Carter, G. L., Balke, K. G., and Bacon, B. A., COLASL J. Los Alamos 
Scientific Lab., Los Alamos, N.M. (June, 1963) (unpublished). 

IV.7.3. MADCAP 

[BD61] 

[MP64] 

[WS61] 

[WS63] 

[WS64] 

Bradford, D. H. and Wells, M. B., “MADCAP II”, Annual Review in 
Automatic Programming, Vol. 2 (R. Goodman, ed.). Pergamon Press, 
New York, 1961, pp. 115-40. 
MADCAP Manual (Dec., 1964) (unpublished). 

Wells, M.B., “MADCAP: A Scientific Compiler for a Displayed 
Formula Textbook Language”, Comm. ACM, Vol. 4, No. 1 (Jan., 1961), 

pp. 31-36. 

Wells, M.B., “Recent Improvements in MADCAP”, Comm. ACM, 
Vol. 6, No. 11 (Nov., 1963), pp. 674-78. 

Wells, M. B., “Aspects of Language Design for Combinatorial Com- 
puting”, JEEE Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), 

pp. 431-38. 

IV.7.4. MIRFAC 

[DJ64] 

[GK63] 

[GK67] 

Dijkstra, E. W., “Some Comments on the Aims of MIRFAC” (letter 

to the editor), Comm. ACM, Vol. 7, No. 3 (Mar. 1964), p. 190. 

Gawlik, H.J., “MIRFAC: A Compiler Based on Standard Mathe- 
matical Notation and Plain English”, Comm. ACM, Vol. 6, No. 9 

(Sept., 1963), pp. 545-47. 

Gawlik, H. J. and Berry, F. J., Programming in MIRFAC, Second Edition, 

(Feb., 1967) (unpublished).



REFERENCES 313 

[WS64a] Wells, M.B., “In Defense of MIRFAC” (letter to the editor), Comm. 
ACM, Vol. 7, No. 6 (June, 1964), p. 379. 

IV.7.5. KLERER-MAY SYSTEM 

[KL64] Klerer, M. and May, J., “An Experiment in a User-Oriented Computer 
System”, Comm. ACM, Vol. 7, No. 5 (May, 1964), pp. 290-94. 

[KL65]  Klerer, M. and May, J. “A User-Oriented Programming Language”, 
Computer Jour., Vol. 8, No. 2 (July, 1965), pp. 103-109. 

[KL65a] Klerer, M., and May, J., “Two-Dimensional Programming”, Proc. 
FJCC, Vol. 27, pt. 1 (1965), pp. 63-75. 

[KL65b] Klerer, M. and May, J., Reference Manual, Columbia U., Hudson Labs., 
Dobbs Ferry, N.Y. (revised edition, July, 1965). 

[KL66] Klerer, M. and May, J., Working Notes Addendum to Reference Manual, 

Columbia U., Hudson Labs., Dobbs Ferry, N.Y. (Jan., 1966 edition). 

[KL67] Klerer, M. and May, J., “Automatic Dimensioning”, Comm. ACM, 
Vol. 10, No. 3 (Mar., 1967), pp. 165-66. 

[KL67a] Klerer, M. and Grossman, F., “Further Advances in Two-Dimensional 
Input-Output by Typewriter Terminals”, Proc. FJCC, Vol. 31 (1967), 
pp. 675-87. 

IV.8.1. CORC 

[CN63] Conway, R.W. and Maxwell, W.L., “CORC—The Cornell Computing 
Language”, Comm. ACM, Vol. 6, No. 6 (June, 1963), pp. 317-21. 

[FM64] Freeman, D.N., “Error Correction in CORC, the Cornell Computing 
Language”, Proc. FJCC, Vol. 26, pt. 1 (1964), pp. 15-34. 

IV.8.2. OMNITAB 

[DT63] 

[HR66] 

“OMNITAB on the 90”, Datamation, Vol. 9, No. 3 (Mar., 1963), p. 54. 

Hilsenrath, J. et al., OMNITAB—A Computer Program For Statistical 
and Numerical Analysis. National Bureau of Standards Handbook 101, 
Washington, D.C. (1966). 

IV.8.3. MORE NONPROCEDURAL LANGUAGES 

[HM66] 

[QI65] 

[QL67] 

[R166] 

Homer, E. D., “An Algorithm for Selecting and Sequencing Statements 
as a Basis for a Problem-Oriented Programming System”, Proc. ACM 
21st Nat’l. Conf. 1966, pp. 305-12. 

Boyer, M. C., COMpound PROcedural SCientific Language, IBM Corp., 
TRO0.1242, Data Systems Division, Development Lab., Poughkeepsie, 
N.Y. (Feb., 1965). 

Schlesinger, S. and Sashkin, L., “POSE: A Language for Posing 
Problems to a Computer”, Comm. ACM, Vol. 10, No. 5 (May, 1967), 
pp. 279-85. 

Rice, J. R. and Rosen, S., “NAPSS—A Numerical Analysis Problem 
Solving System”, Proc. ACM 2Ist Nat’l Conf., 1966, pp. 51-56.



V LANGUAGES FOR BUSINESS 
DATA PROCESSING PROBLEMS 

V.1. SCOPE OF CHAPTER 

The languages in this chapter are those whose primary intent is the effective 

solution of business data processing problems. The scope of this application 

area is assumed to be understood by the reader; briefly summarized, it is 

meant to include problems which have very large files on which straight- 

forward operations must be performed. Some common illustrations of such 

problems are payroll, inventory control, and insurance files. Fortunately 

or unfortunately, there is only one language in major current use which 

falls into this category—namely COBOL. The forerunners to COBOL are 

FLOW-MATIC, AIMACO, Commercial Translator, and FACT; each of 

these is described very briefly to indicate its historical significance and 

technical contributions. GECOM, which largely paralleled some of the 

COBOL effort in time scale, is also discussed. Lest any reader wonder 

about the absence of SURGE ({[NM00], Longo [LN62]), 9 PAC ({IB61b]), or 

report generators ({IB65d], Leslie [LS67]) from this list, it must be emphasized 

that none of those are /anguages by my definition of the term. Thus it is not 

the function of this chapter to debate the merits of languages versus fixed 

format forms for the solution of problems in business data processing. 

Only those systems which meet the characteristics of Chapter I are included. 

The basic pattern for programming languages in business data process- 

ing problems was set—as shown Section V.2.1—by FLOW-MATIC, which 

established the concept of an English-like language with “natural” words 

for both the operations to be performed and the data on which they are 

to be acting. All major language developments in this area have followed 

this concept. 

Other languages, or classes whose absence might be questioned are 

314



V.1. SCOPE OF CHAPTER 315 

DETAB X, DETAB 65, and decision tables in general. They are not con- 

sidered languages within the framework of this book. Some references are 

given at the end of Chapter I for the reader wishing to pursue this area. 

One of the unfortunate things about this particular application field is 

the fantastic variety of ways to say exactly the same thing. In Willey et al. 

[WY6la] there is a description of eight languages available (or at least 

defined) in 1960 and 1961. Four of these, or at least versions of them, are 

the ones mentioned in this chapter, and the other four are from England. 

It is shocking to look at this small reference booklet and find there are 

eight ways of trying to add three numbers and define the name of the result. 

Lest anyone doubt this, the actual specifications are given in Figure V-1. 

  

  

  

  

  

  

  

  

  

ADD ADD 
atb+c=z atb+c=c’ 

ADD (a) TO b TO ¢; 
FLOW-MATIC STORE THE SUM IN =z As Column 1 

IBM . As Column 1, or 

COMMERCIAL SET z = G@) + (6) + ©) ADD (a) TO ¢, ADD (6) TO 
TRANSLATOR 

ADD (a) AND (6) 
COBOL AND (6) GIVING 2 ADD (a) AND (6) TO ¢ 

SET z [EQUAL] TO 
FACT @+6+@) ADD (a) PLUS (6) TO 

(PLUS = +) 

| CALCULATE z = (@) + As Column 1 
CODEL (b) 4 ©) 

TAKE (a) ADD (6) TAKE (a) ADD (6) 
ELLIOTT’S AND (¢) GIVING z ne we 

INCREASE 

COPY @) + @) + ©) 

NEBULA ‘= ADD G@) + b TO ¢ 
—_ Zz 

INTO 

TAKE (a) ADD (6) 
ADD (a) [to] ¢ SEAL [and] (<) MOVE ADD (6) [to] « 

RESULT [to] z 

  

Figure V-1: Eight different ways to add three numbers. The last four systems 
were developed in England. The use of a circle means that either a constant 
or piece of data can be used. Square brackets denote an option and braces 
indicate a choice to be made. Lower-case words are program supplied. 

Source: Willey et al. [WY6la], p. 10.



316 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

This gives added proof of the necessity for letting people define their own 

artificial languages (discussed in Chapter XII). 

V.2. LANGUAGES OF PRIMARILY HISTORICAL INTEREST 

It is not altogether surprising that the higher level languages for mathe- 

matical problems appeared before the development of languages suitable 

for business data processing problems, for the former field had a formalized 

and accepted notation which could be used as a common basis. There are 

far fewer systems to discuss here than there were in Chapter IV. 

V.2.1. FLOW-MATIC (AND B-9) 

As early as January, 1955, Dr. Grace Hopper and her staff at Reming- 

ton Rand UNIVAC (among the key people were F. Delaney, L. Cousins, 

M. Harper, M. Hawes, T. Jones, M. Mulder, R. Rossheim, E. Somers, and 

D. Sullivan) had preliminary specifications of a language which would be 

suitable for doing business data processing on computers and still be easy 

to use. They made some early and unsuccessful attempts to provide abbre- 

viations, on which numerous people could agree, for things like GROSS 

PAY or COMPUTE (as they could agree that SIN X is a reasonable abbre- 

viation for COMPUTE THE SINE OF X). Then the idea of abbreviations 

was dropped and the designers introduced the concept of having a noun 

corresponding to a data description, rather than a symbol which would 

require lookup in a list to understand the meaning. A preliminary manual 

for the running system was marked Company Confidential and dated July, 

1957; it was available to me at that time since I was an employee of the 

Sperry Rand Corporation. The first generally distributed version was avail- 

able early in 1958. Its revision [RR59a] contained the first fairly complete 

list of commands; they are shown in Figure V-2. 

Dr. Hopper and her group pioneered not only in the development and 

convincing that was necessary for the computer input of English-like nota- 

tion but also in the general problem of getting users to accept programming 

languages of any kind. (See Chapter IV, for the early mathematical systems 

A-2 and MATHMATIC.) One of the first published user commentaries 

on this concept 1s given by Kinzler and Moskowitz [KB57]. 

The two most significant concepts introduced in FLOW-MATIC are 

(1) the use of understandable English words for both the operations to be 

performed and the data on which they are to operate, and (2) the reali- 

zation that the data designs can and should be written completely inde- 

pendently of the procedures to be executed. Thus, it was possible to write



  

ADD 

(h)AADDA field-nameA(f;)ATOAfield-name(f2)A[TOA...etc.A] 

s ASTOREATHEASUMAINAfield-nameA(fp)A.A 

CLOSE-OUT 

(h)ACLOSE—OUTAFILEAF 7A foAf3A...efc. A.A 

COMPARE 

Option I: 

(hJACOMPAREAfield-nameA(f])A WITHA field-nameA(f2)A;A 

IFAEQUALAGOATOAOPERATIONAh]A;A 

IFAGREATERAGOATOAOPERATIONAHh]A;A 

OTHERWISEAGOATOAOPERATIONAh24A;A 

Option IT: 

(h)ACOMPAREAfield-nameA(f] AAWITHAField-nameA(f2)A;A 

EQUALA 
A 

IF \ontarcra 

A IFA \eauate 

}GoatoaoPERATIONAh A;A 

EQUALA 

OTHERWISEAGOATOAOPERATIONAh3A.A 

}GOATOAOPERATIONAA2:;4 

COUNT 

Option I: 

(h)ACOUNTAfield-nameA(f7)A[,APRESETAVALUEAISAn7A][,AINCREMENTA 

ISAn2A] 
EQUALS 

EXCEEDS 

OPERATIONAh] A[AOTHERWISEAGOATOAOPERATIONAH24A].A 

Option II: 

(h)ACOUNTAfield-nameA(f7)A[, APRESETAVALUEAISAn]A] 

LAINCREMENTAISAn2A][,GOATOAOPERATIONAh]A].A 

;AWHENACOUNTERA | angA[,ARESETATOAn4A,AAN DA]JGOATOA 

DIVIDE 

(h)ADIVIDEAfield-nameA(f;)ABYAfield-nameA(f2)A 

GIVINGAfield-nameA(f3)A.A 

EXECUTE 

(hy) AEXECUTEAOPERATIONAh] A[THROUGHAOPERATIONAN24].A 

FILL 

f;A 
A A (h)AFILL \iiivitem-namesinafyaf 

[ AfgA,AF3A...A][sub-item-nameAINAf2A,A 

SPACES x==any character other 

sub-item-nameAINAF3A.. cw x \. A 

PERIODS 

than a period or 

space. 

Figure V-2, (cont. next page) 

317



Figure V-2. (cont.) 

HALT 

Option I: 
(h)AHALTA[Any-Descriptive-English]A.A 

Option IT: 

(h)AHALTABREAKPOINTAmAFORCEATRANSFERATOAGOATO 

AOPERATIONAh] A[Any- Descriptive-English]A.A 

= 0, 2, 4 through 9 

IGNORE 

(h)AIGNOREA.A 

INPUT 

SERVOAS]A 

SERVOSAs]A,As2A 

SERVOAS]A 

SERVOSAsS]A,As2A 

L
_
_
_
J
 

(h) AINPUTAname-of-fileAFILE-f} a| 

remeo-es PLE ft] 

L
d
 

;AOUTPUTA f-FileAFILE-FaA OUTPUTAname-of-FileAFILE-F34) - Pa Vosas;A,AsoA 
SERVOAS]A 

SERVOSAs7A,As2A 

| Senvosauy 

name-of-fileAFILE- Fad] 
L
u
}
 
b
d
 

[;PRESELECT ION][|AHSPAF 1A, AFQA,A...AfpA] 

ON 
[;,AT/CAF A, AF2A,A...Af,A][;ARERUNA4 WITH J}AOUTPUTAF,A].A 

FROM 

INSERT 

Option I: 

(h)AINSERTAconstantAINTOAfield-nameA(f7)A[,Afield-nameA(f2)A,A...A].A 

Option IT: 

(h)AINSERTAconstantAINTOAfield-nameA(f;)A[,Afield-nameA(f2)A,A...A] 

SPACES | AA 
;AW HEREAXAE A 

xAEQUALS {peetops 

Option II: 

(h)AINSERTAconstantAINTOA field-nameA(f1)A[,Afield-nameA(f2)A,A4...A] 

;AWHEREAxEQUALSASPACESAANDA yAEQUALSAPERIODSA.A 

JUMP 

(hMAJUMPATOAOPERATIONAN]A.A 

MOVE 

(h\AMOVEAfield-nameA(f;)ATOAfield-nameA(f2)A[,Afield-nameA(f3)A 

..etc.A} 

[;Afield-nameA(f ;')ATOAfield-nameA(f2')A[,Afield-nameA(f3')A...etc.A]].A 

318



Figure V-2. (cont.) 

MULTIPLY 

field-nameA(f} apy {Melenemen (2) 
(h)MULTIPLYA 

constant constant 

AGIVINGAfield-nameA(f3)A.A 

NUMERIC—TEST 

Option I: 

(hJANUMERIC-TESTAfield-nameA(f})A[,Afield-nameA(f2)A,A...4 

NUMERICAL 
ield- A]; AIFA AGOATOA AhyA field-nameA(f,)A];AlF NUMERIC \ GOATOAOPERATIONAh] 

[;AOTHERWISEAGOATOAOPERATIONAh2A].A 

Option I: 

NUMERICAL A - Afield- A(f])A;AIFA (h)ANUMERIC-TESTAfield-nameA(f7)A;AIF {NUMERIC 

field-nameA(f2)AANDAGOATOAOPERATIONAh] A[;AOTHERWISEAGOATO 
AOPERATIONAA2A].A 

laMOveaToa 

OVERLAY 

(hYOVERLAYAFROMAOPERATIONAh]A.A 

PRINT-—OUT 

Option I: 

(h)APRINT—OUTAfield-nameA(f))A[,A...efc.A].A 

Option IT: 

(h)APRINT—OUTAconstantA,AconstantA[,A...etc-A].A 

Option II: 

(h)APRINT—OUTAfield-nameA(f1)A,AconstantA[,A...efc.A].A 

READ—-ITEM 

(h)AREAD—ITEMAF 7 A[;AIFAENDAOFADATAAGOATOAOPERATIONAh]A].A 

REPLACE 

LEADINGAZEROES 

LEADING AOA 

(h)AREPLACEA PERIODSA © WITHA 

SPACES 

xA 

INAfield-nameA(f7)A[,Afield-nameA(f2)A...,Afield-nameA(fp)A].A 

PERIODSA 

SPACESA 

ZEROESA 

yA 

REWIND 

(h)AREWINDAF]A[,AF24,AF3...,efc.A].a 

Figure V-2. (cont. next page) 

319



Figure V-2. (cont.) 

SELECT 

SELECT-LEAST 

SET 

STOP 

SUBTRACT 

SUPPLEX 

Option I: 

INPUTA 

OUTPUTA 

[name-of-fileAFILE-f2A...A] 

OUTPUTA 

li \ INPUTA 
[name-of-fileAFILE-fmA...A]J]A.A 

(HASELECTAY \name-of-FileAFILE-F 14 

\name-of-FileFILE-f 

(h) ASELECT—LEASTAKEYA;AIFAF] AGOATOAOPERATIONAH]4,A 

IFAf2 AGOATOAOPERATIONAh24,A[IFAf34 GOATOAOPERATIONAN3A, A... 

IFAfs3AGOATOAOPERATIONAN3AI.A 

(h) ASETAOPERATIONAh] ATOAGOATOAOPERATIONAh2A[, AOPERATIONA 
h3ATOAGOATOAOPERATIONAhA4A..., AOPERATIONAh5ATOAGOATOA 
OPERATIONAN6A].A 

(h)ASTOPA.A(END) 

(hJASUBTRACTAfield-nameA(f1)A[ANDAfield-nameA(f2)AANDAetrc. A] 

AFROMAfield-nameA (fn) A; ASTOREA THEAREMAINDERAINA field-nameA(fm) 

A.A 

(h) ASUPPLEXAxxxA[BLK—RELATIVEA ][Any-Descriptive-EnglishA].A 

where xxx IS a Section number 

Option IT: 

(h)ASUPPLEXAnnnA[BLK—RELATIVEA]:A 

SPACE iS 
AviA AxA A USEAv;A[WHEREAx \ * {reeop | al{Any-Deseriptive-English 

[ANDAv2A[WHEREAxd} IS haf SPACE |al[Any-Descriptive-English| 
- PERIOD 

[ANDAv,A...efc.A].A 

where nnn must be any alphabetic or alphanumeric designation assigned 

to this SUPPLEX routine 

where each of the values v1, v2, ... vx may take any one of the following 

forms: 

a 

bbbb 

cecccc 

dddddddddddd 

field-nameA(f}) 

320



Figure V-2. (cont.) 

SWITCH 

(h)ASWITCHA[any-alphabetic-or-numeric-designation-for-the-switch]A.A 

TEST 

Option I: 

(h)ATESTAfield-nameA(f;)AAGAINSTAtest-valueA;A 

GREATERA 

EQUALA 
IFA LESSA GOATOAOPERATIONAh]A;A 

UNEQUALA 

OTHERWISEAGOATOAOPERATIONAh?24A.A 

Option IT: 

(h)ATESTAfield-nameA(f;)AAGAINSTAtest-valueA;A 

GREATERA 

IFA, EQUALA =-GOATOAOPERATIONAN]4A;A 

LESSA 

GREATERA 
ro] rauat \cosronoretrionsiz 

LESSA 
OTHERWISEAGOATOAOPERATIONAN3A.A 

Option IIT: 
(h) ATESTAfield-nameA(f])AAGAINSTAtest-value-1A;A 

GREATERA 

raf eQUALa \eoaronorerarionsh es 

LESSA 

AGAINSTAtest-value-2A;A 

GREATERA 
IFAS EQUALA =4SGOATOAOPERATIONAN2A;A 

LESSA 
GREATERA 

IFA, EQUALA = »pGOATOAOPERATIONAH34;A 

LESSA 

[AGAINSTAtest-value-nA;A 

GREATERA 

EQUALA 
A ATOA AhmA;4 IF LESSA GOATOAOPERATIONAh)A; 

UNEQUALA 

OTHERWISEAGOATOAOPERATIONAh,)A.A 

TRANSFER 

Option I: 

(h)ATRANSFERAF] ATOAF2A.A 

Option IT: 

(h)ATRANFERAsub-item-nameAINAf); ATOAF24.A 

Figure V-2. (cont. next page) 

321



322 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

Figure V-2. (cont.) 

Option IIT: 

(h) ATRANSFERAF; ATOAsub-item-nameAINAFf2A.A 

Option IV: 

(h) ATRANSFERAsub-item-nameAINAF] ATOAsub-item-nameAINAf2A.A 

TYPE 

(h)ATYPEA[any-descriptive-wordsA |INTOAfield-nameA(f])A,A 

[field-nameA(f2)A,A...etc.A].A 

UNIVAC 

(h)AUNIVACAxxxA[BLK—RELATIVEA |[ Any-Descriptive-EnglishA].A 

where xxx is a section number 

WRITE-ITEM 

(h)AWRITE-ITEMAF7A.4 

(h)AX—1 A[BLK—RELATIVE][ Any-Descriptive-EnglishA].A 

  

Figure V-2. FLOW-MATIC verb formats. The A represents a required blank 
character, the square bracket denotes an option, and braces indicate a choice. 

Source: [RR59a], extracts from pp. 87-92. 

a complicated description of a file quite independently from a specific 

procedure to be executed on that file. 

An example of an early (circa 1955-56) FLOW-MATIC program is 

shown in Figure V-3, and a list of the available commands is given in 

Figure V-2. Preprinted forms were used for describing the data design. 

Admittedly, the language is stilted and the English is not very natural; it is 

also designed with significant attention paid to the 12-character word avail- 

able on UNIVAC. In spite of these shortcomings, FLOW-MATIC was a 

milestone in the significant concepts of programming languages.! 

While the sort generator written by F. Holberton [HF54] was an earlier 

example of the development of the concept of code generators (they were 

also used in A-2), the implementation of FLOW-MATIC really brought this 

concept into compilers in a major way. In the more mathematically oriented 

compilers, an addition could take place between either two fixed point 

numbers or two floating point numbers, and each of those was of a fixed 

length corresponding to the word size of the machine. However, in a busi- 

1 Note that FLOW-MATIC was originally called B-@. All the early Remington 

Rand systems had a letter(s) followed by a digit to indicate which version it was, until 

some marketing people decided that names such as FLOW-MATIC and MATH-MATIC 

were more appealing than B-@ and AT-3.



V.2.1. FLOW-MATIC (AND B-0) 323 

  

(0) INPUT INVENTORY FILE-A PRICE FILE—B ; OUTPUT PRICED-—INV FILE—C UNPRICED-INV 

FILE-D ; HSP D. 

(1) COMPARE PRODUCT—NO (A) WITH PRODUCT—NO (8B) ; IF GREATER GO TO 

OPERATION 10 ; IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO OPERATION 

2. 

(2) TRANSFER A TOD. 

(3) WRITE-ITEM D . 

(4) JUMP TO OPERATION 8 . 

(5) TRANSFER ATO C. 

(6) MOVE UNIT—PRICE (B) TO UNIT—PRICE (C) . 

(7) WRITE-ITEM C . 

(8) READ-ITEM A ; IF END OF DATA GO TO OPERATION 14 . 

(9) JUMP TO OPERATION 1 . 

(10) READ-ITEM B ; IF END OF DATA GO TO OPERATION 12 . 

(11) JUMP TO OPERATION 1 . 

(12) SET OPERATION 9 TO GO TO OPERATION 2. 

(13) JUMP TO OPERATION 2 . 

(14) TEST PRODUCT—NO (B) AGAINST ZZZZZZZZZZ72Z ; IF EQUAL GO TO OPERATION 16 

; OTHERWISE GO TO OPERATION 15. 

(15) REWIND B. 

(16) CLOSE-—OUT FILES C;D. 

(17) STOP . (END) 

  

Figure V-3. FLOW-MATIC program. 

ness data processing problem, the size of the field varied and alignment of 

decimal points was always required. Thus although the FLOW-MATIC 

generators were an extension of those developed in A-2, the generators for 

the business data processing compilers were far more essential. The gen- 

erators referred to here are used by the compiler to create object code for 

each operation in which the possible choices are almost infinite. For ex- 

ample, instead of having at object time all the code needed for each possible 

type of addition, (only) the instructions needed for each case are ascertained 

from the data description and included in the object program. The major 

alternative is some type of interpretation at object time. 

FLOW-MATIC, and its later modification known as AIMACO (see 

Section V.2.2), was a major input to the Short Range Committee developing 

COBOL (discussed in Section V.3.1). In actual fact, FLOW-MATIC was 

the only language with which there was any experience at that time. Perhaps 

the only disadvantage that accrued from the experience was what can be 

defined as bending over backwards to provide an English-like language. 

In other words, the Remington Rand people felt that no businessman or 

person concerned with business data processing problems was really inter- 

ested in writing symbolic formulas and that if he actually wanted to com-



324 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

pute (4 + B x C)/D or ((BASE-PRICE) + INCREMENT x (DISCOUNT- 

PERCENT)) X NO-OF-UNITS, he would prefer to write it as a series of 

individual statements. This concept, along with the corresponding one that 

any mathematical symbolism was not suitable for a business data processing 

language, did cause a fair amount of conflict within the committee; in fact, 

some of this conflict still rages. (The individuals involved at the time actually 

conveyed much stronger views along these lines than those stated here.) 

The question of whether people prefer to write equals or equal to instead of 

an = is one that requires solution by a psychologist rather than by 

programmers. 

V.2.2. AIMACO 

Using the concepts developed in FLOW-MATIC (see the previous 

section), the Air Force Air Materiel Command at the Wright-Patterson Air 

Force Base in Ohio developed a system called AIMACO. Direction and 

supervision were provided by Col. Alfred Asch and John L. Jones. The 

original system was implemented on the UNIVAC 1105. The verbs available 

were almost all those provided in FLOW-MATIC. Because of this, the first 

phase of the compilation could be made on the UNIVAC I or II, using 

part of the B-@ compiler; the intermediate files were then translated to 

1105 code on the 1105. This was done to save calendar time in developing 

the system. 

The most interesting aspect of the AIMACO development is that work 

was started to implement the language for the IBM 705. This is probably 

the first attempt at deliberately planning a language that could be used to 

run the same source program on two significantly different computers. The 

work on the 705 system was underway when the Short Range Committee 

started to define COBOL (See Section V.3.1); the 705 work was never finished 

so that the resources could be diverted to the development of COBOL. 

AIMACO was used quite extensively for about two and a half years 

on the 1105 until a COBOL-60 compiler, developed by the Air Materiel 

Command for the 1105, became operational. 

V.2.3. COMMERCIAL TRANSLATOR 

As early as January, 1958 there were some preliminary specifications for 

a language to be used for business data processing (although not limited 

to that area) being developed in IBM under the technical leadership of 

R. Goldfinger. It was originally known as COMTRAN and eventually



V.2.3. COMMERCIAL TRANSLATOR 325 

received the official title of Commercial Translator. Following the philos- 

ophy established in FLOW-MATIC, this was an English-like language. 

It introduced several significant concepts. One was the introduction of 

formulas which are of course standard in scientific languages but were new 

to the business data processing field. A second key feature was the intro- 

duction of the IF...THEN... facility. A third idea was the concept of 

allowing differing levels in the data description. The Picture Clause that 

eventually appeared in COBOL was a direct contribution from Commercial 

Translator, along with the concept of suffixing. Perhaps the weakest part 

of the Commercial Translator proposal was the avowed statement in the 

first manual that “...a data description is not directly transferable to a 

different machine system... .”!2 

The position of IBM relative to COBOL and Commercial Translator 

was one of oscillation for many years. The original Commercial Translator 

manual [{IB59] was a significant input to the Short Range Committee de- 

veloping COBOL (see Section V.3.1); a number of significant ideas from 

Commercial Translator were taken over directly, such as the Picture Clause, 

the IF... THEN... clause (which was however significantly extended), suf- 

fixing, and the use of formulas. The 1960 Commercial Translator manual 

[1B60a] with addenda [IB61b] shows certain concepts that were obtained 

from COBOL (and indeed even from FACT—see Section V.2.4). It is per- 

haps unfortunate that in some cases the Short Range Committee chose 

deliberately to do things in a different way simply to avoid accusation of dom- 

ination by IBM. During much of 1960 and 1961, IBM took the position 

that COBOL was not a well-defined language and that Commercial Transla- 

tor was really very much better even in the portions of COBOL that had 

been defined. IBM eventually found itself in the position of having to im- 

plement Commercial Translator for several different machines because of 

customer commitments, but it also had to implement COBOL because of 

pressure from government users and other customers. The very efficient im- 

plementation of Commercial Translator on the 709 [IB62a] caused the lan- 

guage to stay in use on that machine somewhat longer than it did on the 7070 

and 7080. After the initial implementations on the latter two machines, 

IBM dropped Commercial Translator except for the 7090 customers who 

insisted on it and then dropped it completely when going to System/360. 

From a technical point of view, there are several useful features or con- 

cepts in Commercial Translator which have not yet found their way into 

COBOL. These include the use of floating point numbers (although some 

implementations of COBOL have provided this facility), the truth operator, 

the ability to specify functions, parametric substitution in the Commercial 

la [1B59], p. 33.



326 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

Translator DO (which is not in the COBOL PERFORM), the absolute value 

operator, the CALL verb which permits alternate (and thus abbreviations for) 

data names, and the ability to assign a value to a condition name at object 

time. A list of the verbs and their formats is given in Figure V-4. 

A comparison of COBOL and Commercial Translator as implemented 

for the IBM 7090/94 is given in [[B63]. 

  

ADD [CORRESPONDING] data.name.] TO data.name.2, data.name.3, ... dafa.name.n 

BEGIN SECTION [USING paramefter.], parameter.2, ... parameter.n] [GIVING function.], 

function.2, ... function.n] 

CALL (old.name.]) new.name.], (old.name.2) new.name.2, ... (old.name.n) new.name.n 

file.name.], filename.2, ... file.name.n 

CLOSE tact FILES | 

‘any message’ 

DISPLAY ta 

any.combination.of.the.above 

DO procedure.nome [EXACTLY n TIMES] [USING data.name.], data.name.2, ... data.name.n] 

[GIVING result.name.], result.name.2, ... result.name.n] 

DO procedure.name FOR index.name.!] = p.I(q.I)r.1 [, index.name.2 = p.2(q.2)r.2, index.name. 

3 = p.3(q.3)r.3] [USING data.name.], data.name.2, ... data.name.n] [GIVING result.name.1 

result.name.2, ... result.name.n] 

END procedure.name 

ENTER coding.language 

FILE record.name [IN filename] 
GET td FROM file.name 

\ AT END any imperative clause 
record.name 

GO TO procedure.name 

GO TO procedure.name.! WHEN conditional.expression.], procedure.name.2 WHEN conditional. 

expression.2 ... procedure.name.n WHEN conditional.expression.n 

GO TO (procedure.!, procedure.2, ... procedure.n) ON index.name 

INCLUDE [HERE] library.procedure [AS procedure.name] [WITH new.name.] FOR old.name.|, 

new.name.2 FOR old.name.2, ... new.name.n FOR old.name.n] 

LOAD procedure.name 

MOVE [CORRESPONDING] data.name.] TO data.name.2, data.name.3, ... data.name.n 

NOTE any sentence. 

file.name.1, file.name.2, ... file.name.n 

OPEN tate FILES \ 

OVERLAP procedure.name.] procedure.name.2, ... procedure.name.n 

SET variable.], variable.2, ... variable.n = arithmetic.expression [TRUNCATED] [, ON 

OVERFLOW any.imperative.clause] 

SET condition.name 

STOP n 

  

Figure V-4. List of Commercial Translator commands. The square bracket 

denotes an option and braces indicate a choice. 

Source: [IB60a], pp. 108-109. Reprinted by permission from General Infor- 

mation Manual: IBM Commercial Translator. © 1960 by International 

Business Machines Corporation.



V.2.4. FACT 327 

V.2.4. FACT 

Early in 1959 a contract was given by the Minneapolis-Honeywell 

Regulator Company, Datamatic Division (currently called Honeywell) to the 

newly formed Computer Sciences Corporation (containing fewer than 10 

people) to produce a business compiler for the Honeywell 800. The super- 

vision from Honeywell’s side was done by R. Clippinger; R. Nutt was the 

key technical man from CSC. The work on FACT (Fully Automatic Com- 

piling Technique), as it was later called, was started prior to the work on 

COBOL and of course ran parallel with it. Fortunately or unfortunately, 

the Honeywell representative was remarkably silent about the technical 

work being done on FACT during most of the early deliberations of the 

Short Range Committee (see Section V.3.1). The first report issued early 

in the fall of 1959 as a preliminary description [HO59] came as a shock to 

the COBOL committee. Because of the obvious difficulties of developing 

a machine independent language, there were a number of more advanced 

features in the Honeywell-800 Business Compiler than in the preliminary 

specifications of COBOL, for the former did not have to worry about all 

the problems of machine independence. On the other hand, later versions 

of FACT [HO61] were influenced by COBOL and Commercial Translator, 

which in turn were affected by ideas in FACT. 

The FACT Compiler, when produced (and it was significantly late), 

had several hundred thousand instructions and was probably the most 

complex system of its kind produced up to that time. Because of the exist- 

ence of COBOL, accompanied by government pressure, Honeywell did not 

implement FACT for any machine beyond the 800. It is still in use by a few 

customers; but over the years, the major attention of that company in this 

area has been devoted to COBOL. Nevertheless, there are some interesting 

ideas in FACT which are worthy of mention. These are described more fully 

in the manual [HO61], and a description of FACT together with a comparison 

with Commercial Translator and COBOL are given by Clippinger [CP61.] 

FACT has a somewhat more flexible input/output system (including 

data description) than COBOL. The hierarchy present up to the record level 

in COBOL is actually extended up to the file level in FACT; in addition, 

the user is able to access by name any particular subrecord and it will be 

brought in automatically. The implicit assumption is that people using 

FACT will have their data on an input deck from which a tape file must 

be created by the FACT system. (A similar facility is available for paper 

tape file data.) The FACT system does quite a bit of error checking as this 

conversion is taking place. A distinction is made in FACT between what 

are called primary and secondary groups, where the former are present 

a specific number of times and can appear in memory all at once, while 

the latter are present an indefinite number of times and are therefore



328 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

brought in one at a time. This makes it possible to keep information more 

compactly on tape and the user needs to do Jess bookkeeping in order to 

reach the particular fields that he wants. As seen from the list of verbs in 

FACT—Figure V-5—they appear very similar to those of COBOL. However, 

the input/output verbs are able to access any group and not just the record. 

A specific UPDATE verb is available in FACT. Sort and report writing facili- 

ties were included in Extended COBOL 61 (see Section V.3.3), but they 

appeared in the earlier specifications of FACT. 

  

ADD GO REPLACE 

ARE IGNORE REVERSE 

CLOSE IS REWIND 

CONTROL LEAVE SEE 

DELETE LOCK SET 

DIVIDE MULTIPLY SORT 

DO OPEN SUBTRACT 

EQUALS PERFORM UNWIND 

FILE PUT UPDATE 

FIND RELEASE USE 

GET REMOVE WRITE 

  

Figure V-5. List of FACT verbs. 

Source: [HO61], extracts from pp. 172-173. 

FACT provides certain facilities for validity checking of arithmetic. 

FACT also provides a number of synonyms for specific verbs, e.g., DO, 

SEE. An automatic search for the tabular value of an argument is available 

in FACT. 

While there are a number of detailed differences in the way in which 

facilities or concepts are expressed, the items stated above indicate the most 

significant facility additions beyond those of COBOL. No attempt has been 

made here to show detailed differences for format. 

V.2.5. GECOM 

The GECOM system for the GE-225 was supposed to be based on 

COBOL-61, but there were enough changes to it, and elements deleted from 

and added to it, so that GECOM is worth describing very briefly. The addi- 

tions are based primarily on ALGOL, either in syntax or in function. (It is 

assumed that the reader is familiar with both COBOL and ALGOL.) At 

the beginning of an article by Katz [K X62], who led the development of 

GECOM, he states “GECOM, the General Compiler for the GE-225 is not 

a new source language, but rather a compiling technique. It’s [sic] source



V.2.5. GECOM 329 

language is made up of four parts: ALGOL, COBOL, FRINGE, and 

TABSOL. The construction of the compiler is such that languages can be 

added, extended or removed.”? (TABSOL is a language for decision tables 

and FRINGE is defined by Katz as “a problem oriented language for sorting 

and merging of data, writing reports, and file maintenance”.*) The specifica- 

tions given in the manual [GZ61] make no mention of the latter two lan- 

guages, so their exact usage is unclear to me. They are shown in a diagram 

contained in an article by Schwalb [SB63] discussing GECOM usage, but 

apparently they were not actually available because he indicates that a 

report writer would be desirable in GECOM and in future compilers. 

Some of the changes to COBOL are 

1. Data names cannot exceed 12 characters and cannot contain all numerals 
and the letter E. 

2. Data descriptions are given in a fixed format on a printed form. 

3. Several verbs are omitted, both by name and function, e.g., EXAMINE, 
USE, INCLUDE. 

4. Several verbs have functional capabilities changed or omitted or they 
incorporate those from others, e.g., OPEN, CLOSE, READ, WRITE (but no 

ACCEPT or DISPLAY), and PERFORM (see under extensions). 

5. No THEN clause is allowed in the /F statement; the latter is only of the 
form IF...GOTO.... 

Among the more significant extensions are 

. Subscripts can be arithmetic expressions and can be subscripted. 

. Floating point numbers and arithmetic. 

Eight elementary mathematical functions. 

. Sections specify input and output formal parameters and use a BEGIN 
... END to identify the body of code. 

5. The PERFORM verb specifies parameter passage for sections. The loop 
control function is performed by a new verb called VARY, but it is much 
weaker than the COBOL PERFORM. 

6. Additional file description entries. 

7. A verb to EXCHANGE the contents of two fields. 

&
 
W
 

bh 

It should be clear, even from this very brief outline, that GECOM 

syntactically resembles no particular language. It is not enough like COBOL 

to be considered a dialect or even COBOL-like, and it is much further from 

ALGOL. The flavor and spirit resemble COBOL, but that is all that can be 

said for the resemblance. From the viewpoint of the functions it performs, 

the designers chose the features from both languages which they felt were 

2 Katz [K X62], p. 495. 
3 Katz [KX62], p. 495.



330 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

necessary. I wonder whether the ideas expressed and methods suggested 

in Sammet [SM61] for combining ALGOL and COBOL might have helped 

the GECOM designers come closer to both languages if my referenced work 

had been completed first. Both sets of ideas were being developed at about 

the same time but quite independently. 

V.3. COBOL 

V.3.1. History o—F— COBOL 

On May 28 and 29, 1959, a meeting was called in the Pentagon by 

Charles A. Phillips of the Department of Defense. The suggestion that the 

Department of Defense call this conference was made by a small group 

representing users, manufacturers, and universities which had met at the 

University of Pennsylvania Computing Center on April 8, 1959 to discuss 

the problem of developing a common business language. The purpose of 

this May meeting was to consider both the desirability and the feasibility 

of establishing a common language for the adaptation of electronic com- 

puters to data processing. About forty representatives from users, govern- 

ment installations, computer manufacturers, and other interested parties 

were present.‘ There was almost unanimous agreement that the project was 

both desirable and feasible at this time. The concept of three committees 

was agreed upon. They were called the Short Range, Intermediate Range, 

and Long Range, with appropriate time scales. 

One interesting point which is not widely known is that in spite of all 

the references to the CODASYL (COnference on DAta S Ystems Languages) 

Committee which have appeared for years, it was never a committee in the 

normal sense of the word. It was created—as a concept—at this May, 1959 

meeting, but the group never met again and really consisted only of a 

mailing list. There was—and is—an Executive Committee for CODASYL, 

but the parent group never really functioned or existed as an organization. 

The Short Range Committee was composed of six manufacturers 

(Burroughs, IBM, Minneapolis-Honeywell, RCA, Remington Rand Division 

of Sperry Rand, and Sylvania Electric Products) and two government agen- 

cies (Air Materiel Command, USAF, and David Taylor Model Basin, Depart- 

ment of the Navy), in addition to Chairman J. Wegstein of the National 

Bureau of Standards. This Committee held its first meeting on June 23, 1959 

and working groups were established. 

4 Since I was present not only at this initial meeting (representing Sylvania Electric 

Products), but also was chairman of two different task groups of the Short Range Com- 

mittee, the historical description of the early COBOL work is based on firsthand knowl- 

edge and participation, and is supported by appropriate documents (some of which I 

wrote at the time).



v.3. COBOL 331 

The assigned mission of the Short Range Committee was actually ‘‘to 

do a fact finding study of what’s wrong and right with existing business 

compilers (such as FLOW-MATIC, AIMACO, COMTRAN, etc.) and the 

experience of users, thereof. This short range group is due to complete its 

work in three months, 1.e., by September 1, 1959.”® However, the Committee 

actually set itself the very ambitious goal of developing a language within 

three months. Thus this was the first attempt to have an intercompany 
committee, consisting primarily of competitive computer manufacturers, 

specify a complex machine-independent language on any time scale, let 

alone such a short one. 

Working groups on data description and procedural statements pre- 

pared proposals for consideration by the full committee which met in August, 

1959 for the purpose of preparing a report to the Executive Committee. The 

report, dated September 4, 1959, was presented and it stated that the Short 

Range Committee felt it had prepared a framework upon which an effective 

common business language could be built. It was recognized that the tech- 

nical material contained rough spots and needed additions. The report 

requested that the Short Range Committee be authorized to complete and 

polish the system by December 1, 1959. It was also requested that the 

Short Range Committee continue beyond that date in order to monitor the 

implementation. Both these requests were granted. 

The Committee held several meetings between September 18 and 

October 21, 1959 and proceeded steadily in its task of resolving problems 

and completing the language. The name COBOL, which suggests a COmmon 

Business Oriented Language, was adopted. From October 26 to November 

7, 1959, H. Bromberg and N. Discount (RCA), V. Reeves and J. Sammet 

(Sylvania), and W. Selden and G. Tierney (IBM) worked continuously, 

integrating the rough specifications into a systematic language. 

The COBOL System was reviewed and approved by the Short Range 

Committee during the week of November 16 to 20. Final editing by the 

people named above was done (with myself as chairman of the group), 

and initial distribution was accomplished December 17, 1959. 

In January, 1960 the Executive Committee of CODASYL accepted and 

approved the report of the Short Range Committee. During the period from 

January to April, 1960, the report underwent editing for typographical and 

other minor errors, and it was published by the Government Printing 

Office in April 1960 [US60]. (After considerable debate, it was decided to 

list in that report only the names of the organizations involved and not 

the specific individuals representing them. Aside from the six people listed 

above (who were acknowledged by the Short Range Committee to have 

5 C.A. Phillips, “Summary of Discussions at Conference on Automatic Programming 
of ADPS for Business-Type Applications. The Pentagon, May 28-29, 1959”, p. 3.



332 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

made the greatest contribution), a number of others participated. At the 

time of this writing, the draft of Appendix A of the USASI COBOL standard 

({AA68] in preparation) contains the complete list of names, and this is the 

only place that they will be published. 

The most significant aspect of this entire activity is that it was the first 

attempt (known to me) to have a group of competitors work together with 

the prime objective of developing a language that would be usable on 

computers from each of the manufacturers. That it succeeded is a tribute 

not only to the hard work of the individuals actually serving on the com- 

mittee but more importantly to the management of the various companies 

involved who were able to recognize the value of subordinating their own 

individual plans and specialities to the broader overall benefit of the cus- 

tomers. This was particularly significant because many manufacturers were 

beginning or had already done considerable work on developing their own 

“commercial” languages and these developments naturally had to be elim- 

inated or subordinated to the committee results. 

The only companies which actually implemented the 1960 version of 

COBOL were Remington Rand and RCA, and they had compilers running 

in 1960. (Remington Rand actually used FLOW-MATIC to write a signifi- 

cant part of their COBOL compiler.) The two companies conducted an 

experiment in December, 1960 in which programs were interchanged; with 

only a minimum of modifications primarily due to differences in imple- 

mentation, the programs were run on both machines—UNIVAC II and the 

501. A description of this activity was given by Bromberg [BJ61]. 

During 1960, a Maintenance Committee existed for the purpose of 

initiating and reviewing recommended changes to keep COBOL up-to-date 

and clarifying points of confusion about the original specifications. The 

Maintenance Committee consisted of users’ and manufacturers’ groups 

which met both separately and jointly. A number of new (relative to the 

original Short Range Committee) organizations were represented on these 

committees, namely Bendix Computer Division, Control Data, DuPont, 

General Electric, National Cash Register, Philco, and U.S. Steel. In many 

cases the individuals representing the original organizations were new to the 

committee. As a result of both these factors, much attention was devoted 

to changes and improvements, with less attention paid to maintaining con- 

sistency with the 1960 specifications. (A description of the issues involved 

at that time as noted by me is given in Sammet [SM61b] or [SM6lIc].) 

In order to devote concentrated attention to bringing out a revised and 

updated COBOL-1961, a Special Task Group was created by the Executive 

Committee. The sessions of this group were chaired by J. L. Jones of the 

Air Materiel Command and G. M. Dillon of the DuPont Company. 

The net result of this activity was the report entitled COBOL-1961: 

Revised Specifications for a Common Business Oriented Language, issued by



v.3. COBOL 333 

the Government Printing Office in June, 1961 [US61]. It differed significantly 

in some places from the 1960 specifications, but the basic concepts and 

principles remained the same. These 1961 specifications are the ones on 

which all ensuing work has been based. 

It was recognized even by the Short Range Committee that there were 

certain major components of business data processing programming which 

needed to be put into COBOL, but there was just insufficient time in which 

to do it. After the issuance of the 1961 specifications, the work of the 

COBOL Committee was devoted primarily to developing some of these 

additional features. This resulted in the issuance by the Government 

Printing Office in November, 1962 of the COBOL-1961 Extended: Extended 

Specifications for a Common Business Oriented Language [US62] which 

contained major (Report Writer facilities and SORT verb), and a few minor, 

additions to COBOL-61 and a minimum of changes in specifications. 

It was well recognized from the start that good facilities for table 

handling were an important feature in a language like COBOL. Since there 

were already ways of defining and operating on tables in COBOL-60, a 

separate verb was of much lower priority than a number of other problems 

which had to be solved; therefore nothing was done for several years. 

Then it was realized that although the emphasis in 1959-61 was on the use 

of magnetic tapes for large files, an increasing number of manufacturers 

were beginning to supply mass storage devices as a major component in 

their computing systems. It was clear that the input/output facilities suitable 

for magnetic tape could not make effective use of the mass storage equip- 

ment. For these reasons, the primary developmental effort of the COBOL 

Committee after the issuance of the COBOL-61 Extended manual was to 

prepare specifications for these two items. The designers naturally continued 

the work of cleaning up any ambiguities which were found. 

In January, 1964 the COBOL Maintenance Committee was reorganized. 

The separate user and manufacturer groups were combined into the COBOL 

Committee with three subcommittees: Language, evaluation, and pub- 

lication. The language subcommittee concerned itself with clarifications and 

additions, the evaluation subcommittee conducted surveys and evaluations 

of implementations and user activities, and the publication subcommittee 

was concerned with the preparation of publications and liaison with the 

USASI X3.4.4. Subcommittee, which was working on the development of 

a standard and the publication of the COBOL Information Bulletin (dis- 

cussed later). In 1966 the COBOL: Edition 1965 manual was issued through 

the Government Printing Office [US65]. An interesting feature of the work 

going on during that period is that significant contributions were made by 

the European Computer Manufacturer’s Association (ECMA). The “new” 

version is still based on COBOL-61 and includes only “extensions, resolu- 

tions of ambiguities, deletion of redundancies, or removal of unused or



334 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

poor language specifications.”® It also contains a historical section which in 

my opinion is incorrect or misleading in a few small but significant com- 

ments. The COBOL-65 manual is a major reorganization and rewrite of 

the earlier ones. 

The acknowledgment which the 1965 manual requests be used is as 

follows; it differs significantly from the earlier two versions, which listed 

the names of the companies involved. 

Any organization interested in reproducing the COBOL report and 
specifications in whole or in part, using ideas taken from this report as the 
basis for an instruction manual or for any other purpose is free to do so. 
However, all such organizations are requested to reproduce this section 
as part of the introduction to the document. Those using a short passage, 
as in a book review, are requested to mention “COBOL” in acknowl- 
edgment of the source, but need not quote this entire section. 

COBOL is an industry language and is not the property of any com- 
pany or group of companies, or of any organization or group of organi- 
zations. 

No warranty, expressed or implied, is made by any contributor or 
by the COBOL Committee as to the accuracy and functioning of the 
programming system and language. Moreover, no responsibility is 
assumed by any contributor, or by the committee, in connection therewith. 

Procedures have been established for the maintenance of COBOL. 
Inquiries concerning the procedures for proposing changes should be 

directed to the Executive Committee of the Conference on Data Systems 
Languages. 

The authors and copyright holders of the copyrighted material used 
herein 

FLOW-MATIC (Trademark of Sperry Rand Corporation), Pro- 
gramming for the Univac (R) I and II, Data Automation Systems 
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Com- 
mercial Translator Form No. F 28-8013, copyrighted 1959 by IBM; 
FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honey- 
well 

have specifically authorized the use of this material in whole or in part, 
in the COBOL specifications. Such authorization extends to the repro- 
duction and use of COBOL specifications in programming manuals or 
similar publications. 

V.3.2. FUNCTIONAL CHARACTERISTICS OF COBOL 

In considering the general properties of languages, COBOL is not 

particularly general in the sense that it is aimed at that class of problems 

known as business data processing. COBOL is definitely not a succinct 

language; its objective was to be natural, where natural was defined as 

6 [US65], p. HI-1-1.



v.3. COBOL 335 

being English-like. This led to the introduction of certain concepts in the 

language designed specifically to permit this type of naturalness. There is 

a certain amount of minor internal inconsistency in COBOL, particularly 

relative to the change of key and noise words in different divisions. Since 

one of the objectives was to make the statements easily understandable when 

read, it turned out that words which were logically necessary in one place 

were really only desirable noise words in another; this problem was resolved 

by permitting different noise and key words in different divisions. With 

regard to the efficiency, as indicated earlier, people have different views 

on what this may mean. COBOL does not permit minimal writing; on the 

contrary, it encourages a certain amount of verbosity. The benefit gained 

from this, however, is increased readability and understandability in looking 

at programs. 

The purpose of COBOL was to provide a common business-oriented 

language. The word common was interpreted to mean that the source pro- 

gram language would be compatible among a significant group of computers. 

A realistic goal of achieving the maximum amount of compatibility on exis- 

tent computers was the philosophy of the framework in which all the work 

was done. The application area is definitely defined as being that for business 

data processing, with no attempt to generalize the facilities. COBOL has 

been used however for some significant problems outside this area, e.g., 

for creating a differential equation writing system (Bennett [BE65]) and for 

writing a programming system (Callahan and Chapman [ZQ67]). In the latter 

case, a COBOL program was written to translate DETAB/65 (developed by 

SIGPLAN Working Group 2 of the ACM Los Angeles chapter) to COBOL 

statements. For further details, see the cover and page 125 of Comm. ACM, 

Vol. 9, No. 2 (Feb., 1966). 

COBOL is definitely a language which specifies the problem solution 

by permitting the programmer to specify the algorithms. It is also very 

definitely a hardware language. In particular, close notice was made of the 

fact that the reference language and lack of input/output made it impossible 

to use ALGOL directly on a computer, and so COBOL was designed as a 

language which could be used as direct input to a computer. 

The users for whom COBOL was designed were actually two sub- 

classes of those people concerned with business data processing problems. 

One is the relatively inexperienced programmer for whom the naturalness 

of COBOL would be an asset, while the other type of user would be essen- 

tially anybody who had not written the program initially. In other words, 

the readability of COBOL programs would provide documentation to all 

who might wish to examine the programs, including supervisory or manage- 

ment personnel. Little attempt was made to cater to the professional pro- 

grammer; in fact, people whose main interest is programming tend to be 

very unhappy with COBOL because so much writing is required. An attempt



336 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

SAMPLE PROGRAM—COBOLt 

  

IDENTIFICATION DIVISION. 

PROGRAM-ID. ‘SORT360'. 

REMARKS. THIS PROGRAM WAS WRITTEN TO DEMONSTRATE THE USE OF THE SORT 

FEATURE. THIS PROGRAM PERFORMS THE FOLLOWING TASKS — 

1. SELECTS, FROM A FILE OF 1000—CHARACTER RECORDS, THOSE RECORDS 

HAVING FIELD—-A NOT EQUAL TO FIELD-B. 

2. EXTRACTS INFORMATION FROM THE SELECTED RECORDS. 

3. SORTS THE SELECTED RECORDS INTO SEQUENCE, USING FIELD—AA, 

FIELD—BB, AND FIELD~CC AS SORT KEYS. 

4. WRITES THOSE SORTED RECORDS HAVING FIELD-—FF EQUAL TO FIELD—EE 

ON FILE-3 AND WRITES SELECTED DATA OF THE OTHER RECORDS ON FILE-—2. 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE—COMPUTER. IBM—360 F50. 

OBJECT—COMPUTER. IBM—360 F50. 

INPUT-OUTPUT SECTION. 

FILE—CONTROL. SELECT INPUT—FILE-1 ASSIGN TO 'F401' UTILITY. 

SELECT SORT-—FILE—1 ASSIGN ‘SFI’ UTILITY. 

SELECT FILE-2 ASSIGN 'F402’ UTILITY. SELECT 

FILE~3 ASSIGN 'F403' UTILITY. 

DATA DIVISION. 

FILE SECTION. 

FD INPUT—FILE-1 BLOCK CONTAINS 5 RECORDS 

RECORDING MODE IS F 

LABEL RECORDS ARE STANDARD 

DATA RECORD IS INPUT—RECORD. 

O1 INPUT—RECORD. 

02 FIELD-A PICTURE X (20). 

02 FIELD—C PICTURE 9 (10). 

02 FIELD—D PICTURE X (15). 

02 FILLER PICTURE X (900).. 

02 FIELD—B PICTURE X (20). 

02 FIELD—E PICTURE 9 (5). 

02 FIELD-—G PICTURE X (25). 

02 FIELD—F PICTURE 9 (5). 

SD SORT-FILE—1 DATA RECORD !S SORT—RECORD. 

O1 SORT—RECORD. 

O02 FIELD—AA PICTURE X (20). 

02 FIELD—CC PICTURE 9 (10). 

02 FIELD—BB PICTURE X (20). 

02 FIELD-DD PICTURE X (15). 

02 FIELD—EE PICTURE 9 (5). 

02 FIELD—FF PICTURE 9 (5). 

Sample Program—COBOL (cont. next page)



v.3. COBOL 337 

Sample Program—COBOL (cont.) 

FD FILE-2 BLOCK CONTAINS 10 RECORDS 

RECORDING MODE IS F 

LABEL RECORDS ARE STANDARD 

DATA RECORD IS FILE—2—RECORD 

Ol FILE~2—RECORD. 

O02 FIELD—EEE PICTURE $$$$$9. 
O2 FILLER-A PICTURE X (2). 

O2 FIELD-FFF PICTURE 9 (5). 
O02 FILLER—-B PICTURE X (2). 
02 FIELD—AAA PICTURE X (20). 
O02 FIELD-BBB PICTURE X (20). 

FD FILE-3 BLOCK CONTAINS 15 RECORDS 
RECORDING MODE IS F 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS FILE—3—-RECORD 

Ol FILE-3—RECORD PICTURE X (75). 

PROCEDURE DIVISION. 

OPEN INPUT INPUT—FILE-—1, OUTPUT FILE—2, FILE—3. 

SORT SORT-—FILE—1 ASCENDING FIELD—AA DESCENDING FIELD—BB, 

ASCENDING FIELD—CC INPUT PROCEDURE RECORD—SELECTION OUTPUT 

PROCEDURE PROCESS—SORTED—RECORDS. CLOSE INPUT—FILE—1, FILE—2, 

FILE—3. STOP RUN. 

RECORD-—SELECTION SECTION. 

PARAGRAPH—1. READ INPUT—FILE—1 AT END GO TO PARAGRAPH-2. 

IF FIELD-A = FIELD—-B GO TO PARAGRAPH-—I ELSE 

MOVE FIELD—A TO FIELD—AA MOVE FIELD-F TO FIELO—FF 

MOVE FIELD-C TO FIELD-—CC MOVE FIELD—B TO FIELD—BB 

MOVE FIELD—D TO FIELD—DD MOVE FIELD-E TO FIELD—EE 

RELEASE SORT—RECORD. GO TO PARAGRAPH-1. 

PARAGRAPH-—2. EXIT. 

PROCESS—SORTED—RECORDS SECTION. 

PARAGRAPH—3. RETURN SORT-—FILE—1 AT END GO TO PARAGRAPH—4. 

IF FIELD-FF = FIELD-EE WRITE FILE-3—-RECORD FROM 

SORT—RECORD GO TO PARAGRAPH—3 ELSE 

MOVE FIELD—-EE TO FIELD—-EEE MOVE FIELD—FF TO FIELD—FFF 

MOVE FIELD-AA TO FIELD-AAA MOVE FIELD—BB TO FIELD—BBB 

MOVE SPACES TO FILLER—A, FILLER-B WRITE FILE-2—RECORD. 

GO TO PARAGRAPH-3. 

PARAGRAPH—4. EXIT. 

TReprinted by permission from JBM Operating System/360 COBOL Language, pp. 142--43. 
© 1965 by International Business Machines Corporation, C28-6516-3, Data Processing 
Division, White Plains, N.Y. (1965). 
 



338 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

to achieve the somewhat contradictory objectives of minimizing writing 

and obtaining good documentation is the Rapidwrite system developed in 

England (see Humby [HY62] and [HY63]), whereby people were able to 

write a very shorthand and formalistic version of COBOL and have the 

compiler turn out the actual legal official COBOL program. COBOL was 

definitely designed for use in a batch environment. 

It is undoubtedly in the area of compatibility that the most misinfor- 

mation and confusion has arisen concerning COBOL. First of all, it was 

recognized that “Differences in computers relating to size, types of peripheral 

equipment, and different order structure make complete compatibility im- 

possible. Thus, the realistic goal of achieving the maximum amount of 

compatibility on present day computers was the philosophy or framework 

within which all work was done.”’ As noted later in the technical discussion, 

COBOL is divided into four divisions: IDENTIFICATION, PROCEDURE, DATA, 

and ENVIRONMENT. The IDENTIFICATION Division is trivial in size and clearly 

compatible across all computers and compilers, except that some imple- 

menters have imposed differing rules from those specified. The ENVIRONMENT 

Division (which defines the hardware to be used) by its very nature 1s com- 

pletely dependent on the machine on which the source program is to be run 

and, in fact, even the machine on which the compiler is to be run. It 1s 

therefore completely machine dependent; it is probably compiler independent. 

In general, the PROCEDURE Division (which contains the executable opera- 

tions) is machine and compiler independent, providing appropriate care is 

used in writing statements. The biggest difficulty in maintaining compatibility 

in the PROCEDURE Division is the Jack of a standard collating sequence de- 

fined in connection with the language. Thus if letters test higher than numbers 

on one machine and lower on another, the /F statement that would be written 

to separate these might be different. The DATA Division (which describes the 

files and records to be processed) is the area in which there is the greatest 

difficulty in maintaining compatibility. Every attempt has been made to 

provide external descriptions of data, i.e., in terms of letters and numerals 

and types of usage rather than internal representation and format. This can 

be done to a very large extent, providing the user is less concerned about 

efficiency than about compatibility. In other words, if he wishes to establish 

a standard data description for a file that can be used on many machines, he 

may have to sacrifice certain specific features that would increase the efficiency 

on a particular computer. Problems have been run using the same program 

(except for the ENVIRONMENT Division, of course) with few or minimum 

modifications. (See, e.g., Fredericks and Warburton [FD65].) On the basis 

of hindsight and experience, some incorrect choices were made in placing 

certain features in certain divisions; a realignment would make the com- 

7 [US62], p. II-1.



V.3. COBOL 339 

patibility issues much clearer. On the other hand, the majority of incom- 
patibilities arise from implementors who choose to deviate from clearly 
defined specifications. To deal with this problem, many organizations have 

written internal papers or manuals which tell users either how to hand- 

convert from one machine (or compiler) to another or how to write programs 

initially to avoid (or minimize) incompatibilities. Other groups have pre- 

pared lists of quirks which affect efficiency and/or compatibility (e.g., the 

COBOL Programming Tips of Westinghouse [WM67]). 

Obviously, certain information pertaining to individual computers 

would never carry over to another machine. It was felt, however, that the 

advantage of having a common means of expression even for these features 

was sufficiently great to warrant the development of a standard form. 

Dialects have not been a problem with COBOL, except for differences 

in interpretation and actual implementation, probably because there was 

a broadly based group which was defining the language. However, the 

problems of subsetting and extensions have been very significant from the 

beginning, and the subsetting is dealt with in an unusual way by the USASI 

standard (discussed later). 

Although at the start of the Short Range Committee’s activity it was 

tacitly assumed that COBOL was being developed only for large com- 

puters, an increasing number of manufacturers and users became interested 

in having this available on smaller machines. As a result, it was necessary 

to try to provide some official subsets that would be an adequate subsection 

of the language but still be more easily implemented on small machines than 

the entire language would be. In the COBOL-60 specifications, a subset 

called Basic COBOL was defined. In the 1961 specifications, a subset entitled 

Required COBOL-1961 was defined to consist of “that group of features 

and options, within the complete COBOL specifications for the year 1961, 

which have been designated as comprising the minimum subset of the total 

language which must be implemented (to the extent of hardware capability) 

by any implementor claiming a “proper” COBOL-1961 compiler.”® All 

other features and options were considered elective; but if they were imple- 

mented, they had to be done so in accordance with the specifications given 

in the manual. The manual for COBOL-1961 Extended kept this idea, 

but the concept was later dropped entirely. A subset known as Compact 

COBOL was defined by a COBOL Committee subcommittee but was not 

published because of possible confusion with the standards work. 

As with all other languages, there have been some difficulties in com- 

patibility arising from different interpretations of the specifications. As 

time progressed, these became minimized. 

Converting COBOL programs from one machine (and/or compiler) 

8 [US61], p. I-3.



340 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

to another is relatively simple. As indicated earlier, various informal docu- 

ments exist which provide directives or tips on how to do this. There has 

been no effort known to me to translate COBOL into another language 

either by sifting or by direct translation. Contrary to popular belief, a 

formal metalanguage was really used for much of the syntax definition. 

The connection between this and the notation used for ALGOL is discussed 

in Sammet [SM6la], and also in Section II.6.2.2. 

The standardization of COBOL under ASA (USASI) was started in 

January, 1963 when Task Group X3.4.4 met, with H. Bromberg as chairman. 

At that time it was stated that “X3.4 recognizes [sic] CODASYL COBOL 

Maintenance Committee as the development and maintenance authority for 

COBOL.”® This differs significantly from the creation of the FORTRAN 

standard, where there was no specified development and maintenance author- 

ity and, therefore, X3.4.3 became this authority by default. X3.4.4 undertook 

several activities, including (1) the establishment of a periodic COBOL 

Information Bulletin (CIB) which was to be widely distributed and permit 

rapid dissemination of information on the standardization activity; (2) a 

survey of features of existing or proposed COBOL processors; (3) the 

writing of test problems; (4) maintenance of close liaison with other stan- 

dards bodies interested in COBOL, particularly ECMA (European Com- 

puter Manufacturer’s Association) and ISO/TC 97/Subcommittee 5. 

Throughout the entire standardization activity, close liaison with inter- 

national groups was considered important, and this was maintained. A 

similar statement applied to interaction with the CODASYL COBOL Com- 

mittee, and this was particularly aided by a large overlapping membership 

on both that committee and X3.4.4 (or its working task groups). 

An early view held that there should be one subset of COBOL defined 

in the standard. By March, 1964, however, it was felt that multiple levels 

should be defined. The criteria for allocation of elements to specific levels 

were 

1. General usefulness, as determined by 

a. Degree of implementation. 
b. User acceptance. 
c. User desires. 
d. Experience. 

Cost of implementation versus advantages of use. 

Functional capability of element, considering redundancy. 

Overall consistency of a defined level. 

. Upward compatibility. 

Processing system capability. A
w
 
P
W
N
 

The resulting proposal for the standard took the form of a nucleus and 

9 Shown as a note in Scope of X3.4.4 in Minutes, Task Group X3.4.4, Jan. 15-16, 1963.



v.3. COBOL 341 

eight functional processing modules. The proposed standard (known as 

pUSASI COBOL) was distributed as COBOL Information Bulletin (CIB) 

No. 9 and also as the April, 1967 issue of the ACM SICPLAN Notices 

[XB67]. The X3 committee ballotted during the period July, 1967 through 

July, 1968. The final result was affirmative. However, during this period X3 

voted to remove the Random Processing Module (discussed below) from the 

standard and to place it in an Appendix with suitable remarks to indicate 

that it was not an official part of the standard. Other suggestions for changes 

to the pUSASI COBOL were made and accepted. In August 1968 COBOL was 

officially approved as USA Standard X3.23-1968 although the final physical 

document was still being prepared and thus was unavailable at the time the 

approval was given. During the preparation of the U.S. Standard, a document 

containing a close logical subset was being prepared by an ISO COBOL 

editing committee. The preparation of that document was based on the con- 

tinuing technical involvement of international standards organization 

representatives; the plan was to forward it directly upon completion to 

ISO/TC97 for distribution and ballotting as the ISO COBOL standard. 

In order to understand the layout of the standard, it is necessary to 

assume familiarity with the technical specifications of COBOL. Those 

readers who do not have this knowledge are advised to read Section V.3.3 

and then return to the next paragraphs. 

The eight modules (besides the Nucleus) are Table Handling, Sequential 

Access, Random Access, Random Processing, Sort, Report Writer, Segmen- 

tation, and Library. Each module is divided into two or more levels; in 

some cases the lowest level of a module is null, meaning that none of its 

facilities is required in the minimum standard. A schematic description 

of the modules is shown in Figure V-6. The minimum which can be imple- 

mented is the level-1 Nucleus, which includes those elements necessary for 

internal processing on a small machine; e.g., the ADD, SUBTRACT, MULTIPLY, 

and DIVIDE verbs are provided in their simplest form, but the COMPUTE 

verb is not. The high level Nucleus contains the minimum package, plus 

additional facilities in the DATA Division and the remaining options of the 

internal processing verbs. 

The low level Table Handling allows fixed tables, one level of sub- 

scripting or indexing, and manipulation of indices. The middle level permits 

three subscripts and more indexing operations. The highest level includes 

the SEARCH and SET verbs, the OCCURS, KEY, ASCENDING/DESCENDING, 

INDEXED BY, and USAGE IS INDEX in the DATA Division. 
The Sequential Access low level module provides facilities for basic 

serial file processing. The high level includes extended capabilities in storage 

allocation and file assignment, file organization and labeling, and provisions 

for user-designed labels and error procedures. In addition, the more com- 

plex operations of the file processing verbs are permitted.



Ch
e 
  

  

  

  

  

  

  

  

  

    

  

  

  

    
  

        

Functional Processing Modules 

Table Sequential Random Random Report 
Nucleus Handling Access Access Processing* Sort Writer Segmentation Library 

3TBL 1,3 2RAC 0, 2 2SRT 0, 2 2RPW 0, 2 2SEG 0, 2 2LIB 0, 2 

2NUC 1,2 2SEQ 1,2 IRPR 0, 1 IRPW 0, 2 1SEG 0, 2 1LIB 0, 2 

2TBL 1,3 1IRAC 0, 2 ISRT 0, 2 

INUC 1,2 ITBL 1,3 ISEQ 1,2 

null null null null null null 
  

*After the original issuance of the proposed standard it was decided to remove the Random Processing Module from the standard and place it in an 

Appendix for information purposes only. When the RPM is present, either 1RAC 0, 2 or 2RAC 0, 2 must also be present. 

Figure V-6. Schematic diagram showing the structure of pUSASI COBOL standard. The first digit in all the codes 

represents the level’s position in the hierarchy, and the last two digits indicate the minimum and maximum 

levels of the module to which the level belongs. For example, 2NUC 1, 2 denotes the second level of the Nucleus 

which is composed of two levels, neither one of which is a null set. 

Source: [XB67], pp. 1-6a. 

 



v.3. COBOL 343 

The Random Access module is similar to the Sequential Access module 

except that it provides for handling randomly ordered files on direct access 

devices and that its lowest level is a null set. If the Random Processing 

module is implemented, then one of the levels of the Random Access 

modules must also be implemented. The Random Processing allows the 

user to specify a number of asynchronous processing cycles and to specify 

Saved Areas to be associated with them. Facilities to start the asynchronous 

processing within the main program flow, control the cycle, and call a 

temporary halt to asynchronous processing to permit synchronization are 

all provided. The main facilities in this module are the verbs HOLD, PROCESS, 

and USE FOR PROCESSING, and the FILE-CONTROL paragraph statement 

PROCESSING MODE IS RANDOM. 

The Sort module has a null lowest level, and its first meaningful level 

provides a single sort as a COBOL program, with provision for including 

first and last pass own-coding for the sort. The high level permits more 

than one sort per program and allows separate processing before and after 

each sort. (The main facilities are the RELEASE, RETURN, and SORT verbs.) 

The Report Writer has a null lowest level, and its low level permits 

page formatting. The high level provides various controls for reporting. 

These include the GENERATE, INITIATE, TERMINATE, and USE BEFORE 

REPORTING verbs and, of course, the Report Group and Report Group 

Description entries from the DATA Division. 

Segmentation also has a null lowest level, and its low level permits the 

user to overlay portions of the object program by assigning priority numbers. 

The high level also permits the assignment of segment limits in the EN- 

VIRONMENT Division. 

Finally, the Library has a null lowest level and its low level includes the 

COPY statement from all divisions, which permits the user to include ele- 

ments in his source program at compile time. The high level adds the 

REPLACING option. 

In considering the types and methods of language definition, much of 

the administrative information was supplied in the early history. An impor- 

tant thing to keep in mind is that the basic work from which all later devel- 

opments arose was accomplished by a small group, who had the COBOL 

activity as only a part-time assignment from their employers, operating 

under the most tremendous time pressures. 

The basic objective of COBOL was to supply an “English-based” com- 

mon business-oriented language, independent of any make or model of 

computer, and open-ended. 

The implementation of COBOL has been carried on by virtually every 

computer manufacturer and most of the independent software companies. 

One reason for this was based on interest in obtaining a commercial language 

for customers, and a more important reason was based on direct and indirect



344 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

pressure from the government, which essentially said that a company which 

wanted to sell or rent computers to the federal government had to have a 

COBOL compiler unless they could clearly demonstrate that it was not 

needed for the particular class of problems involved. 

The maintenance has been done with different organizational structures 

but always by a group of people under the official direction and sponsorship 

of the CODASYL Executive Committee. Both users and manufacturers 

have participated heavily in the maintenance. There have been two major 

problems in the maintenance: One is that many times implementers 

needed clarification on a particular point and could not obtain it from the 

maintenance committee fast enough to suit their schedules; this resulted 

in diverse interpretations of the language and a natural reluctance by each 

group to sacrifice its meaning at a later point in time. The second problem 

in maintenance was that in some cases the individuals serving on the com- 

mittee changed quite frequently; the new person had to be educated rapidly, 

and in many cases he would bring up points that had been previously dis- 

cussed at great length. Furthermore, most people had this activity as a low- 

priority assignment. It is very interesting to note that there are at least 

as many differing opinions on technical points within a company as across 

companies, and it was not at all uncommon to see one individual reversing 

the vote of another individual from his organization who had been on the 

committee somewhat earlier. 

There was a great deal of talk in the earlier days about the poor defini- 

tion of COBOL, climaxed by the often repeated comment that the language 

was not really defined. In actual fact, there was at least as much rigor in the 

definition of COBOL as in the definitions of FORTRAN. The complaints 

stemmed from two different problems. The first was that there were am- 

biguous statements in the descriptions (i1.e., the semantics) which led to 

different interpretations by the implementers. This problem is still inherent 

in the state of the art of language definition, even for ALGOL, which was 

considered to have a more rigorous definition than either FORTRAN or 

COBOL. The second problem was that since the format of the COBOL 

manual was not the same as that of the ALGOL report, then the former 

was assumed to be vague. A paper (Sammet [SM6la]) showed this com- 

plaint to be invalid since the notation used for the COBOL report was 

actually a metalanguage which is roughly equivalent to the type of meta- 

language used for the ALGOL report. More recent work in providing a 

formal definition has been done by ECMA [EC67]. Thus the syntax for 

COBOL is as well-defined as that of ALGOL. A set of syntactical charts 

for COBOL-61 was also produced (see Berman, Sharp, and Sturges [BF62]). 

With regard to documentation, there has always been exactly one 

definitive manual, namely the one issued by the Government Printing 

Office under the auspices of the CODASYL Executive Committee. Other



v.3. COBOL 345 

manuals which exist have been written by the manufacturers, sometimes 

as tutorial manuals and sometimes to indicate just what particular portions 

of the language they were implementing. Various descriptive articles and 

books have been published, e.g., Sammet [SM62] and Saxon [SX63]. The 

general status of COBOL up to 1963 is given by Cunningham [CG63]. The 

May, 1962 issue of the Communications of the ACM (Association for Com- 

puting Machinery) is devoted primarily to COBOL. Some comments on 

actual usage and/or company policies are given in Whitmore [WH62] and 

Cowan [CW64]. Various other articles are shown in the bibliography. A 

fairly good general discussion is given in EDP Analyzer [EP63]. Unfortu- 

nately, the majority of articles appear to have been written in 1961 and 1962, 

which was before the language was in widespread use and while it was still 

undergoing growing pains. A fairly complete list of articles (and books) 

is given in X3.4 COBOL Information Bulletin No. 8 (June, 1966). The CIB’s 

[XBO00] have been prepared by ASA (now USASI) Working Group X3.4.4 

and distributed by BEMA (Business Equipment Manufacturer’s Associa- 

tion). They have served as a good—although informal—means of dissemi- 

nating information about COBOL from various sources, particularly the 

CODASYL COBOL Committee. The proposed standard was issued as CIB 

No. 9, and discussed earlier. 

COBOL has proved its usefulness, and a number of organizations do 

all or most of their business data processing programming using it. Its 

strongest points (among the advantages normally expected from higher 

level languages) appear to be its convertibility from one machine to another 

and its ease of use for communication and documentation purposes; many 

of its disadvantages (although certainly not all) pertain to specific imple- 

mentations. The early ones in particular were so unusable in many cases that 

people were reluctant to use, or prevented on practical grounds from using 

the language. Many professional programmers dislike the amount of writing 

which is required, and some people dislike the number of redundant features 

which make teaching or management more difficult. The lack of mass storage 

facilities until COBOL-65 was a handicap to installations with that equip- 

ment. As with any language, there continue to be other features which 

people would like to have included. 

In total, COBOL seems to have met most of the objectives which were 

established for it, although perhaps not as completely as we had hoped. 

There is no doubt that it has achieved a successful and useful place in the 

computing community. 

V.3.3. TECHNICAL CHARACTERISTICS OF COBOL 

The language definition in this section is based on COBOL-65 [US65], 

plus those changes approved by the CODASYL COBOL Committee through



346 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

March, 1968. In a few cases this includes elements not contained in the 

standard, which is based on COBOL-65 and changes approved through 

January 1, 1967. Although the standard does not include all of COBOL-65, 

the latter was chosen as the basis for the description in the book because of 

the continuing changes in the standard as it was being developed. 

The character set in COBOL consists of 51 characters. These include 

the 10 digits, 26 upper-case letters, and the following 15 symbols: 

+ —-x f= $Q<>,.;"(~) blank 

There are a number of key words in the language. The graphic operators 

and punctuation are shown in the character set. 

Identifiers are composed of a combination of not more than 30 char- 

acters chosen from the digits, letters, and the hyphen. An identifier may not 

begin or end with a hyphen; the hyphen is usually used for readability 

purposes, for example QUANTITY—ON—HAND. Data names and statement 

labels are formed this way. 

Some other types of identifiers exist in COBOL. In particular, a condi- 

tion-name is assigned to a specific value or set or range of values within 

the complete set that a data name may assume. For example, if there is 

a conditional variable called TITLE, then the condition names ANALYST, 

PROGRAMMER, and CODER can be used instead of their numeric equivalents, 

and a test may be made by writing IF CODER. Certain values exist which have 

been assigned fixed identifiers; these are called figurative constants, for 

example SPACES or ZEROS. 

There are three types of reserved words, and these must not be used 

as identifiers. The types of reserved words are (1) connectives which denote 

the presence of qualifiers (e.g., OF, IN) or form compound conditionals 

(AND, OR, etc.); (2) optional words which have been defined to improve 

the readability of the language (e.g., IS, KEY); and (3) key words which 

are either verbs (e.g., ADD, READ) or required words. The latter are either 

required in the format of the verbs or they are words which are not in any 

format but which have a specific functional meaning such as NEGATIVE, 

SECTION, and TALLY. 

Up to three subscripts can be associated with each data name, and 

these are shown in parentheses following the data name and are separated by 

commas, e.g., RATE (3, STATE, CITY). The subscript can be either an integer, 

a data name with an integer value, or the special register TALLY. Subscripts 

cannot be subscripted. An effect equivalent to subscripting can be achieved 

by defining and using an index-name. Data names can be qualified by 

indicating the names in the data hierarchy which are necessary to uniquely 

determine which one is meant. The qualifiers are considered part of the 

data name. A data name cannot be subscripted when being used as a



V.3. COBOL 347 

qualifier; in such a case the subscripts are written with the lowest element 

in the hierarchy. 

The operators are the four arithmetic ones and three relational ones, 

GREATER THAN, LESS THAN, EQUAL TO, each of which can be preceded 

by the word NOT. 

Blanks and punctuation are considered significant in COBOL and, 

in particular, are used to delimit identifiers and reserved words. The punc- 

tuation characters are the following: 

~~, i " CY blank 

The rules were designed to make the formats as natural as possible. 

Thus sentences end with a period, statements end with a semicolon, and 

it is legal but not required that nouns written in a sequence are separated 

by commas. 

Noise words were introduced into COBOL to improve the readability 

of the language. The programmer may either include or omit a noise word 

which has been specifically defined in the format; however, he is not allowed 

to replace the designated noise word with another one, nor to misspell. 

Literals are designated by the use of quote marks at the beginning and the 

end. The figurative constant QUOTE is used to designate the '' symbol itself. 

The type of physical input form used for COBOL is string-oriented, 

but it also has columnar restrictions if the Reference Format is used. A 

Reference Format has been specified to be one of the acceptable input 

forms to a compiler, but it is also the required format in which the output 

listing must be produced after a compilation. The Reference Format does 

impose certain requirements about where label names are placed and where 

certain subunits of the program can appear. 

COBOL was definitely designed to provide an English-like language. 

Within its frame of reference, every attempt was made to create formats 

which were natural and which could be easily understood by somebody 

examining a program that he had not written. The introduction of the 

concept of noise words was definitely motivated by this objective. 

The most striking feature of the organization of a COBOL program is 

the definitive separation of four aspects of a program into four separate 

and clearly defined divisions of the language. These are the IDENTIFICATION, 

ENVIRONMENT, DATA, and PROCEDURE Divisions. The IDENTIFICATION Division 

provides a standard way of specifying the name, author, and date of a pro- 

gram, together with other remarks. The ENVIRONMENT Division contains 

information about the hardware on which the program is to be compiled 

and run. This clearly differs from machine to machine and could differ from 

compiler to compiler. The DATA Division uses descriptions of files and re- 

cords to describe the data which the object program is to manipulate or



348 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

create. The PROCEDURE Division specifies the steps that the user wishes the 

computer to follow. These steps are expressed as statements, sentences, para- 

graphs, and sections. 

The executable statements appear only in the PROCEDURE Division, while 

the declarations in a COBOL program occur in the IDENTIFICATION, ENVIRON- 

MENT, and DATA Divisions. 

The smallest executable unit in the COBOL program is called a state- 

ment. This can be either imperative, conditional, or compiler directing. An 

imperative statement consists of either a verb and its operands or a sequence 

of verbs and operands. A conditional statement is either of the form IF... 

THEN ... ELSE or it is an imperative statement followed by a conditional 

statement. (This format is shown in more detail later.) A compiler-directing 

statement simply consists of a compiler-directing verb and its operands. 

There are several hierarchical levels of executable units. The one immediately 

above the statement is a sentence which consists of a sequence of one or 

more statements. Sentences can be grouped together to convey one idea, 

and such a grouping is called a paragraph. A paragraph is the smallest 

grouping which can be named. Paragraphs can be combined to form sections, 

which must be named. 

Looping is controlled in two ways in COBOL. The first is the fairly 

standard JF... THEN... statement. The second (and main) looping facility 

in COBOL is provided by the PERFORM verb. 

There are no functions provided in COBOL. Subroutines and proce- 

dures without parameter replacement can appear as either paragraphs or 

sections. Library routines can be included at compile time by using the 

COPY verb. At object time other programs can be invoked by the CALL 

verb. 

Comments are designated by an asterisk in a fixed location on the line. 

The primary way in which the program is able to interact with the 

operating system is through error returns that the user may specify in some 

verbs (e.g., ADD) but most significantly through the USE verb. This latter 

permits the user to specify procedures for hardware input/output error and 

label handling, which are in addition to the standard procedures supplied 

by the input/output system. The OPEN and CLOSE verbs also provide a 

form of interaction in the sense that they provide for label checking (on 

input) and creation (on output). 

Other languages can be written following the ENTER verb which serves 

as a flag to the compiler. 

A complete COBOL program is comprised of entries from the four 

divisions written in the order indicated above. 

Statements do not have any required delimiter since the beginning of 

the next statement can always be determined when a verb is encountered.



v.3. COBOL 349 

Statements can be separated, however, by the optional symbols THEN or a 

semicolon; sentences must be ended by a period rather than by a state- 

ment terminator. A paragraph is delimited by following the requirements 

of the reference format, which provide a fixed columnar location for the 

paragraph name and fixed location for the beginning of each new line. 

A section is delimited by writing the name of the section followed by the 

key word SECTION and a period all on the same line, with the paragraph 

beginning on the next line. Paragraphs and sections are ended only by the 

appearance of a new section name or a new paragraph; there is no specific 

delimiter for the end. 

Procedures cannot be recursive. Parameters are replaced at compile 

time by name and at object time by value. 

The main type of embedding permitted in COBOL is within conditional 

statements, where the executable statements can themselves be conditional 

statements to any depth. 

COBOL has arithmetic variables and also alphanumeric data. There 

are no Boolean variables as such, but the same effect is achieved without 

calling them that through the use of condition names and conditions (de- 

scribed later). There are no complex, formal, string, or list variable types. 

COBOL permits arrays of up to three dimensions and a very elaborate 

hierarchical structure. The latter is given for each program by the Record 

Description in the DATA Division. 

The most basic subdivisions (those not further subdivided) of a logical 

data record are called elementary items; consequently, a record is said to 

consist of a sequence of elementary items. Often it is desirable to reference 

a set of elementary items—particularly with the MOVE verb. For this reason, 

elementary items may be combined into groups, each group consisting of a 

sequence of one or more elementary items. Groups, in turn, may be combined 

into groups of two or more groups, etc. The term item in future discussions 

denotes either an elementary item or a group. These can be accessed by 

various verbs. 

A system of level numbers is employed in COBOL to show the organi- 

zation of elementary items and groups. Level numbers start at 01 for records 

since records are the most inclusive groups possible. Less inclusive groups 

are assigned higher level (not necessarily successive) numbers not greater 

in value than 49. (Note: There are three special level numbers, 66, 77, and 

88, which have specific meanings; hence they are exceptions to this rule.) 

Separate entries are written in the source program for each level. 

Using a TIME—CARD as an example, a skeleton source program listing 

showing the use of level numbers (which were arbitrarily chosen non- 

consecutive) to indicate the hierarchical structure of the data might appear 

as follows:



350 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

O01 TIME—CARD 

O04. NAME 

06 LAST—NAME 

06 FIRST—INITIAL 

06 MIDDLE—INITIAL 

O04. EMPLOYEE—NUMBER 

O04 DATE 

05 MONTH 

O05 DAY 

O5 YEAR 

04 HOURS 

For the sake of simplicity, only the level number and data name of 

each entry have been given in the example above. 

A group includes all groups and elementary items described under it 

until a level number less than or equal to the level number of that group is 

encountered. Thus, in the example above, HOURS is not a part of the group 

called DATE. MONTH, DAY, and YEAR are a part of the group called DATE 

because they are described immediately under it and have a higher level 

number. 

The hardware data units which are accessible are controlled entirely 

by the data description which is given. The basic principle of describing 

data is that it is assumed to be stored contiguously from the beginning of 

the storage area. Since the basic description of the data refers to its external 

format, it is up to the compiler to interpret this in the most efficient way 

internally; three of the entries in the Record Description format which 

are useful for this purpose are SYNCHRONIZE, JUSTIFIED, and FILLER. 

The first indicates that data should be aligned with word boundaries; the 

second one indicates whether data should be left or right, justified within 

some storage unit; and the third term indicates that there is now to be some 

empty space with no meaningful data in it. Since all of this is controlled 

by the entries in the DATA Division, the commands have access to each of 

these subunits simply by referencing the data name. The variable types which 

are meaningful for the commands are the arithmetic, alphabetic, and of 

course the arrays and hierarchies. 

The type of arithmetic done in COBOL is integer and mixed number. 

The system is responsible for aligning numeric data items so that the decimal 

points appear in appropriate places and then proceeding to do the correct 

arithmetic. There is no floating point or rational arithmetic nor of course 

complex numbers, although some implementers have provided floating 

point. With regard to precision, a rule exists limiting the maximum size 

of any numeric operand to 18 decimal digits; obviously the question of 

whether or not this is double or multiple precision depends on the word 

size of the computer. In a peculiar sense, arithmetic can be done on vectors 

and arrays through the use of a CORRESPONDING clause, which means



v.3. CoBoL 351 

that in two different data hierarchies corresponding elements are added 

(or subtracted). The only types of data that can be combined arithmetically 

are the arithmetic variables, but there are no restrictions on where the 

decimal points need to be relative to the numbers which are to be combined 

together. It is allowable to have data of different internal representations 

combined together (e.g., binary and BCD); the resulting field can be of 

any form: binary, BCD, or anything else which is capable of holding an 

arithmetic result. The system provides the conversion automatically. The 

arithmetic verbs permit the user to specify whether or not he wants the 

result rounded, and the language specifications require the implementer to 

carry enough digits to ensure that no loss of significance occurs. 

Logical expressions are called conditions in COBOL. A simple condi- 

tion is one of four types of tests—a relation test for comparing numeric and 

nonnumeric items, a class test to determine whether a variable is numeric 

or alphabetic, a conditional variable test, and a test for the status of a switch 

which is named in the ENVIRONMENT Division. Simple conditions can 

be combined with the logical operations AND, OR, NOT; these compound 

conditions have truth values associated with them and thus serve the same 

purpose as a Boolean variable. More specifically, it is possible to compare 

variables, literals, or formulas against each other, using the relations 

GREATER THAN, LESS THAN, and EQUAL TO, preceded by the word NOT 
if desired. The relations UNEQUAL TO, EQUALS, and EXCEEDS are also 

permitted. In addition to these, variables and formulas can be tested for 

POSITIVE, NEGATIVE, or ZERO, again with the word NOT permitted. Vari- 

ables can be tested for being NUMERIC or ALPHABETIC, or NOT being either 

of these. Finally, it is possible to test the status of a conditional variable 

or a switch. 

Each of the immediately preceding has been considered a simple condi- 

tion. These can be combined with the connectives AND, OR, NOT, according 

to the normal rules of logic. In many cases, the operands can be implied 

rather than specifically repeated. For example, each of the following is a 

legitimate condition which can be tested for truth or falsity: 

AGE IS GREATER THAN 21 AND LESS THAN MAXIMUM—AGE 

AGE IS GREATER THAN 25 OR MARRIED 

STOCK—ON—HAND IS LESS THAN DEMAND OR STOCK—SUPPLY 

IS GREATER THAN DEMAND PLUS INVENTORY 

A IS EQUAL TO B AND C IS NOT EQUAL TO D OR E IS UNEQUAL 

TO F AND G IS POSITIVE OR H IS LESS THAN I + J 

STOCK—ACCOUNT IS GREATER THAN 72 AND (STOCK—NUMBER 

IS LESS THAN 100 OR STOCK—NUMBER EQUALS 76290)



352 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

There is no scope problem in COBOL. 
The actual format of the COBOL verbs is shown separately in Figure 

V-7. The formats use the metalanguage discussed in Section II.6.2.2 as per- 

taining to COBOL. The discussion given below assumes the reader will 

examine the formats. 

There is no actual separate assignment statement provided in COBOL. 

The equivalent result is achieved by having many of the verbs contain a 

receiving field. This means that the verb contains not only the operands to 

be acted upon but also the name of the field into which the result is to be 

placed. The MOVE verb and the five arithmetic verbs (ADD; SUBTRACT, 
MULTIPLY, DIVIDE, COMPUTE) provide this facility. The actual conversion 
is done by requiring that the format of the resulting data be made the same 

as that specified for the receiving field. This applies particularly to the 

length of fields, as well as to their internal format. The latter is converted— 

if necessary—according to the specifications in the Record Description. 

Thus, binary numbers are converted to BCD if this is specified, or numeric 

results are converted to their equivalent alphanumeric form if desired. By 

controlling the size of the receiving field, unnecessary digits or characters 

can be lopped off or added at either end. Alignment of decimal points is 

done automatically by the compiler. There are no rules given to control 

the way in which arithmetic should be done; thus the implementer has a 

choice of whether he performs his arithmetic in binary, BCD, or some other 

mode. The implementer is merely required to make sure that the result is 

in the proper form. 

It is natural that a large portion of COBOL should be devoted to 

providing alphanumeric data handling. The most important facility for doing 

this on a small scale is the MOVE verb. Among the editing operations it 

will perform, in addition to converting from one form of internal represen- 

tation to another, are zero suppression, insertion of dollar signs or commas, 

and decimal point alignment. Some of the compilers implement the arith- 

metic verbs by performing the indicated operation and then calling the 

MOVE verb to carry out the conversion. On a much larger editing scale, 

there is the Report Generation facility. The primary controls for this are 

in the DATA Division, but the PROCEDURE Division contains three rele- 

vant verbs. The GENERATE verb causes specific action to be taken to create 

the necessary information for the report. Different actions are performed, 

depending upon whether it is the first or a subsequent time that GENERATE 

is called for a particular report group, since obviously totals must be created 

and maintained. The INITIATE verb essentially zeros out all variables and 

all page and line counters. The TERMINATE produces final totals and pre- 

pares final headings.



ACCEPT 

ADD 

ALTER 

CALL 

CANCEL 

CLOSE 

ACCEPT identifier [FROM mnemonic-name] 

Format I: 

identifier-1 , identifier-2 . wp 
ADD tines \ literal.2 | ... , identifier-n [ROUNDED] 

[; ON SIZE ERROR imperative-statement] 

Format 2: 

ADD 
identifier-1) [, identifier-2 . . 

tinea | j literal-2 | + TO identifier-m [ROUNDED] 
[, identifier-n [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

Format 3: 

ADD 
identifier-] identifier-2) [, identifier-3 

liner \ ’ lineren ab literal-3 | .* GIVING 

identifier-m [ROUNDED][, identifier-n [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

Format 4: 

ADD {cone | identifier-1 TO identifier-2 [ROUNDED] 
CORRESPONDING 

[; ON SIZE ERROR imperative-statement} 
  

ALTER procedure-name-! TO [PROCEED TO} procedure-name-2 

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] ... 

literal-1 

CALL \identifier. 
j}LUSING identifier-2 [, identifier-3] ...] 

literal-1 , literal-2 

CANCEL {recite 2} j dentitier.2 | _ 

. REEL NO REWIND 
CLOSE file-name-! | [we tone | 

. REEL NO REWIND 
, file-name-2 | oan || W'TH \tock + eee 

Figure V-7. (cont. next page) 

353



Figure V-7. (cont.) 

COMPUTE 

COPY 

DISPLAY 

DIVIDE 

COMPUTE identifier-1 [ROUNDED]|, identifier-2 [ROUNDED]| ... 
FROM identifier-n 

= literal-1 

EQUALS) \arithmetic-expression 

[; ON SIZE ERROR imperative-statement| 

procedure-name . COPY library-name 

[ REPLACING ane \ py ee \ 

identifier-1 identifier-2 

| word-3 | BY word-4 | 

identifier-3} —— (identifier-4 ere yes 

  

DISPLAY tienwin MI literal-2 

, identitier-2 | -+ [UPON mnemonic-name] identifier-1 

Format I: 

identifier-1 

literal-1 

[, identifier-3 [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

DIVIDE ' | INTO identifier-2 ROUNDED 
  

Format 2: 

identifier-1 identifier-2 

DIVIDE linen \ INT linen 

[, identifier-4 [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

\ GIVING identifier-3 [ROUNDED] 
ee 

  

Format 3: 

identifier-1 identifier-2 

DIVIDE fines \ — tienen 

[, identifier-4 [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

\ GIVING identifier-3 [ROUNDED] 

  

Format 4: 

INTO Mente t GIVING identifier-3 [ROUNDED] 
literal-2 —_—_— ——_— ee 

DIVIDE linet f 

literal-1 

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement] 

  

Format 5: 

identifier-1 identifier-2 

DIVIDE literal \ — literal 

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement] 

\ GIVING identifier-3 ROUNDED 

354



Figure V-7. (cont.) 

  

  

identifier-2 

procedure-name-n 

ENTER 

ENTER language-nome |routine-name| . 

EXAMINE 

EXAMINE identifier 

UNTIL FIRST UNTIL FIRST) |. ; ‘teral-2 . 

rari A tidentif 1} | REPLACING BY ti eral \| 
LEADING iaiaieall 
ALL 

PLACING EADING et 3} BY lidentif 3 
[UNTIL] FIRST identifier- identifier- 

EXIT 

EXIT [PROGRAM] . 

GENERATE 

GENERATE identifier 

GO TO 

Format I: 

GO [TO] [procedure-name-1| 

Format 2: 

GO [TO] procedure-name-I [, procedure-name-2] ... 

DEPENDING ON identifier 

HOLD 

ALL 

HOLD \section-name-1 [, section-name-2]| aS 

iF 

IF diti eal statement-] | 

— conemen |, |NEXT SENTENCE 
men] wet statement-2 \ 

; ELSE NEXT SENTENCE 

INITIATE 

report-name-] [, report-name-2] “I 
INITIATE (at 

MOVE 

  

  

| CORRESPONDING J, dentitier.1 
MOVE 4| CORR enter bro identifier-2 [, identifier-3] ... 

literal 

Figure V-7. (cont. next page) 

355



Figure V-7. (cont.) 

MULTIPLY 

Format I: 

identifier-1 

MULTIPLY | ene 
[, identifier-3 [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

\ py identifier-2 [ROUNDED] 

Format 2: 

identifier-1 identifier-2 

MULTIPLY tiiteren \ — lineeh> \ 

GIVING identifier-3 [ROUNDED] 

[, identifier-4 [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

OPEN 

. REVERSED 
OPEN | INPUT {fite-name with NO newinp |t | eee 

[OUTPUT {file-name [WITH NO REWIND]} ...] ... 

i-O 

L{ispur-oureur} {filename} | 

PERFORM 

Format 1: 
PERFORM procedure-name-! [THRU procedure-name-2] 

Format 2: 
PERFORM procedure-name-! [THRU procedure-name-2] 

lintegent 
. i TIMES 
integer-1 — 

Format 3: 
PERFORM [procedure-name-] [THRU procedure-name-2] UNTIL condition-] 

Format 4: 
PERFORM procedure-name-! [THRU procedure-name-2] 

index-name-2 

VARYING {(70°X-PAMET! FROM 2 fiteral-2 ————._ (identifier-1 sy I 

identifier-2 

literal-3 
- 

~~ Lidervitien-3} 
UNTIL condition-1 

twas} 

AFTER {index-name-4) coo J iteral-5 
—— l(identifier-4 —— |, eps 

identifier-5 

ti teral-6 
dentifer-6t UNTIL condition-2 

—— 

nd 7 literal-8 

AFTER a ex-name \ FROM sent 

r
s
 

| 

identifier-7 
tenner index-name-8 

[= 

literal-9 was 
t Nentitier-9f UNTIL condition-3 || 

356



Figure V-7. (cont.) 

PROCESS 

record-name 
PROCESS section-name [FROM identifier] | usING {veces \| 

READ 

Format I: 

READ file-name RECORD [INTO identifier] 

; AT END imperative-statement 

Format 2: 

READ file-name RECORD [INTO identifier] 

; INVALID KEY imperative-statement 
  

RELEASE 

RELEASE record-name [FROM identifier] 

RETURN 

RETURN file-name RECORD [INTO identifier] ; AT END imperative-statement 

SEARCH 

Format I: 

SEARCH identifier-1 | VARYING index-name-I | 
————._ (identifier-2 

[; AT END imperative-statement-T] 

imperative-statement-2 

NEXT SENTENCE 

imperative-statement-3 | 

NEXT SENTENCE 

; WHEN condition-! ! 

| WHEN condition-2 { 

Format 2: 
SEARCH ALL identifier-] [; AT END imperative-statement-1]| 

Moe ewneee 
; WHEN condition-1 {noe SENTENCE 

SEEK 

SEEK file-name RECORD [WITH KEY CONVERSION] 

SET 

Format I: 
. . index-name-3 

SET index-name-] L, index-name-2] “| 10 Jidentifier-3 

—— l(identifier-1 [, identifier-2] ... : 
literal-1 

Figure V-7. (cont. next page) 

357



Figure V-7. (cont.) 

  

  
  

  

Format 2: 
. . UP BY identifier-4 

SET index-name-4 [, index-name-5] ... \pOWN wy} {terol \ 

SORT 
DESCENDING 

SORT file-name-1] ON \ ASCENDING | KEY data-name-! [, data-name-2] ... 

DESCENDING 
| ; ON LeSCENDING i KEY data-name-3 [, data-name-4] | eee 

INPUT PROCEDURE IS section-name-] [THRU section-name-2] 

USING file-name-2 

{Grune PROCEDURE IS section-name-3 [THRU section-nome-4i} 

GIVING file-name-3 

STOP 

literal 
STOP trun \ 

SUBTRACT 

Format 1: 
literal-1 , literal-2 

SUBTRACT {iieriiee- |" Nertitier2 | . 

FROM identifier-m [ROUNDED] [, identifier-n [ROUNDED]] ... 

[; ON SIZE ERROR imperative-statement] 

Format 2: 
literal-1 , literal-2 

SUBTRACT \dennitier-1f | dentifier-2 | ” 

literal- FROM ee ™ —( GIVING identifier-n [ROUNDED] 
—— |identifier-m} —-——— —<——<—$———— 

[, identifier-o [ROUNDED]}] ... 

[; ON SIZE ERROR imperative-statement] 

Format 3: 

SUBTRACT Sone identifier-] FROM identifier-2 [ROUNDED] CORRESPONDING identifier- identifier- 

[; ON SIZE ERROR imperative-statement] 

SUSPEND 

file-name-1 test 1 

SUSPEND teense 
eport-name.! 
repor'-nam  idennitier.2 

literal-3 

identifier-3 

literal-4 ” 

Mectiher-a - 

| 
literal-2 | 

| file-name-2 | 

report-name-2 | 

358



Figure V-7. (cont.) 

TERMINATE 

TERMINATE {anortnemen [, reporf-name-2] “I 

USE 

Format 1: 

USE AFTER STANDARD ERROR PROCEDURE ON 

file-name-1 [, file-name-2] ... 

INPUT 
OUTPUT . 

INPUT-OUTPUT 

1-0 

    

Format 2: 

  

Geer 
AFTER \ STANDARD | erases FILE 

—— 

NI 

BEGINNING) rae | 

UNIT 
file-name-1 [, file-name-2] ... 
INPUT 

LABEL PROCEDURE ON 4 OUTPUT . 
INPUT-OUTPUT 

I-0 

    

Format 3: 
USE BEFORE REPORTING identifier-1 [, identifier-2] ... . 
  

Format 4: 
ALL 

USE FOR KEY CONVERSION ON {file-name.t [, file-name-2 wah 

Format 5: 

USE FOR RANDOM PROCESSING. 

WRITE 

Format 1: 

WRITE record-name [FROM identifier-1] 

identifier-2 LINES 
BEFORE . 

{ AFTER \ ADVANCING into une} 

mnemonic-name 

E T END—OF—PAGE 

’ EOP 

  

\ imperative-statement | 

Format 2: 

WRITE record-name [FROM identifier-1] 

; INVALID KEY imperative-statement 
  

Figure V-7. Formats of COBOL verbs. The general notation is the COBOL 

metalanguage described in Section II.6.2. 
Source: [US65] plus CODASYL approved changes through March, 1968. 

359



360 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

As indicated already, the conversion is controlled by the specifications 

in the DATA Division. Each verb which operates on one or more data fields 

obtains its information about the format from the Record Description in the 

DATA Division. 

There is a SORT verb in COBOL. Although it may seem unnecessary to 

include such a verb in a higher level programming language, the real objec- 

tive is to provide the facilities of the programming language with the sort 

routines; the best way to do this is to include a SORT verb in COBOL. The 

SORT verb specifies what input and output procedures are to be performed 

on a file before and after sorting, and specifies the keys and other necessary 

information for the sort to take place. The RELEASE and RETURN verbs are 

used to obtain the records to be acted on initially before the sort takes 

place and to put them back into the main portion of the executable program 

after the sort is executed. 

The simplest type of control transfer is the GO verb, which exists in 

either the simple form of transferring control to the designated procedure 

or as a switch by allowing a sequence of names to be associated with it. 

The simple case can have the specified procedure name changed by the 

ALTER verb. 

The conditional statements in COBOL are quite powerful. The basic 

conditional statement is of the following form, where underlined words are 

required: 

IF condition [THEN] statement-1 } [THEN 

NEXT SENTENCE 

{ore se | statement-2 

ELSE NEXT SENTENCE 

e e 
e ’ 
  

  

It is also permitted to have an imperative statement followed by a condi- 

tional statement. The power of this form comes from two different features. 

The first is that nesting of conditional statements is permitted. More specif- 

ically, either statement-] or statement-2 can themselves be conditional, and 

this nesting is permitted to any depth. Ambiguity is avoided through the 

rule which causes every OTHERWISE to be paired with the immediately 

preceding IF. The second feature providing power is the number and types 

of conditions which can be used; these were discussed earlier. 

In several of the examples given earlier, both sides of the comparison 

were not repeated. This is particularly useful in trying to write something 

like IF X = 2, Y OR Z, which is equivalent to the much longer form 

IF X = 2 OR X = Y OR X = Z. This type of abbreviation is allowed to 

exist even across the key words in the sentence, thus permitting statements



v.3. COBOL 361 

of the form 

IF A = B MOVE X TO Y; OTHERWISE IF GREATER, MOVE M TO 

N ELSE MOVE P TO Q. 

IF A EXCEEDS B OR EQUALS B AND X EQUALS Y THEN IF 

GREATER THAN B MOVE C TO D. 

The former is an abbreviation for 

.. OTHERWISE IF A IS GREATER THAN B... 

while the latter is an abbreviation for 

IF A EXCEEDS B OR (A EQUALS B AND X EQUALS Y) THEN IF X 

IS GREATER THAN B... 

Naturally, with this amount of flexibility, great care must be taken. This 

method of writing conditions is more general than in any other language 

in this book. 

The nesting permits a different type of flexibility. For example, the 

single sentence IF Cl S1 IF C2 S2 OTHERWISE S3 OTHERWISE S4 IF C3 

S5 OTHERWISE Sé6 represents the complicated flow chart shown in Figure 

V-8. 

    

            

    

            

  

      

  

S6 
      

Figure V-8. Flowchart represented by a single COBOL sentence.



362 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

The main loop control statement in COBOL is the PERFORM verb. 

It permits the execution of named procedures which can be either open or 

closed subroutines and can consist of a single paragraph (this can be a single 

statement) or several sections. It is possible to specify the loop in a number 

of different ways. One is by specifying the number of times the range is to 

be performed. Another way is by executing the range until some condition 

is satisfied, with or without incrementing a variable. Finally, up to three 

variables can be varied sequentially until certain conditions are satisfied. 

(Sequentially means that there are really three nested loops.) The EXIT verb 

is used when there are two or more paths to the end of a loop. 

A very specialized type of loop control statement was included in 

COBOL-65, namely the SEARCH verb. This is used to search a table for an 

element that satisfies a specified condition. This is used in conjunction with 

an index name which has been established in the Data Description and is 

used as a way of identifying items in a table. This index name can be preset 

by the SET command. The SEARCH command has two options which permit 

the user to specify whether he wishes a serial search made or some type of 

nonserial search which is specified by the implementer (but presumably 

would be a binary search). 

The main error condition statement is the possibility of including with 

the arithmetic verbs a clause that says ON SIZE ERROR any-imperative- 

statement. Thus, if the result of an arithmetic calculation exceeds the size 

of the data field 1n which it is to be stored, a size error has occurred. When 

the error condition is specified, the single statement shown will be executed. 

A completely different type of error condition statement (namely the USE 

verb) is associated with input/output and is discussed in connection with 

those verbs. 

COBOL provides a very simple and limited type of string handling 

through the EXAMINE verb which permits a data field to be examined for 

the occurrence of a particular literal. There are several options permitted, 

including the replacement of all the occurrences of one literal by another, 

just the leading occurrences, or until another specified literal is encountered. 

It is also possible to tally the number of occurrences in these various cases. 

The main input/output verbs are the READ and WRITE; the former 

serves the purpose of putting the next logical record into the storage area 

for processing, whereas the latter places the specified record into an output 

processing area. The programmer need not worry about the problems of 

differences between logical and physical records, movement across tapes, 

etc.; all these are handled by the READ and WRITE commands automatically, 

with some work done through the OPEN and CLOSE verbs discussed later. 

The READ and WRITE commands provide the facility for specifying what is 

to be done when the end of file is reached. The WRITE command can also 

be used to control the vertical positioning of each record on the printed



V.3. COBOL 363 

page. Furthermore, it permits the user to specify additional action to take 

place when the logical end of page is reached. Before the READ and WRITE 

verbs can operate, however, checking or creating of tape labels must be 

done; this is accomplished by the OPEN verb in which the programmer 

specifies whether the file is an input or an output file. The OPEN verb must 

be executed prior to the first READ or WRITE for a file. The CLOSE verb 

handles the final closing conventions for both input and output files. All 

the information which is needed to specify the format of files is given in the 

DATA Division. 

Although the main input/output verbs are READ and WRITE, which deal 

with the normal large files, it is recognized that there may be low volume 

input and output; for these purposes, the ACCEPT and DISPLAY verbs are 

used. They would normally apply to something like an on-line typewriter. 

Late in 1967 a SUSPEND statement was added to stop the release of subse- 

quent logical records to a graphic display device until re-initiated by the 

operator. 

When the concept of handling mass storage was added in COBOL-6S, 

certain additions were made to the READ and WRITE to handle the mass 

storage, and the SEEK verb was added to facilitate efficient programming. 

In particular, the programmer may give a SEEK command which will start 

searching the storage device for the indicated record and then perform other 

operations until he gives a READ or WRITE. This is only used for random 

access with sequential processing. If random access with random processing 

is desired, then a USE FOR RANDOM PROCESSING statement must be given 

and the execution of the related procedures is initiated by a PROCESS verb 

in the main program. This PROCESS can also be used in conjunction with 

a HOLD statement which provides a delay point that causes synchronous 

processing to be resumed when operating in an asynchronous environment. 

The USE verb has a variety of functions. It specifies procedures for 

input/output labels and error handling which are in addition to the standard 

procedures provided by the input/output system. It is also used to specify 

PROCEDURE Division statements that are executed just before a report group 

named in the Report Section of the DATA Division is produced. Finally, 

it specifies out-of-line and key conversion procedural statements for process- 

ing mass storage files. 

The library reference facility in COBOL is the COPY verb in the 

PROCEDURE Division and the COPY clauses in the DATA and ENVIRONMENT 

Divisions. COPY operates at compile time. Other programs can be obtained 

at object time by the CALL verb. 

There are no direct debugging statements, but the ON SIZE ERROR 

and USE, which were both mentioned earlier, tend to help in that direction. 

There are no executable statements for allocating storage or specifying 

segmentation. However, there are ways for the programmer to control the



364 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

latter, and they are discussed later. A CANCEL statement releases the memory 

areas occupied by the named program. 

The primary interface with the operating system is almost a default 

one, namely the USE verb which (as indicated earlier) allows the programmer 

to specify procedures which are in addition to those assumed supplied by 

the normal input/output system. The STOP verb has a RUN option in which 

the ending procedure established by the installation and/or compiler is 

instituted. Alternatively, the STOP verb can cause a particular literal to be 

displayed to the machine operator and from that he can perform actions 

depending on what the compiler and/or installation has specified. 

There are no facilities for really using specific machine features in 

COBOL. However, the SPECIAL—NAMES paragraph and the APPLY clauses 

in the ENVIRONMENT Division allow some connection between general lan- 

guage facilities and specific machine or implementation facilities. 

COBOL is the first major language to devote significant attention to 

the problem of describing wide varieties of data. There are three major 

categories of data to be concerned with: (1) Information on files coming 

to or from the computer, (2) data developed internally and placed in 

working storage (which might be used for report purposes), and (3) con- 

stants. The COBOL DATA Division has four sections: FILE, REPORT, 

WORKING—STORAGE, and CONSTANT. The most important is the FILE 

Section, which is itself subdivided into File Descriptions (including Sort 

File Descriptions as a special type), and Record (i.e., detailed data) Descrip- 

tions. These correspond to the physical and conceptual characteristics of the 

data. The physical aspects include items such as the mode in which the file 

is recorded, the grouping of logical records within the physical limitations 

of the file medium, and the means by which the file can be identified. The 

term conceptual characteristics means the explicit definition of each logical 

record within the file itself. A logical record is any consecutive set of infor- 

mation. In an Inventory Transaction File, for example, a logical record could 

be defined as a single transaction or as all consecutive transactions which 

pertain to the same stock item. Several logical records can occupy a block 

(1.e., physical record), or a single logical record can extend across physical 

records. 

The sections in the DATA Division consist of a series of related and un- 

related entries as will be shown in Figures V-9 to V-13. This is different from 

the paragraph-sentence-statement structure which characterizes the other 

three divisions. An entry consists of a level indicator, a data name, and a 

series of independent clauses which may be separated by the use of semi- 

colons. The clauses may be written in any sequence, except when the entry 

format specifies otherwise. The entry itself is terminated by a period. 

A detailed data description consists of a set of entries (Shown in Figure 

V-9). In defining the lowest level or subdivision of data, the following infor-



v.3. coBoL 365 

mation may be required: 

1. A level-number which shows the hierarchical relationship between this and 
other units of data. 

2. A data-name. 

3. The SIZE in terms of the number of standard data format characters 

(which are alphabetic or decimal numbers). 

4. The dominant USAGE of the data (computational or display). 

5. The number of consecutive occurrences (OCCURS) of elements to specify 
a table or list. 

6. The location and type of SIGN. 

7. Justification and/or synchronization (i.e., occupying single computer 
word) of the data (JUSTIFIED, SYNCHRONIZED). 

8. Location of an actual or an assumed radix point. 

9. The CLASS or type of data (alphabetic, numeric, or alphanumeric). 

10. The RANGE of values which the data may assume. 

11. Location of editing symbols such as dollar signs-and commas. 

12. Special editing requirements such as zero suppression and check protection. 

13. Initial VALUE of a working storage item or fixed VALUE of a constant. 

In some cases this information can be defined either through specific clauses 

or by the PICTURE clause. 

The large (although not total) amount of machine independence, while 

still retaining some efficiency, comes through the use of features such as 

assuming only decimal numbers regardless of whether the computer is 

binary; controlling spacing within the word boundaries through such 

general clauses as SYNCHRONIZED or JUSTIFIED, which can be implemented 

appropriately on different computers; and indicating USAGE so that the 

compiler knows the best internal form in which to store the number. 

To specify a particular format for input or output, the programmer 

obviously provides the appropriate data description. However, in order to 

provide the full flexibility of a report generator, the Report Section is in- 

cluded in the DATA Division. This consists of the Report Name (RD) and 

Report Group description entries, shown in Figures V-10 and V-11, respec- 

tively. The former contains the information pertaining to the overall format 

such as number of physical lines per page, limits for specified headings, 

footings, and details within a page structure. The latter allows the pro- 

grammer to “fill in” the pictorial representation of a line or series of lines; 

the format is shown in Figure V-11. 

The WORKING—STORAGE and CONSTANT Sections in the DATA Division 

have a format similar to that of the Record Description. 

‘A File Description (FD) entry (shown in Figure V-12) generally includes 

the following: The manner in which the data is recorded on the file, the 

size of the logical and physical records, the names of the label and data re- 

cords and reports contained in the file, and finally the keys on which the data



366 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

  

Format I: 

O01 data-name-1 ; COPY library-name 

word-] word-2 

| REPLACING eter} BY rresiher-2f 

| word-3 | py word-4 \) 

’ lidentifier-3) — lidentifier-4 soo |e 

Format 2: 

level-numb weet 
evel-number +. ep 

[; REDEFINES data-name-2] 

sonst 
; SIZE IS integer-2 {orens 

) RACTER 
; SIZE IS [integer-1 TO] integer-2 {pie ACT ‘\ 

DIGITS 

[DEPENDING ON data-name-3] 

E ret iS character-string [DEPENDING ON date-name-4] | 

- COMPUTATIONAL )y-, 

COMP 

COMPUTATIONAL-n 

COMP-n ) 

  
  

  

; [USAGE |S] 1 GISPLAY 
DISPLAY-n 

| _ | INDEX 
INDEX-n )- 

[; OCCURS integer-4 TIMES 

ASCENDING 

| OScERONeS 
[INDEXED BY index-name-] [, index-name-2] ...] 

; OCCURS integer-3 TO integer-4 TIMES {DEPENDING ON data-name-4] 

ASCENDING 

| {oescewoms 

[INDEXED BY index-name-! [, index-name-2] ...] 4 

SIGNED \ 

SIGN IS data-name-9 iSiGN 
{SYNcHRON ZED} (er ] 

      
\ KEY IS data-name-5 [, data-name-6] | ees 

\ KEY IS data-name-5 [, data-name-6] | wee   
  

  

: 
} 
|   

SYNC RIGHT 
LEFT PLACES 

; POINT LOCATION IS tare} integer-5 {ars a 

ALPHABETIC 
NUMERIC 

SraS® 1S.) ALPHANUMERIC 
AN 

JUSTIFIED ; ust } RIGHT 

[; RANGE IS literal-1 THRU literal-2] 

 



V.3. COBOL 367 

Figure V-9., Format 2 (cont.) 

~ (ZERO SUPPRESS 
CHECK PROTECT 

' )FLOAT DOLLAR SIGN 
FLOAT CURRENCY SIGN. 
[; BLANK WHEN ZERO] 

[; VALUE IS literal-3] . 

  [LEAVING integer-6 PLACES] 
  
  
  

  

Format 3: 

66 data-name-1]; RENAMES data-name-2 [THRU data-name-3] . 

Format 4: 

VALUE IS 

VALUES ARE 

[, literal-3 THRU literal-4]] ... . 

  88 condition-name ; { \ literal-1 [THRU literal-2] 

  

Figure V-9. Data description (= Record description) skeleton in COBOL. 

This describes a logical record. The general notation is the COBOL meta- 

language described in Section II.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

  

Format 1: 
RD report-name ; COPY library-name 

word-] word-2 

[ BEPLACING \identiter1 st lidentiner-2} 
| word-3 B word-4 | 

’ lidentifier-3) — (identifier-4 ver pe 

Format 2: 

RD report-name 

[; WITH CODE mnemonic-name-]] 

CONTROL IS aay . . 
+ \CONTROLS ARE identifier-1 [, identifier-2] ... 

—_—— FINAL , identifier-1 [, identifier-2] ... 

  

  

LIMIT IS LINE 
[ PAGE tLMits ane} integer-] tines} [, HEADING integer-2] 

[, FIRST DETAIL integer-3][, LAST DETAIL integer-4] 

[, FOOTING integer-5} |. 

el 

  

Figure V-10. Report description (RD) skeleton in COBOL. The general nota- 
tion is the COBOL metalanguage described in Section II.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

records have been sequenced, e.g., FD TRANSACT RECORDING MODE IS F; 

BLOCK CONTAINS 80 CHARACTERS; LABEL RECORDS ARE STANDARD; 

DATA RECORD IS TRANSACTION—RECORD; SEQUENCED ON ACCOUNT— 

NUMBER.



Format 1: 

01 [data-name] ; COPY library-name 

word-] word-2 

| REPLACING (ration BY {rrectitier-2} 

| word-3 BY word-4 | 

' lidentifier-3} —— (identifier-4 ver ye 

Format 2: 

01 [data-name-1| 

ALPHABETIC 

NUMERIC 

ALPHANUMERIC 

AN 
integer-1 

[ LINE NUMBER IS « PLUS tana} 

  

; [CLASS IS] 

NEXT PAGE 

integer-3 

| NEXT GROUP IS 4 PLUS integer-4 

NEXT PAGE 

CHARACTERS | 

DIGITS 

/ REPORT HEADING : ) 

RH 

PAGE HEADING 

PH 

OVERFLOW HEADING 

OH 

CONTROL HEADING) (identifier-2 

{ca Hema f 
DETAIL 

DE 
CONTROL room| identifier-3 

(er tema f 
OVERFLOW FOOTING 

OV 

PAGE FOOTING 

PF 
REPORT FOOTING 

. RF / 

DISPLAY-n 

DISPLAY \| 

[ SIZE IS integer-5 { 

  

  

  

1 TPE 1s | 
  

  

      
[ [USAGE IS] { 

Format 3: 

level-number [data-name-1] 

ALPHABETIC 

NUMERIC 

ALPHANUMERIC 

AN 

[; COLUMN NUMBER IS integer-1] 

; [CLASS IS] 

368



V.3. COBOL 369 

Figure V-11., Format 3 (cont.) 

ZERO SUPPRESS 
CHECK PROTECT 

* ) FLOAT DOLLAR SIGN 
FLOAT CURRENCY SIGN 
[; BLANK WHEN ZERO] 

[; GROUP INDICATE] 
JUSTIFIED 

‘ just }ricur 

integer-3 

; LINE NUMBER IS 4 PLUS integer-4 

NEXT PAGE 

  [LEAVING integer-2 PLACES] 
  

  
  

  

fw 
PIC \ iS character-string 

LEFT 

RIGHT 

identifier -2 
RESE RESET ON {on | 

=
e
 

; POINT LOCATION IS { \ integer-5 PLACES | 
  

=
e
 

—
 ; SIGNED] 

; SIZE IS integer-6 {rene | 
DIGITS 

; SOURCE IS [SELECTED] identifier-3 

; SUM identifier.4 [, identifier-5] ... [UPON stones 

; VALUE IS literal-1 

DISPLAY 
; [USAGE 1S] {DISPL Ar at . 

o
m
—
—
™
s
 

  

a
 

  

Figure V-11. Report group skeleton in COBOL. The general notation is the 

COBOL metalanguage described in Section II.6.2. 
Source: [US65] plus CODASYL approved changes through March, 1968. 

The listing of data and label record names in a File Description entry 

serves as a cross-reference between the file and the records in the file. 

A sort file is a name for the set of records to be sorted by a SORT state- 

ment. The format of its description (SD) is shown in Figure V-13. There are 

no label procedures which the user can control, and the rules for blocking 

and internal storage are peculiar to the SORT verb. Each of the sorted records 

can be made available, in order, by being RETURNed from the sort file during 

the output procedures specified by the SORT statement. The sort file created 

by the execution of RELEASE statements can only be SORTed and its records 

can only be obtained by being RETURNed from the sort file during the 

OUTPUT PROCEDURE. 

The storage allocation is handled automatically by the compiler. The 

prime unit for allocating executable code is a group of sections called



  

Format 1: 
FD file-name ; COPY library-name 

word-] word-2 

| REPLACING retiter-1} bY (nretier-2} 

| word-3 BY word-4 \) 

’ lidentifier-3) — (identifier-4 ser ye 

Format 2: 

FD file-name 

[; RECORDING MODE IS mode] 

[; FILE CONTAINS ABOUT integer-I RECORDS] 

. . RECORDS 
[ BLOCK CONTAINS [integer-2 TO] integer-3 \craonc test 

[; RECORD CONTAINS [integer-4 TO] integer-5 CHARACTERS] 

RECORD ARE STANDARD 
; LABEL RECORD IS \ OMITTED 

data-name-! [, data-name-2] ... 

data-name-4 [HASHED] 

literal-] \ 

data-name-6 [HASHED] 

literal-2 MI | 

E VALUE OF data-name-3 IS ' 

|. data-name-5 IS { 

  RECORD IS 
E DATA {RECORDS ret data-name-7 [, data-name-8] | 

REPORT !S 

: {REORTS ARE 
[; SEQUENCED ON data-name-9 [, data-name-10] ...] 

identifier-1 LINES 

I LINAGE IS {now LINES y . 

mnemonic-name 

  \ report-name-! [, report-name-2] | 

  

Figure V-12. File description (FD) skeleton in COBOL. The general notation 

is the COBOL metalanguage described in Section II.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

  

Format 1: 
SD file-name ; COPY library-name 

word-] word-2 

| REPLACING er kent} BY enero} 

| word-3 BY word-4 | 

’ lidentifier-3} — (identifier-4 coe [ie 

Format 2: 

SD file-name 

[; FILE CONTAINS ABOUT integer-] RECORDS] 

[; RECORD CONTAINS [integer-2 TO] integer-3 CHARACTERS] 

RECORD IS 
[ DATA heconbs ret data-name-! [, data-name-2] | . 

  

  

  

  

Figure V-13. Sort file description (SD) skeleton in COBOL. The general 

notation is the COBOL metalanguage described in Section IT.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

370



v.3. COBOL 371 

a segment. The programmer combines sections by specifying a priority 

number with each section’s name. Sections having low priority numbers up 

to a limit specified in the ENVIRONMENT Division are included in the fixed 

portion of the object program. Sections which are not included in the fixed 

portion are grouped into segments by their priority number. The compiler 

is required to see that the proper control transfers are provided so that con- 

trol among segments which are not stored simultaneously can take place. 

COBOL is the first language to provide a complete description of the 

physical environment in which a program is to be run. This is done through 

the ENVIRONMENT Division. This is clearly machine and compiler dependent; 

in fact, its primary purpose is to segregate into one place all the information 

which cannot possibly be made machine independent. The ENVIRONMENT 

Division is divided into two sections—CONFIGURATION and INPUT—OUTPUT. 

The former contains three paragraphs: (1) SOURCE—COMPUTER, which 

defines the computer on which the compiler is to be run; (2) OBJECT— 

COMPUTER, to define the computer on which the object program is to be 

run (see Figure V-14); and (3) an optional SPECIAL—NAMES, which shows 

  

Format 1]: 
OBJECT—COMPUTER . COPY library-name 

word-] word-2 
| REPLACING (ecitteraf BY (rrecniter-2f 

| word-3 BY word-4 | 

’ lidentifier-3} —— (identifier-4 very 

Format 2: 

OBJECT—COMPUTER . computer-name [WITH SUPERVISOR CONTROL] 

WORDS 

  

  

integer cianacrens 

, MEMORY SIZE MODULES 

ADDRESS literal-1 THRU literal-2 

[, literal-3 THRU literal-4] ... 

[, [literal-5] implementor-name-]] ... 

[, SEGMENT-LIMIT IS priority-number] [, ASSIGN OBJECT—PROGRAM 

TO input-unit] . 

  

  

Figure V-14. OBJECT-COMPUTER format in COBOL. The general notation is 
the COBOL metalanguage described in Section IIJ.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

the relationship among certain hardware devices used by the COBOL com- 

piler and the names they are referred to by in the program (see Figure V-15). 

Thus there is an easy mechanism for providing information about compiling 

on one machine for another; to the best of my knowledge, this “cross 

compilation” has not been done by anyone.



372 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

  

Format I: 
SPECIAL—NAMES. COPY library-name 

word-] word-2 

| REPLACING ‘rectitter-1f BY reiter2f 

| word-3 BY ea 4 | 

’ lidentifier-3) — lidentifier-4) | “| ° 

IS_mnemonic-name [, ON STATUS 

IS_mnemonic-name [, OFF STATUS 

ON STATUS IS condition-nome-1 

OFF STATUS 1S condition-name-2 

IS condition-name-] [, OFF STATUS IS IS condition-name-2]] 

1s condition-name-2 [, ON STATUS Is condition-name-]]] 

L OFF STATUS IS condition-name- -2) 

[, ON STATUS Is. condition-name-1] 

[, ‘CURRENCY SIGN IS literal] [, DECIMAL—POINT IS COMMA] . 

  

Format 2: 

SPECIAL—NAMES. | implementor-name 

  

  

Figure V-15. SPECIAL—NAMES format in COBOL. The general notation is the 

COBOL metalanguage described in Section II.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

The INPUT—OUTPUT Section provides the information needed to transmit 

the data on the external media to the object program. The FILE—CONTROL 

paragraph (see Figure V-16) names files and their media and specifies alter- 

nate input/output areas of file-control, e.g., SELECT UPDATED—MASTER 

ASSIGN 729-3 0210, 729-3 0220 RESERVE 3 ALTERNATE AREAS.. In 

COBOL-65 the File-Control paragraph has been extended to include infor- 

mation about mass storage—in particular, the user is allowed to specify 

whether the processing is to be random or sequential, the data names de- 

fining the end of a file, and the actual key to be used in accessing records. 

The I—O—CONTROL paragraph (see Figure V-17) specifies input/output tech- 

niques, points for rerun, shared memory areas, and location of files on a 

multiple file reel, e.g.. I-O—CONTROL. APPLY SHORT—LENGTH—RECORD 

PROCEDURE ON MASTER—FILE; RERUN ON TAPE—WITH—LABEL—22 EVERY 

END OF REEL OF MASTER—FILE.. 

There is no provision in COBOL for modification of COBOL pro- 

grams. With regard to self-extension of the language, this was permitted 

by the DEFINE verb which unfortunately was not implemented by anybody 

and so was finally removed in one of the COBOL Committee’s modifications 

of the COBOL-65 manual. Essentially the DEFINE verb allowed the user to 

specify a new verb, show the format that it was supposed to have, and 

specify the subroutine that this new verb defined; it thus would have pro- 

vided the first really powerful macro facility in a higher level language if 

it had ever been implemented.



v.3. COBOL 373 

  

Format 1: 
FILE—CONTROL. COPY library-name 

word-1 word-2 
[ REPLACING eiter-t BY (identiter-2f 

! cn | y word-4 

’ (identifier-3) —- (identifier-4) | "| ° 

FILE—CONTROL. {SELECT [OPTIONAL] file-name 

  

Format 2: 

  

ASSIGN TO [integer-1] implementor-name-] [, implementor-name-2] ... 

REEL integer-2 AREA 
IPLE ~———_} |, RESERVE | FoR MULT aay | S Ino | ALTERNATE areas | | 

, PRIORITY IS implementor-name-3}] 

FILE—LIMIT IS data-name-] THRU data-name-2 

’ (FILE—LIMITS ARE) (literal-1 literal-2 

data-name-3 data-name-4 

. liitesor \ TRRU lineal I | 
SEQUENTIAL 

; ACCESS MODE IS {RANDOM \ 

SEQUENTIAL 

{RANDOM 

, ACTUAL KEY IS data-name-5] 

KEY IS 
— ta- - - - coe | of eee , SYMBOLIC {keys at data-name-6 [, data-name-7] | \ 

  

1
 

, PROCESSING MODE IS 
— 

FOR integer-3 RECORDS} | 

Format 3: 

FILE—CONTROL. {SELECT [OPTIONAL] file-name 

ASSIGN TO implementor-name-4 

[, implementor-name-5] ... OR implementor-name-6 

  

[, implementor-name-7] ... 

REEL integer-4 | AREA || 
—— R L | FOR MULTIPLE {feat I. RESERVE {No ha TERNATE AREAS 

[, PRIORITY 1S implementor-name-8] .} ... 

  

Figure V-16. FILE~CONTROL format in COBOL. The general notation is the 

COBOL metalanguage described in Section II.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

A distinction is made between compiler-directing verbs and compiler- 

directing declaratives. The former cause specific action to be taken at the 

point of appearance in the program, whereas the latter category provides 

information to the compiler which must be used sometime and which 

operates under the control of the main body of the PROCEDURE Division 

or the input/output system. The declaratives must appear at the beginning 

of the PROCEDURE Division. The compiler-directing verbs are: ENTER, which 

signals to the compiler that some other language is about to be used 

so that the compiler can invoke the necessary other translation system; 

EXIT, which provides a common exit point from the range of a PERFORM



374 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

  

Format 1: 
I-O—CONTROL. COPY library-name 

word-] word-2 

| REPLACING {rectiter-a} BY Lidentiter 3 
| word-3 BY word-4 \) 

’ \identifier-3) — |identifier-4) | “| © 

Format 2: 

I-O-—CONTROL. [APPLY input-output technique ON file-name-1 

[, file-name-2] ...] ... 

; RERUN [on {nereme \ 
—- | implementor-name 

REEL 

‘fe OF iar to file-name-4 | aoe 

EVERY integer-T RECORDS 

integer-2 CLOCK—UNITS 

condifion-name 

|: SAME {ort | AREA FOR file-name-5 {, file-name-6} | eee 

[; MULTIPLE FILE TAPE CONTAINS file-name-8 POSITION 

integer-3][, file-name-9 [POSITION] integer-4]] ...] ... . 

  

  

  

Figure V-17. I-O—CONTROL format in COBOL. The general notation is 

the COBOL metalanguage described in Section II.6.2. 

Source: [US65] plus CODASYL approved changes through March, 1968. 

verb; and NOTE, which signifies that the following sentence or paragraph 

is a comment and hence is not to be translated by the compiler. 

The compiler-directing declaratives are COPY and USE, both of which 

were discussed earlier. 

I am not aware of any serious attempts to write a COBOL compiler 

in COBOL, although I believe it probably could be done. The EXAMINE verb 

was included partially to aid in such a process. Some amount of concern 

was given in the design of COBOL to the ease of implementation, but it 

was not a major factor. 

Some of the early implementations were carried on in parallel with the 

language development; this had the obviously valuable effect of providing 

instances in which the draft specifications were unworkable from an imple- 

mentation point of view. Many of the early COBOL compilers were absolutely 

dreadful in terms of performance; in many cases this was considered a 

reflection on the language, whereas in reality it was merely an indication of 

the fact that techniques for efficient implementation of complex data proc- 

essing languages like COBOL had not yet been developed. Current 

COBOL compilers are much more satisfactory from both the compile time 

and object time point of view. Some of the difficulties in the implementation



v.3. COBOL 375 

are caused by the fact that it may be very hard to do something on a par- 

ticular machine which is simple on another. 

COBOL does not impose any implied storage allocation problems on 

the compiler since all the requirements are given in the source program. 

This obviously does not mean that some compilers will not be more effective 

in their storage handling than others, but such features as recursion and 

dynamic storage allocation are not required by the language. The most sig- 

nificant element in this area is the necessity of providing buffers for input 

and output data. 

There are no separate requirements for debugging aids and error 

checking; these are left to the implementer. The language specifications 

point out a number of cases in which the results of a given error type are 

unpredictable. 

V.3.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

COBOL has made a number of contributions to the technology of 

programming languages (and has forced development of new implemen- 

tation techniques). 

The first contribution was the development of a language in which 

a clear distinction was made among the actions to be performed, the de- 

scription of the data on which it is to be done, and the physical environment 

in which the activity is being carried out. Some of these concepts appeared in 

FLOW-MATIC and Commercial Translator, but they were really solidified 

in COBOL. Experience has shown that the splitting of information between 

the DATA and ENVIRONMENT Divisions was not correct in every case, and 

some items are in one division which really belong in another (e.g., some 

of the File Description should be in the ENVIRONMENT Division). 

A second major contribution has been the development of a description 

for data which is logically machine independent, although it does not 

simultaneously preserve efficiency and compatibility across machines. 

A third contribution has been the creation of a programming language 

which is effective for handling problems with large files and simple processing. 

A fourth contribution has been the development of a programming 

language which is very natural to read, permits really mnemonic names, 

and provides English-like executable statements. This has given us practical 

experience with a language which is simple relative to the scope of the 

natural English language; yet it is powerful and complex relative to its 

functional capabilities. 

The conditional statements are more flexible than those of any other 

language in this book. 

COBOL provided the first rudimentary indications of what types of



376 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

information were required to interface with an operating system since many 

of the items in the ENVIRONMENT Division relate to an operating system more 

than to specific hardware. 

Finally, although not a technical contribution per se, the COBOL 

activity has fostered the continued cooperation of competitive manufac- 

turers, together with the users, in the development of a major language. 

V.4. FILE HANDLING 

Since a large part of the manipulations required in business data processing 

involve file manipulation, a number of systems have been developed for 

performing such operations. A few of the earlier systems were mentioned 

in Section V.1. This whole area is considered beyond the scope of this book, 

for the reasons indicated in Section V.4.2. 

Since COBOL is the major language in use for business data processing, 

it would seem reasonable to suppose that individual groups who wished 

to provide more sophisticated file handling capabilities but within the 

framework of a powerful language would define additions to COBOL. The 

IDS system has done this, and is described very briefly below. 

V.4.1. EXTENSIONS OF COBOL 

1. IDS 

The IDS (Untegrated Data Store) system has been developed by 

C. Bachman and others at the General Electric Company. Although 1m- 

plemented as an extension of COBOL, the concepts are general and can 

be applied to any computer which has a mass memory device. 

The basic concept is to place in a normal data record some additional 

fields called chain fields which contain the address of other IDS records. 

(This concept is closely related to the concept of /ists developed in Chapter 

VI.) Additional entries are provided in the COBOL Record Description, 

e.g., RETRIEVAL VIA CALC CHAIN, PLACE NEAR data-name CHAIN, and 

PAGE-RANGE. Other additions to the Data Division are provided. New 
verbs are also added. In particular, the verbs STORE (a new record into 

the file and link it into the chains as specified in the Data Division), 

RETRIEVE (a record which is already in the IDS system), MODIFY (change 

the content of one or more fields with automatic relinking of the chains if 

necessary), DELETE (a record from its chains and the files) are provided. 

V.4.2. GENERAL (cross-reference only) 

File handling systems are beyond the scope of this book for several 

reasons. First, much of the emphasis is (quite rightly) on the file organization



REFERENCES 377 

with the language elements being secondary and/or primitive. Second, many 

of the systems concentrate on the use of printed forms rather than languages. 

Third, the overlap and interconnnection between query languages (or 

systems) and file handling languages (or systems) is quite high. In some 

instances they are almost synonymous, 1.e., a system might be considered 

a file handling or query system based primarily on the bias of the user. 

References to some file handling systems are included with those listed 

in the bibliography for Section IX.3.2.1. 

REFERENCES 

V.1. SCOPE OF CHAPTER 

[DG63] 

[1B61b] 

[IB65d] 

[LN62] 

[LS67] 

[MG59] 

[MG60] 

[MG63] 

[NM00] 

[RR55a] 

[SH65] 

[WY6la] 

d’Agapeyeff, A., Baecker, H. D., and Gibbens, B. J., “Progress in Some 
Commercial Source Languages”, Annual Review in Automatic Program- 
ming, Vol. 3 (R. Goodman, ed.). Pergamon Press, New York, 1963, 
pp. 277-98. 

IBM 7090 Programming Systems, SHARE 7090 9PAC Part 1: Intro- 
duction and General Principles, IBM Corp., J28-6166, Data Processing 
Division, White Plains, N.Y. (1961). 

IBM System 360/Operating System Report Program Generator Speci- 
fications, IBM Corp., C24-3337, Data Processing Division, White Plains, 
N.Y. (1965). 

Longo, L. F.,. “SURGE: A Recoding of the COBOL Merchandise 
Control Algorithm”, Comm. ACM, Vol. 5, No. 2 (Feb., 1962), pp. 
98-100. 

Leslie, H., “The Report Program Generator”, Datamation, Vol. 13, 
No. 6 (June, 1967), pp. 26-28. 

McGee, W. C., “Generalization: Key to Successful Electronic Data 
Processing”, J. ACM, Vol. 5, No. 1 (Jan., 1959), pp. 1-23. 

McGee, W. C. and Tellier, H., “A Re-Evaluation of Generalization”, 
Datamation, Vol. 6, No. 4 (July-Aug., 1960), pp. 25-29. 

McGee, W.C., “The Formulation of Data Processing Problems for 
Computers”, Advances In Computers, Vol. 4 (F. L. Alt and M. Rubi- 
noff, eds.). Academic Press, New York, 1963, pp. 1-52. 

SURGE: A Data Processing Compiler for the IBM 704, North Ameri- 
can Aviation, Inc., Columbus, Ohio. 

BIOR (Business Input-Output Rerun) Compiling System, Remington 
Rand, Inc., ECD-2 (1955). 

Shaw, C.J., Theory, Practice, and Trend in Business Programming, 
System Development Corp., SP-2030/001/02, Santa Monica, Calif. 

(July, 1965). 

Willey, E. L. et al., “Some Commercial Autocodes—A Comparative 

Study,” A.P.L.C. Studies in Data Processing No. I. Academic Press, 

Inc. (London) Ltd., 1961.



378 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

V.2.1. FLOW-MATIC 

[HF54] 

[K B57] 

[RR59a] 

[TB60] 

Holberton, F. E., “Application of Automatic Coding to Logical Proc- 
esses”, Symposium on Automatic Programming for Digital Computers, 
Office of Naval Research, Dept. of the Navy, Washington, D.C. (1954), 
pp. 34-39. 

Kinzler, H. M. and Moskowitz, P. M., “The Procedure Translator— 
A System of Automatic Programming”, Automatic Coding, Jour. Frank- 
lin Inst., Monograph No. 3, Philadelphia, Pa. (Apr., 1957), pp. 39-49. 

FLOW-MATIC Programming, U 1518 Rev. 1, UNIVAC. ©) 1958, 1959, 
Sperry Rand Corporation. 

Taylor, A., “The FLOW-MATIC and MATH-MATIC Automatic 
Programming Systems”, Annual Review in Automatic Programming, 
Vol. 1 (R. Goodman, ed.). Pergamon Press, New York, 1960, pp. 196— 
206. 

V.2.2. AIMACO 

[AM58] 

[YL59] 

AIMACO Compiler, The AIMACO Compiling System Manual, Air 
Materiel Command (Aug., 1958). 

Miller, E.R. and Jones, J. L., “The Air Force Breaks Through the 

Communications Barrier”, UNIVAC Rev. (Winter, 1959), pp. 8-12. 

V.2.3. COMMERCIAL TRANSLATOR 

[IB59] 

[1B60a] 

[IB61c] 

[IB62a] 

[1B63] 

General Information Manual: IBM Commercial Translator, 1BM Corp., 
F28-8013 (1959) 

General Information Manual: IBM Commercial Translator, IBM Corp., 
F28-8043, Data Processing Division, White Plains, N.Y. (1960). 

Addenda to the Commercial Translator General Information Manual, 
IBM Corp., J28-8072, Data Processing Division, White Plains, N.Y. 

(1961). 

Preliminary Reference Manual: IBM 709/7090 Commercial Translator 
Processor, IBM Corp., J28-6169-1, Data Processing Division, White 

Plains, N.Y. (1962). 

COBOL and Commercial Translator: A Comparison, 1BM Corp., J28- 
6310, Data Processing Division, White Plains, N.Y. (1963). 

V.2.4. FACT 

[CP61] 

[HO59] 

Clippinger, R. F., “FACT—A Business Compiler: Description and 
Comparison with COBOL and Commercial Translator”, Annual Review 
in Automatic Programming, Vol. 2 (R. Goodman, ed.). Pergamon Press, 
New York, 1961, pp. 231-92. 

The Honeywell-800 Business Compiler: A Preliminary Description, Min- 
neapolis-Honeywell Regulator Co., Datamatic Division, Newton High- 
lands, Mass. (1959).



REFERENCES 379 

[HO61] FACT Manual Unterim Edition), DSI-27E 1161, Minneapolis-Honeywell 
Electronic Data Processing Division, Wellesley Hills, Mass. (1961). 

V.2.5. GECOM 

[GZ61] GE 225: GECOM Language Specifications, General Electric, Com- 
puter Dept., Phoenix, Ariz. (Dec., 1961). 

{[KX62] Katz, C., “GECOM: The General Compiler”, Symbolic Languages 
in Data Processing. Gordon and Breach, New York, 1962, pp. 495-500. 

[SB63] Schwalb, J., “Compiling in English”, Datamation, Vol. 9, No. 7 (July, 
1963), pp. 28-30. 

[SM61}] Sammet, J. E., “A Method of Combining ALGOL and COBOL”, Proc. 
WICC, Vol. 19 (1961), pp. 379-87. 

V.3. COBOL 

[AA68] USA Standard X3.23-1968 COBOL. (Final copy in preparation.) 

[BE65] Bennett, N. W., DEMON—A Programme Generator for Problems In- 
volving Ordinary Differential Equations, Australian Atomic Energy Com- 
mission Research Establishment, AAEC/E142, Sydney, Australia (Aug., 
1965). 

[BF62] Berman, R., Sharp., J., and Sturges, L., “Syntactical Charts of COBOL 
61”, Comm. ACM, Vol. 5, No. 5 (May, 1962), p. 260 plus insert. 

[BJ61] Bromberg, H., “COBOL and Compatibility”, Datamation, Vol. 7, No. 2 
(Feb., 1961), pp. 30-34. 

[BJ67} Bromberg, H., “The COBOL Conclusion”, Datamation, Vol. 13, No. 3 

(Mar., 1967), pp. 45-50. 

[CG63] Cunningham, J. F., “COBOL”, Comm. ACM, Vol. 6, No. 3 (Mar., 

1963), pp. 79-82. 

[CW64] Cowan, R.A., “Is COBOL Getting Cheaper?”, Datamation, Vol. 10, 
No. 6 (June, 1964), pp. 46-50. 

[DO62] Donally, W. L., “A Report Writer for COBOL”, Comm. ACM, Vol. 5, 
No. 5 (May, 1962), p. 261. 

[EC67] ECMA (European Computer Manufacturers Association), Formal 

Definition of the Syntax of COBOL (preliminary edition), Geneva, 
Switzerland (Aug., 1967). 

[EM62] Emery, J. C., “Modular Data Processing Systems Written in COBOL”, 

Comm. ACM, Vol. 5, No. 5 (May, 1962), pp. 263-68. 

[EP63] “Time to Switch to COBOL?”, EDP Analyzer, Vol. 1, No. 11 (Dec., 

1963), pp. 1-11. 

[FD65] Fredericks, D. S. and Warburton, C.R., “Across Machine Lines in 

COBOL”, Comm. ACM, Vol. 8, No. 12 (Dec., 1965), pp. 731-35. 

[FP64] Fimple, M. D., “FORTRAN vs. COBOL”, Datamation, Vol. 10, No. 8 

(Aug., 1964), pp. 34, 39-40. 

[GN63] Gordon, R. M., “COBOL and Compatibility”, Datamation, Vol. 9, 

No. 7 (July, 1963), pp. 47-48.



380 LANGUAGES FOR BUSINESS DATA PROCESSING PROBLEMS 

[GV62] 

(H162] 

[HY62] 

[HY63] 

[1B63] 

[1C62a] 

[JU65] 

[KS62] 

[LN62] 

[LP62] 

[MN61] 

[MU62] 

[NF64] 

[QH66] 

[SG62] 

[SM61] 

[SM6la] 

[SM61b] 

[SM6Ic] 

Greene, I., “Guides to Teaching COBOL”, Comm. ACM, Vol. 5, No. 5 
(May, 1962), pp. 272-73. 

Hicks, W., “The COBOL Librarian—A Key to Object Program Effi- 
ciency”, Comm. ACM, Vol. 5, No. 5 (May, 1962), p. 262. 

Humby, E., “Rapidwrite—COBOL Without Tears”, Symbolic Languages 
in Data Processing. Gordon and Breach, New York, 1962, pp. 573-83. 

Humby, E., “Rapidwrite”, Annual Review in Automatic Programming, 
Vol. 3 (R. Goodman, ed.). Pergamon Press, New York, 1963, pp. 

299-310. 

COBOL and Commercial Translator: A Comparison, IBM Corp., 
J28-6310, Data Processing Division, White Plains, N.Y. (1963). 

“General Panel Discussion: Is a Unification ALGOL-COBOL, 
ALGOL-FORTRAN Possible? The Question of One or Several Lan- 
guages”, Symbolic Languages in Data Processing. Gordon and Breach, 
New York, 1962, pp. 833-49. 

Junker, J. P. and Boward, G. R., “COBOL vs. FORTRAN: A Sequel”, 
Datamation, Vol. 11, No. 4 (Apr., 1965), pp. 65-67. 

Kesner, O., “Floating-Point Arithmetic in COBOL”, Comm. ACM, 
Vol. 5, No. 5 (May, 1962), pp. 269-271. 

Longo, L. F.. “SURGE: A Recoding of the COBOL Merchandise 
Control Algorithm”, Comm. ACM, Vol. 5, No. 2 (Feb., 1962), pp. 
98-100. 

Lippitt, A., “COBOL and Compatibility”, Comm. ACM, Vol. 5, No. 5 
(May, 1962), pp. 254-55. 

Makinson, T. N., “COBOL: A Sample Problem”, Comm. ACM, Vol. 4, 
No. 8 (Aug., 1961), p. 340. 

Mullin, J. P., “An Introduction to a Machine-Independent Data Divi- 
sion”, Comm. ACM, Vol. 5, No. 5 (May, 1962), pp. 277-78. 

Naftaly, S. M., “Compiling a COBOL Questionnaire”, Datamation, 
Vol. 10, No. 8 (Aug., 1964), pp. 30-33. 

Budd, A. E., A Method for the Evaluation of Software: Procedural 
Language Compilers—Particularly COBOL and FORTRAN, Mitre Corp., 
(DDC) AD 651142, Commerce Dept. Clearinghouse, Springfield, Va. 
(Apr., 1966). 

Siegel, M. and Smith, A. E., “Interim Report on Bureau of Ships COBOL 
Evaluation Program”, Comm. ACM, Vol. 5, No. 5 (May, 1962), pp. 
256-59. 

Sammet, J. E., “A Method of Combining ALGOL and COBOL”, 
Proc. WJCC, Vol. 19 (1961), pp. 379-87. 

Sammet, J. E., “A Definition of the COBOL 61 Procedure Division 
Using ALGOL 60 Metalinguistics”, Summary in Preprints of 16th 
Nat’! Meeting of the ACM, Sept., 1961, pp. 5B-1 (1)-4). 

Sammet, J. E., “General Views on COBOL”, Annual Review in Auto- 
matic Programming, Vol. 2 (R. Goodman, ed.). Pergamon Press, New 
York, 1961, pp. 345-49. (Same article as [SM6lIc].) 

Sammet, J. E., “More Comments on COBOL”, Datamation, Vol. 7, 
No. 3 (Mar., 1961), pp. 33-34. (Same article as [SM61b].)



[SM62] 

[SX63] 

[US60] 

[US61] 

[US62] 

[US65] 

[WH62] 

[W M67] 

[WY61] 

[X B00] 

[XB67] 

[ZQ67] 

REFERENCES 381 

Sammet, J. E., “Basic Elements of COBOL 61”’, Comm. ACM, Vol. 5, 
No. 5 (May, 1962), pp. 237-253. (Also in [RO67].) 

Saxon, J.A., COBOL: A _ Self-Instructional Manual. Prentice-Hall, 
Inc., Englewood Cliffs, N.J., 1963. 

COBOL: Initial Specifications for a Common Business Oriented Lan- 
guage, Dept. of Defense, U.S. Govt. Printing Office, Washington, D.C. 
(Apr., 1960). 

COBOL-1961: Revised Specifications for a Common Business Oriented 
Language, Dept. of Defense, U.S. Govt. Printing Office, Washington, 
D.C. (1961). 

COBOL-1961 Extended: Extended Specifications for a Common Busi- 
ness Oriented Language, Dept. of Defense, U.S. Govt. Printing Office, 
Washington, D.C. (1962). 

COBOL: Edition 1965. Dept. of Defense, U.S. Govt. Printing Office, 
Washington, D.C. (Nov., 1965). 

Whitmore, A. J., “COBOL At Westinghouse”, Datamation, Vol. 8, 
No. 4 (Apr., 1962), pp. 31-32. 

COBOL Programming Tips, Westinghouse Electric Corp., Management 
Systems Dept. (Apr., 1967). 

Willey, E. L. et al., “A Critical Discussion of COBOL”, Annual Review 

in Automatic Programming, Vol. 2 (R. Goodman, ed.). Pergamon 
Press, New York, 1961, pp. 293-304. 

X3.4 COBOL Information Bulletins, BEMA/DPG, Numbers 1-11 
(Apr., 1963—present) (continuing publication, distributed irregularly). 

X3.4 COBOL Information Bulletin No. 9, “Proposed USA Standard 
COBOL”, ACM SICPLAN Notices, Vol. 2, No. 4 (Apr., 1967). 

Callahan, M. D. and Chapman, A. E., “Description of Basic Algorithm 
in DETAB/65 Preprocessor”, Comm. ACM, Vol. 10, No. 7 (July, 1967), 
pp. 441-46. 

V.4.1.1. ZDS 

[GZ65] 

(QJ64] 

(QJ65] 

Introduction To Integrated Data Store, General Electric, Computer 
Dept., Phoenix, Ariz. (Apr., 1965). 

Bachman, C. W. and Williams, S. B., “A General Purpose Program- 
ming System for Random Access Memories”, Proc. FJCC, Vol. 26, 
pt. 1 (1964), pp. 411-22. 

Bachman, C. W., “Software for Random Access Processing”, Data- 
mation, Vol. 11, No. 4 (Apr., 1965), pp. 36-41.



VI STRING AND 
LIST PROCESSING LANGUAGES 

VI.1. SCOPE OF CHAPTER 

For several reasons, this chapter is probably a more difficult one to com- 

prehend than most of the others. The main reason is that relatively few 

people have had experience with, or exposure to, the types of problems for 

which the languages in this chapter are needed. In the other areas, far less 

background and/or direct experience is required to appreciate the language 

facilities described. Thus, this chapter may well have the unfortunate 

characteristic that the people who are not familiar with the languages involved 

may not understand the descriptions, and those who are familiar with them 

will not need the information contained herein. In spite of this dilemma, it 

is obvious that no book on programming languages would be complete 

without a description of the languages used for list processing, string manipu- 

lation, and pattern matching. A further difficulty arises because the outline 

of Chapter III is difficult to follow for this class of languages; hence the 

technical descriptions in this chapter do not particularly match the sequence 

or emphasis of material in that chapter. 

In order to have any understanding at all of the language facilities 
provided in differing ways, it is necessary to comprehend the basic concept 

of a list. This concept was first introduced by Newell, Simon, and Shaw 

[NW56] to help solve the particular problem that they were working on, 

namely the proof of theorems in the propositional calculus. The list concept 

has since become one of the cornerstones of a great deal of work in the com- 

puter field. Its need arises in the many applications which require dynamic 

storage allocation of a very large and complex kind. One specific type of 

problem in which this arises occurs when there is a need to maintain tables 

382



VI.1. SCOPE OF CHAPTER 383 

for several different kinds of data, but the user has no way of telling ahead 

of time how much space should be allocated to each table; in other words, 

he cannot tell (in fact, it changes from problem to problem) how many ele- 

ments will be in each table. In addition to that difficulty, there are many 

applications in which the major activity consists of inserting and deleting 

elements from tables. If the information is stored in sequential memory 

locations, this requires constant work (by both the programmer, and the 

computer at object time) to move the data elements. 

Some of the specific areas using this type of activity are compiler writing, 

theorem proving, manipulation of formal algebraic expressions, picture 

processing, some types of linguistic data processing, and most aspects of 

work in artificial intelligence. These applications have tended to become 

lumped together under the general title symbol manipulation. 

The basic concept of a list is quite simple. Instead of storing data sequen- 

tially in memory, each item contains not only the data element but the 

address of the next data element in logical sequence. (See Figure VI-1.) It 

is immediately obvious that this may (but does not always) waste storage. 

If the data item and the address fit together in some logical storage unit 

in the machine (e.g., a word), then perhaps not much space is wasted. On 

the other hand, it may be necessary to use a second memory location for the 

Memory Machine Word 
Location (contains data and pointer 

to next element) 

  
  

        

  
  

  

        

  

500 A |503 

50| ~ C {509 

502 
          

  

    
          503 —~ B | 50 | 

509 Lo D 

Figure VI-1. Illustration of list. Assume there is a sequence of data items 
A, B, C, and D which are to be represented in the form of a list; i.e., each 

element contains a pointer to the memory location containing the next one. 

    

  

       



384  sTRING AND LIST PROCESSING LANGUAGES 

address (commonly called a pointer) to the next element. This is one of the 

penalties accruing from the use of list processing. On the other hand, to insert 

or delete an element is extremely simple. Thus, to insert an element between 

B and C in Figure VI-1, it is only necessary to change one address rather 

than moving all the elements. (See Figure VI-2.) Beyond this basic concept, 

one of the significant elements in list processing is whether the element of 
a list can itself be a list, as illustrated in Figure VI-3. Another situation occurs 
when each element of a list can consist of many data elements. This is some- 

times called an n-component element or plex. 

Memory Machine Word 

Location (contains data and pointer 
to next element) 
  

900 A {503   
        

  
  

      
90! C C |;509 

903 L_ B | 506 

  
  

  

  

  

            

        906 | INSERT} 5O | 
          

  
  909 > D   

        

Figure VI-2. Inserting element in a list. Contrasting this with Figure VI-1 
shows that only one address, namely the one in position 503 (associated 

with B) has been changed to point to the INSERT item in 506. The pointer 
from JNSERT goes to C in 50/]. Nothing else had to change. 

One of the major problems is that of returning currently unused data 

to the so-called free list. In Figure VI-2, if we wish to delete item C, all that 

1S necessary is to change the pointer associated with B from C to D and the 

list is now in correct form. However, the memory location that was occu- 

pied by the item C really is no longer needed. It is characteristic of list proc- 

essing problems that this type of thing happens quite frequently, and there 

is a need to “clean up” memory so that positions no longer being actively 

used are now available for new data. This becomes one of the major prob- 

lems in the design of a list processing system.



SCOPE OF CHAPTER 385 

        
    

                            

    

        
          

                                

    

    
    mL > M   

                

Figure VI-3. List structure, i.e., list containing list as element. This shows 

several levels of sublists. The element Q points to an element which contains 

no data but instead points both to a single element R, and to a sublist whose 

first element is X. X points to Y which in turn points to an element containing 

no data but points to a single element Z, and to a sublist containing the 

elements L and M. 

From these basic concepts, an entire area of development has ap- 

peared, involving both languages and techniques. The techniques include such 

words or phrases as threaded lists, backward pointers, reference counts, 

garbage collection, and free list. It is beyond the scope of this book either to 

deal with these ideas or even to provide an adequate bibliography for them. 

For the reader who is interested in pursuing this matter in detail, however, 

an annotated bibliography is given in Sammet [SM66] and its updated 

version [SM67a]. 

Some introductory papers on symbol manipulation which discuss the 

types of applications involved are Raphael [RA66a] and [RA66b] and other 

references cited throughout this chapter. A good source for a number of 

papers discussing artificial intelligence is Feigenbaum and Feldman [FG63]. 

A few other relevant articles are shown in the reference list (given at the end 

of this chapter) for this section or for the individual languages. 

A second—and tangentially related—concept of importance is that of 

string processing. A string is generally considered to be a variable length 

sequence of characters. It is important to understand immediately that strings 

and lists are neither opposites nor synonyms. A list is a particular way of 

representing information in a computer, and a string is one of the types of 

information that can be so represented. The significance of strings occurs 

to a large extent in the handling of text material. The text material can be 

either natural language of some kind (e.g., this sentence), a string composed 

of a program in any language, or any arbitrary sequence of characters from 

some particular data area.



386 STRING AND LIST PROCESSING LANGUAGES 

From a language point of view, the types of operations that people 

wish to perform differ significantly between list processing and string proc- 

essing. In list processing, the main concern is to put information into a list 

or to delete it, to combine lists in different ways, and to deal with the free 

list problem. 

In considering string processing, the major types of operations to be 

performed include searching for patterns and transforming them into dif- 

ferent patterns. This may also involve deletions or insertions in the string 

itself. If the string has been represented as a list, some of the list processing 

facilities are needed. 
From the point of view of programming languages as discussed in this 

book, it would be quite logical to have two separate chapters, one dealing 

purely with the list processing languages and the other with the string proc- 

essing languages. They have been combined into one chapter, primarily 

because the areas in which they are used tend to overlap somewhat and 

there is sometimes a need for these facilities to be intermingled in one way 

or another. Although I question the validity of the title, the article by 

Bobrow and Raphael [BB64a] provides a useful overview of some of the 

similarities and differences along these lines. 

The oldest of the list processing languages is the IPL family culminating 

in IPL-V, which was considered a higher level language during the course 

of much of its development but it is now viewed largely as a conceptual 

assembly language for a mythical machine capable of doing list processing. 

A more recent development, namely L*, also operates at a very low level 

from the point of view of the facilities provided, but it offers the user much 

more flexibility (and requires more work) in the creation of his lists than 

IPL-V does. In that sense, it is even lower level than IPL-V. 

The LISP systems (really LISP i for i < 2) represent an entirely different 

approach to the entire subject. LISP has its fundamental basis in certain 

aspects of mathematics and recursive function theory. It represents an ap- 

proach to language design that is significantly different from virtually all 

other languages in this book because LISP is to a large extent a functional 

language rather than a statement-oriented one. That is to say, the user tends 

to write functions in LISP, and his program consists of instructions to 

evaluate the functions to produce his desired result. 

The first of the string processing languages was COMIT. This was 

developed to assist linguists doing work in natural language translation. 

COMIT has served as a pattern for other developments, most notably the 

more recent SNOBOL. In some cases, the capabilities represented by COMIT 

have been added to list processing languages. 

While a discussion of essential differences between COMIT and 

SNOBOL is premature in an introductory section if the reader is not familiar 

with either language, it seems more logical to include the remarks here and



SCOPE OF CHAPTER 387 

refer the reader to this paragraph after he has studied Sections VI.6 and 

V1.7. COMIT seems to be a more complex language for professional pro- 

grammers than SNOBOL since some of the facilities in the latter are closer 

to those of other programming languages. On the other hand, linguists and 

programmers have certainly used both languages successfully. I am unaware 

of any carefully written detailed comparisons; the following comments are 

of necessity superficial COMIT permits a more complex data structure 

through the use of its logical and numeric subscripts than SNOBOL does; 

SNOBOL provides only strings. Furthermore, the ability in COMIT to 

define individual elements (i.e., constituents) which are either single charac- 

ters or groups of characters (e.g., English words) provides more flexibility 

in programming and scanning. The list rule feature in COMIT to provide 

fast table lookup is a distinct advantage. On the other side, the ability of 

SNOBOL to assign names to specific strings and to name unknown strings 

provides an ease of programming far above equivalent actions in COMIT. 

The ability to define functions and the elaborate types of pattern searching 

which are available in SNOBOL provide that language with definite advan- 

tages in certain cases. In conclusion, as in deciding between any two lan- 

guages, the potential user must weigh carefully all the technical features, 

the specific implementations he is dealing with, and the factors discussed 

in Chapter II. 

TRAC’ is a still more recent development which attempts to combine 

some of the basic facilities from the list and string processing languages and 

to do this in an on-line environment. 

Finally, there are several langugaes which have been developed and 

implemented but are not in any way widely used. These include AMBIT, 

TREET, CLP, CORAL, SPRINT, and LOLITA. 

A general description of many symbol manipulation languages is given 

in Raphael et al. [RA67]. This provides an excellent bird’s-eye view of most 

of the languages described in this chapter and in Chapter VII. However, 

some of the items in that paper are not languages by the criteria established 

in this book. 

Any reader who has had previous exposure to list processing or who 

has even absorbed some of the atmosphere in this field may wonder at the 

absence of SLIP and DYSTAL from the list of languages discussed in this 

chapter. The reason is simply that they are not languages but merely packages 

of subroutines which are embedded in a language, e.g.,. FORTRAN. To 

quote from the SLIP designer, “It [SLIP] is a language system designed to be 
imbedded in a higher order language capable of calling machine language 

subroutines”,? and his personal comment to me “of course SLIP 1s not a 

1 TRAC is the trademark and service mark of Rockford Research Institute Incor- 
porated in connection with their standard computer controlling languages. 

2 Weizenbaum [WZ63], p. 524.



388 sTRING AND LIST PROCESSING LANGUAGES 

language”. Thus from a purely language point of view there is no conceptual 

difference between the subroutines associated with SLIP (described in 

Weizenbaum [WZ63]) and a package of routines to do matrix manipulation, 

integration, or anything else that is invoked by a CALL statement. The same 

remark applies to the more recent development DYSTAL (Sakoda [SA65]). 

It also applies to a significantly different type of package, namely the addition 

of pattern-matching facilities to LISP in the CONVERT system (see Guzman 
[ZH66]). This comment, and the exclusion of these systems, in no way repre- 

sent a negative value judgment on their importance or significance. It is 

merely a reaffirmation of the fact that adding a package of subroutines to 

a language does not change the language per se. This point was discussed 

earlier in Section IV.3 (FORTRAN). The reader who is still skeptical or 

unhappy about this viewpoint might wish to contrast this situation with 

that of FORMAC which 1s discussed in Section VII.3. In that case, while 

there was definitely a package of subroutines added to FORTRAN, there 

was also a language placed on top of FORTRAN. Thus the user invoked 

the new facilities by means of new statements in FORTRAN rather than by 

merely writing a CALL to the appropriate subroutine. The paper by Bobrow 

and Weizenbaum [BB64b] discusses this problem, but in my opinion it does 

not meet the issue directly. The authors do not really consider whether one 

has a new language if one adds a set of packages which are able to be used 

without changing the host language or the compiler. There does not seem 

to be any illustration (in the United States) of an implemented basic language 
extension to FORTRAN or ALGOL to just provide list or string processing 

facilities, although there have been numerous suggestions for doing so. 

Some of these are listed under the ALGOL references at the end of Chapter 
IV. 

Since FLIP and DYSTAL are not considered languages, the earlier 

FLPL (FORTRAN Compiled List Processing Language) (see Gelernter, 

Hansen, and Gerberich [GE60]) is not a language for the same reason. It 

was a much earlier development along the same line, namely adding sub- 
routines to FORTRAN. 

VI.2. LANGUAGES OF HISTORICAL INTEREST ONLY 

There are no list or string processing languages which fall in this category. 

VI.3. IPL-V 

VI.3.1. History 

One of the most significant events that has ever occurred in program- 
ming was the development of the concept of list processing by Allen Newell,



VI.3. IPL-v 389 

J. C. Shaw, and Herbert Simon. The classic paper in which these ideas were 
presented is by Newell and Simon [NW56]. Because of the historical signifi- 

cance of this work, a list of most of the principal primitive instructions from 

that paper is included as Figure VI-4; however, this language was never imple- 

mented. From a conceptual point of view, the early language was fairly 

application-oriented, where the applications involved proving theorems in 

the propositional calculus and playing chess. The first language (which was 

really a collection) was called IPL-I (Information Processing Language-I). The 

first implemented version was IPL-II, which is described in Newell and Shaw 

[NW57a]. This was implemented on the JOHNNIAC at the RAND Corpora- 

tion. The first major use of the language was for proving theorems in the 

propositional calculus and was reported in Newell, Shaw, and Simon 

[NW57]. The next version, IPL-III, was abandoned shortly after it became 

operational because it required too much space. IPL-IV was used for a num- 

ber of significant programs in the field of artificial intelligence; IPL-IV 

strongly resembles IPL-V* but has never actually been documented. Work 

on IPL-V actually started in late 1957 at Carnegie Institute of Technology 

on the IBM 650 as a modification of IPL-IV. A running version of IPL-V 

was available in early 1958. A newer (and essentially final) version of the 

language became operational on the 704 at the end of the summer in 1959. 

The first published description of IPL-V appeared in 1960 (see Newell and 

Tonge [NW60)). 

The implementation and development of this line of language stopped 

with IPL-V because the people most vitally concerned were more interested 

in the problems they were trying to solve than in further language develop- 

ments. This is a refreshing contrast to other areas in which the language 

development began to overshadow the problem-solving. However, an IPL- 

VI was proposed as an order code for a computer (see Shaw et al. [JC58)). 

IPL-V has been one of the most widely implemented languages, and 

versions exist on at least the following machines: IBM 650, 704, 709/7090, 

1620, UNIVAC 1105 and 1107, Control Data 1604 and G20, Burroughs 

220, Philco 2000, and AN/FSQ-32. 

VI.3.2. FUNCTIONAL CHARACTERISTICS OF IPL-V 

The most significant property of IPL-V is that it has a closer notational 

resemblance to assembly language than any other language in this book 

(except perhaps L*). IPL-V is really the machine language for a hypothetical 

computer which does list processing. Newell notes‘ that it is curious that 

3 Newell et al. [NW65], p. xxi. 
4 Private communication, June, 1967.



390 STRING AND LIST PROCESSING LANGUAGES 

  

Numerical 

NAG 

NAGG 

NAH 

NAK 

NAJ 

NAW 

NSG 

NSGG 

Assign 

AA 

AN 

Compare 

CC 

CN 

CGG 

CKG 

CWG 

CPS 

Find 

FEF 
FEN 

Store 

SEN 
TSX 

+SXE 
+SXM 

Put 

PE 

PK 

Test 

TC 
TB 
TU 
1GG 
TF 

x 
K 

wm 
we 

OX
 

x 
x 

mM 
me 

“x 
u
M
 O
M 

x 
Mm 
K
M
 O
X 

<
“
<
N
“
 ON
 

<
=
™
“
N
 

NM
 
ON
 

r
T
r
r
r
 

a
r
a
 

es 
C
r
T
o
r
n
7
r
n
r
 es 

Add one to G(x). 

Add G(x) to G(y); result in G(y). 

Add one to H(x). 

Add one to K(x). 

Add one to J(x). 

Add one to W (work done). 

Subtract one from G(x). 

Subtract G(x) from G(y). 

Assign an unused list to A(x). 
Assign an unused name to E(x). 

If C(x) = Cy), —> b. 
If N(x) = N(y), —> b. 

If G(x) > Gly), —> b. 

If K(x) > K(y), — b. 

If W (work done) > limit, — b. 

If E(x) is subelement of E(y), — b. 

Find the first E in A(x) and put in y; if none, — b. 

Find the E in A(x) next after E(y), put in y; then — b. 
If none (end of list), — next. 

Store E(x) back in A(x); if not there, 

store E(x) at end of A(x). 

Store E(x) as next E in A(y); E(x) now last item in A(y). 

Store a copy of X(x) at (new) A(y). 

Store X(x) in A(y) in place of E(y). 

Store X(x) at (new) A(y) as main expression. 

Put E(x) in E(y); E(x) remains. 

Put K(x) in K(y). 

If C(x) = —> (implies), —> b. 

If E(x) is blank, — b. 

If E(x) is a unit, —> b. 

If G(x) > 0, — b. 

If E(x) is free, —> b.



V1.3. IPL-V 391 

Figure VI-4. (cont.) 

Branch 

B b Branch to b. 

BHB In higher instruction, — b. 

BHN In higher instruction, — next. 

  

Figure VI-4. Fairly complete list of basic processes in first Information 
Processing Language. In the figure, x, y and b denote memory locations and 

—» denotes branch to. X is a logic expression and E a set of elements. A is the 

location of the whole expression in memory. C is the connective in the 

expression. G is the number of negation signs before the expression. H, J, and 

K represent respectively the number of variable places, distinct variables, 

and number of levels in the expression. Processes preceded by a dagger can 
be defined in terms of simpler operations. 

Source: Newell and Simon [NW56], extracts from pp. 63-78. 

IPL has come to be described as “like assembly code” when its description 

in the early 1960’s was as a problem-oriented language. The IPL application 

area is “for problems that are sufficiently complex, ill-structured, and dif- 

ficult to require intelligence for their solution by humans.”* It was certainly 

meant to be used only by a professional programmer. It was definitely devel- 

oped for use as a batch system, but it has been successfully used in general 

time-sharing systems or in those with remote job entry facilities. 

By its very nature, it is not hard for IPL-V to be fairly machine indepen- 

dent, providing only that the data items will fit into the portion of the machine 

word allocated to data. Since most of the implementations are interpretive, 

there is slightly less of a problem about compiler dependence and the systems 

are essentially (although not 100 percent) interchangeable. As far as dialects 

are concerned, because the structure of the language consists of a long list 

of available routines, it is very easy for somebody to add other routines. 

The problem of subsettings and extensions has not really arisen, except in 

the sense of having these new routines added by individual groups. 

There has been no consideration of official USASI standardization. 

In addition to A. Newell, F. M. Tonge, E. A. Feigenbaum, B. F. Green, 

Jr., and G. H. Mealy, who are the editors of the manual [NW65], numerous 

other people were involved in the implementation for their individual 

computers. A list is given at the beginning of the IPL-V manual. There is 

no official maintenance. However, in an effort to provide some coordination 

  

5 Newell et al. [NW65], p. xv.



392 STRING AND LIST PROCESSING LANGUAGES 

SAMPLE PROGRAMS—IPL-V 

  

Problem: Reverse the symbols after the head cell of the list named in HO. 

Program: 

Name PQ Symb Link Comment 

R2 J60 Step pointer to cell containing first sym- 

bol 

70 J8 Clean up and stop if list was empty 
40 HO 

40 HO Push down two copies of pointer to first 

symbol (needed as arguments for J65 
and J68 below) 

R2 Recursively reverse symbols after the 
first 

12 HO Get the first symbol 

J65 J68 Insert it at the end and delete it from 

the beginning 

Problem: Test whether two list structures are equal, where “equal” means 

they have the same hierarchical structure and the same elementary symbols in 
corresponding positions. 

Program: 

Name PQ Symb — Link Comment 

R1 J51 Spread arguments in working storage 
9-3 12 WO Get next symbols 

12 Ww! 

J2 Compare symbols 

70 9-2 Branch if not identical 
9-4 11 WwO 

J60 Step first list 
20 WwO 

70 9-1 Branch if first list ended 
11 WI! 

J60 Step second list 
20 WI! 

70 J31 9—3 Clean up and quit, or loop 

9-2 12 wo Symbols not identical 

J132 Test if local, i.e., name of a sublist 

70 J31 Quit if either not local 

12 Wl 

J132 

70 J31 

12 WO Both local. Input substructure names 
12 Ww! 

RI Recursively test sublists for equality 

70 J31 9-4 Quit if substructures differ 

| 11 Wl 

J60 Are main lists the same length? 

30 HO 

J5 J31 Set H5 to + if R1’s two inputs are names 

of “equal” structures, and set H5 to 

— otherwise. Cleanup and quit. 
 



V1.3. IPL-v 393 

of the activity, an IPL secretary was established at the RAND Corporation. 
This was solely for communication exchange and not for maintenance of a 

subroutine library. 

The language definition was given using English and illustrations. The 

latter are essential since in many cases the description is not sufficient to 

determine either syntax or semantics. 

The main documentation of IPL-V is the manual published in 196], 

with a second edition in 1964 (Newell [NW65]). It contains a historical and 

conceptual introduction, a primer, and the official description of the lan- 

guage. In many cases the individual implementations have manuals. One 

philosophical aspect of the general documentation problem led to significant 

developments in the language itself. Newell says “Originally, as in most 

languages, only a very small, almost minimal, set of primitives were specified. 

All the rest, it was argued, could be built up from these. On the other hand, 

a different argument went, since list processing was relatively new, people 

should not have to discover for themselves how to put the little pieces together 

into useful medium-sized processes. Hence, a substantial array of basic 

processes should be provided in the language as a means of (automatically) 

communicating to the user the things he could do with the language. This 

argument, which derives from a concern with documentation in the broad 

sense, was accepted and led to the 200 odd primitives that now exist in 

IPL.”® 

Two related documents which are of interest are the demonstration 

problem consisting of the IPL-V coding of the Logic Theorist (see Stefferud 

[SF63]) and another teaching aid called TIPL (Teach JPL) (see Dupchak 

[DU63]). This examines IPL code written by students and tests it against 

various inputs. 

Some of the problems for which IPL-V has been used are described in 

Newell and Simon [NW6l1], Feigenbaum [FG61], and Tonge [TN60], and 

other references at the end of this chapter. The work by Tonge actually used 

IPL-IV. 

VI.3.3. TECHNICAL FEATURES OF IPL-V 

IPL-V is really an assembly language level set of commands for doing 

list processing. As such, it is extremely difficult to describe in terms of the 

general outline which was given in Chapter III, and so this will be done only 

where feasible. 

It is convenient to think of an IPL machine which consists of a set of 

cells (i.e., storage locations) which hold expressions, a set of symbols used 
to form expressions (the symbols are actually all addresses), and a set of 

primitive processes (i.e., instructions). (A CDC 3600 was actually modified 

8 Newell [NW63], p. 88.



394  sTRING AND LIST PROCESSING LANGUAGES 

to respond directly to IPL-V commands and used at least for playing 

checkers. This is described in Hodges [HX64] and Cowell and Reed [ZN65].) 

From a very general overview, IPL can be considered a postfix system with 
a specific cell, HO, containing the operand stack and the cell H] containing 

the operator stack. 

IPL (used as an abbreviation for IPL-V) allows two kinds of expres- 

sions: data list structures, which contain the information to be processed, 

and routines, which define the processes. 

IPL distinguishes three types of symbols: regional, internal, and local. 

A regional symbol is a letter or punctuation mark followed by one to four 

decimal digits, e.g., A2, B1234. An internal symbol consists of a positive 

integer and is used primarily by the computer. Both regional and internal 

symbols always stand for the same object throughout the program. Local 

symbols connect lists and list structures and are defined only through a 

specific list structure; a local symbol 1s a 9 followed by a hyphen — followed 

by one to four decimal digits. All IPL expressions are written in terms of 

what is called an IPL word. A standard word consists of four parts: P, Q, 

SYMB, and LINK. P and Q are called the prefixes of the word and consist 

of an octal digit; Q is the designation prefix; and P is the operation prefix 

(for routines) or data type prefix (for data list structures). 

The standard IPL word mentioned above does not suffice to represent 

numbers, alphabetic characters, etc., so data terms are defined and have 

three parts: P, QO, and DATA. Again, P and Q are prefixes, and DATA 

contains the information. 

The input form 1s fixed with specific columns assigned to the cell NAME, 

a SIGN, P, OQ, SYMB and LINK. For data, the information is placed in the 

combined SYMB and LINK fields. A version of IPL called LIPL (Linear 

IPL) permits a more horizontal format. See Dupchak [DU65]. 

On the coding sheet, the appearance of a regional or internal symbol 

in the NAME area defines the start of a list structure, and all local symbols 

that occur after this line belong to the same list structure until another region- 
al or internal NAME occurs. 

NAME PQ SYMB LINK 

LI $2 

9-3 

A4 0 

9-2 A3 

9-4 0 

9-3 A4 

L2 0 

A storage cell holds symbols; it is created by giving the cell a regional 

name and putting the termination symbol 0 for LINK. SYMB is the symbol 
contained in the cell, and it may be placed there initially or during execution.



V1.3. IPL-v 395 

Associated with each storage cell is a data list called a pushdown list. The 

storage cell is the head of the list and the cells used in the storage system are 

list cells. By convention, WO,..., W9 are used for temporary storage, 

although any cell can be a storage cell. 

Since the basic purpose of IPL-V is to operate on lists, it is essential to 

know what types are defined. IPL permits data lists, data list structures, and 

list structures. 

A data list is a set of cells whose sequence is defined by the rule that the 

LINK part of the cell contains the name of the next cell in the list. (When 

nothing is written, there is an automatic link to the next word.) The link of 

the last cell in the list is a termination symbol, denoted by 0. A data list is 

created by writing a symbol in the NAME field of some line, and this symbol 

is the name of both the list and the symbol at the head of the list. The termina- 

tion symbol 0 1s written for the link of the last cell. The system will assign 

an internal name to any cell not explicitly named by the programmer; 

however, the programmer may give names to list cells by using local sym- 

bols (since using regional symbols usually starts a new list). This can be done 

to avoid writing the data list information in sequential order on the coding 

sheet. For example, 

NAME PQ SYMB LINK 

LI 0 9-1] 

9-2 $2 9-3 

9-1 S] 9-2 

9-3 $3 0 

It is possible to associate with a list a description list which contains informa- 

tion about the list in the form of values for specified attributes. The SYMB 

of the head contains the name of the description list. The value of an attribute 

can be the name of a list of values. A description list contains alternately 

the symbols for attributes and their values. The same symbol cannot occur 

more than once as an attribute on the description list. The following example 

shows a list with the name L2 described by the attributes Al and A2 with 

values V1 and V2, respectively :’ 

NAME PO SYMB LINK 
L2 9-0 

$1 
$2 
$3 0 

9-0 0 
Al 
V1 
A2 
v2 0 

7 Newell et al. [NW65], p. 150.



396 STRING AND LIST PROCESSING LANGUAGES 

A list structure is a set of lists connected by the names of the list occur- 

ring on other lists in the set. A data list structure is a fairly simple form of the 

list structure since there are a number of restrictions on what a data list 

structure can contain. A data list structure is made up of data lists and can 

be more complicated than a tree since the name of a sublist can appear in 

the structure. 

The smallest executable unit is a single instruction which always has 

the standard form: P OQ SYMB LINK, where the LINK defines the location 

of the next instruction and the rest shows the operation to be performed. 

Single instructions can be combined to form a program list which can be 

reentrant. A program list can have regional symbols as LJNKs and names 

of list cells as SYMB. Programmed lists can be combined into a higher 

executable unit called a routine; this is a list structure with one programmed 

list (called the main list) that has a regional or internal name while all the 

other lists are called sublists and have local names. The program list cannot 
have a description list associated with it. A program is a set of routines. 

Every routine may be a subroutine or a main program; no special linkage 

conventions are needed. 

There are three types of cells defined relative to a routine. A storage 

cell is called safe over a routine if the routine leaves the symbol in the cell 

(and the pushdown list) the same as it was prior to beginning the routine, 

except where the latter calls for modification. A routine can have input and 

output symbols. By convention, inputs for a routine are placed in a special 

storage cell called the communication cell which is designated HO. If there 
are multiple inputs, they are in the pushdown list of HO in the sequence 

determined by the definition of the routine. Similarly, multiple outputs are 

placed in the pushdown list. The communication cell must be safe over all 

routines, which means that a routine must remove all the input symbols 

from the communication pushdown list before the routine terminates. The 

outputs of course are to be left in HO. A cell called the test cell and designated 

H5 is used to record yes or no information, where the symbols + and — are 

used, respectively; they are denoted internally by J4 and J3. - 

The Q prefix is called the designation operation in an instruction. The 

operand of the Q prefix is SYMB and the result is a new symbol S. Q can 

have eight values, including the provision for one or two levels of indirect 
addressing (denoted by 1 and 2) and tracing provisions (designated by 3 

and 4). 

The P prefix actually specifies the operation in an instruction. The eight 
P operations on S permit the execution of subroutines (P = 0), the transferral 

of symbols to and from the communication cell HO (P = 1, 2, 5, and 6), push 

or pop the pushdown list of S to S (P = 3, 4), and transfer control to S$ 

if H5 has a minus sign (P = 7); the last is thus a conditional transfer. 
The heart of the system is the set of basic processes (designated by J).



V1.3. L-v 397 

Some of these are primitive, and some are elementary routines built up from 

the primitives (i.e., coded in IPL-V). (In the definition of the J processes, 

we let (0) represent the symbol in HO, (1) represents the first symbol beneath 

the top of the pushdown list, (2) represents the second symbol from the top 

of the pushdown list, etc.) There are system regions and system cells which 

are used by these basic processes. The regions H, J, and W cannot have new 

symbols defined by the programmer. There are a number of specified cells 

which have special functions, e.g., HO,...,H5, WO,..., W43. As illustra- 

tions of how these are used, H3 is a tally of the interpretation cycles executed, 

W11 is the remainder of integer division, W21 holds the name of the integer 
determining the print column, W28 holds the symbol indicating the cause 

of the trap, and W38 holds the name of the routine which tests whether slow 

auxiliary storage should be compacted at this time and compacts it if yes. 

While not all the basic titles of the J routines are self-explanatory, the 

general categories are described here in order to give a feel for what is 

available. The complete list (by title) is shown in Figure VI-5. 

General processes JO-J9. These are shown completely to give the general 

idea. 

JO NO OPERATION. Proceed to the next instruction. 

Ji EXECUTE (0). The process (0) is removed from HO, HO is 
restored (this positions the process’s inputs correctly), and 

the process is executed (as if its name occurred in the instruc- 

tion instead of J1). 

J2 TEST IF (0) = (1). (The identity test is on the SYMB part 
only; P and Q are ignored.) H5 is set + or — for true or false, 

respectively. 

J3. SET H5—. The symbol in H5 is replaced by the symbol J3. 

J4. SET H5+. The symbol in H5 is replaced by the symbol J4. 

J5 REVERSE HS5. If H5 is +, it is set —; if H5 is —, it is set +. 

J6 REVERSE (0) and (1). Permutes the symbol in HO with the 
first symbol down in the HO pushdown list. 

J7 HALT, PROCEED ON GO. The computer stops; if started 

again, it interprets the next instruction in sequence. 

J8 RESTORE wo. Identical to 30HO, but can be executed as 
LINK. 

J9 ERASE CELL (0). The cell whose name is (0) is returned to 
the available space list, without regard to the contents of the 

cell. 

Description processes (J10-J16). The name of the describable list, 

rather than the name of the description list, is the input. The name of the



* Indicates processes which set H5 

General Processes ($# 5.0) 
JO 
Jl 

*J2 
+53 
+34 
#35 

No operation 
Execute (0) after restoring HO 
TEST (0) * (1) 
Set H5- 
Set H5+ 
Reverse sense of H5 
Reverse (0) and (1) 
Halt, proceed on GO 
Restore HO 
ERASE cell (0) 

Description Processes ($ 6.0) 
*J10 
“J11 
J12 

J13 

J14 
J15 

*J16 

FIND value of attribute (0) of (1) 
Assign (1) as value of attribute (0) of (2) 
Add (1) at front of value list of attribute 

(0) of (2) 
Add (1) at end of value list of attribute 

(0) of (2) 
ERASE attribute (0) of (1) 
ERASE all attributes of (0) 
FIND attribute of (0) randomly 

Generator Housekeeping Processes ($ 7.1) 
J1?7 

*J18 
*J19 

Gen set up: context (0), subprocess (1) 
Execute subprocess of Gen 
Gen clean up 

Working Storage Processes (% 8.0) 
J2n 
J3n 
J4n 
J5n 

List 
*J60 

*J103 
J104 

MOVE (0)-(n) into WO-Wn 
Restore WO-Wn 

Preserve WO-Wn 

Preserve WO-Wn; MOVE (0)-(n) into WO-Wn 

Processes ($ 9.8) 
LOCATE next symbol after cell (0) 
LOCATE last symbol on list (0) 
LOCATE (0) om list (1) (lst occurrence) 
INSERT ee before symbol in cell (1) 
INSERT (0) after symbol in cell (1) 
INSERT (0) at end of list (1) 
INSERT ) at end if not on list (1) 
Replace (1) by (0) on list (2) (1st occur.) 
DELETE symbol in cell (0) 
DELETE (0) from list (1) (1st occurrence) 
DELETE last symbol from list (0) 
ERASE list (0 
ERASE list structure (0) 
COPY list (0) 
COPY list structure (0) 
Divide list after location (0); name of 
remainder is output (0) 
INSERT list (0) after (1), 
TEST if (0) is on list (1) 
TEST if list (0) is not empty 
TEST if cell (0) is not empty 
FIND the nth symbol on list (0) 
Create list of n symbols, (n- 2 to (0) 
Gen symbols on list (1) for (0) 

1) for (0) Gen cells of list structure 

Gen cells of block (1) for (0) 

locate last symbol 

Gen cells of tree (1) for (0) 

Auxiliary Storage Processes ($ 10.1) 
*J105 
J106 
J107 

*J108 
J109 

from auxiliary 
File list structure (0) in fast-auxiliary 
File list structure (0) in slow-auxiliary 
TEST if list structure (0) is on auxiliary 
Compact auxiliary data storage system (0) 

MOVE list structure 9) in 

Arithmetic Processes ($ 11.0) 
J110 
J111 
J112 
J113 

*J114 
#3115 
*J116 
*J117 
*3J118 
*J119 
J120 
J121 
J122 
J123 
J124 
J125 
J126 

#3127 
J128 

J129 

leave (0) 
leave 3 
leave 
leave 

ql) + £3 = (0), 

TEST 
COPY ) 
Set (0) identical to (1), leave (0) 
Take absolute value of (0), leave (0) 
Take negative of (0), leave (0) 
Clear (0), leave (0) 
Tally 1 in (0), leave (0) 
Count list (0) 
TEST if data type (0) = data type (1) 
Translate (0) to be data type of (1), 
leave (0) 
Produce random number between 0 and (0) 

Data Prefix 
*J130 
*J131 
*J132 
#3133 
#3134 
J135 
J136 
J137 
J138 
J139 

Processes (§$ 12.2) 
TEST if (0) is regional symbol 
TEST if (0) names data term 
TEST if (0) is local symbol 
TEST if list (0) has been warked processed 
TEST if (0) is internal symbol 

(0) local, leave (0) 
list (0) processed, leave (0) 
(0) internal, leave (0) 

Make 

Mark 
Make 

Read and Write Processes (§% 14.0) 
*J140 
#J141 
J142 
J143 
J144 
J145 
J146 

Read list structure 
Read symbol from console 
Write list structure (0) 
Rewind tape (0) 
Skip to next tape file 
Write end-of-file 
Write end-of-set 

Monitor System (§ 15.6) 
J147 
J148 
J149 

Print 

J1i50 
J151 

Mark routine (0) to trace 
Mark routine (0) to propagate trace 
Mark routine (0) to not trace 

Processes ($ 16.1, 16.2) 
Print list structure (0) 
Print list (0) 
Print symbol (0) 
Print data term (0) w/o name or type 
Clear print line 
Print line 
Enter symbol (0) left-justified 
Enter data term (0) left-justified 
Enter symbol (0) right-justified 
Enter data term (0) right-juscified 
Tab to colum (0 
Increment column by (0) 
Enter (0) according to format W43 

In-process Loading (% 19.0) 
J165 Load routines and data 

Save for Restart (# 20.0) 
*J166 
*J167 
J168 
J169 

Error 

J170 

Block 
J171 
J172 

*J173 
*J1L74 
*J175 

J176 
J177 
J178 
J179 

Save on unit (0) for restart 
Skip list structure 

Trap (§ 21.0) 
Trap on (0) 

Handling Processes (§& 17.0) 
Return unused regionals to H2 
Make block (0) into a list 
Read into block (0) 
Write block (0) 
FIND region control word of regional symbol 

(0) 
Space (0) blocks on unit 1W19 

Line Read Processes ($ 22.0) 
*J180 
*J181 
*J182 
*J183 

Partial Word 
J190 

Read line 
Input line 
Input line 
Set $0 to 

symbol 
data terw (0) 
next blank, leave (0) 

Set (0) to next non-blank, leave (0) 
Set (1) to next occurrence of character 
(0), leave (0) 
Input line character 

Transfer field to line (0) 

Processes fs 23.0) 
Input P of cell (0) 

J191 Input Q of cell (0) 
J192. Input SYMB of cell (0) 
J193 Input LINK of cell (0) 
J194 Set (1) to be P of cell (0) 
J195 Set (1) to be Q of cell (0) 
J196 Set (1) to be SYMB of cell (0) 
Ji97 Set (1) to be LINK of cell (0) 
J198 
J199 

Miscellaneous Processes (}$ 24.0) 
* 3200 
J201 
J202 

LOCATE (0)th symbol on list (1) 
ERASE routine (0) 
Print post mortem and continue 

Figure VI-5. List of IPL-V basic processes. 

Source: 

398 

Newell et al. (eds.) [NW65], p. 263.



VI.3. IPL-v 399 

description list is found in the head of the describable list and is a local 

symbol whenever it is created by these processes. 

Generator housekeeping processes (J17-J19). Generators permit repeti- 

tive operations by producing a sequence of outputs and applying to each a 

specified process. The process that the generator applies is called the sub- 

process and is an input. Generators are different from the other processes 

because the generator and its sub- or superprocesses must coexist at the 

same time. Hence the normal hierarchy of routines and subroutines is 

violated and care must be taken to see that each routine is always working 

In its appropriate context. 

Working storage processes (J2n—J5n). The programmer can create stor- 
age cells for either permanent or temporary use. The advantage in using 

the W’s lies in having 40 processes to manipulate them. 

List processes (J60—J104). In these commands, the locate operation 

produces an output which is the name of the cell containing the desired 

symbol, and it sets H5 to + if the symbol is located and to — if it is not 

located; in the latter case the output is the name of the last list cell. In the 

case of insertion, there are no outputs. For deletion, the symbol is removed 

and H5 Is set negative if the symbol did not exist, otherwise it is set at plus. 

When a structure of any kind is erased, all the cells on it are returned to 

available space and there is no output. 

Auxiliary storage processes (J105—J109). The system provides both fast 

and slow auxiliary storage, and it also separates auxiliary storage for data 

structures and for routines. A list structure can be filed in an auxiliary 

storage by the programmer; but when he does this, the information is no 

longer available in major storage and cannot be accessed directly by the 

J processes. A filed list structure may be moved back into main storage. 

Arithmetic processes (J110—J129). All the input and output symbols in 

this category are the names of data terms. In the arithmetic operations, if 

both elements are integers, the result is integer; otherwise, the result is in 

floating point. 

Data prefix processes (J130—J139). Since the basic technique in proc- 

essing list structures is recursion, there must be a way of avoiding multiple 

processing of the same list (when this is not desired). These processes provide 

relevant facilities. 

Read and write processes (J140-J146). Only data list structures can be 
input or output by these processes.



400 sTRING AND LIST PROCESSING LANGUAGES 

Monitor system (= program tracing) (J147—J149). These processes pro- 

vide quite powerful tracing facilities. 

Print processes (J150—J162). The printing processes provided are for units 

of data and for a line of information. There are actually quite flexible facilities 

for controlling the format of these, as well as the form of arithmetic. 

There are a number of other processes available but they become 

heavily involved with actually loading the program or other very specialized 

areas. There are also partial word processes, however, which read individual 

lines, partial words, etc. 

VI.3.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

IPL has made major contributions to the technology of programming 

in general, as well as to programming languages. In both categories there 

is obviously the concept of a list, its implementation in a practical system, 

and an initial solution to a number of problems. The development of the 

pushdown and popup operations has contributed not only to general pro- 

gramming techniques but also to the language terminology. In some ways, 

the subroutine hierarchy implementation and usage in IPL is easier than 

in languages such as FORTRAN or ALGOL since the user pays less in 

setup and execution inefficiencies from subroutine calls; on the other hand, 

somewhat more cleanup is required in IPL. Attribute value lists have turned 

out to be significant data structures in their own right. As secondary benefits, 

the availability of this system has permitted the attack of problems in arti- 

ficial intelligence that could not be approached any other way. 

In a more general framework, IPL introduced a concept and provided 

a consistent means for dynamically expanding the data areas needed during 

the running of a program. 

VI.4. Lé 

L® (standing for Bell Telephone Laboratories Low-Level Linked List Lan- 

guage) was developed in 1965 by Kenneth C. Knowlton (Bell Telephone 

Laboratories). The original implementation was on the IBM 7094; since 

then, versions have been developed for at least the 7040, 360, MOBIDIC B, 

PDP 6, and SDS 940. Implementations on a number of other machines 

have been planned. The most complete description is by Knowlton [KO66]. 

L® is a borderline case in being considered a language within the scope 

of this book. It is really used to build a system (language) to solve problems. 

For that reason, relatively little detail will be given. L® is similar in format to 

an assembly program but in a very different way than IPL-V. It provides the



v4. ve 401 

SAMPLE PROGRAMS—L¢ 

  

Problem: Reverse the list pointed to by bug W, and connected by A-fields. 

Program: 

THEN (S,FC,X)(S,FC,Y)(Y,E,0) 

LOOP IF (W,N,O)THEN(X,P, W)(W,P, WA)(XA,P,X)(Y,P,X)LOOP 
THEN (W,P,Y)(R,FC, Y)(R,FC,X) 

Explanation: In first line, save on field-contents pushdown bugs X and Y 

so they can be used temporarily; set Y to 0. Second line: if W not zero (i.e., there 
is one more block on list) let bug X point to first block by (X,P,W), then W 
bypasses first block (W,P,WA), X’s block’s A field points to Y’s current list and 
Y points to X’s block; then try again. Third line: W finally points to Y’s reversed 
list and Y and X are restored from field-contents pushdown. 

‘ 

Problem: Test whether two list structures are equal, where “equal” means 
they have the same hierarchical structure and the same elementary symbols in 

corresponding positions. Each node is assumed to have three fields: R holds 
pointer to right subtree or zero, L holds pointer to left subtree or zero, S contains 

a symbol. List structures to be compared are pointed to by bugs X and Y. Exit is 
to the place just beyond the call if structures are equal; otherwise to the designated 
failure exit. 

Program: 

TEST IFALL (X,E,0)(Y,E,O)JDONE 

IFALL (X,E,0})(Y,N,O)FAIL 
IFALL (X,N,0)(Y,E,O)FAIL 
IF (XS,N,YS)FAIL 

THEN (S,FC,X)(S,FC,Y)(X,P,XL)(Y,P,YL)(FL,DO,TEST)(R,FC, Y)(R,FC,X) 
THEN (S,FC,X)}(S,FC,Y)(X,P,XR)(Y,P,YR)(FL,DO, TEST)(R,FC, Y)(R,FC,X)DONE 

FL THEN (R,FC,Y)(R,FC,X)FAIL 

Explanation: Line 1: if both lists are null, test succeeds. Lines 2 & 3: If one 
list is null but not the other, test fails. Line 4: if symbols of top blocks are different, 

test fails. Line 5: after saving pointers to top of lists, X and Y go to their respective 

left subtrees and perform the entire subroutine recursively, going to FL if subtrees 
are not equal, otherwise X and Y are restored. Line 6: likewise with right subtrees. 
Line FL: if subtrees were not equal, restore X and Y but use failure exit from this 

level. 
  

user with very primitive facilities for defining storage allocation, and struc- 

tures for lists and their pointers. The general structure of a program is a 

sequence of individual commands, each of which appears on a separate line 

and is highly symbolic. For example, 

IF(XA,E,0)THEN(R,FC,X)DONE 

provides a test and a resultant operation (described later). Actions and/or 

tests are performed from left to right. 

The basic data element is a memory block, which can be defined by the



402 sTRING AND LIST PROCESSING LANGUAGES 

user to contain 1, 2,4,8,..., 128 words. The programmer can define up 

to 36 fields in blocks; the fields can vary in size up to a complete machine 

word, and they can overlap each other. A field which is large enough may 

contain a pointer to another block. The names of the fields can be single 

digits or single letters. The contents of a field can be alphanumeric, non- 

negative integers, bit patterns (for use in logical operations), or a pointer 

to another block; in the latter case the field must be large enough to contain 

a machine address. L® also contains a set of 26 base fields, each 36 bits wide 

and named by a single letter; these are referred to as bugs. Access to all 

blocks and their data is achieved by pointers in the bugs. Remote fields are 

named by concatenating the bug name, names of fields holding successive 

pointers to blocks, and the name of the field in the block. Thus UVWXY 

means that base register U is pointing to a block with a field named V 

which points to a block with a field named W which points to a block with 

a field named X. X points to a block whose Y field contains the data being 

referenced. 

There are two major classes of instructions in L®: Tests and operations. 

The latter are further subdivided into: Setup storage and get and free blocks; 

copy blocks and fields; arithmetic operations; logical operations; shifts and 

bit counts; input/output and conversion; and pushdown and popup. The 

general format for all instructions is a sequence of arguments (most com- 

monly three) separated by commas and enclosed in parentheses, e.g., 

(a,A,cd) means add to the contents of the field a either the contents of an 
indicated field ¢ or a decimal number specified d. As another illustration, 

a field is defined by writing (cd;,Df,cd2,cd3), where f is the name of the 

field being defined, cd; is the word of the block in which the field falls (0, 1, 

..., 127), cdz is the leftmost bit (0, 1,..., 35), and cd3 the rightmost bit. 

For example, 

THEN(0,DA, 18,35)(1,DB,21,35)(1,DC,6,20)(0,DD,0, 17) 

defines a field named A in word 0 and occupies bits 18 to 35; a field B in 

word 1, occupying bits 21 through 35; etc. The summary of all instructions 

is shown in Figure VI-6. 

Individual instructions and tests can be combined into conditional 

statements whose general form is 

| label | if-statement test-statements THEN | operation-statements | | label | 

The limitation on the number of individual statements permitted is 

that they must all fit on one card. The if-statements permitted are IFNONE, 

IFANY, IFALL, IFNALL, which refer to the truth of none, any, all, or not all 

the indicated tests. If a label is given at the end, control is transferred there, 

otherwise to the next line. If the operations are missing, the label is required.



  

I. Mnemonic Notation Used for Describing Elementary Tests and Operations— 
with Permissible Ranges of Arguments for 7094 L® 

  

Field Designators 

¢ “contents”, i.e., designation of a field whose contents are used in a test or opera- 

tion: either a bug, A, B,...,Z, or a remote field, AO, Al, ..., ZZZZZZ. 

a “affected field”, i.e., designation of a field whose contents are affected by an 

operation: a bug A,B,...,Z, or remote field, AO, Al,..., ZZZZZZ. 

Names 

f name of a definable field:0,1,...,9,A,B,...,Z 

s aprogram symbol (i.e., name of a program location) 
Literals 

o an octal number specified directly: 0,1, ..., 777777777777 

d a decimal number specified directly: 

0, 1, ..., 34359738267(235 — 1). 

h a Hollerith literal: 0, 1, ..., ZZZZZZ. Permissible characters are the ten digits, 

26 letters and period. Other characters must be specified in terms of their octal 
equivalences. 

Alternatives 

cd “contents or decimal”—1.e., either ¢ or d as explained above. 

co “contents or octal”—1.e., either c or o as explained above. 

  

II. Resumé of Tests and Operations of L°—Lower-Case Mnemonics Are Explained 

  

  

in I. 

A. Tests 

Equality Inequality Greater than Less than 

(c, E, cd) (c, N, cd) (c, G, cd) (c, L, cd) 

(c, EO, 0) (c, NO, 0) (c, GO, o) (c, LO, 0) 
(c, EH, h) (c, NH, h) (c, GH, h) (c, LH, h) 

Pointers to One-bits of Zero-bits of 
same block (c, O, co) (c, Z, co) 

(cz, P, ¢2) (c, OD, d) (c, ZD, d) 

(c, OH, h) (c, ZH, h) 

B. Operations 

Setup Storage, Get and Free Blocks 

Setup storage Define field Get block Free block 
(s1, SS, d, s2) (ed}, Df, eda, cd3) (a, GT, cd) (a, FR, 0) 

size Aword (a, GT, ed, a2) (a, FR, c) 
first word first bit 
last word last bit 

Copy Blocks and Fields 

Copy field Duplicate block Interchange Point to 

(a, E, cd) (a, DP, c) field contents same block as 

(a, EO, 0) (a7, IC, a2) (a, P, c) 

(a, EH, h) (a, 4) = abbrev. 

for (a, P, aA) 

Figure VI-6. (cont. next page) 

403



404  sTRING AND LIST PROCESSING LANGUAGES 

Figure VI-6. (cont.) 

Add 
(a, A, ed) 

(a, AO, o) 

(a, AH, h) 

Logical or 

(a, O, co) 

(a, OD, d) 

(a, OH, h) 

Shift left 
(a, L, ed) 

(a, L, cd, co) 

(a, LD, ed, d) 

(a, LH, cd, h) 

Input 

(a, IN, cd) 

Print List 

(c, PL, f) 
(c, PL, f, cd) 

Save and 

restore field 

contents 

(S, FC, c) 

(R, FC, c) 

Arithmetic Operations 

Subtract Multiply Divide 
(a, S, ed) (a, M, ed) (a, V, ed) 

(a, SO, 0) (a, MO, 0) (a, VO, 0) 

(a, SH, h) (a, MH, h) (a, VH, h) 

Logical Operations 

Logical and Exclusive or Complement 

(a, N, co) (a, X, co) (a, C, co) 

(a, ND, d) (a, XD, d) (a, CD, d) 

(a, NH, h) (a, XH, h) (a, CH, h) 

Shifts and Bit Counts 

Shift right Locate bits Count bits 

(a, R, ed) (a, LO, c) (a, OS, c) 

(a, R, cd, co) (a, LZ, c) (a, ZS, c) 

(a, RD, ed, d) (a, RO, c) 

(a, RH, ed, h) (a, RZ, c) 

Input/Output and Conversion 

Print Convert Microfilm 

(cd, PR, co) (a, BZ, c) (cdxmin, XR, ¢dxmax) 

(cd, PRH, h) (a, ZB, c) . 

(a, BD, c) (cdymin, YR, ¢dymax) 

Punch (a, BO, c) (cdx,, TVH, cdyg, co, ed) 

(cd, PU, co) (a, DB, c) (cdxo, TvHH, cdyo, h, cd) 

(cd, PUH, h) (a, OB, c) (DO, ADVANC) 

Pushdown and Pop-Up Operations 

Save and Do subroutine 

restore field (DO, s) 

definition (s2, DO, s) 

(S, FD, f) (DO, STATE) 
(R, FD, f) (DO, DUMP) 

Go-To’s for 

exiting from 

subroutine 

DONE 

FAIL 
  

Figure VI-6. Summary of all L® instructions. 

Source: Knowlton [KO66], p. 619. By permission of Association for 
Computing Machinery, Inc. 

The word IF can be used for IFALL and NOT for IFNONE. There is also an 

unconditional THEN which is followed only by operations. Operations can 

be omitted, in which case the label is required. 

As an illustration, 

LOOP2 IFNONE (XD,E,Y)(XA,E,0) THEN (XD,E,1) (X,P,XA) LOOP2 

says that if none of the following is true



V1.5. Lisp 1.5 405 

that the contents of XD (i.e., the D field of the block that bug xX 

points to) Equals the contents of Y or that the contents of XA Equals 0 

then perform the following operations: 

set the contents of XD equal to 1, make X Point where current con- 

tents of XA point, then go to the instruction labeled LOOP2 (the 

same instruction in this case). 

Otherwise no operations are to be performed and control goes to the next 

line of coding. 

A subroutine can be invoked by using (DO,label) as an operation. 
The form (failexit,DO,label) specifies the place to which control should 
be transferred if the subroutine is exited by a special go-to FAIL. Subroutines 

can be recursive. 

L® permits redefinition of the position of fields in blocks at object time. 

Because L® provides the programmer with such detailed control over the 

arrangement of the size and arrangement of both lists and fields within them, 

it is very suitable for problems requiring maximum efficiency at object time. 

It may replace IPL-V in some applications. 

VI.5. LISP 1.5 

VI.5.1. Hisrory or LISP 1.5 

Work was started in 1959 by the Artificial Intelligence Group at M.I.T. 

under the direction of Professor John McCarthy to develop a programming 

system 

... designed to facilitate experiments with a proposed system called 
the Advice Taker, whereby a machine could be instructed to handle 
declarative as well as imperative sentences and could exhibit “common 
sense” in carrying out its instructions. ... The main requirement was 
a programming system for manipulating expressions representing for- 
malized declarative and imperative sentences so that the Advice Taker 

system could make deductions. 
In the course of its development the LISP system went through 

several stages of simplification and eventually came to be based on a 
scheme for representing the partial recursive functions of a class of sym- 

bolic expressions.® 

This description of motivation is taken from the first published paper 

on LISP (McCarthy [MC60a]). The first manual (McCarthy et al. [MC60}) 

8 McCarthy [MC60a], p. 184.



406  sTRING AND LIST PROCESSING LANGUAGES 

was published in March, 1960 with the following authors: J. McCarthy, 

R. Brayton, D. Edwards, P. Fox, L. Hodes, D. Luckham, K. Maling, D. 

Park, and S. Russell. 

The work was originally done for the 704, whose word layout played 

a monumental although indirect role in the naming of two of the fundamental 

concepts in the LISP language, namely the now famous car (contents of the 

address register) and cdr (contents of the decrement register). (These acro- 

nyms had actually been used earlier in FLPL (see Gelernter, Hansen, and 

Gerberich [GE60]), but they did not have the significant role there that they 

had in LISP.) When the IBM 709 became available, a new version was pre- 

pared for it. Then, as with all other languages, ways of making significant 

improvements were discovered, and this led to the development of LISP 1.5 

(see McCarthy et al. [MC62]). (The reason for this numbering scheme pre- 

sumably was the realization by the developers that they had not reached a 

sufficiently major change in the language to warrant calling it LISP 2. How- 

ever, as a result of this policy, later contemplated individual versions of the 

language became known as LISP 1.75, LISP 1.9, etc.) The development of 

LISP 2, which is discussed in Section VIII.6, is such a monumental change 

over the earlier versions that its placement in a completely different chapter is 

justified. As will be seen, many of the difficulties which existed with LISP 1.5 

stemmed from its unusual and rather difficult notation; for several years 

this problem was recognized and small attempts at correcting this situation 

were made, such as providing small routines on top of the normal LISP 

system to do more reasonable input/output or allowing algebraic expressions 

to be written in a more natural form. The major change in LISP 2 is that 

the source language is based on ALGOL 60, with some LISP concepts added. 

(For further details, see Section VIII.6.) 

LISP proved sufficiently popular among a small group of people so 

that it became implemented on a number of machines, although in most 

cases a subset of LISP 1.5 was implemented. For example, versions exist 

on at least the IBM 1620, the PDP-1, and the SDS 940. Several versions 

were made available on the 709/90/94, and one was put under M.I.T.’s 

CTSS (see Crisman [ZR65]); a version was also put under the SDC time- 

sharing system. LISP was released to SHARE. 

LISP is unusual, in the sense that it clearly deviates from every other 

type of programming language that has ever been developed. Even IPL-V 

(see Section VI. 3) bore a reasonable similarity to the concept of an assembly 

program whose main instructions were really those of a mythical machine 

to do list processing. The theoretical concepts and implications of LISP 

far transcend its practical usage. However, there has been considerable 

practical usage of LISP by a certain group of devotees, who have done 

interesting work using it for symbolic integration and other forms of alge- 

braic manipulation, theorem proving, solving geometry analogy problems,



V1.5. LIsP 1.5 407 

and contract bridge bidding, etc. (See the list of references at the end of the 

chapter.) 

VI.5.2. FUNCTIONAL CHARACTERISTICS OF LISP 1.5 

LISP is not a very general language, in the sense that it is ill-suited for 

anything except general symbol manipulation and list processing. Its hard- 

ware representation 1s succinct, formal, and highly unnatural. It is reasonably 

consistent but there are a number of particular cases which involve special 

rules. It is extremely difficult to read and write because of the existence of 

large numbers of parentheses and the problem of matching them; as a result, 

the use is extremely error prone. Depending on the mental set and receptivity 

of the audience, it is either easy or hard to learn. 

The application area is primarily problems which have the following 

characteristics, although some may be more significant than others: (1) 

They require list processing; (2) they require significant amounts of recur- 

sion in the operations they want to perform; and (3) they are dealing with 

some type of symbol manipulation. 

LISP is sufficiently unique in its concept and notation so that it does 

not really fit at all well into the classifications of programming languages 

given in Chapter I. About the only statement that can be made which is 

both true and relevant is that there are two forms of language, a hardware 

SAMPLE PROGRAMS—LISP 1.5 

  

Problem: Reverse a list 

Program: 

DEFINE (( 
(REVERSE (LAMBDA (X) (COND 

((NULL X) NIL) 
(T (APPEND (REVERSE (CDR X)) (LIST (CAR X)) )) ))) )) 

Problem: Test whether two list structures are equal, where “equal” means 
they have the same hierarchical structure and the same elementary symbols in 

corresponding positions. 

Program: 

DEFINE (( 
(EQUAL (LAMBDA (X Y) (COND 

((ATOM X) (COND 
((ATOM Y) (EQ X Y)) (T NIL))) 

((ATOM Y) NIL) 
((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y))) 

(T NIL) ))) )) 
 



408 sTRING AND LIST PROCESSING LANGUAGES 

language and another form which Is really a reference language. Publications 

tend to be written in the hardware language, although this is certainly not 

necessary. The main elements of the hardware language are referred to as 

S-expressions, while those of the reference language are called M-expressions, 

standing for symbolic and meta expressions, respectively. 

In my opinion, LISP is definitely not intended for use by either a novice 

programmer or a nonprogrammer; it requires a certain amount of sophis- 

ticated background to appreciate and use the language effectively. 

LISP was definitely designed for use in a batch mode, although on-line 

versions have been developed for M.I.T.’s CTSS and SDC’s Q32 time-sharing 
system, as well as for some other small systems. 

The language is actually machine independent, even though its original 

implementation and conception were based on a machine order code which 

had two addresses in a single word. LISP is implementation dependent to 

a certain extent, although this can be minimized by using the various versions 

of LISP which have been written in their own language. The problem of 

dialects exists for LISP because virtually every group using it has made 

some modifications to the language and the system. The problem of exten- 

sions really disappears because LISP has self-extension capabilities built 

in, which will be seen later. The method for the language definition has not 

caused severe compatibility problems. Programs run on one system can 

usually be converted fairly easily to run on another. 

There has certainly been no consideration of USASI standardization 

for LISP. There has not been any other kind of standardization control 

either, because almost every group that uses LISP has made some modifica- 

tions to the language and to the system. 

The designers of the language were essentially those people listed in the 

historical section. The objectives were those cited there also. The language 

designers and implementers have tended to be the same throughout the 

history of LISP, and there is no official maintenance of the language as such. 

The language was originally defined simply through English language 

descriptions. However, in the LISP 1.5 manual, McCarthy et al. [MC62] 

(pp. 8 and 9) formally define the LISP syntax. However, that is such a small 

part of the system and its concepts that the authors who state “all parts of 

the LISP language have been explained. That which follows is a complete 

syntactic definition of the LISP language, together with semantic com- 

ments.” do themselves quite an injustice with that comment. The LISP 

concepts are far more complex and powerful than those included on less 

than one page of material given in Backus Normal Form. For the interested 

reader, the syntactic definitions of the data and publication languages 

(which the authors refer to as the symbolic and metalanguages) are given 
in Figure VI-7. However, a more significant factor in the language definition 

is that the heart of the system, namely the interpreter (APPLY and EVAL),



VI.5. LISP 1.5 409 

  

Data Language 

<LETTER> ::= A, B, CG, ... 

<number> :: = 0, 1, 2, ... 

<atomic-symbol> :: = <LETTER> < atom part> 

<atom part> :: = <empty>|<LETTER> <atom part>|<number> <atom part> 

<S-expression> :: = <atomic symbol> |( <S-expression> . <S-expression> ) | 

( <S-expression> ... <S-expression> ) 

Meta-Language 

<letter> ::= a, b, ¢, ... 

<identifier> :: = <letter> <id part> 

<id part> :: = <empty>|<letter> <id part>|<number> <id part> 

The names of functions and variables are formed in the same manner as atomic 

symbols but with lower-case letters. 

<form> :: = <constant> | 
<variable> | 

<function> [ <argument> ; ... ; <argument> ]| 
[ <form> — <form> ;...; <form> —> <form> ] 

<constant> :: = <S-expression> 

<variable> :: = <identifier> 

<argument> :: = <form> 

<function> :: = <identifier> | 

X [ <var list> ; <form> ]| 
label [ <identifier> ; <function> ] 

<voar list> :: = [ <variable> ;...; <variable> ] 

  

Figure VI-7. Syntactic definition of LISP S- and M-expressions. 

Source: McCarthy et al. [MC62], pp. 8-9. 

can be expressed in LISP; a good understanding of what the language is 

doing can be obtained by studying the short LISP program for these func- 

tions which appears in the manual. 

The types of documentation have occurred in several forms. First, there 

have been two manuals put out by the design group, namely the LISP | and 

the LISP 1.5 manuals. Secondly, a series of informal and unpublished 

documents were created by members of the Artificial Intelligence Project 

at M.I.T. and then later by a similar group at Stanford University. Some of 

these memos provide significant information relative to the meaning, use, 

and implementation of LISP. Thirdly, there have been various tutorial 

papers whose ostensible purpose was to describe list processing in general 

but whose authors found it convenient to discuss the concepts of LISP 

primarily, e.g., Wilkes [WI64a] and Woodward [WX66]. There have also 

been informal technical papers distributed among the university groups 

using LISP. A few users’ meetings were held, and material was distributed



410 = sTRING AND LIST PROCESSING LANGUAGES 

there also. A primer by Weissman [WE67] exists. The last and single most 

useful document about LISP is the one edited by Berkeley and Bobrow 

[BY 66]. 

The evaluation of LISP as a language is difficult to separate from an 

evaluation of its implementations. In particular, the early implementations 

were all interpretive, and when this proved to be too slow, then compilers 

were written. People now use both and are tending more toward compilers. 

(However, several significant programs were written using the interpreter, 

e.g., Slagle’s integration program [SL61] and Evans’ geometry analogy 

program [EV64].) The great advantage of LISP is its ability to express in 

a meaningful way solutions to problems which people cannot handle any 

other way and to express them in a form which is natural to that class of 

problems. The greatest disadvantage to LISP, and probably the one that 

prevented its widespread use, is the notation that is used. This has been and 

is being corrected in LISP 2, which would seem to have a much more pro- 

mising future for widespread use than any of the LISP i(i < 2). 

VI.5.3. TECHNICAL CHARACTERISTICS OF LISP 1.5 

The character set for the hardware representation of LISP consists 

of the 26 letters, the 10 digits, and the following characters: 

+ —- x* /( )=,. $ blank 

The arithmetic operators are not used in their normal way for arithmetic 

operations. 

Identifiers consist of a letter followed by letters and/or digits; some 

implementations place a limit on the number of characters allowed. Identi- 

fiers are called atomic symbols. They cannot be subscripted but there are 

other ways of dealing with arrays. No blanks are permitted within an atom. 

The concepts of LISP are so different from other languages that it is 

better to try to present the fundamental ideas rather than to try to follow 

the general outline of Chapter III. 

The whole language is built on the concept of operators or functions, 

and operands. In most cases the program is a collection of function defini- 

tions, which relate to each other as a set of subroutines do. A program 

is executed by invoking one function (which in turn invokes the others). 

While this is an oversimplification, it serves to convey the flavor of the 

language. The motivation for this concept, which is the lambda calculus, 

and its implications for computability theory, are beyond the scope of this 

book. 

The fundamental data element in LISP is the atom, which is either an 

atomic symbol (i.e., identifier) or a number. All data and programs in LISP



VIS. LispP1.5 411 

are written as S-expressions, which are binary tree structures built up from 

atoms. An S-expression can be empty, in which case it is written as 

>) 

or more commonly, as NIL. For example, 

A 
(A) 
(A B C) 
(A (B C) D) 

are S-expressions. 

Lists may have sublists; e.g., (A B C) is a list with three elements, 

whereas (A (B C)) is a list of two elements, A and (B C). The second element 
itself consists of two elements, namely B and C. Each expression in list 

notation has an internal computer representation. 

The language for expressing operations on the S-expressions is called 

the metalanguage, and the legitimate strings which can be written are called 

M-expressions. There are five elementary functions which can be applied 

to S-expressions: car, cdr, cons, eq, and atom. In the metalanguage (.e., 

in M-expressions), the arguments of these functions are enclosed in square 

brackets and separated by semicolons, and the functions are written in small 

letters. The car and cdr are functions to define, respectively, the first element 

of a list (i.e., the head), and the rest of the list after the first element (i.e., 

the tail). Thus 

car[(A B)] =A 

car[((A B) C)] = (A B) 
cdr[((A B) C)] = (C) 
cdr[(A B C)] = (B C) 

The action of cor and cdr on atomic elements is undefined. Because 

it is often useful to compose the operation of these functions, e.g., 

car[car[cdr(S-expr)]], abbreviations are defined. The single letter a or d can 

be used between the c and the r for each functional operation of this type 

to be performed. The application of the operators is from right to left. For 

example, 

cadr[(A B C)] = car[cdr[(A B C)]] =B 

caddr[A B C)]} =C 

cadadr[(A (B C) D)] = C 

The third elementary function is cons, which is a join operation and is 

used to add an element to a list. It has two arguments. For example,



412 sTRING AND LIST PROCESSING LANGUAGES 

cons[(A;NIL)] = (A) 

cons[A;(B C)] = (A B C) 
cons[cons[A;NIL];(B)] = ((A)B) 

Note that cons[A;B] cannot be expressed as a list and is expressed 

using dot notation as (A.B). The use of the dot is a fundamental means of 
forming S-expressions. The S-expressions are used to represent data and 

are defined as follows: An S-expression is either an atomic symbol, or 

if e] and e2 are S-expressions, then (el . e2) is an S-expression. (See Figure 

VI-7 for syntactic definition.) | 

LISP defines a predicate as a function whose value is true or false, 

denoted by T and NIL (or F), respectively. The predicate eq is a test for 

equality on atomic symbols and is undefined for equal nonatomic arguments. 

Thus 

eq[A;A] = T 

eq[A;B] = F 

eq[A;(A)] = F 
eq[(A);(B)] = F 
eq[(A);(A)] = undefined 

The predicate atom is true if the argument is atomic but false otherwise. Thus 

atom[ABCDEFGHIJKL] = T 

atom[NIL] = T 

atom[(A B C)] = NIL 
atom[car(A B C)] =T 
atom[cdr(A B C)] = NIL 

One of the useful concepts and notational devices introduced in LISP 

is the conditional expression, which provides branches in function definitions. 

A conditional expression is written as 

[p17 e1; P2723 .--7 Pnenl 

where p; has the value T or NIL, and e; is any expression. The value of the 

entire conditional expression is the value of the e; for the first true p;. (This is 

of course equivalent to the more normal way of writing a conditional state- 

ment, namely IF p; THEN e; ELSE IF po THEN e2 ELSE ... IF p, THEN en.) 

If none of the p; are true, the value of the expression is undefined. The T or 

NIL can be used to designate truth or falsity. For example, if we have 

eq[car[y];A] > cons[B;cdr[y]];T > y] 

then if y = (A B) the value is (B B). If y is of the form (A anything), the value



VLS. Lisp 1.5 413 

is (B anything); whereas if y is of the form (not A, anything), the value is the 

value of y. | 

An important application of conditional expressions is in defining func- 

tions recursively. Thus, to define the function ff which selects the first atomic 

symbol of any given expression, we can write 

ff [x]=[atom[x]—> x;T — ff [car [x]]] 

which is interpreted by noting first that if x is atomic, it is the answer; if it is 

not, then ff is to be applied to the first element in x. This process must 

terminate and will eventually produce the desired answer, e.g., 

ff[((A B) C)] 

yields A as the result. However, this is really quite unrigorous, because the 

= has no meaning and the ff on the right side is not defined as being the 

same as the one on the left. This problem is dealt with later. 

One of the fundamental conceptual inputs to LISP is Church’s lambda 

calculus (Church [ZP41]). The need for this arises when we try to determine 

the meaning of something like 

y? + 3x (3, 4) 

It is not clear which number is associated with which variable. In Church’s 

lambda notation, the expression y? + 3x is called a form, and the lambda(A) 

is introduced to provide binding (i.e., appropriate pairing) of the variables. 

Thus, if one writes 

A(x, y); y? + 3x)(3, 4) 

the result will be 25. In a case like this, the function does not have a name 

and does not need one. However, if the function is to be recursive, there 

must be some way of providing its name. Recursive functions are achieved 

by the LISP functions define and label; the former assigns a name to a defi- 

nition and the latter permits the name to be written in the definition. 

We have now described two types of expressions: S and M, where the 

former have a specific internal computer representation. Since LISP functions 

have S-expressions as arguments and also since we wish to be able to repre- 

sent M-expressions in the computer in a similar way, there is a method of 

converting M-expressions to S-expressions. Stated another way, S-notation 

is for data and M-notation is for programs and we wish to be able to repre- 

sent programs as data. The rules can be summarized briefly as follows: 

Function names are changed to upper case, the word LAMBDA represents dX, 

COND is used with the p;, e; pairs, and constants (i.e., literals) are preceded



414  sTRING AND LIST PROCESSING LANGUAGES 

by the word QUOTE (except for T and NIL, which need not be QUOTEd). 

Thus, for example, 

[atom[x] — x;T > ff [car[x]]] 

becomes 

(COND ((ATOM X) X) ((T) (FF (CAR X)))) 

The execution of a LISP program is the evaluation of the function(s) 

given. A function of a list has as its value another list or an atom, i.e., the 

evaluation of an S-expression gives an S-expression. In order to know when 

to cause the evaluation to take place, the LISP operating system contains 

an operator known as evalquote. It is given a list of doublets, each con- 

sisting of a function and a list of arguments for that function. Since one of 

these functions can be define, programs may be brought in. 

Looping can be performed through recursion and also through the 

program feature described later. 

Numbers are represented as atoms and can be fixed or floating point. 

Hence 

(12A5) 
(ALPHA 327) 

are legal S-expressions. There are a set of arithmetic functions, e.g., plus, 

minus, difference, times, add], sub], max, min, recip, quotient, remainder, 

divide, and expt. Unfortunately, the format for these is “Polish” (i.e., paren- 

thesis free) notation. Thus, to express the computation AxB+C, it is neces- 

sary to write 

(PLUS (TIMES A B) C) 

Although more than two operands for multiplication and addition are 

permitted, the inconvenience of this notation is obvious. The arithmetic 

functions can be used recursively, just as other functions can, as shown 

in the following definition of factorial: 

DEFINE (( 
(FACTORIAL (LAMBDA (N) (COND ((ZEROP) N 1) 
(T (TIMES N (FACTORIAL (SUB1 N) ))) ))) 
)) 

which is the machine input form for 

n!=A[[n][n=0> 1;,T> ne [n—1] J]



V5. LISP 1.5 415 

There are arithmetic predicates (which are truth-valued functions), 

€.g., lessp, greaterp, zerop, onep, minusp, numberp, fixp, floatp and addi- 

tional functions, e.g., logor, logand, logxor, and leftshift, with the fairly 

obvious meanings. 

LISP has a class of functions called pseudo-functions. These are executed 

for their effect on the system in memory, as well as for the value. The most 

important of these are define, which acts similarly to the idea of naming 

a function or subroutine in other programming languages; input/output; 

and array, which permits the user to allocate blocks of storage for data 

(1.e., S-expressions). 

A number of other functions are available in the system, including 

substitute (an S-expression for occurrences of an atomic symbol) and various 

more general list operations. Other predicates are also available. 

Machine language subroutines can be used. 

Although one structure of a LISP program is the evaluation of a set of 

nested functions, there is also a program feature available. This is of the 

very general form 

(PROG, list of variables, sequence of statements and atomic symbols) 

Within this feature, there is an assignment statement, designated by SET 

or SETQ, and a control transfer GO which can be used only on the top level 

of PROG or immediately inside a COND at the top level. If none of the 

propositions in the conditional expression are true, then there is an auto- 

matic drop through to the next statement in sequence. A RETURN is written 

to designate the end of the program. The PROG function can be used recur- 

sively, so that a program can contain a program. 

By using the DEFINE, the user is able to create new functions which have 

exactly the same system characteristics as those provided automatically. 

The method of handling storage allocation in LISP is primarily done 

by implementation, but the very absence of a language facility is significant. 

One of the biggest problems of using a list processing language is the con- 

stant need to return unused memory locations to a free list which the system 

can then use again for new data. Unlike IPL and L®, where the user must 

perform this task himself, LISP provides a garbage collection facility. This 

means that at periodic intervals the system automatically examines the 

memory to determine which locations are not currently in use and returns 

these to the free list. (It must be pointed out that this technique is a con- 

troversial one and has profound effect on the efficiency of the running 

system; however, from a pure language viewpoint, the most significant factor 

is that the user is freed from the responsibility of doing this.) 

Although all the early versions were interpretive, there were some 

compilers built, and the trend seems to be shifting more that way. The most



416  sTRING AND LIST PROCESSING LANGUAGES 

successful compilers have been written in LISP and have compiled themselves 

using an interpreter. 

The greatest advantage to LISP is its recursive power and list processing 

capability for those who are able to appreciate these and use them properly. 

It is also easy to write interpreters for string and pattern-matching type 
facilities, e.g., CONVERT (see Guzman [ZH66]). The greatest disadvantages 

are the inconvenience of the notation in general (most particularly the 

arithmetic) and the enormous difficulty in keeping parentheses balanced. 

More recent implementations have added features which help to minimize 

this problem. 

VI.5.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

The most significant contribution made by LISP seems to be its elegance 

and potential introduction to, and use in, developing a general theory of 

computability. The importance of this is very great, but beyond the scope 

of this book. LISP is unique among programming languages in every possible 

way, but its use has been limited to a relatively few diligent people who can 

cope with the notational inconveniences. A good description of many of the 

nuances of LISP is given in the review of LISP 2 by Weizenbaum [WZ67]. 

On a more practical level, the particular formalism for the conditional 

expression was new. The emphasis on functional notation and the provision 

for expressing recursive processes easily provided new ideas, although they 

have not actually been used elsewhere. LISP appears to have been the first 

language to allow Polish + and x operators with more than two operands— 

sometimes called Cambridge Polish. Although LISP can manipulate list 

structures easily, its essence is that it is a functional language. 

LISP is the only higher level language (in this book) in which the internal 

representation of the program is defined to be exactly the same as that of 

the data; this makes it possible for a program X to create and execute a 
program Y or to operate upon itself. 

One of LISP’s most lasting contributions is a nonlanguage feature— 
namely the term and technique garbage collection, which refers to the 

system’s method of automatically dealing with storage. 

VI.6. COMIT 

VI.6.1. History of COMIT 

Work on COMIT for the IBM 704 started in 1957, and a brief and 

general description of the language appeared as early as December, 1957 

(Yngve [YN57]). The COMIT system was designed and programmed at



v1.6. comir 417 

M.I.T. as a joint project of the Mechanical Translation Group of the 

Research Laboratory of Electronics and the Computation Center. The people 

who worked on the development of COMIT include J. Bennett, S. Best, 

C. Bosche, W. Cooper, M. Greber, K. Hansen, F. Helwig, M. Kannel, 

K. Knowlton, G. Matthews, A. Siegel, M. Weinstein, and Dr. Victor 

Yngve, under the direction of the latter. The system was designed to provide 

the professional linguist with a programming system in which he could 

easily write the programs that he needed for his research. It will be shown 

that this motivation caused a certain number of terms and concepts to be 

brought over from linguistics into COMIT itself. 

A shift was made to the 709/90 before the check-out of the 704 

version was complete. The system was distributed through SHARE in 

September, 1961 and later made available on the IBM 7040/44. Complete 

control of the language remained with the design group, and so no other 

complete or official implementations exist. After some period of usage, the 

designers naturally found things that could be improved, and internal 

memoranda relating to COMIT II existed by late 1963. A partial version 

of COMIT II was operational under M.I.T.’s Compatible Time Sharing 

System (see Crisman [ZR65]) during the summer of 1965. Work continued 

on the development of COMIT II, with the base of operations shifting from 

M.I.T. to the University of Chicago when Yngve went there in 1965. Early 

in 1968, the COMIT II system on the 7090/94 was only lacking in some 

documentation before it could be released to SHARE. A version was being 

prepared for the IBM System/360. 

Since COMIT II has only a few (although significant) improvements 

over the original system, the description will not distinguish between them 

except where the addition is a major one. 

VI1.6.2. FUNCTIONAL CHARACTERISTICS OF COMIT 

Since COMIT is a language whose format is unlike most others, it is 

desirable to state the fundamental idea and show an example of a COMIT 

rule before trying to make any comments about the properties of the lan- 

guage. COMIT is a string processing language which introduced the concept 

of a rewrite rule to transform the string in a manner determined by specifying 

a pattern. The following is an illustration of a COMIT rule: 

FIND BOY + $+,+ $ = 2 + 3 + GIRL // *WSMI 2, NEXT 

This means that the label FIND is assigned to a statement which examines 

a string to see if it consists of the word BOY followed by any number of 

words, then followed by a comma followed by any number of words; if so, 

the word BOY is removed and the word GIRL is placed after the comma



418 sTRING AND LIST PROCESSING LANGUAGES 

and the rest of the string is deleted; the material now preceding the comma, 

and the comma, are written out on tape and control is transferred to the 

statement labeled NEXT. At first glance this language appears highly formal 

and difficult to read and write. In actual practice, it is fairly simple in nota- 

tion, compact, and both succinct and quite natural within its class of applica- 

tions. Key design objectives were naturalness, ease of learning, and ease 

of use, all within the framework of doing language data processing, and 

these were definitely achieved. 

SAMPLE PROGRAM—COMIT II 

  

COMIT Il EDITOR 

(THIS PROGRAM READS IN TEXT AND PRINTS N CHARACTERS PER LINE. EXTRA) 
(BLANKS ARE INSERTED BETWEEN WORDS TO FILL OUT LINES.) 

(READ IN N) 
* $= //*RCKI * 

* $t+x. = 1 //*K READ 
RI $l +$+x. = 14+2+—-+2+— //*Q1 4 5 (COPY ON SHELF 1) * 
READ $= 1+$0 //[*RCK2 RI 
* $1 = N/*xCSNI + —x. —PRINT—THE—FOLLOWING—STRING— + 1 

+ — —CHARACTERS—PER—LINE.*.—x. //*WAM2 3 4 x 

(PRINT INPUT TEXT) 

PRINT $1+$80 = 1+2+. //*WAM2 3 PRINT 
* $14+$ = 14+2+%.—x.—x. [/*WAM2 3,xA1 2 * 

COPYN N = 1+1 //*S2 1 (SAVE N ON SHELF 2) * 
TEST N/.GO+$1 = 1/.D1+2 //*Q3 2 (CHECK FOR N CHAR.) TEST 
* N/.GO = [[*A3 1 LASTLINE 
x $0+ N+—+$ = 4 //*S1 1,*A3 1 (CHAR N+1 BLANK) WRITE 
* N+$= /[[*S1 2,*A3 1 * 
* $0 = K/.0 * 
FINDK K+$+$——+$0 = 1/.11+2+3 //*S1 3 FINDK 
* K+$+—4+$0 = 1/.114+2 INSERT+ WRITE 

* ERR 

WRITE $= —+1+x. //*WAM1 2 3,*A2 1,xAl 2 COPYN 

(SUBROUTINE TO INTERSPERSE K BLANKS IN A LINE) 

INSERT $0+K/.0 = 0 (GO IF K=0) + 
* - = (AT LEAST 1 BLANK) LOOP 
* $1 = 0 (NO BLANK) + 

LOOP $1+$+— = 14+24+34+— //*Q4234 TESTB 

* $ = $0+1 [[*A4 1 LOOP 
TESTB $0+K+— = //*Q4 3 (REMOVE ALL LEADING BLANKS) TESTB 

* $0+K/.GO = 2/.D1 LOOP 
* K+$ = [[*A4 1 + 

LASTLINE $ = —+1+x. //*WAMI1 2 3 END 
ERR $ = —k.—*kk*k—EDITOR—CANNOT—PRINT—LINE—BECAUSE—N—IS— 

x. TOO—SMALL.— [/*WAM1 
END * 

END 
 



v1.6. comir 419 

While COMIT was originally designed as a tool for use by linguists 

in their research, it has actually received usage outside this area. It has been 

used effectively for experimental or small problems in symbol manipulation, 

information retrieval, and other areas which will be discussed later. It is 

a procedure-oriented, problem-oriented, problem-solving language. How- 

ever, relative to most other programming languages, its fundamental execu- 

table unit—namely the ru/e—is fairly nonprocedural. It is simultaneously 

the reference, publication, and hardware language. The user was primarily 

intended to be a nonprogrammer and, in particular, a linguist. 

The basic language design is for use in a batch environment. However, 

the version of COMIT II released to SHARE was put under M.I.T.’s 

Compatible Time Sharing System. Nevertheless, COMIT is no more of 

an on-line language than any of the other systems which were implemented 

under CTSS. 

From a completely external view, COMIT is quite machine independent, 

although its usage is highly implementation dependent. Since the system is 

partly interpretive, it is more appropriate to use the term implementation 

dependent than compiler dependent. There are no dialects of COMIT because 

control was kept within the hands of the development group. Similarly, 

there are no significant subsets and extensions, except in the sense that 
COMIT II is an extension of COMIT I. Any programs which are legal in 

the latter are legal in the former. Both systems have been implemented on 

the 7090/94 and the 7040/44, and programs have been successfully inter- 

changed. Aside from this, there has been no real attempt at conversion 

because the development group has not put this on any other machine. 

Detailed flowcharts for COMIT were made available to some groups 

contemplating implementation on another computer so that new implemen- 

tations could maintain source language compatibility. As far as known, 

however, no compatible implementation was made except the COMIT I 

7040/44 version, which was done by revising the 709/90/94 code. Several 

partial and noncompatible versions were developed on other machines, 

e.g., LECOM on the GE 225 (Hilton and Hillman [HT66]). A compatible 

implementation for the IBM System/360 is reported to be underway at 

Washington State University. 

Source language compatibility between different 709/90/94/40/44 

installations was maintained at a high level by only distributing COMIT as 

an assembled binary program. Symbolic code and flowcharts were not 

made available to local systems programmers. These measures succeeded 

relatively well in maintaining compatibility standards but retarded the 

addition of COMIT to the various operating systems that were in use and 

undoubtedly alienated some systems programmers. For COMIT II the 

matter has been solved by providing a separate interface program that can be 

changed to suit the local machine configuration and operating system.



420 = sTRING AND LIST PROCESSING LANGUAGES 

The compiler-interpreter is just a subroutine for this interface. Complete 

interface documentation and assembly language code is being provided 

for COMIT II. 

There has been no consideration of official USASI standardization 

of COMIT; this would really be either trivial and/or unnecessary because 

of the control kept by the development group. 

The people who designed the language and first system were listed 

under the description of the history. The primary objective was to provide 

a tool for research linguists. The language designers implemented and 

maintained the language; this does not mean that there has not been a 

turnover in personnel, but Yngve has remained as the supervisor throughout 

the effort. 

The language definition itself is written in English, with no attempt 

at rigorous formalized notation, and there is considerable ambiguity in 

some places. It is, however, in the documentation available to the user that 

COMIT really shines. (A general discussion is given in Yngve [YN63b].) 

The two main sources originally were the Introduction [MT6la] and Reference 

Manual [MT61]. These were originally issued in 1961 and 1960, respectively, 

with a few minor updates since then. The reason that this type of documen- 

tation is significant is that the introductory manual is really quite informa- 

tive; it gives people an understanding of the basic concepts of the language; 

the reference manual is valuable for those who understand the language 

but need a detailed description of the operations. It does happen however 

that a few concepts which are covered in the introductory manual are either 

not in the reference manual or are actually given in somewhat less detail. 

There is also an operator’s manual containing just the information needed 

oy the person at the computer console. The introductory manual gives 

numerous problems, with answers in the back of the book, and other prob- 

lems for which a grader program is available. The manuals have been success- 

fully used in a number of courses. Although I do not agree, Yngve states 

“We consider the very complete diagnostics provided by COMIT as actually 

part of the documentation”.® It is certainly true that the diagnostics provided 

by the system when a program is actually run are good; however, I cannot 

agree with the conclusion that the diagnostics are really part of the documen- 

tation, even though the notation of the diagnostic comments is consistent 

with the notation used in the manuals. (As a counterstatement to my dis- 

agreement, Yngve indicated” that the diagnostics assist the novice who might 

otherwise jump to the wrong conclusion from an incomplete description 

in the introductory manual which avoids bogging him down with complete 

explanations.) Yngve also states “The reference manual is quite complete 

and explicit on syntax, but it is not complete enough on semantics to be 

9 Yngve [YN63b], p. 84. 
10 Private communication, June, 1967.



v1.6. coMIT 421 

used as a basis for implementing the language on other machines. For such 

purposes the detailed flowcharts will also have to be studied.”!! 

In this instance, the language and the method of translating and execut- 

ing it are so intricately linked together that a separate evaluation is not 

reasonable. 

In my opinion, the primary errors of omission are the lack of reasonable 

arithmetic facilities and the inability to conveniently and naturally assign 

names to strings. Certain other features, such as providing indirect naming 

for variables and the ability to access substrings to any reasonable depth, 

are also wanting; they have been provided in SNOBOL, which is discussed 

in Section VI.7. 

VI.6.3. TECHNICAL CHARACTERISTICS OF COMIT 

The character set in COMIT consists of the 26 capital letters, the 10 

digits, and the following characters: 

x f $+ - = ()., blank 

In COMIT II, a special feature allows the use of the apostrophe, which 

replaces the hyphen on some key punches. It is essential to note at this early 

stage in the description that virtually none of these characters has the usual 

arithmetic meaning. 

Identifiers can be up to 12 characters in length and can consist of letters 

and numbers and periods or hyphens, although the latter two cannot be at 

the beginning or end. Up to 10 periods and/or hyphens can be used. 

The operations of addition, subtraction, multiplication, and division 

of integers are available, but they are denoted by symbols other than the 

normal arithmetic ones (even though the latter are in the character set). 

It was deemed more important by the designers to use the arithmetic symbols 

for purposes more central to the basically nonnumeric character of the 

language. In particular, since the + sign was normally used by linguists to 

denote concatenation, it was not used for addition. There are also comparison 

operators for integers, namely greater than, less than, and equals. 

There are no commands in the usual sense of the word. COMIT is 

basically a language for handling strings and patterns. Everything to be done 

is embodied within a rule which depends primarily upon notation and 

position within the rule for specifying the action to be taken. (in this sense, 

COMIT is slightly more nonprocedural than most of the numerically oriented 

programming languages.) There are no data names as such because COMIT 

is designed to deal only with strings of text; they are in either a fixed storage 

11 Yngve [YN63b], p. 84.



422 STRING AND LIST PROCESSING LANGUAGES 

area called the workspace or they can be stored in some temporary storage 

areas called shelves. Since the basic input to a COMIT program is a string 

of text and operations are performed on the string in the workspace, there is 

less need to provide data names. (However, such a facility does turn out to 

be very useful.) COMIT uses the terms numerical and logical subscripts, 

but these bear little relation to subscripts as normally used; their meaning 

will be described later. Although the COMIT subscripts can be used to 

denote arrays, this is seldom done. There is no hierarchical data structure 

and hence no qualification. There are statement labels and a certain number 

of key words; but since there are no variable names, there is no conflict. In 

order to represent as literals either the 10 digits or the 8 special characters, 

+ — = x* $ / ( ), the user must precede them by an asterisk. 
The reason for this is to allow the data strings read in or put out to be 

completely arbitrary and, simultaneously, to permit the specification of 

unambiguous rules and patterns. Spaces are critical in certain places. 

Punctuation characters are not used in the usual way, although they are 

certainly sprinkled throughout the language. There are no noise words. 

The COMIT program is written with some fixed requirements, and the 

notation 1s certainly highly symbolic. Normally COMIT rules are punched 

one to a card. Each rule must always start at the beginning of the card with 

a nonblank character in column 1. A rule can extend onto more than one 

card if necessary; in such a case there must be a hyphen in the last nonblank 

character before column 73 on the card. 

A COMIT rule has five sections and can be represented schematically 

as follows: 

name left-half = right-half |[/ routing go-to 

The fundamental purpose of the /eft-half part of the rule 1s to specify a pattern 

which is to be searched for in the data in the workspace. If this pattern is 

found, then something is shown in the right-half part of the rule to indicate 

what is to be done with it, the right-half is executed, and control then depends 

on the contents of the go-to section. This “rewriting” of a string is the central 

concept in COMIT. If the pattern is not found, then control is automatically 

transferred to the next rule in sequence. 

The name section, which is really a statement label, begins in column 

] and must be followed by one or more spaces. (An asterisk can be used 

instead of a name.) The go-to is defined as the last string of nonblank char- 

acters on the card and Is preceded by one or more blanks. The other sections 

are optional except that some combinations are required together. The 

left-half is usually terminated by an equals sign. The routing section 1s 

always preceded by the two slashes. 

There are no declarations in COMIT, nor is there any logical need for 

them. The smallest executable unit is the rule, whose format has just been



vI.6. comit 423 

shown above. There are two kinds of rules: Grammar rules, which may 

involve program branches under the control of information in the dis- 

patcher (described later), and list rules, which may be used for dictionary 

lookup operations. Both kinds of rules can include a variety of instructions 

for operating on the data and affecting the flow of control and both may 

have a number of subrules. 

‘Loops consisting of any number of rules can be written, and there are 

several ways of exiting from them, including presence or absence of specific 

data in the workspace, comparison tests on integers, and choice of subrule. 

Closed subroutines can be written and used in COMIT. There are no 

functions. Comments enclosed in parentheses may be inserted in the rule 

format wherever spaces are allowed. 

The program consists of a sequence of rules preceded by a title card and 

followed by an end card. In COMIT II, there may be one or more COMSET 

cards after the title card. These have various functions such as setting the 

limits on the length of the run, changing margin settings for printed output, 

and establishing options where the standard values may be inappropriate. 

From a language point of view, the only interaction with the operating 

system and the environment is through the COMSET cards. 

The rules are delimited by the format described earlier. They are 

recursive only in the sense that the same rule can be repeated many times , 

before the pattern in the /eft-half fails to be found and control proceeds 

to the next rule. The user can easily program recursive subroutines because 

there is a built-in pushdown list for the returns and the workspace and 

shelves (discussed later) can be used for data pushdown lists. The only way 

of passing parameters to a subroutine is by leaving them in the workspace 

or on specified shelves. 

There is a provision for binary-coded subroutines to be used with 

COMIT II programs. (This is one of the significant additions to COMIT I.) 

There are no arithmetic variables directly permitted in COMIT, 

although a very awkward equivalent is available through the use of sub- 

scripts; only integers are allowed. The only type of variable allowed is a 

string of characters. The characters are themselves organized into groups 

called constituents. Constituents consist of either individual characters or 

groups of characters and may have subscripts. For example, in COMIT 

notation, where the boundaries between constituents are represented by 
plus signs, one type of input data might be represented in the following way :'” 

THH+I1+S+—-+1+S4+—-—-+D+A4+T+A4.+4 
(Ex. 1) 

where the hyphens represent spaces. 

12 This example, and most of the others, are taken from Yngve [Y N66] or from [MT61] 

and [(MT6la].



424 STRING AND LIST PROCESSING LANGUAGES 

If the data were in the form of one constituent per word, it could be 

written as 

THIS + IS + DATA +. (Ex. 2) 

or with spaces left in, 

THIS + — + 1S + — + DATA +. (Ex. 3) 

The only arithmetic performed is the integer arithmetic on the integer 
constants. Thus there are no mode problems. Also, since COMIT does not 

have any significant type of program structure, there is no problem about 

scope of data. 

There are no assignment statements, except for the transfer of strings 

between shelves and the workspace. There are no logical variables defined 

as such, but the logical subscripts (which are discussed later) allow the user 

to perform logical operations. 

With regard to control transfers, rules are normally executed in the 

sequence in which they are written. The statement name (shown in the go-to 

section of the format given earlier) causes the named rule to be executed 

next. If the next rule in sequence is in fact the next one which 1s supposed 

to be executed, then an asterisk can be used in place of a specific statement 

label. Similarly, an asterisk can be used on the left side as a statement label 

if there is no need to reference the rule. Subroutines are called by writing 

in the go-to portion of the rule the name of the subroutine, followed by 

a plus sign, and then the name of the return point. Thus to execute the 

subroutine that starts at rule ALPHA and upon exit returns to the rule BETA, 

the user writes ALPHA+BETA. 

The fundamental operation in COMIT is really the selection of a sub- 

string from a string and then the execution of transformations on the string 

and substring. This of course contrasts markedly with the numerical pro- 

gramming languages in which the fundamental operation tends to be an 

assignment statement. That portion of the rule format designated as the 

left-half directs the computer to search in the data for a matching expression. 

The /eft-half matches a workspace substring only if each /eft-half constituent 

matches a corresponding workspace constituent or substring, where the 

workspace constituents are consecutive and all in the same sequence as in 

the left-half. In the earlier examples of forms of data, if the beginning of 

a rule were written as * T = then in Ex. | this letter would be found, 

whereas in Exs. 2 and 3 it would not because the single letter is not a con- 

stituent. 

The following items can appear in the go-to section of a rule:



vi.6. comir 425 

name Transfer control to the rule with the specified 

label. 

* Transfer control to the next rule. 

wk Transfer control to the rule following the next 

one (i.e., skip a rule). 

/ Repeat the same rule. 

name] +name2 Go to the rule with name? and store name2 

on the pushdown list (i.e., subroutine call to 

name! with return to name2). 

namel++name2 Go to the rule with name? and store name2 

on the pushdown list on the level below the 

item that is next. 

+ Go to the rule name which is the next item on 

the pushdown list and delete the name from 

the pushdown list. 

Conditional statements are of several forms. The first is each rule itself, 

in which the left-half provides a test. The second form of conditional state- 

ment performs comparisons on numerical subscripts and is itself a form 

of left-half test. A third kind is grammar subrule selection which is dependent 

on the dispatcher setting (discussed later). A fourth type of conditional 

statement involves list subrule selection based on table lookup. The last 

two of these are really types of switch control. 

COMIT permits a rule to have several subrules. The first subrule has the 

rule name starting in column 1, and succeeding subrules have one or more 

blanks starting in column 1. Each subrule also has a subrule name. The 

subrules permit a choice of alternate computations at a given point in the 

program. The choice is made by the dispatcher, which is a switch control 

mechanism in COMIT (discussed later). 

Loop control can be specified in several ways. The simplest type is 

through the kind of test indicated in the basic rule itself, where essentially 

the only thing that controls the loop is the presence or absence in the work- 

space of the string indicated in the left-half section of the rule. Another way 

to control looping is by specifying the number of times to execute a loop. 

This is handled by using a numerical subscript as a counter and will be 

described when the notation is shown in somewhat more detail. Exit from 

a loop can also be determined by choice of a subrule. 

The user can call a built-in dump facility at any point in his program 

by putting a comma in column |. He can use a period to request a dump if 

the left-half fails. 

COMIT is basically a language for handling strings and patterns. The 

left-half section of a rule indicates a pattern to be searched for in the work-



426 STRING AND LIST PROCESSING LANGUAGES 

space, which is the storage area containing the data, and the right-hand 

side (which includes the right-half, routing, and go-to sections) indicates 

what is to be done if that pattern is found. Let us consider the simple case 

where the workspace contains 

A+B+CH+tA+tB 

and the following rule is executed: 

$+ C+A=24+14+3% 

The workspace now contains 

C+tA+t+Bt+A+B 

The numbers on the right represent the sequence numbers of the constituents 

in the /eft-half. Thus, C is the second constituent in the /eft-half, and A is the 

third constituent. The $ indicates that an arbitrary number of constituents can 

be allowed when the test is made. Having numbered the constituents in the 

left-hand side of the rule, their sequence can be redefined in the right-hand 

side as shown. If the left-half had been B + $2 + A, then the test would 

have failed because the $ immediately preceding a specific integer requires 

that exactly that number of constituents must appear, and neither of the 

A’s in the workspace follows a B with exactly two intervening constituents. 

Any constituent shown in the /eft-half which is not mentioned in the right- 

half is automatically deleted (if the rule succeeds thus causing the right-half 

to be executed). An interesting illustration of what can be done is the fol- 

lowing rule which doubles any letter before the sequence of letters E and D: 

*$1 +E+D=1+1+2+3« 

Note that this rule doubles any letter before the E + D, not just consonants; 

it would be possible to write the rule to exclude doubling of a vowel imme- 

diately preceding the ED if vowels and consonants had been named by 

different subscripts. 

The following is a list of notations used for search patterns which can 

be expressed in the Jeft-half section of a rule: 

$1 A single but unknown constituent. 

symbol A single constituent which is symbol. 

$-symbol A single constituent which is not symbol. 

$n n arbitrary constituents (n > 1). 

$ Any number of constituents or none. 

$0 A null constituent. 

n A constituent matching the constituent already found 

and given the relative constituent number n(n > 0).



VI.6. COMIT 427 

The right-half provides facilities for carrying out operations on the 

data found in the workspace. This is usually done by reference to the con- 

stituent shown in the /eft-half and can consist of such things as replacement, 

rearrangement, insertion, deletion, a null operation (which would be used 

for a test on the /eft-half), and duplication. As an illustration suppose we 

consider the following: 

*A+Bt+tCH24+D4+1 + F + 2 

This means search in the workspace for an A followed by a B followed by 

a C; if found, replace that triplet in the workspace by B followed by D 

followed by A followed by F followed by B. Note that in this case the C is 

deleted and the B is duplicated. 

The routing section is used to specify certain operations which cannot 

be specified in the right-half. There can be any number of routing operations, 

separated by commas and optional spaces. The operations shown in the 

routing are carried out from left to right in the order written. The types of 

operations permitted are special workspace operations, dispatcher entries, 

shelf operations, input/output, and free-storage count operations. 

The most important special workspace operations are expand and 

compress, denoted by En and Kn, where n refers to the constituent number. 

The first causes each character of a constituent to become a separate con- 

stituent, while the Kn reverses the process by compressing several constituents 

into one. For example, if the workspace contained 

THE + DOG 

writing 

* $1 + $1 = //* El 2* 

causes the workspace to become 

Tt+H+E+trD+t+0+G 

while the rule 

*$3+5 = // *K1, *K2 * 

causes the first three constituents to be combined into one constituent, 

namely THE (from the *K1), and the remainder of the workspace to be 

combined into one constituent (from the *K2) since the numbers in the 

routing refer to the constituent numbers in the left-half. 

Constituents in the workspace can have one numerical subscript and 

any number of logical subscripts. It is essential to realize that for their most 

common use in COMIT, subscripts do not bear any relationship to the term



428 sTRING AND LIST PROCESSING LANGUAGES 

subscript as it is used in most programming languages. Subscripts are shown 

to the right of a slash which is itself immediately to the right of the work- 

space constituent. Numerical subscripts are shown preceded by a period, 

and logical subscripts are shown without a period but separated by commas. 

As an example of an expression with both numerical and logical subscripts, 

the following can be written: 

GEORGE/.26, SEX MALE, OCCUPATION CLERK, HOBBIES GOLF CHESS 

The numerical subscript is simply a way of associating a number with 

an element in the workspace. It is used primarily for counting purposes. 

Associated with numerical subscripts are the following operations: 

In the /eft-half section, search for constituents with the specified property: 

.n Numerical subscript with the value n. 

.*j Numerical subscript with a value equal to the numerical 
subscript on the constituent in the workspace corresponding 

to the jth sequence number in the left-half. 

-Gn Numerical subscript with value greater than n. 

.G.xj Numerical subscript with a value greater than the numer- 

ical subscript on the constituent in the workspace corres- 

ponding to the jth sequence number in the left-half. 

«Ln Similar to .Gn, except means less than. 

-L.4j Similar to .G.*j, except means less than. 

—. Nonumerical subscript. 

In the right-half section, for the referenced constituent, 

.n Set the numerical subscript to n. 

«xj Set the numerical subscript equal to the numerical subscript 

on the jth constituent in the left-half. 

-~Dn Decrease the numerical subscript by n. 

.D.*j Decrease the numerical subscript by the numerical subscript 

on the jth constituent in the /eft-half. 

-In- Similar to .Dn, except increase. 

xj Similar to .D.*j, except increase. 

The two most frequent uses of these operations are either for setting 

counters in loops or for testing actual numerical values that a constituent 

might have. In the first case, a program to do something 50 times could 

look like the following:



v1.6. comir 429 

x $0 = C/.0 * (insert counter constituent with sub- 

script) 

A do something * 

* do something * 

* $0 + C/.L50 = 2/.11 A (test subscript on counter and 

add 1) 

*C=0 * (remove constituent with subscript) 

A test for a subscript value between 25 and 35 would be written in the 

left-half as C/.G25, .L35. 

Logical subscripts can be inserted, deleted, complemented, replaced, 

or merged (which is a combination of both the replacing and the and opera- 

tion). Subscripts can be used as part of the /eft-half search specification 

in order to specify classes and subclasses of constituents. For example, 

suppose the workspace contained a number of constituents of the kind 

indicated above, representing data on people, and it is desired to search 

for somebody who is male, unmarried, a professional radio operator, and 

an amateur mountain climber. The following left-half will perform this 

search: 

* $1/SEX MALE, MARRIED NO, OCCUPATION RADIO-OPRTR, 

HOBBIES MOUNTAINEER = 

However, if only a radio operator is needed and the other qualities are 

irrelevant, then all that needs to be written is the following: 

* $1/OCCUPATION RADIO-OPRTR = 

If the workspace contains the GEORGE constituent defined above, 

the COMIT rule 

GEORGE = 1/OCCUPATION PROGRAMMER 

changes the value of the logical subscript OCCUPATION from CLERK to 

PROGRAMMER (presumably a promotion). The COMIT rule 

GEORGE = 1/HOBBIES GOLF POKER 

results in GEORGE having the HOBBIES of GOLF since only subscript values 

appearing in both the workspace and the rule are left on the constituent 

when there is an overlap in values. However, by writing 

GEORGE = 1/HOBBIES POKER 

then GOLF and CHESS are dropped and replaced by POKER. In essence,



430 srRING AND LIST PROCESSING LANGUAGES 

when there is an overlap, then only the intersection is used; when there is 

no overlap, the values in the right-half of the rule replace the values in the 

workspace. Various other rules and facilities also exist for manipulating 

these logical subscripts. The subscripts are a powerful feature of COMIT 

which permit the efficient handling of some problems which do not involve 

a simple string data structure. 
The entries in the dispatcher are in the form of logical subscripts; the 

subscript names designate the program branches, and there is a dispatcher 

entry for every subscript name (or rule name) in the program. In certain 

cases where the dispatcher is not itself actually set to a given value, the 

branch is chosen by using a random number generator. Information in the 

dispatcher can be altered by an entry in the routing or by an entry from 

the workspace. In the former case, it is written directly in the routing instruc- 

tion in the same form as a right-half logical subscript and is merged into the 

dispatcher in the same way that subscripts are merged. Information is entered 

into the dispatcher from the workspace by writing * Dn as a routing instruc- 

tion, where nis a single constituent number. When this instruction is executed, 

the logical subscripts attached to the indicated workspace constituent are 

merged into the dispatcher. 

The general form of an output statement (which is written in the 

TGuing) is * WFDni, where the F can be either A or S (these represent two 
different types of formats); the D can be either M (monitor output tape), 

| (output tape for punching), L (on-line printer), P (on-line card punch), 

or other characters for other devices defined in the interface; the ni refers 

to right-half relative constituent numbers, up to a maximum of 128. Format 

A is used for normal output and essentially removes the plus signs between 

the constituents in the workspace; in addition, subscripts will also be lost. 

If the user asks to have less than a single line of material printed, it will be 

kept in an output buffer until enough characters are accumulated through 

write commands to cause the contents of the buffer to be written out; how- 

ever, a specific end-of-line character can be used to cause the printine of 

a short line. Conversely, if the output requires more than one line, the 

COMIT system will automatically end the line for the user by means of bell 

and margin settings analogous to those on a typewriter. There are standard 

values for these, but they can be changed by the use of COMSET cards. 

The user is able to insert into the workspace specific characters to control 

the on-line printer paper-feeding mechanism. 

Format § is used to print the contents of the workspace in detail, includ- 

ing full constituent structure; this is primarily useful for debugging. 

Format B 1s for fast input and output for temporary storage of workspace 

data on tape or disc. 

The general format for the read command is * RFDn, where F can be 

C (cards), A (single character per constituent), T (text), S (with subscripts),



v1.6. comitT 431 

or B (binary); the n refers to a right-half relative constituent number and 

specifies where in the workspace the material that has been read is to be put. 

The D can be either K (regular input tape), R (on-line card reader), or some 

other character for some other input device. When format C is used, each 

data card is read into the workspace, with each character going into the 

workspace as a single constituent. Format A input is exactly like format C, 

except that the READ command brings in only one character (instead of 

a card or record) each time it is executed. The format T is especially useful 

for large quantities of text because it is fast. It reads a card or record just 

as format C does, but instead of bringing in each character as a separate 

constituent, it brings in words as separate constituents. Format Sis used to 

read material that has been written or punched in format S. 

COMIT will read a record of any length up to and including 3072 

characters. In formats C, A, and T, various operations involving terminal 

blanks are performed before the characters are grouped into constituents 

and put into the workspace. 

Normally COMIT is set to read physical records into the workspace, 

but it 1s possible to cause the reading of logical records. 

The options that are available for input and output in COMIT are 

actually quite flexible and are not all being described here. 

There are no library references or built-in functions in COMIT. 

The main debugging statement in COMIT is the one called COMDUMP. 

This provides a copy of the contents of the workspace, shelves, and dis- 

patcher. This dump is automatically provided at each error stop and at the 

normal end of each run, but it can also be called by the programmer at any 

point in his program. An unusual feature of COMDUMP is that the first 
time it is called it gives the complete content of workspace and shelves; 

however, on each succeeding call of the dump it reports the contents of the 

workspace or a shelf only in case the contents have changed since the last 

dump. 

In order to discuss some of the storage allocation statements, it is 

necessary to describe the storage areas in COMIT called shelves. There are 

127 of these, referred to by the numbers 1 through 127. They are used as 

temporary storage areas to avoid cluttering the workspace with material 

which is not needed at a given point in the program. The shelving instruc- 

tions operate very rapidly and permit the transfer of data between the 

shelves and the workspace. 

The general form of the commands is 

*FEsn 

where s is the shelf number and n designates a sequence of constituent 

numbers from the right-half section. The # can be one of the letters



432 sTRING AND LIST PROCESSING LANGUAGES 

Q, S, A, N, or X, which have the following meanings: 

Q Queues onto the right end of shelf s the workspace expressions 
numbered n. 

S Stores onto the left end of shelf s the workspace expressions 

numbered n. 

A Replaces the workspace expression numbered n with the 

contents of shelf s. 

N Replaces workspace expression n with the leftmost constituent 

of shelf s. 

X Exchanges all the data in the workspace for that on shelf s. 

(In this case, no nis given.) 

As an example of the use of shelving to achieve more rapid execution, 

suppose that the problem is to change every B in the workspace to a C. 

The simplest way of doing this is simply to write 

*B=C// 

However execution will be very slow because the rule replaces only one 

B at a time and then goes back to the beginning of the workspace again to 

search until it finds the next B to be replaced by a C. A faster routine to 

do this would be the following: 

*$ + B=14+C // * Q2312/ 

* $0 = // *A23 1 x 

The left-half of the first rule finds everything up to and including the first 

B and changes it to a C. The instruction following the double slash serves 

to move all constituents up to and including the C onto the right end of 

shelf 23, keeping them in the original workspace order. Thus when the rule 

is executed again, the string that has already been examined is no longer in 

the workspace. After all the B’s have been changed to C’s, the rule fails and 

the next rule returns everything from shelf 23 back to the beginning of the 

workspace again. (Note that if shelf 23 were not initially empty, it would be 

necessary to clear it before starting this routine. This avoids putting extra- 

neous material into the workspace when the second rule is executed.) 

The number of memory locations required for the various types of 

information in the workspace and shelves is shown in the manual. Storage is 

automatically reallocated to the various uses as needed. 

The user is able to test the amount of free storage available and to allow 

certain corrective action to take place if there is insufficient free storage 

for further operations; such action might consist of deleting material from 
the workspace or the shelves or writing it out. The commands available for



V1.6. ComMIT 433 

this testing are written in the routing section and consist of the following: 

-Gn_ If the number of free storage registers is greater than n, 

continue with the rest of the routing and go-to sections; 

otherwise transfer control to the next rule. 

-Ln Same as .Gn except for less than n. 

.G.xn_ If the number of free storage registers is greater than the 

value of the numerical subscript on the first constituent in 

the workspace subexpression currently having the number 

n, continue with the rest of the routing and go-to sections; 

otherwise transfer control to the next rule. 

.L.an Same as .G.x%n except for Jess than n. 

There are actually quite a few statements that permit the user to have 

some effect on the overall operating environment; these are handled by 

means of COMSET cards. The facilities available to the user include items 

such as specifying that the minus sign and the hyphen are to be considered 

different characters, setting margins for output, eliminating the automatic 

COMDUMP at the end of the program, counting the number of constituents 

on indicated shelves, specifying ways of marking the end of output records, 

and providing controls over the way in which various formats are handled. 

One of the special features in COMIT is the availability of list rules 

which facilitate rapid table lookup. A list rule consists of two or more list 

subrules, and it may be used like a dictionary with its entries. To illustrate 

the need for, and use of, this facility, the following example is given.’ 

Consider the following program for word-for-word substitution. We 

assume that the workspace contains a German sentence. Each letter is 

a constituent and words are separated by -’s, representing spaces. There is 

no punctuation, but - at the beginning and at the end. It is desired to look 

up the words in a list, substitute English equivalents, and print them out. 

A-~+$+—+$ = // *WAMI, *K2, *Q5 3 4 DICT 

* STOP 

DICT IST = |$ B 

* ALT = OLD B 

* MANN = MAN B 

* DER = THE B 

B $ // *WAMI, *A5 1A 
STOP x 

END 

13 Tt is taken directly from pp. 41-42 of [MT6la].



434 sTRING AND LIST PROCESSING LANGUAGES 

What we are really doing in this program is searching through a number 

or rules for a left-half that matches the workspace. The trouble with the 

program is that it will run quite slowly if the list is very long. In COMIT, 

there is a facility for writing an equivalent program that runs quite rapidly. 

It is written as follows: 

A— + $ + — // *WAMI, *L2 DICT 

* STOP 

—DICT IST = 1S B 

ALT = OLD B 

MANN = MAN B 

DER = THE B 

B$+-— // xWAMI A 

STOP x 

END 

In this program, the first rule locates a word as a string of characters 

between spaces. The first space is written out. The routing instruction *L2 

says to compress these characters temporarily into one constituent without 

subscripts and look it up in the list mentioned in the go-to (DICT). The list 

rule —DICT is distinguished by a hyphen in column 1. The /rft-halves of the 

various list subrules are single constituents. Each list subrule can have a 

normal right-half, routing, and go-to. If the temporarily compressed con- 

stituent cannot be found in the list, the original uncompressed constituents 

are restored to the workspace complete with their subscripts, and control 

goes to the rule after the list rule B. 

The reason why this program written with a list rule will run so much 

faster than the other program is because the COMIT compiler automatically 

sorts the /eft-halves of the list subrules into alphabetic order so that whenever 

a constituent is looked up in a list, COMIT can use a fast search procedure. 

There are no declarations as such in COMIT. The closest to these would 

be the logical subscripts, which were discussed earlier (together with the 

operations on them). 

COMIT does not permit self-modification of programs nor self-exten- 

sion of the language. There are no real compiler directives. Attempts at 

writing parts of COMIT in itself have been tried, but there is no completed 

system prepared this way known to me. 

Some of the language features, most notably the shelves and list rules, 

have been provided to. improve the execution speed. Since COMIT is partly 

interpretive, in the sense that a translation is made to an intermediate



v1.6. comit 435 

pseudocode which is then interpreted, the issue of object time efficiency is 

not too significant. 

The COMIT systems have a large number of error checks built into 

them both at compile and execution time. 

COMIT has proved to be useful, at least on an experimental basis, 

in a large number of areas outside its primary application area. For example, 

it has been used to do information retrieval (Yngve [YN62]), symbol manip- 

ulation (e.g., differentiation), theorem proving (Darlington [DA65]), 

checkerboard puzzles, bridge bidding, and comparison of student programs 

(Chanon [ZS66]. The General Inquirer (Stone and Hunt [SJ63]) was initially 

programmed in COMIT. 

VI.6.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

COMIT was the first language to provide an effective means of searching 

for a particular string pattern and then performing transformations when 

it was found. There are facilities in COMIT which have not yet come into 

the more multipurpose programming languages, although the latter some- 

times wish or claim that they have. COMIT has served as a model for the 

type of facilities needed for string manipulation, and virtually every language 

which has included significant features of this kind has based them at least 

in spirit—and often in notation—on COMIT. Thus, the introduction of the 

CONVERT functions into LISP (Guzman [ZH66]) and many facilities in 

Formula ALGOL (see Section VIII.5) owe their ideas to COMIT. Finally, 

the creation of a major language (namely SNOBOL, see Section VI.7) 

which performs many of the same functions but also corrects some of the 

deficiences, shows the value of the ideas brought forth in COMIT. In some 

cases, SNOBOL omitted features (e.g., subscripts) which are significant for 

efficiency in certain classes of problems. 

One of the most astounding things about COMIT is the discrepancy 

between its apparent and surface difficult notation and the actual ease of 

writing and using the language. This contrasts sharply—at least in my 

opinion—to LISP, whose notation is inherently simpler than COMIT but 

which seems to be much harder to learn and to use. (This view is even 

shared by proponents of LISP.) 

Another contribution to the technology is not unique to COMIT, but 

it is nevertheless worth mentioning. Several problems, or classes of problems, 

have been solved—or at least worked on—that would have been impractical 

to attack without COMIT. While this is true of almost any programming 

language, it is more significant for COMIT because COMIT provided a type 

of facility that did not exist anywhere else (at least until its imitators 

appeared).



436 STRING AND LIST PROCESSING LANGUAGES 

Some comments on COMIT versus SNOBOL are included in Section 

VII. 

Vi.7. SNOBOL 

VI1.7.1. History oF SNOBOL 

After several years of exposure to, and experience with, COMIT (see 

Section VI.6), some of its significant deficiencies became extremely clear; 

the most notable of these were the inability to name strings or to do arith- 
metic conveniently. Motivated by a desire to improve this and by the need 

for a more effective language to do symbol manipulation, in 1962 at Bell 
Telephone Laboratories, D. J. Farber, R. E. Griswold, and I. P. Polonsky 

with assistance from M.D. Mcllroy developed a system called SNOBOL 

which they defined as a string manipulation language. The first publication 
of information on this system was in Farber, Griswold, and Polonsky 

[FB64]. The system became popular among certain groups outside Bell 

Laboratories (primarily universities). After some period of time, certain 

improvements to the system were found desirable, and these were incor- 

porated gradually, eventually leading to the creation of SNOBOL3, which 

is defined by the authors above in [FB66]. Still further improvements were 

made during 1967 and SNOBOL4 was created. The timing of the latter 

work made it impossible to include it in this book, so it is SNOBOL3 which 

is described here. A brief indication of the major improvements in 

SNOBOL4 is given at the end of Section VI.7.3. 

SNOBOL3 has been implemented on at least the following machines: 

IBM 7090/94, 7044, 1620, System/360, CDC 3100, 3600, RCA 601/604, and 
SDS 930/940. 

VI.7.2. FUNCTIONAL CHARACTERISTICS OF SNOBOL 

Since SNOBOL is a language with a format unlike any other (except 
COMIT), it is desirable to show an example of a SNOBOL statement 

before discussing the general characteristics of the language: 

HERE TEXT THE’ x*WHOKNOWS« "IS" = WHOKNOWS /S(NEXT) 

This means that the label HERE is assigned to a statement which examines 

a string named TEXT to see if it contains the words THE and 1S with any 

string between them; if so, the string named TEXT is replaced by the string 

found between THE and {S and control is transferred to the statement 

named NEXT. |



VI.7. SNOBOL 437 

SAMPLE PROGRAM—SNOBOL 31 

  

*SNOBOL3 EDITOR 

* THIS PROGRAM READS IN TEXT AND PRINTS N CHARACTERS 
* PER LINE. EXTRA BLANKS ARE INSERTED BETWEEN WORDS 
* TO FILL OUT LINES. 

MODE(""ANCHOR") 
DEFINE(" INSERT(K,LINE)’’,”"IN’’,”, BLANK, WORD") 

* READ IN N 

TRIM(SYSPIT) *Nx* 

READ TEXT = TEXT TRIM(SYSPIT) " "’ /S(READ) 

SYSPOT = 

SYSPOT = "PRINT THE FOLLOWING STRING " N 

'" CHARACTERS PER LINE:” 

SYSPOT = 

* PRINT INPUT TEXT 

TEXT] = TEXT 

PRINT TEXT! *SYSPOT/'80"'*x = /S(PRINT) 

SYSPOT = TEXT! 

SYSPOT = 
SYSPOT = 

TEST -GT(SIZE(TEXT),N) /F(LASTLINE) 

K = "0" 
SCAN TEXT  %*LINE/(N — K)x "" = /S(WRITE) 
BUMPK K = eLT(K,N) K + "1" /S(SCAN)F(ERR) 

WRITE SYSPOT = INSERT(K,LINE) /(TEST) 

* FUNCTION TO INTERSPERSE K BLANKS IN A LINE 

IN INSERT = .EQ(K,''0"') LINE /S(RETURN) 

LINE kk" /S(BLINK) 
INSERT = LINE /(RETURN) 

BLINK BLANK = BLANK " " 

LOOP LINE *WORD* BLANK = /F(MORE) 
INSERT = INSERT WORD BLANK " " 

K = .GT(K,"1") K — "1" /S(LOOP) 
INSERT = INSERT LINE /(RETURN) 

MORE LINE = INSERT LINE 

INSERT = /(BLINK) 
LASTLINE SYSPOT = TEXT /(END) 

ERR SYSPOT = 

SYSPOT = ''x* EDITOR CANNOT PRINT LINE BECAUSE N IS TOO SMALL.” 

END 

  

tFarber, Griswold, & Polonsky [FB66], p. 943 (with slight modifications). Copyright, 1966, 
The American Telephone and Telegraph Co., reprinted by permission. 
 



438 sTRING AND LIST PROCESSING LANGUAGES 

At first glance this language appears highly formal and difficult to read 
and write. In actual practice, it is fairly simple in notation and is compact, 
succinct, and reasonably natural within its class of applications. It is easy 

to learn, to read, and to write, although it is somewhat more complex 

(and more powerful) than COMIT. 

The primary application area is anything in which string naming and 
manipulations are important component elements, with at most simple 
integer arithmetic being needed. It is a problem-oriented language which is 

simultaneously a hardware, reference, and publication language. In the same 

sense as COMIT, it is slightly (and intuitively to me) more nonprocedural 

than most of the more numerically oriented programming languages. 

In my opinion, the user will tend to be at least a novice programmer, i.e., 

somebody who has some programming background but is not necessarily 

a professional programmer. It is definitely designed for use in a batch 

system, although both an early version and SNOBOL3 run under M.I.T.’s 

CTSS (see Crisman [ZR65]). The system is not machine dependent, but 

its description in the previously cited reference makes it more compiler 

dependent than most languages, particularly with regard to the input/out- 

put facilities. No particular concern has been expressed about the creation 

of dialects or subsetting or extensions; some of these variations exist on 

different implementations. Although never explicitly stated, there are several 

places in which the language is implicitly defined with respect to a particular 
method of implementation. 

The whole problem of conversion has not arisen in any significant way. 

There has been no consideration of USASI standardization. 

The designers of the first version of the language were primarily the 

authors of the two cited papers. Their avowed objective was to develop 

a language for use on problems involving the manipulation of character 

strings. Any maintenance of the language is being done by the designers. 

A SNOBOL Bulletin exists for informal interchange of information among 
users and any other interested people. 

In addition to the two main published papers cited, some significant 

unpublished papers are included in the list of references at the end of this 

chapter. The language definition has been given in English, with heavy 
dependence upon examples for clarification of the definition. 

SNOBOL3 is too new to be able to give it any type of reasonable 

evaluation based on usage, although a number of groups seem to find it 

worthwhile. It has been used in a number of courses. 

VI.7.3. TECHNICAL CHARACTERISTICS OF SNOBOL 

The character set for the language is never explicitly defined, but it 

appears to consist of the 26 capital letters, the 10 digits, and the following



VI.7. SNOBOL 439 

special characters: 

+ —- * f/f:,.()" $ = blank 

Data names can consist of any combination of letters, numbers, periods, 

and colons, e.g., 1:X.A, A.B.::1C, and .:A.3. (There is no stated require- 

ment to begin a data name with a letter or number.) Implicit data names 

are constructed by indirect referencing and consist of any data name 

preceded by a dollar sign, $. Thus if the data name MONTH has the value 

MARCH, then writing $MONTH is equivalent to writing MARCH. Since the 

only data type in SNOBOL is a character string (which cannot be split into 

constituents as in COMIT), data names apply only to a string. An arbitrary 

string variable is designated by a name bounded by asterisks, e.g., xARB«. 

Statement labels must begin with a letter or digit and can be followed by 

any other character except a blank. Data names and statement labels can be 

the same, and labels can be the same as some other structure, such as a 

function call. Thus S(S) is a legitimate label. There is no subscripting of any 

kind nor any qualification. 

The word QUOTE has a preassigned value of a quotation mark at the 

beginning of the program; however, it can be given another value later in 

the program. 

The operators fall into two groups: The five basic arithmetic operations 

denoted by +, —, *, /, and x* (for exponentiation); and six comparison 

operators with the obvious meanings: .EQ, .NE, .LT, .LE, .GT, and .GE. 

(These are actually considered functions in the SNOBOL terminology; the 

period preceding the two letters is part of the operator name.) | 

Punctuation has no meaning in the normal sense. Blanks are significant 

in a number of places since their presence denotes concatenation of strings, 

and blanks must be used to separate arithmetic operands and operators. 

They are also used to separate the differing parts of a statement. There are 

no noise words. 

Literals are defined by the use of quotation marks at the beginning 

and at the end of the literal. The literal can consist of any set of characters 

except the quotation mark; the latter is indicated by the use of the word 

QUOTE. 
In order to understand the format used, the general form of a statement 

must be shown; it is as follows: 

label string-reference pattern = replacement-expression |go-to 

It is important to note that the main difference in statement format between 

SNOBOL and COMIT is the facility in the former to name the string being 

examined (shown above as the string-reference) and furthermore to name 

a substring.



440 sTRING AND LIST PROCESSING LANGUAGES 

A statement can contain some or all these fields. Labels must begin 

in column 1; a statement with no label must have a blank in column 1. 

Statements can be continued over one card, and a period in column 1 1s 

used to indicate continuation of the preceding statement. Statements may 

be split across cards wherever a blank is permissible in the text. However, 

literals cannot be broken over a card, and a long literal which would not fit 

on one card must be represented as a concatentation of literals. A card with 

an asterisk in column | is treated as a comment. 
The conceptual form is highly symbolic. 

There are no declarations as such in SNOBOL. Some things which 

would normally be handled as declarations (e.g., arithmetic mode) are 

actually specified through function calls. 

The smallest executable unit is a statement, and there is no way of 

grouping these units. Loops can be written in either of two ways. In the 
first instance, a rule can repeat itself, providing the transfer in the go-to 

section is to the statement itself; in other cases, the looping can be controlled 

by arithmetic counters and tests on them. 

Functions of three kinds are permitted in SNOBOL. The first are those 

defined by the system; the second are defined in a particular SNOBOL 

program; and the third are machine language routines which can be invoked 

as functions in SNOBOL. There are no other procedures or subroutines. 

Comments can be written anywhere in the program and are designated 

by an asterisk in the first column of the card. 

A complete SNOBOL program consists of statements terminated by 

an END card. A function must be defined before it is invoked. There are 

a number of compiler-directing control cards which can be used in a program 

before the END card. 
The end of a statement is determined by the beginning of a statement 

on the next card. Function calls must not have a blank between the function 

name and the left parenthesis; thus, SIZE(A) is a function call, while SIZE (A) 

is a concatenation of a name and a parenthetical grouping. 

Statements are recursive in the sense that control may be transferred 

back into the statement itself, depending upon the failure or success of the 

left-hand pattern matching. Most SNOBOL programs are recursive. Defined 

functions can be recursive. 

Function calls can occur anywhere in a statement where a string value 

is appropriate. An argument of a function can be a string expression, no 

matter how complicated. 

No other languages can be written in SNOBOL programs; however, 

it is possible to include machine language functions which have been com- 

piled or assembled separately. There is a set of conventions specifying how 

to do this. 

Although the only variable type in SNOBOL is a string, there are



VI.7. SNOBOL 441 

certain strings which have the property of being integers. Thus, unlike 

COMIT, there are conceptually integer variables and constants in SNOBOL 

but no actual arithmetic data type. While there are no logical variables as 

such, the six comparison functions mentioned earlier return a null value 

if the condition is satisfied, and they fail otherwise. 

Indirect addressing or naming can be used to any level desired. Func- 

tion calls, parenthetical grouping, and names may be indirectly referenced. 

Parentheses are required between successive levels of indirect references. 

For example, 

$($($ROUTE)) 
$SIZE(END) 
$(END” $(1)) 

are all examples of legally written indirect references. 

Only integer arithmetic is permitted, and there are various rules per- 

taining to what happens when the result of division or exponentiation is not 

an integer. It is possible to combine integer constants and names; thus the 

expression 

N + "3" 

is legal assuming that N has an integer value. Since each of the arithmetic 

operations is considered purely binary, it is necessary to group terms to 

create more complicated expressions. Thus, the user must write 

N + ('3"' * "2") 

to achieve 

N + "6" 

Expressions can contain both concatenation and arithmetic operations, 

and the latter have precedence over the former. Hence the value of 

UN! "mH! + "7" 

is N12 since juxtaposition of two strings with a space between them (i.e., 

"'N” '5'') denotes concatenation. Also, the value of 

"3" ae "2" "10" 72" 

is 65. However, the value of 

"3" * ('2" "10" / "2") 

is 75.



442  sTRING AND LIST PROCESSING LANGUAGES 

The most important “arithmetic” performed in SNOBOL is actually 

string concatenation. This is indicated by writing the items (which can be 

constants or data names) to be concatenated successively, separated by 

blanks. For example, 

"RED" "ORANGE" 
X "'3.5'' Y 

The only problem relative to scope of data occurs in the creation of 

user-defined functions, and in that case it 1s possible to use names which 

are used in functions but whose values are not to be destroyed by a function 

call. 

A subset of the complete statement format provides specifically for an 

assignment statement, where the right-hand side will be either a string or 

a literal and the left-hand side will be a name. For example, the user can 

write 

= ABC + "5" 
"Y + SIN(Z)" 
9? Bi <

~
<
<
 

ll 

ABC = $(°N” 1) 

If there is a need for any arithmetic shown on the right-hand side, it must 

follow the rules of precedence already described. The result in every case 

is a string. 

There is no alphanumeric data handling as such. 

As an illustration of the effect of the sequence of assignment statements, 

consider the following sequence of statements: 

ALPHA = "ABCD" 
KY = SIZE(ALPHA) + "1" 
Z = KY + "3" 
M = ("—" KY Z) + "2" 

SIZE is a SNOBOL primitive whose value is the number of characters in the 

string indicated. Thus, the sequence of statements above would cause 

KY to have the value 5, Z to have the value 8, and M to have the value —56. 

Statements are normally executed in sequence unless the statement 

contains a go-to field; transfers are always enclosed within parentheses and 

preceded by a / which is itself preceded by a space. The control transfers 

can themselves be conditional by prefixing them with either an S or an F for 

success or failure, respectively. For example, A = B /(K) will automatically 

cause control to transfer to the statement with the label K. On the other 

hand, the statement ALPHA "',”’ /S(XYZ) will cause the statement XYZ to be



VI.7. SNOBOL 443 

executed next if there is a comma in the string named ALPHA. As in COMIT, 

failure of a statement is very significant in SNOBOL. The failure can occur 

in several ways; e.g., functions may specify failure explicitly (most normally 

this occurs with the comparison operators), a pattern match may fail, or an 

attempt to read a record may fail due to an end-of-file mark. In all cases, a 

failure signal stops execution of the statement and causes the appropriate 

control action to take place. 

The order of execution of operations within a statement is extremely 

significant; this overall order of execution is as follows: (1) The string 

reference (if any) is evaluated; (2) the elements of the pattern (if any) 

are evaluated from left to right; (3) the pattern match (if any) is per- 

formed; (4) any naming (discussed below) as the result of the successful 

pattern match is performed; (5) if a string expression is specified as a 

replacement, that string expression is evaluated; (6) reformation (if 

specified) of the string reference is made; (7) the go-to (if any) correspond- 

ing to the success or failure of the statement is evaluated and transfer is 

made to the next statement accordingly. Note that all arguments of a func- 

tion are evaluated, left to right, before the function is called. A function is 

invoked by writing it any place where a string variable is permitted; the name 

of the function is given, followed by the parameters, and a string value is 

returned. The relationship of the function evaluation to the general scan 

is quite tricky. 

Conditional statements are specified either by the success of the pattern 

search or through the use of the comparison operators which can indicate 

either success or failure. There are no separate loop control statements 

in SNOBOL; they are programmed either implicitly through the test of the 

pattern appearance or nonappearance in the indicated string or through 

the use of the comparison operator in counting. 

An example of the use of the comparison operators to do necessary 

counting is the following, which assigns the cubes of the first 50 positive 

integers to the names CU1 through CUS50, respectively: 

N = "yf" 

COMPUTE $(''CU" N) = N * (N * N) 
N = .LT(N, 50") N + "1" /SCCOMPUTE) 

There are no error condition statements in SNOBOL, although error 

conditions in arithmetic operations can be used to change the flow of control 

through the use of a conditional go-to. 

There are no algebraic or list statements in SNOBOL, but work has 

been done to provide the facilities to manipulate trees and certain link lists. 

These are described in unpublished memos shown in the reference list at 

the end of this chapter.



444  sTRING AND LIST PROCESSING LANGUAGES 

The heart of SNOBOL is its string-handling and pattern-matching 

statements. In the general form of the statements, the key items for the 
pattern matching and string handling are the string-reference, the pattern, 

and the replacement-expression. The string reference is searched for occur- 

rences of the pattern, which itself can consist of a sequence of string variables 

and/or constants, and then the occurrence in the string reference 1s replaced 

by the designated replacement expression. For example, if we had the 

statement 

TEXT = THIS IS THE 5TH TIME 

then 

TEXT "IS *VAR* "5" "TH" 

would cause the search to be successful and would assign to the variable 

named VAR the value THE. In addition to arbitrary string variables, there 

are two other types, namely fixed length and balanced. The former can be 

used to match a string with a specified number of characters; the name of 

the string variable is followed by a slash; this is followed by the string 

specifying the length, and the whole thing is delimited on both sides by the 

asterisks. Thus, for example, if we had the statement 

"pax" PLUS/"1'"'% *MINUS/""1''% *STAR/"1"" 

the pattern successfully matches the string, and PLUS, MINUS, and STAR are 

assigned the values of the symbols indicated. 

A balanced string variable can only match strings that have the same 

number of left and right parentheses in the usual order; i.e., )( is not 
balanced. The notation consists of a name enclosed within parentheses and 

surrounded by a pair of asterisks. For example, if EXPRESSION has the value 
SIN(A * (B + C)), then the pattern match in the statement 

EXPRESSION "'SIN("’ *(ARG)* "')"' 

is successful and ARG is given the value A * (B + C). 
Replacement can take place by naming substrings. For example, the 

statements 

SUM = "Al + A2" 
SUM *&X* oe *Y* = "4("" Xx me Y"')” 

change the value of SUM to +(Al , A2). 
One of the interesting pattern-matching facilities in SNOBOL is that 

referred to as back referencing. This means that if a constant in the pattern 

has the same name as a variable named to the left of it in the pattern, the



VI.7. SNOBOL 445 

value of the constant is taken to be the substring currently matched by the 

variable. Thus if we have A = ''C'' and B xCx ","' $A then this is not only 

back referencing, but has the indirect naming facility along with it; $A which 

is C will match the substring denoted by xCx 1.e., the substring to the left 

of the , in the string named B. Another interesting illustration is the follow- 

ing: 

''ABCDEFGHFGH" *A/''3''* A 

this match succeeds with A = ''FGH" because the pattern that is being 
looked for is three characters which are juxtaposed. For example, if the 

pattern had been written as *A/''2''* A then the pattern would not have 

matched. 

The specifications in the basic reference for SNOBOL3 indicate very 

clearly that the input/output facilities may vary significantly on different 

machines. The following is a very brief description of the capability available 

on the 7090/94 system. 

Input and output are accomplished by associating string names with 

logical files. There are three standard file names which are automatically 

assumed at the beginning of every program. The user can associate the value 

of a name with the value of a particular file, including the three named files. 

Thus, PRINT(’’X"’, "OUT'') associates the name X with the logical file OUT. 

After execution of this function, copies of all values assigned to X will be 

placed in the file OUT. Similarily, PUNCH(NAME, FILE) and READ(NAME, FILE) 
associate the value of NAME with the value of FILE in the punch and read 

sense, respectively. Output occurs whenever an output-associated name is 

given a value. Printing and punching file associations are different in their 

carriage control. Various facilities for short and long lines and appropriate 

fillers are given. In reading input, all strings read from the standard input 

are 84 characters long, and blanks are used to fill out shorter records; 

records read from other files are not extended. In using a read-associated 

name, the loss of the previous value of the name occurs. There is a failure 

if the read operation fails as the result of an end-of-file record. 

There are various other functions existing for performing standard 

input/output and file operations, including name deletion, rewinding, 

backspacing, and opening a file. 

There are no library references as such, but there are a number of 

built-in functions. They are as follows: 

SIZE(N) 
Specifies the number of characters in the string whose name is N. 

EQUALS(X,Y) 
Returns a null value if the value of X is identical to the value 
of Y and fails otherwise.



446  sTRING AND LIST PROCESSING LANGUAGES 

UNEQL(X, Y) 
Returns a null value if the values of X and Y are not identical 
and fails otherwise. 

TRIM(X) 
Returns the value of X with trailing blanks removed. 

TIME() 
A function of no arguments which returns as a value the milli- 
second time from the beginning of the program to completion. 

DATE() 
A function of no arguments which returns the value of the 
current date as a six-character number. 

There are a certain number of debugging statements, some of which are 

as follows: 

TRACE(LIST) 
The value of LIST is a list of function names whose trace is 
desired. 

STOPTR(LIST) 
Stops the tracing of functions specified in the LIST. 

STRACE(X, Y) 
Associates the value of X with the value of Y. Every time 

a value is assigned to X, a trace message will be printed on an 

associated file name indicating the names, its new value, and the 

statement value where the new number was assigned. 

MODE("'DUMPERR"’) 
Causes a string dump if execution is terminated by an error 

during execution. 

MODE('DUMP”) 
Causes a string dump following either normal or error termina- 

tion. 

There are no storage-allocating statements, and the only statements 

involving the operating system are the use of a statement with the label 

END whose result is dependent upon the monitor system. (This contrasts 

with the storage allocation facility of the shelves in COMIT.) 

There are no data, file, format, or storage allocation descriptions. 

Functions are defined by writing a heading of the form 

DEFINE(form, label, names) 

where form gives the function name and the formal arguments, label denotes 

the entry point, and the value of names is the list of local names separated



VI.7. SNOBOL 447 

by commas. The termination of the function is marked by either RETURN 

or FRETURN, the latter providing a failure signal. These functions can be 

recursive. 

There are a number of control cards which provide directives to the 

compiler, e.g., stop listing source program and rewind specified file. 

There are several other types of compiler directives. The most interesting 

are those which are associated with MODE(X). If X is ANCHOR, then this 
means that the first pattern element must match a substring in the string 

reference beginning with the first character of the string reference. This is 

in contrast to the normal method which is UNANCHOR, which says that 

the first element of the pattern can start matching anywhere. Thus, if the 

MODE (‘‘ANCHOR") has been given in the program, the pattern match 

"ABC" RB" 

will fail; whereas if that statement had not occurred or if it were followed 

by a MODE(''UNANCHOR’’), then the match would be successful. 
A mode affecting results of a division is available. 

SNOBOL programs cannot modify themselves nor is there any provision 

for self-extension of the language. 

The implementation of SNOBOL on the CDC 3200 was done by writing 

the compiler in SNOBOL; the one developed for the IBM System/360 was 

also written in SNOBOL. At least one group is attempting to develop a ver- 

sion which is fast enough to be practical for compiler writing. 

As with COMIT, the translation system consists of a compiler, which 

translates source programs into an intermediate language, and then an 

interpreter, which controls the execution. The language specification and 

the implementation of some of the pattern-scanning mechanism seem to be 

intimately related, i.e., the rules for the language match the algorithms 

which have been designed for scanning and vice versa. 

The biggest problem with respect to the language and its implementation 

is the need for dynamic storage allocation. 

SNOBOL4 (described in Griswold, Poage, and Polonsky [GF67] and 

[GF68]) is not a true extension of SNOBOL3, although it is certainly very 

similar. Two syntactic changes involve the following requirements in 

SNOBOL4: Identifiers begin with a letter and may not contain colons, and 

a colon : instead of a slash / is used to begin the go-to field. On the other 

hand, there are a number of significant improvements, including at least the 

following: 

1. Parentheses are no longer required in arithmetic expressions; the normal 

precedence is used. 

2. Unary operators can be written consecutively without parentheses. 

3. Integers do not have to be surrounded by quotation marks.



448 stTRING AND LIST PROCESSING LANGUAGES 

4. Functional expressions can appear in more places than previously. 

5. Facilities for pattern matching have been greatly extended; this is the most 

significant improvement. A pattern is considered a data object and hence 

can be named with the name then used in place of the actual pattern. 

A pattern can be formed by concatenation. There are new functions which 

have patterns as values, and new patterns have been added. It is possible 

to specify alternative patterns to be searched for. 

6. Arrays can be created. 

7. The programmer can define new data types. 

SNOBOL4 has been implemented on at least the IBM System/360. 

VI.7.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

SNOBOL’s main contribution to the technology has been to provide 

significant improvements over COMIT, based on experience with the 

latter. This comment is not meant to negate the additional features which 

have been added but merely to emphasize the fact that SNOBOL built 
heavily (and effectively) on previous work. 

More specifically, the ability to name strings and substrings is probably 

the most important new feature. The inclusion of facilities for doing arith- 

metic in a reasonable way, particularly in SNOBOL4 (where parentheses 

are not required to establish proper precedence), is important since even 
string- and pattern-handling problems usually require some arithmetic 

computations. The convenience of allowing user-defined functions of a 

general type is worth mentioning. Finally, the development of a large 

number of differing kinds of pattern-matching capabilities is an important 

contribution. Some of these bear a resemblance to facilities existing in the 

much earlier SHADOW system (see Barnett and Futrelle [B162]). 

SNOBOL appears to be a good tool for programmers to use in a wide 

variety of problems involving string handling and pattern matching. Its 
notation is probably as similar to languages discussed in earlier chapters as 

can be without violating the fundamental operations that the language is 

trying to provide effectively. 

Some comments comparing SNOBOL with COMIT were included 

in Section VI.1. 

VI.8. TRAC 

The TRAC" (Text Reckoning And Compiling) language system (meaning 
somewhat more than just a language) was created by Calvin Mooers (Rock- 

ford Research Institute). Development started in 1960 and it was first imple- 
  

14 TRAC is the trademark and service mark of Rockford Research Institute In- 
corporated in connection with their standard computer controlling languages.



V1.8. TRAC 449 

mented by Peter Deutsch on the PDP-1 in 1964. Experimental versions have 

since run on at least the following machines: The PDP-5, 8, and 8S; the GE 

Datanet-30; the IBM 360/67; and the European computers SAAB D-21 

and ICT 1202. All the implementations use the basic concepts and specifica- 

tions of TRAC; most have added their own primitives to accomplish specific 

objectives such as control of displays and code conversion. 

TRAC is a language designed specifically to handle unstructured text 

in an interactive mode, 1.e., by a person typing directly into a computer. An 

excellent discussion of the objectives for the system and an indication of how 

they were achieved is given in Mooers [ME65]. The specifications of the 

language are contained in Mooers [ME66] and [ME67], although not stated 

explicitly as such. 

Although Mooers states that he considered IPL-V, LISP, and COMIT 

carefully, he found that none of them were suitable for achieving his desired 

goals. He said that the prime impetus for the TRAC language came from 

SAMPLE PROGRAM—TRAC 

  

Problem: Define a FIX program whose purpose is to make small changes in 

TRAC forms, and use the FIX program. 

Program Comments 

t(DS,FIX,( 
t(SS,NAME, T(PS,{ This is the complete input program 
DELETE- —))T T(RS)) to define FIX. 

t(DS,NAME, tt (CL,NAME, t(PS,( 
INSERT-— —))t T(RS))) 
)) 
t(SS,FIX,NAME)’ 

t(SS,1@, t(PS,( Representation of the FIX macro. 
DELETE— —))t t(RS)) “1@” represents a formal variable, 
t(DS,1@, Tt t(CL,1 @, t(PS,( and the ordinal one. This takes the 
INSERT-— -))t T(RS))) name of the form to be operated on. 

t(DS,A1,THIS IS THE TEXT)’ Define a text object Al. 

T(CL,FIX,A1)’ Call FIX. 

DELETE-—THIS' Interaction with user, to make 

INSERT- —THAT' changes. 

t(PS,T(CL,A1))' THAT IS THE TEXT Call and print out Al. 

t(CL,FIX,A1)’ Begin another example. 

DELETE——THE' 

INSERT—-THE VERY LONG' 

t(PS,t(CL,A1))'THAT IS THE VERY LONG TEXT Result. 
 



450. sTRING AND LIST PROCESSING LANGUAGES 

two early unpublished papers on macro assemblers by Eastwood and 

Mcllroy. 

The basic concept in TRAC is that a program consists of strings con- 

taining sequences of functions which can be nested indefinitely deeply. 

Evaluations of these proceed from the innermost level outward, and from 

left to right within a level, to cause the execution of the program. Further- 
more, since the executable statements are treated in the same way as a general 
character string, a procedure can act upon itself as well as upon other 

executable statements, thus giving completely general self-referencing 

capabilities. 

An independently developed system, GPM (General Purpose Macro- 

generator) by C. Strachey [SQ65] is similar in many respects to TRAC in 

concept, although not in format. GPM is not being discussed here because 

this book is limited primarily to systems developed in the United States. 

Both the data strings and the strings specifying executable operations 

are intermingled in TRAC. Active and neutral functions, corresponding 

approximately to use and mention of commands, are denoted by #(...) 
and ##(...), respectively. The ellipsis, ... , represents an arbitrary string, 

normally divided into substrings separated by commas to specify the argu- 

ments of the function. The functions themselves can be enclosed within 

parentheses; this has the effect of completely preventing their execution. 

All strings in TRAC are really literals rather than names, although 
strings for names are permitted in certain specified places. A TRAC function 
has a two-letter mnemonic to denote the specific action being invoked, 

followed by the appropriate number of arguments separated by commas, 

and all enclosed within parentheses; e.g., ##(DS,AA,CAT) causes the data 

string CAT to be stored, and the name string AA to be stored in a table with 

a pointer to the string CAT. This data string can be brought back from 

storage by means of a call function written #(CL,AA). Upon execution, the 

expression #£(CL,AA) is deleted and replaced by the string CAT. In this case 
the call function actually creates a value; whereas the function which stored 

the text did not and is considered to be a TRAC function with a null value. 

If the user writes 

# (CL, #(DS,CAT,DOG)#(DS,AA,CAT)#(CL,AA)) 

then DOG is the final value of the function. This is obtained because the 

processor generates first 

# (CL, #(CL,AA)) 
and then 

#£(CL,CAT) 

and eventually DOG is obtained.



v1.8. TRAC 451 

The overall control of the TRAC program comes from what is called 

the idling procedure, #:(PS,##(RS)). The PS and RS stand for print and read, 
respectively, and read has the value consisting of the string of characters 

typed at the keyboard up to the first occurrence of a specified metacharacter 

or terminator. The latter is normally designated by an apostrophe, ', but 

there is a TRAC function which can be used to change it. Since both tele- 

types and typewriters can be used, upper- and lower-case letters are permitted 

and are handled appropriately, depending on the form of input device. In 

particular, if there is a shift character on the input device, then it will be 
retained. Carriage returns or line feeds are ignored except within strings so 

the user can format his functions conveniently. 

The distinction between an active and a neutral function (mentioned 

earlier) is that the value from the active function is rescanned, while in 

the neutral function it is not. Scanning and execution of functions are 

done from left to right but from inside out. These concepts are illustrated 

in the following example:'* Suppose that both #(DS,AA,CAT)' and 

#(DS,BB(##(CL,AA)))’ have been presented to the processor. Then, 

#¢(PS,(F#(CL,BB)))’ prints out ##(CL,BB) 
#(PS,## #(CL,BB))’ prints out #(CL,AA) 
##(PS,#(CL,BB))' prints out CAT 

Now that the basic concepts in TRAC have been seen, it is possible to 

discuss the primitive functions that are available. A function defined to have 

a null value causes some action to occur, but it does not create a value which 

could then be used in other functions. 

There are four arithmetic functions and they operate only on integers. 

The subtraction function is designated as #(SU,D1,D2,Z), which subtracts 
D2 from D1; if the result overflows the capacity of the arithmetic process, 

then the overflow value Z of the function is taken. A similar format is used 

for the other three arithmetic operations. Bit strings are permitted and the 

functions of Boolean union, intersection, complement, shift, and rotate are 

permitted; these are designated by the function mnemonics BU, BI, BC, BS, 

and BR, respectively. There are two conditional transfer functions, namely 

##(EQ,X1,X2,X3,X4), which has the value x3 if string X17 is equal to string 
X2 and the value X4 otherwise. The function #:(GR,D1,D2,X1,X2) tests the 

decimal number at the tail of string D7? against the number at the tail of 

string D2; if the first is greater than the second, the value of the function is 

XI, otherwise it is X2. 

There are a number of functions that relate to defining and retrieving 

strings. They are as follows: 

15 Mooers [ME66], p. 219.



452 STRING AND LIST PROCESSING LANGUAGES 

#(DS,N,X) 

Stands for define string and has a null value. The string shown 

as the argument X is placed in storage and given a name shown 

as N. The string shown as X is placed in a list of forms, which 
are in storage; a form is merely a named string. If there is al- 

ready a form in storage with the name N, then the first form 

Is erased. 

FE(SS,N,X1,X2, . . -) 

Represents segment string, where there can be three or more 

arguments; this function has a null value. The form named N 

is scanned to see if it has a substring matching X]; if so, the 

location is marked and the matching substring is excluded from 

further scanning and creates what is called a segment gap. The 

rest of the form is then scanned with respect to X]1 to create 

any additional segment gaps. These are all given an internal 

code marking of 1. Anything not in a segment gap is now 

scanned with respect to X2 and segment gaps of code marking 

2 are created. This is continued until all the Xi are used; then 

the marked form, along with the identifiers for the gaps, is put 

back into storage (still with the name N). The untouched por- 

tions of the string are called segments. This function essentially 

creates a macro in which the XI], X2, etc., indicate the dummy 

variables. 

The following call functions make use of an internal form pointer 

which initially points to the first character of the form and is moved as 
required by the functions used. These cal/ functions only act upon the 

string to the right of the location of the form pointer. The calls CS, CC, CN, 

and IN each advance the form pointer to the next untouched character. 

#-(CL,N,X1,X2, .. .) 
Means call segmented form and has two or more arguments. 
The form named N is retrieved from storage and its segment 

gaps of code marking 1 are filled with string X1, the gaps of 

marking 2 are filled with string X2, etc. 

Ft(CS.N,Z) 
Means call segment and it obtains the string up to the next 

segment gap of the form named N;; if the form is empty, its 

value is Z. 

#(CC,N,Z) 
Calls exactly one character.



VIL.8. TRAC 453 

4##(CM,N,D,Z) 

Calls M characters from the form named N and obtains as 

many more as are designated by an integer at the end of the 

string D. 

F#(IN.N,X,Z) 

Searches the form named N for the first location where the 

string X produces a match. The value is the string up to the 

character just before the matching string. 

#(CR.N) 
Restores the pointer of the form named N to the initial char- 

acter. 

##(DD,NI,N2, . . .) 

Deletes the forms NI, N2, etc., and removes their names from 

the list of names. 

#(DA) 
Deletes all forms and names. 

On the assumption that there is a large-scale secondary storage unit, 

there are two functions which cause forms to be stored in a block on this 

unit and to be retrieved from there. 

There are four diagnostic functions, designated as (LN,X), (PF,N), (TN), 
and (TF). The LN lists the names of all the forms in storage. The PF prints the 

form named N with an indication of the location and ordinal number of 

the segment gaps. The TN initiates a trace mode in which the neutral strings 

for each function are typed out as the computation proceeds. The TF ter- 

minates the trace mode. 

As an interesting illustration of what can be accomplished, the pro- 

cedure #(DS,N,# #(CL.N)#(DA)) deletes all forms but the one named N. 
This is done because the ####(CL,N) reads the form N into the processor 

and it is held as a neutral string while all the forms in memory are erased; 

then it is redefined with the original name. In this particular method, the 

segment gaps are lost. 

There are very nice ways of using the TRAC functions to define 

programs which can then be called at any time desired, and which can also 

modify themselves after each execution of themselves. Examples of this are 

given in Mooers [ME67]. 

TRAC has combined concepts of LISP, COMIT, and macro facilities 

in a very unusual way. It is still too new for its long-range significance to 

be determined. However, to allow compatible exchange of TRAC language 

programs, Mooers strongly urges adherence to the latest standards of the 

language (as set forth by Rockford Research Institute Incorporated). Mooers



454  sTRING AND LIST PROCESSING LANGUAGES 

also states that he is working on extensions which promise to make the lan- 
guage more powerful. One contemplated direction is to extend the string 

storage apparatus to strings of machine code; this would permit operating 

systems to be built in TRAC. 

V1.9. LANGUAGES NOT WIDELY USED 

VI.9.1. AMBIT 

AMBIT is a language developed by C. Christensen (Massachusetts 

Computer Associates) in 1964. It has been implemented on only one machine 

in the United States and one in England, and I am not aware of any usage 
outside the author’s organization. However, the implementation made by 
Christensen was written in ALGOL, and this makes it relatively machine 
independent. 

In the developer’s own words, “The AMBIT programming language 

arose from the decision to base the design of a programming language for 

mathematical symbol manipulation on the conventional notation for the 

identity.”!® In spirit it is very similar to COMIT and SNOBOL, which are 

discussed in Sections VI.6 and VI.7, respectively. In overall framework and 

appearance, there is some usage of concepts from ALGOL. The actual 

definition of AMBIT is definitely given in terms of a reference language 

containing about 150 “characters”. 

An identifier is a letter followed by any number of letters and/or digits. 

It is used for both data names and program unit labels. Blanks are definitely 

considered significant; unlike most other languages, strings will be con- 

sidered equivalent if they differ only in the number and positioning of blanks 

according to a specifically defined set of rules. Certain other punctuation is 

also significant; in particular, the use of a semicolon, ; , for ending subunits 

of the program, and the use of a colon, : , following a statement label. 

The input form can be a continuous string, but it is most commonly 

written with significant elements on different lines. From a conceptual point 

of view, the language is based on the use of a replacement rule which has a 

left-hand side denoting a string, together with at least one pointer that is 

expected to occur in the data stream. The left-hand side is followed by a 

right-hand arrow, then followed by the right-hand side which is the trans- 

formed string together with a pointer. For example, 

(A /pA B) = C > A pA = (BxC) 

Another way of stating the basic concept is that the replacement rule 

16 Christensen [CQ64], p. 1.



V1.9.1. AMBIT 455 

SAMPLE PROGRAM—AMBITt 

  

Problem: Clear fractions: Given an equation in suitable notation, transform 
the equation into an algebraically equivalent equation which contains no division 
operators or which contains only division operators which cannot be cleared by 
general methods. Both the given equation and the result equation will be fully 
parenthesized. 

Program: 

1. begin string dummy S; phrase dummy A, B, C; 
2. sign dummy sign; segment dummy seg; 
3. ENTER: GivenA(S) —~ GivenA(S pA); 
4. LOOP: if 3a / pA 
5. then (A /pA B)=C —> A pA =(BXC) 
6. or (A /pA B)sign C — (A sign(BXC)) /pA B 
7. or (A /pA B)xXC > (AXC) /pA B. 
8. or (A /pA B)/C > A [pA (BXC) 

9. or (A /pA B)TC > (ATC) /pA (BTC) 
10. or A=(B /pA C) —> (AXC)=B pA 
11. or A sign(B /pA C) = ((AXC)sign B) /pA C 
12. or AX(B /pA C) —> (AXB) /pA C 
13. or A/(B /pA C) —> (AXC)/B pA 

14. or sign(B /pA C) — (sign B) /pA C 
15. or / pA > pA / 
16. else seg pA — pA seg ; 
17. GivenA(pA S) — ResultA(S) or 
18. go to LOOP; end 

Explanation: The program incorporates ten identities for the clearing of 
fractions (Lines 5-14). Each of these identities either eliminates a division operator 
from the equation or moves a division operator one Jevel outward in the paren- 

thesis structure of the equation. The application of the identities is controlled by 
a scanning pointer, ‘pA’, which moves from right to left through the equation. 

The letters A,B, and C designate an arbitrary phrase, S$ denotes an arbitrary 

string, and sign and seg represent arbitrary signs and segments respectively. 

tChristensen [CQ65], p. 255. By permission of Association for Computing Machinery, Inc. 
  

consists of a citation followed by the special symbol — followed by a 

replacement. The major differences between AMBIT, and SNOBOL or 

COMIT are (1) the existence of the AMBIT pointer which is moved through 

the string according to some well-defined rules and which permits access 

to a specified position in the data; (2) a program structure based on ALGOL, 

which includes the existence of data types (e.g., numbers and identifiers) 

which can be handled naturally instead of just as character strings. 

There are several declarations. The smallest executable unit 1s either 

the replacement rule just discussed, a control transfer, or an existence Boolean. 

The latter consists of the special symbol, 3, followed by a citation. Each of 

the three executable units is defined as a simple imperative which can be



456  sTRING AND LIST PROCESSING LANGUAGES 

grouped to form a compound imperative. When the latter is followed by 

semicolon, it is called an imperative statement. A compound imperative can 

also consist of compound imperatives combined with the use of the logical 
operators AND, OR, NOT, or something of the form IF Cl THEN C2 [ELSE 
C3| where the Ci are compound imperatives. The existence Boolean does 
not modify the data string but can be used to control the flow of the pro- 

gram by testing the format of the data string and causing appropriate branch- 

ing; hence it may be considered a form of conditional statement. The overall 

program structure is derived from ALGOL and consists of begin, followed 

by the imperative statements, and terminated by end. 

There is only a single data object in AMBIT, namely the data string. 

The data string is a sequence of legal characters and is considered to be 

divided into subsequences called segments. Typical segments are an identifier, 

a number, a sign, or a parenthesis. Parentheses must appear in matched 

pairs. From the users’ point of view, the data string is a linear notation for 

a tree structure, 1.e., a sequence of characters in which the structure is 

indicated by parenthesis pairs; in its internal representation, the data string 

is a symmetric linked list in which there are no common sublists. 

A particular kind of segment called a pointer is central to the whole 

concept of AMBIT. A pointer is an identifier followed by the Greek capital 

letter delta, A. 

A string description (which appears on the left side of the replacement 

rule) is composed of literals, dummy variables, and names. A dummy variable 

is an identifier which has been declared to represent an arbitrary member 

of a set of subsequences specified by the declaration. A dummy variable 

may be declared to represent one of a number of things: An element (a word 

which is a sequence of one or more alphanumerics or an arithmetic, rela- 

tional, or logical symbol); a phrase (an element or ( followed by a string 

followed by )); a segment (an element, ( or )); a string (a sequence of none 

or any number of phrases and blanks); a sign (plus or minus); etc. 

As indicated earlier, the only executable statements in AMBIT are the 

replacement rule, an unconditional control transfer, and conditional state- 

ments (including the existence Boolean). Of these, the replacement rule is 

the heart of the language. The replacement rule has a simple but severe 

restriction: Its left-hand side must contain at least one pointer, and suf- 

ficient parentheses to be unambiguous; i.e., the citation must be such that 

at any given time it can be matched with the data string in no more than one 

way. This has the practical effect of requiring fully parenthesized data, 

although one does not input it or output it in that form. The replacement 

rule is executed by finding, if possible, a subsequence of the current data 

string which is equivalent to the symbol sequence designated by the citation, 

and replacing that subsequence of the data string by a symbol sequence 

which is equivalent to the symbol sequence designated by the replacement.



V1.9.2. TREET 457 

If this action is possible, then it is performed and the replacement rule has 

the execution value true; if the action is not possible, the current data string 

is left unchanged and the replacement rule has the value false. 

As an example,'’ consider the following replacement rule: 

pA (AxA) > pA (A t 2) 

and assume that A is declared phrase dummy. If this replacement rule is 

executed for the data string 

EQA ((ALPHA+pA((M+1) x (M+1))) = 6.0) 

then the replacement rule succeeds and the modified data string is 

EQA ((ALPHA+pA((M+1) t 2)) = 6.0) 

However if the data string is 

EQA ((ALPHA+pA((M+1) x (M+5))) = 6.0) 

then the replacement rule fails and the data string is not changed. 

There are no input/output commands within AMBIT itself. The pro- 

gram is inserted, followed by a data string; after execution, the resultant 

data string is then put out automatically. 

A number of declarations exist to permit the association of one of the 

data types with either a dummy name, multiple name, or literal. 

The design of the language has been made with the overall implementa- 

tion plan (see Christensen [CQ66]) very much in mind so as to permit cer- 

tain types of maximal efficiency to be obtained. 

This system does not seem particularly suited for practical usage even 

in the areas for which it provides appropriate facilities, and it does not seem 

to have a solid enough theoretical foundation to provide new insight in any 

particular direction. Perhaps further usage and development will make either 

or both of these statements less true. 

7 VI.9.2. TREET 

TREET is a list processing language that was originally developed by 

E. C. Haines [HA65] as a Master’s thesis at M.I.T. in 1964 and improved 

since then. It is based on LISP, in the sense that it uses many of the same 

concepts and philosophies. As an avowed objective, however, “The author 

has adopted what he considers to be the most useful and important aspects 

17 Christensen [CQ64], pp. 41-42.



458 sTRING AND LIST PROCESSING LANGUAGES 

of LISP as a programming language”!® and put them into a more con- 

venient notation, with emphasis on reducing the parenthesis problem. The 

reader may be interested in contrasting TREET with LISP 2 (see Section 

VIII.6). 
TREET was originally designed to do natural language processing and 

is well suited for manipulating tree structures. It can also be used on-line for 
some query work, as well as for displaying trees. (See the reference list at 

the end of this chapter for applications using TREET.) It 1s considered a 

research tool and hence undergoes frequent changes. It was implemented 

on the IBM 7030 (STRETCH) and is being implemented on the IBM Sys- 

tem/360. The description here is based on the IBM 7030 version. 

SAMPLE PROGRAMS—TREET 

  

Problem: Reverse a list 

Program: 
DEF( REVERSE (A) (B) 

WHILE(A ADL(CHOP(A) B)); 
RETURN(B); 

) 

Problem: Test whether two list structures are equal, where “equal” means 

they have the same hierarchical structure and the same elementary symbols in 

corresponding positions. 

Program: 

DEF( EQUAL (A B) () 

IF (A EQ B) THEN RETURN('TRUE’); 

IF (ATOM(A) OR ATOM(B)) THEN RETURN(NIL); 

RETURN((EQUAL(MEM1(A) MEM1(B)) AND 

EQUAL(REMI1(A) REM1(B)) )); 

) 
  

There is both a reference language and a hardware representation. 

The character set for the former consists of the 10 digits, the 26 upper-case 

letters, and the following special characters: 

+ —- x f < = > AV 1¢).3235 * ' blank 

There are a large number of key words. An identifier in the hardware 

representation 1s a letter followed by up to nine letters and/or digits; it is 

used for both data names and statement labels. (Apparently it can be the 

same as one of the key words, since there is no restriction against this.) 

The arithmetic operators are the first four graphics shown above; the 

18 Haines [HA65], p. 3.



VI.9.2. TREET 459 

relational operators are the next three graphics, and the logical operators 

are the following three. Identifiers must be delimited on each side by one of 

the following characters: 

$s 3; * ( ) blank 

Any number of blanks can be used where one is permitted. Literals are 

delimited by a prime, ' , on either side. 

The input is free format. 

A TREET program consists of one or more user-defined functions. 

Even things normally considered statements, e.g., IF, DO, are considered 

functions, although their format is not necessarily of that type. Almost any 

function can serve as the main program, invoking other functions. Com- 

ments can be inserted into any function definition; they must be preceded 

by an asterisk, x, and must end either with an * or at the end of a unit 

record (e.g., column 72 of a card). The programs themselves are stored as 

list structures; they will normally be compiled after they are debugged. The 

macro assembler TAP is part of the implementation and can be used to 

define functions; operations include both list processing and machine code. 

Recursion is definitely permitted, but it is not considered as important 

as in LISP. Statements in the reference language are terminated with a 

semicolon except in a few special cases in which it can be omitted. 

The data type allowed in TREET is (only) the LISP S-expression 

(defined in Section VI.5); all lists are terminated by a right parenthesis. 

However, an additional type of atom is a card, which contains 80 characters 

and is dynamically allocated and reclaimed just as single cells are. List cells 

have a third address field which may be used for backward pointers or 

additional data. Integers and floating point numbers are permitted. All 

calculation is done in floating point and converted to integer if the result 

is integral. There are no logical values defined as data types, since TREET 

adopts the convention that NIL (representing the empty list) means false 

and all other S-expressions are true. 

There are certain system-defined variables which can be used by all 

functions. 

The assignment operation is defined as a function called replacement 

and is written with := in the reference language, e.g.,X := X + 5. 

The unconditional transfer is written GOTO (label). The RETURN 
causes the current function to finish and have the value of the argument of 

RETURN. The conditional statement is of the form IF function-1 THEN function-2 
[ELSE function-3];. function-] is evaluated and if it is not NIL (i.e., false), then 

the value of function-2 is the value of the IF expression. The predicate (.e., 

function-1) always has a value, assigned to the free variable P, which can 

then be used by other functions. For example, the statement IF (Y=6) THEN



460  sTRING AND LIST PROCESSING LANGUAGES 

RETURN ((IF Z THEN 5 ELSE 7)); assigns to P the value TRUE if Y = 6 and 
Z is true, and the value NIL if Y=6 and Z is false. If Y + 6, P is NIL. 

In cases where only a single argument to a function is normally al- 

lowed, the effect of executing several statements can be achieved by writing 

DO (statements). 
The loop control is a WHILE function with two arguments. The second 

(which is usually a DO) is evaluated as long as the first 1s true, e.g., 

WHILE ((X < 5) DO ( 

Y:= X + Y; 

Xs= X + 1; 

)); 

The following is a set of list processing functions which are either 

equivalent to or identical with certain LISP statements: 

MEMI(list) First member of a list (same as LISP CAR). 

MEMA2(list) Second member of a list (Same as LISP CADR). 

MEM3(list) Third member of a list (same as LISP CADDR). 

MEM12(list) First member of the second member of a list (same as 

LISP CAADR). 

REMI (list) | Remainder list after first element is removed (same 

as LISP CDr). 

REMA2(list) | Remainder list after first two elements are removed 

(same as LISP CDDR). 

REM3(list) | Remainder list after first three elements are removed 

(same as LISP CDDDR). 

CHOP(var) Value is the first member of the list that is the value of 
the variable and that variable is set to REM1 of the list. 

The following LISP functions are also included in TREET: LIST, NULL, 

CONS, ATOM, MEMBER, = (same as LISP EQUAL), RPLACA, RPLACD, and 
COPY. 

There are a number of output functions. One is PRINT, followed by 

any number of arguments which are printed with a single space between 

them. Writing 

PRINT (‘Y =' Y 'AND ITS SQUARE IS’ (Y x Y)); 

Causes 

Y = 7 AND ITS SQUARE IS 49 

to be printed if Y had the value 7.



VI.9.3.1. CLP 461 

Also available are commands to TYPE on the on-line printer and to 

display various information (including trees and lists of atoms) and arbitrary 

text on the on-line display. The light pen may be used on all these. Various 

input functions also exist. TREET is part of AESOP (see Bennett, Haines, 

and Summers [QA65]) and has available to it a different set of displays and 

operations from that system. 

User-created functions are specified by writing DEF followed by the 

function name, the argument list, the variable list, and statements, all enclosed 

within parentheses, e.g., in 

DEF (HELLO(ABC YES) (GOLD) IF ATOM (ABC) THEN RETURN (ABC) 
ELSE RETURN (GOLD),) 

GOLD will have the value NIL. 

TREET is intertwined with LISP in several ways. Its original objective 

was to provide almost the identical capability except in an easier notation. 

However this compatibility has not continued to be stressed. TREET func- 

tions are translated into the LISP 1.5 syntax. 

There are various types of error-checking facilities; e.g., if a double 

asterisk, xx, is found anywhere other than between functions, it is con- 

sidered a read context error; this avoids the problem of matching parentheses 

count. Most routines check the legality of the structure with which they 

are dealing; when an error is detected, control is transferred to the ERR 

routine which does a number of things. A function EVALL dumps the values 

of all system variables. 

VI.9.3. OTHERS 

A few other systems of limited usage are worth mentioning because 

they provide somewhat different approaches to some of the problems in 

the list and string processing area. 

1. CLP 

The Cornell List Processor (CLP) is a definite language addition to 

CORC (see Section I[V.8.1). The basic concept is to add a new type of data 

element called entity, which is a particular kind of data record; the total 

number of entities can vary at object time. Entities can be subdivided into 

lists and can have attributes, which are simply variables with the entity 

actually being used as a subscript. Thus the user can write LENGTH OF 

CAR and this may be used as a variable. An ERASE statement eliminates such 

a variable. Elements can be inserted and deleted from lists by writing INSERT 

A AFTER B ON C or INSERT A LAST ON B. An element can be inserted in a



462 sTRING AND LIST PROCESSING LANGUAGES 

sequenced list by writing INSERT A RANKED ON B. It is also possible to 
use the REPEAT statement over all the entities that exist at a given time, e.g., 

REPEAT A FOR ALL B ON C. 

There are strong similarities between CLP and SIMSCRIPT (see 
Section IX.3.1.4). 

2. CORAL 

CORAL (Class Oriented Ring Associative Language) was developed by 

L. G. Roberts [RB65] at the M.I.T. Lincoln Laboratory for the TX-2 com- 

puter during 1964. It is used on-line for graphical display and systems work. 

CORAL used a type of list structure called a ring (based on earlier work of 

I. Sutherland on Sketchpad [QW63]). The basic principle involved having 

every element (except the first) point either to the start of the list or back to 

the immediately preceding element. From a language point of view, the 

notation and symbolism are highly dependent on the specific peculiarities of 

the TX-2 computer and the character set of the Lincoln writer keyboards. 

The instructions available to the user are at a very low level, as they are in 

IPL-V and L*. Some of the facilities are: go up N memory locations from 

point P, go up or down, and go left or right from P in a ring N; create and 

rearrange list structure elements; test whether the pointer points to the 

start of the ring or to certain other specific types of elements; obtain informa- 

tion in the accumulator from commands such as find the length of the block 

and find a list length; and perform an action for each element in a ring, 

such as go right or left around a ring doing a specified action. Figure VI-8 

shows two statement lines which are typical of CORAL programs, where 

the reader must realize that a very special keyboard is being used. 

3. SPRINT 

SPRINT is an attempt by C. A. Kapps [KC67] to develop a list process- 

ing language which is as machine independent as possible. It has been imple- 
mented on the IBM 7094 and 7040. 

A word consists of a variable length string of alphanumeric characters 

(with an implementation-imposed upper limit of 179 characters). Lists 
contain either programs or data, and they cannot be distinguished except 

by context. Lists are named and stored in an associative type of memory 

area and are located by means of their names. Programs are executed in an 

area consisting of two pushdown stacks called the instruction and operand 

stacks. Basic SPRINT instructions refer to the top several levels of the 

operand stacks for their arguments and results. 

Operations are denoted by a three-letter mnemonic followed by an 

appropriate number of operands and include things such as the four arithmet-



VI.9.3.3. SPRINT 463 

  

(O86 LK1-NEWBLK)@( (OLOBLKY3) ¢ (OLDBLKKIs) ) 

( (}) FNAMRING) EP ( (OLOBLK}2) BS UBRI> LABEL!) 

  

Figure VI-8. Example of CORAL statements. The main operator in the first 

line is © (put right). The element to be inserted is the first tie register of a 

newly created block of type BLK1. BLK1 is a symbolic name for some integer 

type number. The pointer named NEWBLK is assigned the address of the 

inserted ring element. The new tie element will be inserted next to an element 

determined by what follows the © operator. To find the reference element, 

the program will move the pointer OLDBLK down three registers and then left 

(backwards) around that ring. The number of steps moved is determined by 
the contents of the data structure register found by moving the pointer 

OLDBLK down five. The accumulator’s contents are identical with those of 

NEWBLK after the statement has been executed. 

The second line takes the accumulator pointer to the newly inserted tie 
element, moves to its ring start, then to the top of the block containing 

the ring start, and down a distance equal to NAMRING. If the resulting tie 

register is not empty, control goes on to the next line. If the register is empty, 
then the subroutine SUBR1 is performed for each member of the ring found 

by moving the pointer OLDBLK down one. After all the members of the ring 

have been treated, control transfers to LABEL1. 

Source: Sutherland [SU66], p. 29. 

ic Operators (ADD, SUB, MPY, DIV); read and write data (RDT, WDT); reverse 

two elements (REV); repeat (REP); delete (DEL); concatenate (CON) and 

deconcatenate (DCN); bring (BNG) a named list; call (CLL), which puts a 
named list into the instruction stack; transfer (TRA); store (STO); find 
(FND), which affects the flow of control; and test for zero (TZE). 

To evaluate the algebraic expression ((A+B)C+D)(E—10), one would 
execute the following program: 

A B ADD C MPY D ADD E @ 10 SUB MPY 

where the @ indicates data and all other marks are assumed to be instruc- 
tions. 

Elements of a matrix can be named independently of the size of the 

matrix; there is completely dynamic storage allocation which never requires 

the use of declarations for array size. 

It is possible not only to write subroutines but to execute them after 

they have been written or modified at object time. 

SPRINT is admitted by the developer to be inefficient because it is an 

experimental attempt and is designed to be efficient on machines of an 

entirely different logical structure.



464 sTRING AND LIST PROCESSING LANGUAGES 

4. LOLITA 

LOLITA (Language for the On Line Jnvestigation and 7ransformation 

of Abstractions) developed by Blackwell [QK67] is a part of the extended 

Culler-Fried on-line system (see Section 1V.6.9). The basic objective was 

simplicity in concept, implementation, and usage. LOLITA is essentially 

a language for processing strings of symbols, but they are really two-way 

lists (although without any sublist structure). The user has available to him 

nine lists in core storage and many more using the drum. The system uses 

the Culler-Fried console which consists of a display oscilloscope and two 

special keyboards. There is a specific memory location called the symbol ac- 

cumulator (SA), which is fundamental to the use of the elementary operators 

and is similar to an arithmetic accumulator. The elementary operators which 

are provided in the system, all of which are used by pushing a button, include 

the following: Define a list of symbols (DLIST); create a single symbol 

(DSYM); load symbol into SA (LS); store symbol before (or after) (SSB, SSA), 

which puts the symbol in SA on a designated list immediately before (or 

after) the place pointed to by the list index; remove the symbol pointed to 

by the index list (ES); concatenate the indexed symbol and its predecessor 
to form one symbol (CON); set index, increase index (SI, J); unconditional 

and conditional branching (BRANCH); DISPLAY currently designated list on 

the scope; control the exact format of a display (DC); place the console in 

the symbol manipulation mode (ISM); STORE, LOAD; the SUB key causes 

the typed line to be half-spaced down so that subsequent characters appear- 

ing on the display scope show as subscripts; the superscript key is similar; 

and LIST the program on the scope and have the system remember it. 

The main idea to realize is that the operations provided here are very 

elementary, but the console and the Culler-Fried system within which this 

is embedded permit the user to build up much more complex operations. 

This system has been used to program some simple operations in 

algebra, e.g., 

Rule to be applied: D,E" = (DzU) « EY” 

Input expression: a+ D,(E Ss! *) 

Transformed expression: a+(D, SIN X)ESIN* 

REFERENCES 

VI.1. SCOPE OF CHAPTER 

[AH67] Abrahams, P. W., “List-processing Languages”, Digital Computer 

User’s Handbook (M. Klerer and G. A. Korn, eds.). McGraw-Hill, 

New York, 1967, pp. 1-239-1-257.



[BB64a] 

[BB64b] 

[BB67a] 

[DQ66] 

[GB6la] 

[GE60] 

[JG67] 

[NW56] 

[RA66a] 

[RA66b] 

[RA67] 

[SA65] 

[SM66] 

[SM67a] 

[SR66] 

[VB67] 

[W164a] 

REFERENCES 465 

Bobrow, D. G. and Raphael, B., “A Comparison of List Processing 
Languages”, Comm. ACM, Vol. 7, No. 4 (Apr., 1964), pp. 231-40. 
(Also in [RO67].) 

Bobrow, D. G. and Weizenbaum, J., “List Processing and Extension 
of Language Facility by Embedding”, ZEEE Trans. Elec. Comp., Vol. 
EC-13, No. 4 (Aug., 1964), pp. 395-400. 

Bobrow, D. G. (ed.), Symbol Manipulation Languages and Techniques, 
Proceedings of the IFIP Working Conference on Symbol Manipulation 
Languages. North-Holland Publishing Co., Amsterdam, 1968. 

Dodd, G. G., “APL—A Language for Associative Data Handling in 
PL/I”, Proc. FJCC, Vol. 29 (1966), pp. 677-84. 

Green, B. F., “Computer Languages for Symbol Manipulation”, JRE 
Trans. Elec. Comp., Vol. EC-10, No. 4 (Dec., 1961), pp. 729-735. 

Gelernter, H., Hansen, J. R., and Gerberich, C. L., “A FORTRAN- 

Compiled List-Processing Language”, J. ACM, Vol. 7, No. 2 (Apr., 
1960), pp. 87-101. 

Gray, J. C., “Compound Data Structure for Computer Aided Design; 
A Survey”, Proc. ACM 22nd Nat’! Conf. 1967, pp. 355-65. 

Newell, A. and Simon, H. A. “The Logic Theory Machine—A Complex 
Information Processing System”, JRE Trans. Information Theory, Vol. 
IT-2, No. 3 (Sept. 1956), pp. 61-79. 

Raphael, B., Symbol Manipulation by Digital Computer, Stanford 

Research Inst., Menlo Park, Calif. (Apr., 1966) (to be published). 

Raphael, B., “Aspects and Applications of Symbol Manipulation”, 
Proc. ACM 21st Nat’l Conf., 1966, pp. 69-74. 

Raphael, B. et al., “A Brief Survey of Computer Languages for Sym- 
bolic and Algebraic Manipulation”, Symbol Manipulation Languages 
and Techniques, Proceedings of the IFIP Working Conference on Symbol 
Manipulation Languages (D.G. Bobrow, ed.). North-Holland Publishing 
Co., Amsterdam, 1968, pp. 1-54. 

Sakoda, J.M., DYSTAL Manual— Dynamic Storage Allocation Language 
in Fortran, Brown U., Dept. of Sociology and Anthropology, Provi- 
dence, R.I. (1965, revised). 

Sammet, J. E., “An Annotated Descriptor Based Bibliography on the 
Use of Computers for Non-Numerical Mathematics”, Computing Rev., 
Vol. 7, No. 4 (July—-Aug. 1966), pp. B1-B31 

Sammet, J.E., “Revised Annotated Descriptor Based Bibliography 

on the Use of Computers for Non-Numerical Mathematics”, Symbol 

Manipulation Languages and Techniques, Proceedings of the IFIP Working 
Conference on Symbol Manipulation Languages (D.G. Bobrow, ed.). 

North-Holland Publishing Co., Amsterdam, 1968, pp. 358-484. 

Satterthwait, A.C., “Programming Languages for Computational 
Linguistics”, Advances in Computers, Vol. 7 (F. L. Alt and M. Rubinoff, 

eds.). Academic Press, New York, 1966, pp. 209-238. 

Madnick, S. E., “String Processing Techniques”, Comm. ACM, Vol. 10, 
No. 7 (July, 1967), pp. 420-24. 

Wilkes, M. V., “Lists and Why They Are Useful”, Proc. ACM 19th 

Nat’! Conf., 1964, pp. F1-1-F1-5.



466  sTRING AND LIST PROCESSING LANGUAGES 

[WZ63] Weizenbaum, J., “Symmetric List Processor”, Comm. ACM, Vol. 6, 

No. 9 (Sept., 1963), pp. 524-44. 

[ZH66] Guzman, A. and McIntosh, H. V., “CONVERT”, Comm. ACM, Vol. 9, 

No. 8 (Aug., 1966), pp. 604-15. 

V1.3. IPL-V 

[CZ64] Chapin, N., “An Implementation of IPL-V on a Small Computer”, 

Proc. ACM 19th Nat?’l Conf., 1964, pp. D1.2-1-D1.2-6. 

[DU63] Dupchak, R., TIPL: Teach Information Processing Language, RAND 

Corp., RM-3879-PR, Santa Monica, Calif. (Oct., 1963). 

[DU65] Dupchak, R., LIPL: Linear Information Processing Language, RAND 

Corp., RM-4320-PR, Santa Monica, Calif. (Feb., 1965). 

[FG61] Feigenbaum, E. A., “The Simulation of Verbal Learning Behavior”, 

Computers and Thought (E. Feigenbaum and J. Feldman, eds.). McGraw- 
Hill, New York, 1963, pp. 297-309. 

[FN62] Feldman, J., “TALL—A List Processor for the Philco 2000 Computer”, 

Comm. ACM, Vol. 5, No. 9 (Sept., 1962), pp. 484-85. 

[GB6l] Green, B. F. et al., “Baseball: An Automatic Question-Answerer”, 

Proc. WICC, Vol. 19 (1961), pp. 219-24. (Also in [FG63].) 

[H B63] Hunt, E. B. and Hovland, C.I., “Programming a Model of Human 

Concept Formulation”, Computers and Thought (E. A. Feigenbaum and 

J. Feldman, eds.). McGraw-Hill, New York, 1963, pp. 310-25. 

[HX64] Hodges, D., IPL-VC, A Computer System Having the IPL-V Instruction 

Set, Argonne Natl. Lab., ANL-6888, Applied Mathematics Division, 

Argonne, Ill. (May, 1964). 

[JCS8] Shaw, J.C. et al., “A Command Structure for Complex Information 

Processing”, Proc. WJCC (May, 1958), pp. 119-28. 

[NW56] Newell, A. and Simon, H. A., “The Logic Theory Machine—A Complex 

Information Processing System”, JRE Trans. Information Theory, Vol. 
IT-2, No. 3 (Sept., 1956), pp. 61-79. 

[NW57] Newell, A., Shaw, J. C., and Simon, H.A., “Empirical Explorations 

of the Logic Theory Machine: A Case Study in Heuristic”, Proc. 
WICC (Feb., 1957), pp. 218-30. 

[NW57a] Newell, A. and Shaw, J. C., “Programming the Logic Theory Machine”, 

Proc. WJCC (Feb., 1957), pp. 230—40. 

[NW60] Newell, A. and Tonge, F.M., “An Introduction to Information 

Processing Language-V”, Comm. ACM, Vol. 3, No. 4 (Apr., 1960), 
pp. 205-11. 

[NW61] Newell, A. and Simon, H. A., “GPS, A Program That Simulates Human 

Thought”, Computers and Thought (E. Feigenbaum and J. Feldman, 

eds.). McGraw-Hill, New York, 1963, pp. 279-93. 

[NW63] Newell, A., “Documentation of IPL-V”, Comm. ACM, Vol. 6, No. 3 
(Mar., 1963), pp. 86-89. 

[NW65] Newell, A. et al. (eds.), Information Processing Language-V Manual, 

2nd ed. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.



[SF63] 

[TN60] 

[ZK63] 

[ZN65] 

V1.4. L6é 

[KO65] 

[KO66] 

REFERENCES 467 

Stefferud, E., The Logic Theory Machine: A Model Heuristic Pro- 
gram, RAND Corp., Memorandum RM-3731-CC, Santa Monica, 
Calif. (June, 1963). 

Tonge, F. M., “Summary of a Heuristic Line Balancing Procedure”, 

Computers and Thought (E. Feigenbaum and J. Feldman, eds.). 
McGraw-Hill, New York, 1963, pp. 168-90. 

Gullahorn, J. T. and Gullahorn, J. E., “A Computer Model of Ele- 
mentary Social Behavior”, Computers and Thought (E. A. Feigenbaum 
and J. Feldman, eds.). McGraw-Hill, New York, 1963, pp. 375-85. 

Cowell, W. R. and Reed, M.C., A Checker-Playing Program for the 
IPL-VC Computer, Argonne Natl. Lab., ANL-7109, Applied Mathe- 
matics Division, Argonne, III]. (Oct., 1965). 

Knowlton, K. C., “A Fast Storage Allocator”, Comm. ACM, Vol. 8, 
No. 10 (Oct., 1965), pp. 623-25. 

Knowlton, K. C., “A Programmer’s Description of L®”, Comm. ACM, 

Vol. 9, No. 8 (Aug., 1966), pp. 616-25. 

VI.5. LISP 1.5 

[AH63] 

[BB64c] 

[BB67] 

[BY 66] 

[EN65] 

[EV64] 

[GE60] 

[MC60] 

[MC60a] 

Abrahams, P. W., Machine Verification of Mathematical Proof, \nter- 
national Electric Corp., Report No. P-AA-TR-(0045), ITT, Paramus, 
N.J. (May, 1963). 

Bobrow, D.G., “A Question-Answering System for High School 
Algebra Word Problems”, Proc. FJCC, Vol. 26, pt. 1 (1964), pp. 591-614. 

Bobrow, D.G. et al., The BBN 940 LISP System, Contract No. 
AF19(628)-5065, Project No. 8668, Bolt, Beranek and Newman, Scien- 
tific Report No. 9, Cambridge, Mass. (July, 1967). 

Berkeley, E. C. and Bobrow, D. G. (eds.), The Programming Language 
LISP—Its Operation and Applications. M.1.T. Press, Cambridge, Mass., 
1966. 

Engelman, C., ““MATHLAB—A Program for On-Line Machine Assis- 
tance in Symbolic Computations”, Proc. FJCC, Vol. 27 (Nov., 1965), 
pp. 413-22. 

Evans, T.G., “A Heuristic Program to Solve Geometric-Analogy 
Problems”, Proc. SJCC, Vol. 25 (Apr., 1964), pp. 327-38. 

Gelernter, H., Hansen, J. R., and Gerberich, C. L., “A FORTRAN- 
Compiled List-Processing Language”, J. ACM, Vol.7, No.2 (Apr., 1960), 

pp. 87-101. 

McCarthy, J. et al., LISP 1 Programmer’s Manual, M.1.T. Compu- 
tation Center and Research Lab. of Electronics, Cambridge, Mass. 

(Mar., 1960). 

McCarthy, J., “Recursive Functions of Symbolic Expressions and 
Their Computation by Machine, pt. 1”, Comm. ACM, Vol. 3, No. 4 

(Apr., 1960), pp. 184-95. (Also in [RO67].)



468 STRING AND LIST PROCESSING LANGUAGES 

[MC62] 

[MT60] 

[SL61] 

[UB62] 

[UQ65] 

[WE67] 

[W164a] 

[W X66] 

[WZ67] 

[ZH66] 

[ZP41] 

McCarthy, J. et al., LISP 1.5 Programmer’s Manual, M.1.T. Com- 

putation Center and Research Lab. of Electronics, Cambridge, Mass. 

(Aug., 1962). 

LISP I (Programmer’s Manual), M.I.T. Computation Center and 

Research Lab. of Electronics, Cambridge, Mass. (Mar., 1960). 

Slagle, J. R., “A Heuristic Program that Solves Symbolic Integration 

Problems in Freshman Calculus”, J. ACM, Vol. 10, No. 4 (Oct., 1963), 

pp. 507-20. (Also in [FG63].) 

Bastian, A. L., Foley, J. P., and Petrick, S. R., “On the Implementation 

and Usage of a Language for Contract Bridge Bidding”, Symbolic 

Languages in Data Processing. Gordon and Breach, New York, 1962, 

pp. 741-58. 

Brody, T. A., A LISP Processor for the IBM 1620, Centro Nacional 

de Calculo, Instituto Politecnico Nacional, Unidad Zacatenco, Mexico, 

D. F. (1965). 

Weissman, C., LISP 1.5 Primer. Dickenson Publishing Co., Belmont, 

Calif., 1967. 

Wilkes, M. V., “Lists and Why They are Useful”, Proc. ACM 19th 

Nat’! Conf., 1964, pp. F1-1—F1-5. 

Woodward, P. M., “List Programming”, Advances in Programming & 

Non-Numerical Computation (L. Fox, ed.). Pergamon Press, New York, 

1966, pp. 29-48. 

Weizenbaum, J., “Review R67-22 (of The LISP 2 Programming Lan- 

guage and System)”, IEEE Trans. Elec. Comp., Vol. EC-16, No. 2 

(Apr., 1967), pp. 236-38. 

Guzman, A. and McIntosh, H. V., “CONVERT”, Comm. ACM, 

Vol. 9, No. 8 (Aug., 1966), pp. 604-15. 

Church, A., The Calculi of Lambda-Conversion. Princeton U. Press, 

Princeton, N.J., 1941. 

VI.6. COMIT 

[DA65] 

[HT66] 

[MT61] 

[MT6la] 

[SJ63] 

[YN57] 

Darlington, J. L., “Machine Methods for Proving Logical Arguments 
Expressed in English”, Mechanical Translation, Vol. 8, Nos. 3 and 4 

(June, Oct., 1965), pp. 41-67. 

Hilton, W. R. and Hillman, D.J., The Structure of LECOM, Lehigh 

U., Center for the Information Sciences, Bethlehem, Pa. (June, 1966). 

COMIT Programmers’ Reference Manual, M.1.T. Research Lab. of 

Electronics and the Computation Center, Cambridge, Mass. (Nov., 

1961). 

An Introduction to COMIT Programming, M.1.T. Research Lab. of 

Electronics and the Computation Center, Cambridge, Mass. (Nov., 

1961). 

Stone, P. J. and Hunt, E.B., “A Computer Approach to Content 

Analysis: Studies Using the General Inquirer System”, Proc. SJCC, 

Vol. 23 (1963), pp. 241-56. 

Yngve, V.H., “A Framework for Syntactic Translation”, Mechanical 

Translation, Vol. 4, No. 3 (Dec., 1957), pp. 59-65.



REFERENCES 469 

[YN58] Yngve, V. H., “A Programming Language for Mechanical Translation”, 
Mechanical Translation, Vol. 5, No. 1 (July, 1958), pp. 25-41. 

[YN62] Yngve, V.H., “COMIT as an IR Language”, Comm. ACM, Vol. 5, 
No. 1 (Jan., 1962), pp. 19-28. (Also in [RO67].) 

[YN63b] Yngve, V. H., “COMIT”, Comm. ACM, Vol. 6, No. 3 (Mar., 1963), 
pp. 83-84. 

[YN66] Yngve, V.H., COMIT Programming (course notes), U. of Chicago, 
Chicago, Il. (Autumn quarter, 1966). 

[ZH66] Guzman, A. and McIntosh, H. V., “CONVERT”, Comm. ACM, Vol. 
9, No. 8 (Aug., 1966), pp. 604—15. 

[ZS66] Chanon, R.N., “Almost Alike Programs”, Proc. ACM 21st Nat'l Conf., 
1966, pp. 215-22. 

VI.7. SNOBOL 

[DS67] Desautels, E. J. and Smith, D. K., “An Introduction to the String 
Manipulation Language SNOBOL”, Programming Systems and Lan- 
guages (S. Rosen, ed.). McGraw-Hill, New York. 1967, pp. 419-54. 

[FB64] Farber, D.J., Griswold, R.E., and Polonsky, I. P., “SNOBOL, A 
String Manipulation Language”, J. ACM, Vol. 11, No. 1 (Jan., 1964), 
pp. 21-30. 

[FB66] Farber, D. J., Griswold, R. E., and Polonsky, I. P., “The SNOBOL3 
Programming Language”, Bell System Tech. Jour., Vol. XLV, No. 6 

(July—Aug., 1966), pp. 895-944. 

{FT67] Forte, A., “The Programming Language SNOBOL3: An Introduc- 
tion”, Computers and the Humanities, Vol. 1, No. 5 (May, 1967), pp. 

157-63. 

[FT67a] Forte, A., SNVOBOL3 Primer: An Introduction to the Computer Pro- 

gramming Language. M.I.T. Press, Cambridge, Mass., 1967. 

[GF65] Griswold, R. E. and Polonsky, I. P., Tree Functions for SNOBOL3, Bell 
Telephone Lab., Holmdel, N.J. (Feb., 1965) (unpublished). 

[GF6Sa] Griswold, R. E., Linked-List Functions for SNOBOL3, Bell Telephone 

Lab., Holmdel, N.J. (June, 1965) (unpublished). 

[GF67] Griswold, R. E., Poage, J. F., and Polonsky, I. P., Preliminary Descrip- 

tion of the SNOBOL4 Programming Language, Bell Telephone Lab., 

Holmdel, N.J. (July, 1967) (unpublished). 

[GF68] Griswold, R.E., Poage, J. F., and Polonsky, I. P., Preliminary Report 

on the SNOBOLA Programming Language, II, Bell Telephone Lab., 

S4D4b, Holmdel, N.J. (March 1968) (unpublished). 

VI.8. TRAC 

[ME65] Mooers, C. N. and Deutsch, L. P., “TRAC, a Text Handling Language”, 

Proc. ACM 20th Nat’l Conf., 1965, pp. 229-46. 

[ME66] Mooers, C.N., “TRAC, a Procedure-Describing Language for the 

Reactive Typewriter”, Comm. ACM, Vol. 9, No. 8 (Mar., 1966), pp. 

215-19.



470 STRING AND LIST PROCESSING LANGUAGES 

[ME67] 

[SQ65] 

Mooers, C. N., “How Some Fundamental Problems Are Treated in the 

Design of the TRAC Language”, Symbol Manipulation Languages and 
Techniques, Proceedings of the IFIP Working Conference on Symbol Mani- 

pulation Languages (D. G. Bobrow, ed.). North-Holland Publishing Co., 

Amsterdam, 1968, pp. 178-88. 

Strachey, C., “A General Purpose Macrogenerator”, Computer Jour., 

Vol. 8, No. 3 (Oct., 1965), pp. 225-41. 

VI.9.1. AMBIT 

[CQ64] 

[(CQ65] 

[CQ66] 

Christensen, C., AMBIT: A Programming Language for Algebraic 

Symbol Manipulation, Computer Associates, Inc., Report No. CA-64- 

4-R, Wakefield, Mass. (Oct., 1964). 

Christensen, C., “Examples of Symbol Manipulation in the AMBIT 

Programming Language”, Proc. ACM 20th Nat’! Conf., 1965, pp.247-61. 

Christensen, C., “On the Implementation of AMBIT, A Language for 

Symbol Manipulation”, Comm. ACM, Vol. 9, No. 8 (Aug., 1966), 

pp. 570-73. 

VI.9.2. TREET 

[GQ67] 

[HA65] 

[HA67] 

[QA65] 

[ZT67] 

Gross, L. N., On-Line Programming System User’s Manual, MITRE 

Corp., MTP-59, Bedford, Mass. (Mar., 1967). 

Haines, E. C., Jr., The TREET List Processing Language, MITRE Corp., 

Information System Language Studies Number Eight SR-133, Bedford, 

Mass. (M.S. thesis, M.I.T.) (Apr., 1965). 

Haines, E. C., Jr., The TREET Programming System: IBM 7030 Imple- 

mentation, MITRE Corp., MTP-58, Bedford, Mass. (Mar., 1967). 

Bennett, E., Haines, E.C., Jr., and Summers, J. K., “AESOP: A 

Prototype for On-Line User Control of Organizational Data Storage, 

Retrieval and Processing”, Proc. FJCC, Vol. 27, pt. 1 (1965), pp. 435-55. 

Chapin, P. G. et al., SAFARI, An On-Line Text-Processing System 

User’s Manual, MITRE Corp., MTP-60, Bedford, Mass. (Mar., 1967). 

VI.9.3. Others 

[CN65] 

[KC67] 

[QK67] 

[QW63] 

[RB65] 

[SU66] 

Conway, R. W. et al., “CLP—The Cornell List Processor”, Comm. 

ACM, Vol. 8, No. 4 (Apr., 1965), pp. 215-16. 

Kapps, C. A., “SPRINT: A Direct Approach to List-Processing Lan- 

guages”, Proc. SJCC, Vol. 30 (1967), pp. 677-83. 

Blackwell, F. W., “An On-Line Symbol Manipulation System”, Proc. 

ACM 22nd Nat’! Conf., 1967, pp. 203-209. 

Sutherland, I. E., Sketchpad: A Man-Machine Graphical Communi- 

cation System, M.1.T. Lincoln Lab., Tech. Report No. 296, Lexington, 

Mass. (Jan., 1963). 

Roberts, L. G., “Graphical Communication and Control Languages”, 

Information System Sciences: Proceedings of the Second Congress. 

Spartan Books, Washington, D.C., 1965, pp. 211-17. 

Sutherland, W. R., On-Line Graphical Specification of Computer Pro- 

cedures, M.I.T. Lincoln Lab., Tech. Report No. 405, Lexington, Mass. 

(May, 1966).



Vil FORMAL ALGEBRAIC 
MANIPULATION LANGUAGES 

Vil.1. SCOPE OF CHAPTER 

This chapter deals with languages which provide formal algebraic manipula- 

tion facilities. The phrase formal algebraic manipulation applies to the 

computer processing of formal mathematical expressions without any 

particular concern for their numeric values. The main criterion for being 

included in this area is one of intent rather than methodology; it will be 

seen later that in at least one case the implementation techniques are in fact 

numeric (rather than symbolic), although the motivation is to operate on 

algebraic expressions. The phrase (formal) algebraic manipulation is being 

used in preference to a slightly more common term, namely formula manipu- 

lation, because the latter is somewhat misleading. It has often been used by 

me, as well as others, to apply to formulas and/or expressions. Since there is 

often a need to distinguish between formulas and expressions, the more 

general phrase, algebraic manipulation, is being used. It must be emphasized 

that this term in no way excludes the use of trigonometric or other types of 

functions. Examples of the type of operations involved are differentiation, 

substitution, integration, and deletion of a portion of an expression. In order 

to appreciate the significance of this field, a little historical background is 

necessary. Detailed discussions have been given in several papers by the 

author (e.g., Sammet [SM66a] and [SM67]). 

The primary motivation for the initial development of digital computers 

was to solve numeric problems. This is generally conceded to be true, in 

spite of the fact that the first UNIVAC was delivered to the United States 

Census Bureau, whose problems by more modern standards would be 

considered inherently data processing. Because of this tendency for using 

a computer to solve numeric problems, there has been a major shift in 

471



472 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

emphasis in the technology of applied mathematics. Prior to the existence 

of digital computers, numerical analysis was a very lightly taught subject. 

Many people who had problems in applied mathematics to solve either used 

analytic techniques or simply did not solve the problems. (A distinction is 

being made here between solving problems and merely doing large amounts 

of computation with a desk calculator, e.g., computing firing tables.) With 

the advent of computers came such a major development in numerical anal- 

ysis that analytic techniques tended to be ignored or forgotten. Languages 

like the ones in this chapter are attempting to reverse the trend. 

The first known uses of a computer to do what can reasonably be called 

formal mathematics or formal algebraic manipulation, were the differentia- 

tion programs written quite independently by Kahrimanian [KD54] and 

Nolan [NO53] in 1953. There seems to have been no real appreciation of the 

very significant step that was taken at that time. No further development 

occurred for many years, and the area of numerical analysis continued to 

flourish. However, starting around 1959, the tide began to turn and there 

has been an ever increasing amount of work either described in the public 

literature, in internal reports, or simply under development. The majority 

of the work was in the development of facilities via subroutines or specific 

packages, however, rather than through languages. Although LISP (see 

Section VI.5) provided a language of a potentially useful kind, it was too 

general and most people found it hard to learn and use. The first attempt 

at a practical language of any kind was ALGY (see Section VII.2), and the 

first one to provide wide flexibility and achieve significant usage was 

FORMAC (see Section VII.3). 

It may not be clear to the reader why a computer is needed for doing 

work in this area. A partial answer is that for many mathematical applica- 

tions, the amount of mechanical algebra that is necessary is extremely tedious 

and is as susceptible to human error as numerical calculations are. There 

are cases in which problems involving weeks or months of manipulation of 

mathematical expressions have been done by hand, checked two or three 

times, and then found to be wrong when the work was redone on a computer. 

It is important to realize that significant Janguage developments, and 

not significant systems, are being described in this chapter. The systems are 

far more numerous; descriptions of them can be found in Sammet [SM66a] 

and [SM67] and, in fact, in the whole August, 1966 Comm. ACM as well as 

other sources shown in Sammet [SM66] and its updated version [SM67a]. 

The languages discussed in this chapter have major similarities and 

dissimilarities of approach. FORMAC, in both the FORTRAN- and PL/I- 

based versions, adds a general capability to an existing language. ALTRAN 

is also based on FORTRAN, but it is limited to handling rational functions. 

MATHLAB is an independent language for use in an on-line situation, but 

it involves primarily typewriter (or teletype) input. FLAP is a LISP-based



VII.2.1. ALGY 473 

system which permits the user to specify which of several different mathe- 

matical algebras he wishes to use. The Symbolic Mathematical Laboratory 

and Magic Paper are independent languages whose implementations involve 

either completely special equipment or unusual modifications of standard 

computers. 

In spite of the claims of some people, the ability to write recursive 

procedures is not of major significance in this area, and while most of these 

languages do not permit it, they are useful nevertheless. 

Formula ALGOL is discussed in Section VIII.5 because in spite of 

its name it provides enough other facilities to warrant placing it in the 

multipurpose language category. It is an indication of both the relative 

newness and the rapid growth of this field that two of the languages 

(FORMAC and MATHLAB) are definitely in a second generation which 

differs significantly from the first, and the Magic Paper situation is some- 

what similar. 

Vil.2. LANGUAGES OF HISTORICAL INTEREST ONLY 

VIT.2.1. ALGY 

The earliest attempt at a reasonably general system found by me was 

ALGY, developed by Bernick, Callender, and Sanford [BM6]] prior to 1961. 

It was an interpretive routine for the Philco 2000. It allowed expressions 

written in a notation similar to FORTRAN as input, except that the $ was 

used instead of the **« for exponentiation. 

The following commands were available: 

EQUAT Record on tape an expression and its name. 

INQT Rename an expression already on tape. 

BUGG _ Search the tape for name that is to be “bugged” and delete 

it. 

OPEN Remove parentheses from an algebraic expression; it 

performs the necessary algebraic multiplication, groups 

identical terms, and sorts them in quasi-alphabetical 

manner. 

SBST Substitutes one or more expressions in a given expression. 

FCTR Factor a given expression with respect to a single variable 

or powers of a single variable. 

TRGA Expand a product of sine and cosine functions to a sum 

of sine and cosine functions of multiple angles. 

DONE Control word for permitting several independent problems 

to be processed during the same run.



474 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

Notice that there is no arithmetic defined, nor is there any facility for 

loop control or control transfers. 

Although ALGY apparently never received too much usage or publicity, 

I consider it a major contribution to the field because it was the first system 

to try to provide multiple capabilities on a general class of expressions all 

in one system. In fact, for some ideas, ALGY was a conceptual forerunner 

to FORMAC. 

ViI.3. FORMAC! 

VII.3.1. History oF FORMAC 

The basic concepts of FORMAC (FORmula MAnipulation Compiler) 

were developed by me (assisted by Robert G. Tobey) at IBM’s Boston 

Advanced Programming Department in July, 1962. At that time I recognized 

that what was really needed was a formal algebraic capability associated 

with an already existing numerical mathematical language, and FORTRAN 

was the obvious choice. A first complete draft of language specifications 

was prepared in December, 1962; implementation design started shortly 

thereafter. The basic objective of the work was to develop a practical system 

for doing formal mathematical manipulation running under IBSYS/IBJOB 

on the IBM 7090/94. At that time, and for more than 18 months following, 

FORMAC was intended only as an experiment, with no plan to make it 

available outside of IBM. 

In April, 1964 the first complete version was successfully running after 

extensive testing. (It is interesting to note that one of the most significant 

problems run using FORMAC was done by R. G. Tobey as a part of the 

systems test; it is described in Sconzo, LeSchack, and Tobey [SO65].) 

Experimentation with the system started in order to learn its strong and weak 

points. As a result of pressure from numerous people who were interested 

in trying it, and also as a way of obtaining feedback from users that would 

lead to developing better systems in the future, FORMAC was released as 

a Type III program in November, 1964. (This means that it was made avail- 

able to users by individuals (i.e. the authors) in IBM, who were solely 

responsible for the maintenance if any was done; such programs are not 

considered part of normal IBM delivered software.) The 7090/94 version of 

FORMAC received extensive usage, in spite of its avowed experimental 

nature and lack of official status. 

Consideration of language and implementation for the IBM System/360 

started in the fall of 1964, with the intent to provide a better capability, and to 

1 It is hoped that the reader will attribute what might seem like an overly large 

amount of space devoted to this language to my sincere belief in the long range importance 
of this idea rather than to merely personal involvement.



VIL3. FORMAC 475 

associate it with PL/I rather than FORTRAN. The PL/I-FORMAC system 

was released as a Type III, 1.e., contributed library program, in November, 

1967. 

VII.3.2. FUNCTIONAL CHARACTERISTICS OF FORMAC 

The first FORMAC was defined to be an extension of FORTRAN IV 

on the 7090/94, so that all the characteristics associated with FORTRAN 

IV apply to FORMAC. (The standard FORTRAN described in Section 

1V.3 is sufficiently close to FORTRAN IV so that the same comments 

apply.) The following description applies to the “pure FORMAC” part, i.e., 

to the additions. 

FORMAC was designed to look as much like FORTRAN as possible. 

It was aimed specifically (and only) at the class of mathematical problems 

which require large amounts of tedious algebraic manipulation by hand. 

The commands given to the user were relevant only to that problem area 

and, in particular, no attempt was made to provide general list- or string- 

handling capabilities. The anticipated user was not only the existing 

FORTRAN user but also those people with mathematical problems to solve 

who had only slight computer experience to date and for whom FORMAC 

would provide a significant new facility. It was definitely designed for use 

as a batch system, although a subset of FORMAC was made available 

under M.I.T.’s CTSS (see Crisman [ZR65]). A “desk calculator” version 

of FORMAC is described in Bleiweiss et al. [JL66]. 

It was originally felt that FORMAC should be designed to run on both 

the 7040/44 and 7090/94 computers. However, the combination of efficiency 

loss on the 7090 by restricting the instruction set to that of the 7040 and the 

implementation problems inherent in using a particular version of IBSYS, 

made it necessary to drop the idea of 7040 compatibility. The specific 

FORMAC implementation is thus dependent on the 7090, IBSYS/IBJOB, 

and the FORTRAN IV compiler. Because control remained completely 

in the hands of the development group, there were no problems of subsetting 

or extensions. 

With regard to standardization, it is worth noting that I took specific 

pains to avoid this because since FORMAC was the first of its kind and was 

being developed at IBM, it could easily have perpetrated a de facto standard 

on the computing community prematurely. 

The initial language design was done by S. F. Grisoff, R. J. Evey, 

R. G. Tobey, and the author, under the direction of the author. Implemen- 

tation and further language design was done by a group working under 

my general direction, with detailed supervision performed by E. R. Bond. The 

other people most involved in the initial implementation were R. G. Tobey, 

R. J. Evey, M. Auslander, R. Kenney, M. Myszewski, and S. Zilles. The 

main objectives were (1) to develop a practical system running under the



476 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

7090/94 IBSYS and (2) to get the system running as rapidly as possible. 

Maintenance (in the sense of correcting the relatively few bugs which were 

found) was carried on by the development group on an informal unofficial 

basis. 

The official and complete definition of the language is given in the 

manual [IB65c]. Numerous papers have been written about FORMAC; the 

language is described in increasing amounts of detail in Sammet and Bond 

[SM64], Bond et al. [BZ64], and the manual. 

As well as can be determined, the /anguage seems to have met its objec- 

tives; while some minor improvements were needed, the commands chosen 

seemed to fulfill the major needs of the users. Papers and reports describing 

its use are shown in the reference list at the end of the chapter. The biggest 

fault with the 7090/94 FORMAC was the storage or free list problem, 

although this is inherent in the problem and not specifically the fault of 

FORMAC. It is characteristic of this type of mathematical problem that 

expressions require an enormous amount of space, and the most common 

complaint has been that the user ran out of free list. This trouble presumably 

can be corrected by increasing the amount of main storage available. Unfor- 

tunately, the space required for problems tends to go up at an exponential 

rather than linear rate, so doubling the available core does not double the 

overall effectiveness. In fact, I have coined a new version of Parkinson’s 

law, namely “expressions grow to exceed the space available.” Some of the 

problems for which FORMAC has been used are described in articles listed 

in the references at the end of the chapter. 

The original plan in developing a version for the IBM System/360 was 

to (1) define a specific extension of PL/I with a new data type and other 

necessary additions and (2) incorporate the improvements which were shown 

to be needed from experience with the 7090/94 system. A proposal for (1) is 

given in Bond and Cundall [BZ67]. Unfortunately, it became impossible to 

carry out the approach defined there because of time and funding constraints 

and so a somewhat “less clean” language design was developed. It should be 

emphasized that what is involved here is a subtle view of the language defi- 

nition rather than any fundamental lack of capability. The language for the 

running PL/I-FORMAC system is defined in the manual [IB67c]. 

VIT.3.3. TECHNICAL CHARACTERISTICS OF FORMAC? 

The firsts FORMAC was designed as an extension to FORTRAN IV 

and, therefore, retains all the essential characteristics of the FORTRAN 

language form. Because of the method of implementation (a preprocessor 

* Both the 7090/94 (FORTRAN) and System/360 (PL/I) versions are being described. 
Because of the greater familiarity of readers with FORTRAN, more emphasis is given 

to that system. The language in the PL/I version is given with much less explanation.



VII.3. FORMAC 

SAMPLE PROGRAM—PL/I-FORMACt 

477 

  

Problem: Solve the system of differential equations 

d 
it =f (X15 ---5Yn)>s ViO) = Vio 

dx =firl® V1; soe >Yn)s Yn(0) = Yno 

where f;,...,/, are polynomials. The variable data read in are 

1. N—the number of equations 
2. M—the number of iterations requested 
3. YO(1),..., YO(N), the initial values y19, ..., Yno 
4. F(1),..., F(N) as polynomials in the placeholders $X, $Y(1), ..., $Y(N) 

Program: 

GMPP3: PROC OPTIONS( MAIN): 

FORMAC_OPTIONS; 

OPTSETCLINEL ENGTH=72); 

OCL AA CHAR( 158); 

CONVERT FIXED (1-J5eKel)$ 

ON ENDFILE (SYSIN) GO TO END; 

START: PUT PAGEs PUT LISTC"'TIME AT START*): PUT LIST(TIME)D$ 

PUT SKIP(3)3 

GET DATA (N)3 /* # OF EQUATIONS */ 

GET DATA (4); /* # OF ITERATIONS OFSIPED */ 

GET LIST (AA): /® TITLE OF EXAMPLE */ 

PUT LIST (CAA)D$ 

PUT SKIP(2)3 

NO f=1 TO NS 

GET LIST (AA): FORM (AA)D3 7* INETIAL CONDITIONS: AT X=0 Y(T)= 
EXPRESSION = YOULL) */ 

GET LIST (AA); FORM (AA); /* RIGHT SIDE OF 0-€.: F(T) IS A 
FUNCTION OF $Xe$V¥(1) e005 = */ 

PRINT_OUT(F(@E™)sYOC"™L)); 
END; 

CALL IDE; /# COMPUTE APPROXIMATE SOLUTION */ 
PUT SKIP (2); 

00 T=1 TO Ns PRINT_OUT(Y("E"))s END; 
PUT SKIP(2); PUT LISTC*TIME AT END'): PUT LISTC(TIMED; 

GO TO START; 
END: PUT LIST (*END OF JOB"); 
/* */ 
10E: PROC: 

00 I=1 TON; LET CYC*E*)=VOC"E" Ds ENDS 
DO KK=1 TO M; 

DO K=1 TO N3 LET (K="K"); 
/* COMPUTE THE INTEGRAND */ 

LET (CHN =CFCKD)SXeX) D3 
00 I=1 TO Ns LET (CHN ={CHN 9 SYC"E™),YO"E)) 2s ENDS 
LET (Y=EVALICHN 103 

/* THE “TAIL” OF THE INTEGRAL OF Y IS THE SAME */ 
/* AS Y(K), SO THE TAIL OF Y IS THE SAME AS Y(K)* «/ 

LET (YY=EXPAND( X®(Y-DERIVIV(K) 9X0) ) D3 
LET (L=LOWPOW(YY,X) 93 
LET (Y(KD=V(K)*COEFF(YY X*OL)/LOXe® LD: 
END; 

END; 
END IDE; 
END GMPP3; 

T{IB67c], pp. 88, 103 (slightly modified). Reprinted by permission from PL/I FORMAC 
Interpreter. © 1967 by International Business Machines Corporation. 
 



478 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

to the FORTRAN IV compiler), a restriction was imposed that variable 

names could not be the same as, or begin with, a list of reserved words; 

these words also could not be used as subroutine or function names. 

In considering the program structure, a deliberate decision was made 

to keep FORMAC at the same technical level aa FORTRAN. This means 

that no attempt was made to provide features in FORMAC that could just 

as well be (or should have been) provided in FORTRAN; thus, no recursion 

was provided (nor has its absence been any significant handicap). Transmittal 

of FORMAC variables to subroutines is done with an explicit declaration 

(SYMARG) beyond the normal CALL statements. FORMAC and FORTRAN 

statements can be intermingled in the program, and FORTRAN variables 

can appear in FORMAC statements. 

FORMAC was added to various versions of the 7090/94 IBSYS; Ver- 

sion 13 was the last for which this was done. The net result to the user was 

that if he had made no changes to IBSYS, then by merely using the proper 

FORMAC control card he could run FORMAC problems and all other 

normal IBSYS programs within the same system. 

The most significant single element in FORMAC is the addition of the 

FORMAC variable concept to FORTRAN. A FORMAC variable is a 

formal (i.e., algebraic) data variable. This is best illustrated through an 

example: 

Consider the equation y = x? + 3xz. A typical FORTRAN program 

would assign values to x and z and achieve a numerical value for y. Thus, if 

x =3 and z = 5, the FORTRAN program 

X = 3 

Z=5 

Y = X*¥*2 + 3%xXXZ 

would assign the value 54 to Y. However, we might wish to allow the variable 

x to assume a nonnumeric value, say the expression a+ 6. Then a 

FORMAC program would be written as | 

LET X = A +B 

Z 5 

LET Y X*kkK2 + 3*¥X*Z 

and the variable Y would be assigned as the name of the expression 

(A+B)**2 + 15*(A +.B). Note that the key word LET is used to identify 

FORMAC statements and that FORTRAN variables can appear in 

FORMAC statements. 

For each FORTRAN operator there is a corresponding FORMAC 

one; thus for the FORTRAN EXP, there is FACEXP; for SIN, there is added 

FMCSIN, where of course the arguments of the FORMAC operators are 

FORMAC expressions.



VIL3. FORMAC 4/79 

In addition to these, four new operators were added to FORMAC. 

Three of these, namely FMCFAC, FMCDFC, and FMCOMB, represent the 

numeric values for factorial, double factorial, and combinatorial, respec- 

tively; the symbolic form is retained until the user specifies that it should 

be evaluated. Thus, FACFAC(4) would be carried along in that form until 
a request was made in the program to obtain the value (namely 24). The 

fourth operator added to FORMAC is the differentiation operator, written 

FMCDIF(Y, X, N), where Y can be either an expression or the name of an 

expression, X is the variable of differentiation, and N is the degree of differ- 

entiation. It is possible to have several variables and degrees of differentia- 

tion in one set of arguments, thus permitting successive partials to be 

obtained in one statement. 

With regard to arithmetic, FORMAC permits mixed mode, floating 

point, and rational arithmetic but not complex or double-precision arith- 

metic. (The latter two may still be used in FORTRAN statements, of course, 

but no double-precision or complex variable can appear in a FORMAC 

statement.) In my opinion, one of the most notable features of FORMAC 

is its rational arithmetic facility. In FORTRAN compilers, if one adds 

4+ 4 in fixed point arithmetic, the result is zero because truncation is 
performed on each fraction in turn. On the other hand, if 4 + 4 is calculated 
in floating point, the result is naturally 0.666 ...7. Unfortunately, for the 

vast majority of problems that are done in an algebraic manipulation system, 

neither of these alternatives is tolerable. The former gives the wrong answers 

and the latter gives answers which may be correct but are certainly not 

understandable. Thus, for example, if one has coefficients that take on the 

form §, 7, =%, etc., the information in this form is essential to the correct 

solution of the problem and providing the floating point equivalent of these 

will not convey the appropriate information. (If one wished to evaluate 

T+x+ x?/2! + x3/3! + x'/4! + ---, one would obtain the following 

result by using floating point: / + x + 0.5x° + 0.16666667x°* + 0.04166667x* 
+ -.--. This is correct but meaningless.) For that reason, if all the quantities 

in an expression—both variables and constants—are fixed point, the calcu- 

lation performed in FORMAC (by the automatic simplification routine) will 

be done in precise arithmetic, using rational numbers where necessary. 

Thus 2 + 4 will yield § as a result. Some people have actually used FORMAC 
primarily to obtain the capability of doing the rational arithmetic. 

Within a FORMAC sstatement, variables (both FORMAC and 

FORTRAN) can be either fixed or floating point. If all the variables and 

constants on the right side are in fixed point, then any necessary calculation 

is done in rational arithmetic; if at least one variable or number on the right 

side is floating point, then the entire computation is done in floating point, 

on the grounds that the absolute accuracy has been lost. Any numbers 

created on the right-hand side (which will occur as a result of automatic 

simplification) will be converted to the mode of the variable named on the left.



480 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

A complete list of executable statements, showing their format and 

an example, is shown in Figure VII-1. Hence only a brief description will be 

given here. 

The basic assignment statement in FORMAC is obtained by merely 

writing the key word LET before the variable on the left-hand side, e.g., 

LET Y = A + BxC. The actual execution is to assign Y as the name of the 

expression obtained by carrying out the indicated operations on the right. 

The system knows that it is to perform the formal algebraic manipulation 

by the existence of the word LET on the left-hand side; the variables on the 

right-hand side are known to be FORMAC variables through either explicit 

declaration as ATOMIC (meaning the variable stands only for itself), or as 

the variable on the left-hand side of a previous FORMAC statement. All 

other variables are assumed to be FORTRAN variables which must, of 

course, have a numeric value currently assigned. The rules for conversion 

were indicated above. 

The sequence control statements are exactly—and only—those of FOR- 

TRAN; no others were added. 

There are three classes of executable commands: Those yielding FOR- 

MAC variables as results, those yielding FORTRAN variables, and mis- 

cellaneous commands. In the first category are 

LET Constructs specified expressions; it is the algebraic 
equivalent to the normal assignment statement in 

FORTRAN. 

SUBST Replaces a variable with an expression. 

EXPAND Removes all parentheses by applying the multinomial 

and distributive laws. 

COEFF Obtains the coefficient of a variable or a variable to 

a power. 

PART Separates expressions into terms, factors, exponents, 

etc. 

The following statements yield FORTRAN variables: the first two 

create FORTRAN numeric variables, and the second two create FORTRAN 

logical variables. 

EVAL Evaluates an expression for specific numerical values. 

CENSUS Counts words, terms, or factors. 

MATCH Compares two expressions for equivalence or identity. 

FIND Determines dependence relations and/or whether a 

particular variable appears in an expression.



  

ALGCON 

algcon-statement := LET let-var = ALGCON ftn-num-var, ftn-fxd-var 

Example: 
  

If ARRAY is (LI)JA + B* I— 

(2)|—F MCDIF 
  

  

        
(3)1( X ,X,1 

(4)|) $ 
then ATOMIC A, B 

J=0 

LET | = EVAL (A -+ B), (A, 3), (B, 1) 

10 LET Y = ALGCON ARRAY (1), J 

results in Y —> A + Bx4, —1. 

J = non-zero value 

If a second expression began after the $, then returning to execute statement 

10 would convert the next expression since J has a non-zero value. 

AUTSIM 

QINT 

. QNUM 
f -stat := autsim-statement AUTSIM QNINT 

ON 

Example: 

ATOMIC X, Y, B 

[| = 3 

LET A = 1 + 4 + IX] + FMCSIN(Y)XFMCFAC(I) -+- FMCDFC(B)**! 

If an autsim-statement has not been executed prior to the execution of the 

above let-statement, or if the last autsim-statement executed was 

AUTSIM QNINT 

then the result of the above let-statement is 

A — 34. + FMCSIN(Y)*6. + FMCDFC(B)x*3. 

If the last autsim-statement executed was 

AUTSIM ON 

the above let-statement results in 

A--> 7. + 3.%*3. + FMCSIN(Y)*FMCFAC(3.) + FMCDFC(B)**3. 

BCDCON 

bedcon-statement : = LET ftn-num-vor = BCDCON fmc-exp, ftn-fxd-var, fxd-num 

fxd-num > = {rece 
fxd-cons 

Example: 

ATOMIC AB, BC, X 

DIMENSION LIST (4) 

LET R == ABXBC + FMCSIN(X)*FMCCOS(X) + 4.3 

Q = 0. 

LET Q = BCDCON PR, LIST, 4 

Figure. VIH-I. (cont. next page) 

481



Figure VII-1. (cont.) 

  

would result in LIST (1) binary 16] FORTRAN fixed point value 

(2)|A B* BC +] in binary as opposed to BCD 

GB)|FMCSIN 

(4) (X)* BB 

Q + 0. (there is more to do). 

Upon re-entry to BCDCON with Q@ = 0. the translation continues; and now 

LIST (1) 14 

Q)|FMCCOS 
(3)|/(X ) +4. 

(4)(3$ BERS 

Q = 0. (translation complete). 
Note that $ is inserted as the last character of every expression which is translated by 

BCDCON. This is necessary in case the expression is to be read by the ALGCON routine. 

  

  

        

  

  

  

        

CENSUS 

WORD 

census-statement := LET ftn-fxd-var = CENSUS let-var, < TERM 

FACT 

Example: 

ATOMIC A, B, C 

LET Z = A+ B 

LET M = CENSUS Z, TERM 

results in M = 2 

LET M = CENSUS Z, FACT 

results in M 1 

LET M = CENSUS WORD 

results in M 4 | 
N
I
 

COEFF 

coeff-statement : = 

ftn-flt-var} LET fet- = fmc-exp, - ' T let-var COEFF fmc-exp, seek-var Et ftn-filt-vary, fiectt-vers} 

Example: 

LET B = AXXX%2 + CXX**4.2 + BRKX¥X3.1 

LET Z = COEFF B, X**2, R 

results in Z — A 
R = 3.1 

ERASE 

erase-statement:— ERASE let-var {, let-var} ... 

Example: 

ERASE MAS, EOJ, A, X(4), M(3) 

where MAS, EOJ, A, X, M are all let variables 

results in MAS, EOJ, A, X(4), and M(3) all being erased 
EVAL 

eval-statement : = 

LET ftn-num-var = EVAL fmc-expo [ i aram-label max 9 {, Peram-lovel) 
param-list 

param-list := (seek-var, fmc-exp1) {, (seek-var, fmc-exp2)} ... 
(i.e., exactly the same as in the subst-statement) 

482



Example: 

Ri = —.5 

LET A = B(1)*¥X + B(1)*(Y*X*X—1.) 

LET R = X—4. 

LET IANS(5) = EVAL A + R, (B(1),2), (X,ABSF(RI)), (Y,3) 

After substitution A + R is 2.*(.5) + 2.*3.*%*—1. + .5—4. the floating point 

arithmetic yields 1. + 2.*3.*%*—1. + .5 — 4. = —1.8333, etc., but IANB (5) is fixed 

point mode and therefore IANS (5) = —1 

EXPAND 

expand-statement := LET let-var = EXPAND fmc-exp [, CODEM] 

Example: 

ATOMIC A,B,C,D 

LET R = EXPAND(A + B)**2 + AX*(C—D) 

results in R —> AXk*2, + A*B*X2. + B*¥*2. + AXC—AX*D 

FIND 

find-statement : = 

LET ftn-log-var = FIND fmc-exp, {pee , {one} , (seek-vor {, seek-var} ...) 

Example: 

ATOMIC B, C, D, F, X, Y, R(10) 

LET A=>=B+C + D—F 

LET Q = FIND A, APP, ALL, (B,C,D,F,G) 

results in Q —> .FALSE. 

whereas 

LET Q = FIND A, APP, ONE, (B,C,D,F,G) 

results inQ —> .TRUE. 

LET 

let-statement : = LET let-var fmc-exp 

Example: 

ATOMIC Z 

N= 4 

LET C = (M + Z)*®*(1/2) 
results in C —> (4. + Z)*%*(.5) 

MATCH 

match-statement : = 

LET ftn-log-vor = MATCH te 
EQ sinctt-numy* fmc-exp}, fac-exp2 

Figure VIH-1. (cont. next page) 

483



Figure VII-I. (cont.) 

Example: 

ATOMIC A, B 

LOGICAL Q 

LET X = (A + B)**2 

LET Y = A®k2 + 2*%AXB + BXX2 

LET @ = MATCH ID, X, Y 

results in Q = .FALSE. 

LET Q = MATCH EQ, .OOI, X, Y 

results in Q@ = .TRUE. 

ORDER 

order-statement =- 
INC FUL 

LET let-var = ORDER fmc-exp, {pect , {rer 

, (seek-vari {, seek-varj}), (seek-varj {, seek-varj}) 

, (seek-var; {, seek-var;}) 

» (seek-var; {, seek-var;}) 

Example: 

LET Z = ORDER X¥®3 + X¥*2KZ%K2 + YRX*3, INC, FUL, (X) 

results in Z -—> 3*®X ++ 2®X*¥k2kZ + X*kkZKY 

PART 

part-statement := LET let-var; = PART let-var2, ftn-fxd-var 

Example: 

LET X = (A + B) + C 

LET ANS = PART X, M 

results in ANS -—> A 

X—B+C 

M = 4 

SUBST 

subst-statement := 

LET let-var = SUBST fmc-expo, { . 
poram-list 

poram-list := (seek-var, fmc-exp;) {, (seek-var, fmc-exp2)} ... 

param-label max 9 {, porom-lovel)} 

Example: 

LET A = B + 3xC 

M = 4 

LET Z = SUBST A, (B, M), (C, FMCDIF(X**2, X, 1)) 

results in Z —> X*6. + 4. 

  

Figure VII-1. 7090/94 FORMAC verb formats with examples. The general 

notation is the COBOL metalanguage described in Section II.6.2. 
Source: [IB65Sc], extracts from pp. 141-184. Reprinted by permission from 
FORMAC (Operating and User’s Preliminary Reference Manual). © 1964 

by International Business Machines Corporation. 

484



VII.3. FORMAC 485 

The following commands are miscellaneous. 

BCDCON Convert to BCD form from the internal representation. 

ALGCON Convert to the internal representation from a BCD 

form. 

AUTSIM Control type and amount of arithmetic done during 
automatic simplification. 

ERASE Eliminate expressions no longer needed. 

ORDER Specify sequencing of variables within expressions 

(for output editing purposes). 

FMCDMP Symbolic dump. 

The actual format for writing most of these is with a LET on the left- 

hand side and the command on the right, e.g., 

LET Y = SUBST Xx*2 + Z, (X, A+B) 

which would yield Y as the name of the expression (A+B)**2 + Z. 
Note that there are no separate input/output statements in FORMAC. 

The FORTRAN READ and WRITE are used with the FORMAC ALGCON 

and BCDCON, respectively, to convert to and from the standard BCD format 

and the FORMAC internal representation. 

Although a discussion of algebraic simplification is not within the 

scope of this chapter, the apparent absence of a command for this might 

cause confusion. FORMAC’s approach to the problem is to have a routine 

which is invoked automatically by the system after each executable com- 

mand. This routine eliminates zeros and ones, combines like terms and 
products, and performs a few other transformations. Control of parentheses 

removal and limited factoring is left to the user with the EXPAND and COEFF 

commands, respectively. The types and amount of arithmetic done during 

the automatic simplification are controlled by the AUTSIM command. 

Library references are made through regular CALL statements. A com- 

mand called FMCDMP permits dumps to be taken either at the point when 

it is invoked or automatically whenever an error occurs (if the programmer 

so requests). The only other debugging facilities are inherent in the error 

checking done by the individual commands themselves. 

Most of the storage allocation is done automatically by the system, by 

putting expressions on and removing them from the free list. If there is 

insufficient memory to execute a particular command, the system will auto- 

matically put out on tape any expressions not needed for that particular 

execution and will automatically see that they are brought back. The user 

has no concern with, nor any control over, this. The ERASE command permits 

the user to remove from storage any expressions which he no longer needs, 

thus making more space available. 
There are four declarations in FORMAC.



486 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

ATOMIC Declare those variables which represent only themselves. 

DEPEND Declare an implicit dependence relationship between 

atomic variables. 

PARAM Specify pairs to be used with SUBST or EVAL. 

SYMARG Declare subroutine arguments as FORMAC variables 

and flag program beginning. 

Since FORMAC was designed for a specific purpose, with an objective 

of rapid implementation, it is not surprising that it provides no capabilities 

for self-extension, self-modification, nor any real use outside its primary 

application area. Two trivial places in which another use has been demon- 

strated are proving formulas by mathematical induction and verifying steps 

in a mathematical derivation. The former was illustrated in Sammet and 

Bond [SM64] and the latter was suggested by N. Rochester.? 

The language was designed to make it easily translatable by a prepro- 

cessor to FORTRAN IV. In particular, the key word LET and certain other 

restrictions were placed on the language to make it possible to translate 

FORMAC programs to legal FORTRAN programs without redoing a 

major portion of the FORTRAN compilation. 

The primary debugging aid is the FACDMP command, and there are also 

a large number of diagnostic messages both at compile and object time. 

In PL/I-FORMAC on System/360, many of the same principles were 

continued, with changes made both to accommodate the structure and flavor 

of PL/I and to incorporate improvements suggested by the first system. It is 

assumed that the reader is familiar with PL/I (see Section VIII.4). The main 

language limitation of the PL/I version over the FORTRAN version is the 

inability to use PL/I variables in FORMAC statements without putting 

quote marks around them. However, some of the FORMAC macros can be 

used in PL/I statements which is an added convenience. 

FORMAC statements can of course be included in a sequence of PL/I 

statements. Most of the statements in the FORTRAN version are expressed 

as functions in the PL/I version. 

FORMAC variables have the same rules for naming as PL/I variables 

do except that the former may not contain more than eight characters and 

may not contain the underscore character __. There are many reserved 

words in FORMAC, and they cannot be used for data names. There can be 

up to four subscripts; a subscript may be any FORMAC variable or expres- 

sion which is or evaluates to an integer. No dimension information is required. 

In addition to fixed and floating point constants, rational number and 

systems constants are permitted. The latter are designated by #E, #P, and 

#| representing, respectively, the natural logarithm base, z, and »/—1. 
FORMAC variables are considered atomic or assigned, but there is no 

3 Private communication.



V1I.3. FORMAC 487 

specific declaration required. The user may—if he wishes—change an assign- 

ed variable to an atomic one at object time by using ATOMIZE. 

A notation for specifying functional forms is defined, using an array of 

atomic elements. This notation can be used to define the form of partial 

derivatives and to evaluate functions. 

The basic assignment statement is denoted by the key word LET, followed 

by any number of FORMAC statements, all enclosed in parentheses. Each 

assigned variable on the right-hand side is replaced by its value, thus causing 

the evaluation of the given expression. The statement 

LET (A =B+C; B =X x* Y;B =A + B;) 

causes the variable B to be assigned the value B+C+XxY. 

FORMAC expressions are written in essentially the same way as PL/I 

expressions, and they can contain a number of specific FORMAC functions. 

The major FORMAC capabilities are functions, which can have an 

arbitrary degree of nesting. They are divided into the following categories. 

User control of simplification 

MULT (expr) Expands all sums in expr to positive integral 

powers, using the multinomial law. The combina- 

torials can be evaluated or left in symbolic form 

at the choice of the user. 

DIST (expr) Applies the distributive law to all products of 
sums in expr. DIST does not apply the multi- 

nomial law, so integral powers of sums are left 

unchanged. 

EXPAND (expr) Applies both the multinomial and distributive 
laws to expr. 

CODEM (expr) Rewrites expr to place everything over a common 

denominator. Subexpressions are also placed 

over a common denominator. 

FRACTN (expr) Same as CODEM except that only the outermost 

level is affected. 

Substitution 

EVAL (expr, a1, 67, a2, b2, -.-, Gn, bn) 

Each occurrence of a; in expr is replaced by b;. This replace- 

ment is made in parallel for each qj. 

REPLACE (expr, a7, 61, a2, b2,.--1 Gnr bn) 

Each occurrence of a; in expr is replaced by b;. Then each 

occurrence of az is replaced by bo, etc. Thus the replacement 

is sequential rather than simultaneous.



488 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

Differentiation 

DERIV (expr, v1, M1, V2, M2, - ++) Ym» Mm) 
The result is the partial derivative of expr as follows: 

rT 

where n= ) Nn, 

t=1 

DRV (fnen-var).(arg1, ..-, argm), $(1), mi, $(2), no, .--, $(r), m) 
Causes differentiation of unspecified functions with respect 

to arguments. 

DIFF (fncn-var) = CHAIN (expr-], expr-2, ..., expr-n) 
DIFF is a pseudovariable which assumes fpnen-var is an 

unspecified function of n variables. The expr-i are assigned 

as the values of the first partial derivatives of fnen-var. (This 

latter concept is described on page 489.) 

o” 

dv™ dum... Quer EXPE 
  

Expression analysis 

COEFF (expr-], expr-2) Returns the coefficient of expr-] in 

expr-2, considering only the top level 

of expr-1. 

HIGHPOW (expr-], expr-2) Returns the highest power of expr-] 

In expr-2. 

LOWPOW (expr-I, expr-2) Returns the lowest power of expr-] 
in expr-2. 

NUM (expr) Returns the numerator if expr is a 
fraction, and expr if it is not. 

DENOM (expr) Returns the denominator if expr is 
a fraction and 1 if it is not. 

LOP, NARGS, and ARG_ provide 

information about the expression 

named by var, based on the internal 

representation. 

LOP (var) 
NARGS (var) 
ARG (n, expr) 

Storage allocation 

SAVE (vari; var2; ... ; Varn) 

The expressions named by var; are moved from main storage 

to secondary storage. If referenced in the program, they will 

be brought back automatically and then must be reSAVEd. 

ATOMIZE (var); var2; ... 3 Varn) 
The var; become atomic and the space used by the expres- 

sions they name is released.



V1.3. FORMAC 489 

Output 

PRINT_OUT (vor); vor2; ... ; vara) 

The indicated variables are printed out, each on a separate 

line. In addition to the format shown, an assignment statement 

without the LET can be used, e.g., 

PRINT_OUT (A = B + C; D = SIN (X); ANS) 

The functions provided in FORMAC fall into the following categories. 

Mathematical 

SIN, COS, SINH, COSH, ATAN ATANH, LOG, LOGIO, LOG2, ERF, EXP, 

SQRT, SIND, COSD, TAN, TAND, TANH, ATAND, ERFC 

Integer-valued 

FAC (n) Factorial. 

COMB (n, ny no... Mm) Combinatorial. 

STEP (expr-], expr-2, expr-3) Has the value | if expr-1 < expr-2 

< expr-3 and 0 otherwise. 

User-defined 

FNC(F) = expr ($(1), $(2), ..-, $(n)) 
The $(i) represent the formal parameters in the expression. 

Function variables 

By using a dot after the function name (1.e., fnen-var), an undefined 

function of the given variables can be used, e.g., FNCNAM.(A+B,A—B). 

FORMAC variables may be assigned a sequence (or chain) of FOR- 

MAC expressions by writing 

CHAIN (var;, var2, ..., VOrn) 

This is useful in creating argument lists for FORMAC functions and rou- 

tines. 

A number of options can be specified by the user, using an OPSET 

statement. These provide control over certain aspects of automatic sim- 

plification and output editing. 

FORMAC and PL/I variables can each be transformed (and used in 

the other part of the program) in several ways. A PL/I variable enclosed 

within double quotation marks can be used in LET, PRINT__OUT, and SAVE,



490 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

and expressions. A PL/I variable can be used on the left side of a LET state- 

ment if it is a character string variable; executing the statement assigns the 

resulting FORMAC expression as the value of the PL/I variable. 

Writing CHAREX (var = variable), where var must be a PL/I varying 

character string, assigns to var the character string value of the FORMAC 

variable. 

Writing CONVERT FIXED (x1; ... ; Xn) FLOAT (y1;..-;ym) Where the 
x; and y; are unsubscripted PL/I variables, causes assignment of the value 

of FORMAC expression (which must be numeric) to the specified variable 

whenever the latter appears (within quotes) on the left-hand side of a FOR- 

MAC assignment statement. If the variable appears within quotes on the 

right-hand side, the conversion is made from PL/I to FORMAC. The words 

FIXED and FLOAT actually refer to the conversions which will take place. 

Using the functions INTEGER and ARITH, each followed by a FORMAC 

variable name enclosed in parentheses, causes the numeric evaluation of the 

expression with that name and its return in fixed point binary or double- 

precision floating point, respectively. This provides the mechanism for 

evaluating an expression and using the numeric result in a PL/I statement. 

There are several macros which can appear in PL/I statements. In par- 

ticular, it is possible to write 

IF IDENT(A;B) THEN LET (C = D + &;) 

The other macros permitted are ARITH, INTEGER, LOP, and NARGS, each 

of which requires a single FORMAC variable as an argument. 

VII.3.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

There appear to be five main contributions of FORMAC to the tech- 

nology. The first is that it introduced the concept of adding this type of 

facility as a language to an existing language used for numerical scientific 

problems. In my opinion, this is actually the most significant contribution. 

Second is the fact that it showed that a practical system could be developed 

to do formal algebraic manipulation on the computer, and could be easily 

learned and used to solve specific analytic problems arising in the course 

of engineering and mathematical work. The third contribution is that it 

demonstrated quite clearly that the amount of storage is a limiting factor 

in the problems which can be solved and that this is much more of a limita- 

tion than slow running time. Very few FORMAC problems had to be stopped 

because they were taking too long to run, but a number could not be com- 

pleted because of lack of storage. A fourth contribution is the development 

of a reasonable algorithm for doing automatic simplification. 

A fifth and more subtle contribution to the technology is that FORMAC



VII.4. MATHLAB 491 

will help steer people away from numerical analysis and back to analytic 

solution of problems. 

Vil.4. MATHLAB 

VII.4.1. History op MATHLAB 

MATHLAB is a system started by C. Engelman (MITRE) in 1964 

and developed by him and a few summer employees. There has been very 

little attempt to do anything other than experiment with the system within 

the company and make improvements as time and manpower permit. It is 

continually undergoing development, and some of the information about 

the new system 1s indicated after the language description of the first one. 

MATHLAB has run under the AN/FSQ-32 time-sharing system at 

SDC, on the IBM 7030 (STRETCH) at MITRE and on CTSS (see Crisman 

[ZR65]) at Project MAC. 

The first version of MATHLAB has been replaced by a new system 

referred to as MATHLAB 68 when a distinction is necessary. Because the 

new system did not become operational until the fall of 1967, most of the 

following description pertains to the first version. 

VII.4.2. FUNCTIONAL CHARACTERISTICS OF MATHLAB 

The first language was fairly simple, with an unusual mixture of succinct- 

ness and naturalness as can be seen in Figure VII-2. For example, one com- 

mand was pleasesimplify (x y) which 1s fairly clear, whereas the command 

factor ((x y...)) iS not intuitively obvious because of certain precedence 
relations. Thus the language tended to be slightly inconsistent in style, 

although certainly not in content. There was a strong tendency toward 

English-like language in the output, where the system typed such messages 

as THANKS FOR THE EXPRESSION or ARE YOU FAMILIAR WITH THE FORMAT 

FOR TEACHING ME2?. 

The application area is mathematics, and the stated objective is to 

provide on-line facilities for mechanical operations such as addition of 

expressions and equations, substitution, differentiation, integration, and 

Laplace transforms, etc. Only a typewriter was used for input/output. 

The language was definitely a problem-solving, hardware language, with 

the user a novice or perhaps nonprogrammer. Although the user of 

MATHLAB can be completely unaware of it, the system was coded in LISP 

(see Section VI.5) and actually invoked LISP for the execution of all its 

facilities. 

Since the system was running on three machines, there was a compati-



492 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

DIFFERENTIAT#(Z T DZ) 
(I DO NOT KNOW THE DERIVATIVE OF ARCSIN . DO YOU) 

YES 
CARE YOu FAMILIAR WITH THE FOR“AT FOR TEACHING ME) 

NO 
(PLEASE IMITATE THE FOLLOWING EXAMPLE) 

ARCTAN , 
X 
17h + X12) , 

30 
ARCSIN, 

9 

I/SORTC1-Ut2), 
CTHANK YOU) 

!USERS 

$ 7 USERS, 
" DZ = PI*SORT CARCSIN (PI¥T)) + 1/2ePIt2*T/CSQRT CARCSIN CPI*T))*SQRT 

C1 - (PI*¥T) -2)) 

RAISECZ 2 Z2) 
Z2 = (CPI*TKSQRT CARCSIN CPI*T))) 12 

EXPAND(CT)) 
CSIMPLIFY) 

PLEASESIMPLIFY(Z2 Z2) 

Z2 = PI t2*xTt2*ARCSIN (CPI*T) 

NEWNAMECDIFFERENTIATE DIFF) 
(SORRY THE NAME DIFF IS ALREADY TAKEN) 

PRINT NEWNAME *EVQ *EVALQT *TEVALQT 
NEWNAMECDIFFERENTIATE D) 
OK 

D(Z2 T DZ2) 
DZ2 = 2HPIT2Z*TKARCSIN (PI*¥T) + PIT3*TT2/SQRT (C1 - PIt2*Tt2) 

DENOTE NIL 
CUBE = (A + B13, 

(THANKS FOR THE EXPRESSION CUBE) 
NEWNAMECPLEASESIMPLIFY PS) 
OK 

PS"PS(CUBE CUBE) 
CUBE = (CA + B) 43 

EXPAND( CA) ) 
(SIMPLIFY) 

PS(CUBE NEWCUBE)- 
NEWCUBE = AT3 + 3*AT2*B + 3*A*BTt2 + 3t3 

Figure VII-2. Example of use of MATHLAB on the AN/FSQ-32. 
Source: Part of actual console session. 

bility problem, which really reduced to the compatibility of the LISP systems 

which were available on the three different machines, and to the differences 

in input hardware. 

Since this was basically a system under continuing development and tight 

control, with no users, there was no problem of subsets or extensions. Dialects 

existed because of the compatibility problems.



VlI.4. MATHLAB 493 

The language was designed by a single person, assisted by a few others, 

who maintained tight control over it. The definition is simply given in English. 

The primary documentation of the first system is the first two papers listed 

in the references at the end of this chapter. 

There has not been enough use to evaluate the language in either version. 

VII.4.3. TECHNICAL CHARACTERISTICS OF MATHLAB 

The character set consisted of the 26 letters, 10 digits, and the following 

symbols: 

+ — x f/f t ( ), = blank 

(Where the input keyboard did not contain the up arrow, t¢, then **« was 

used instead.) 

Names of symbolic variables consist of a letter followed by letters 

and/or digits; no limit on length was stated. No subscripting or qualification 

was allowed. Variable names could be the same as the fixed commands of the 

system. Numeric literals were used without any special delimiter. Blanks 

were significant. The comma was the main punctuation character and was 

used to separate functional arguments and also to delimit an individual data 

item, e.g., an expression (which could itself be quite complicated). There 

were no noise words permitted as input, but the system typed out a number 

of polite but logically unnecessary words, e.g., THANKS ... . 

The input was from an on-line keyboard, with a number of commands 

defined as English words followed by parenthetical information to provide 

the parameters. 

The structure of the program was quite primitive. There were a few decla- 

rations (which really had the effect of deferred commands; 1.e., they caused 

something to happen but not until sometime later in the execution). There were 

a number of single executable commands, but they could not be combined. 

There were no loops or subroutines or functions in the normal sense. It was 

possible to name objects and have the system remember the name and 

retrieve the object when the name was given. The primary interaction with the 

environment was through the normal commands of whichever time-sharing 

system was being used. In essence, the system operated on a line-by-line basis 

rather than as a stored program, with all the attendant advantages and 

disadvantages. 

The main delimiters for the commands and declarations were commas 

and carriage returns. Declarations were intermingled with the executable 

commands as needed. 

The only individual data variable type permitted was formal (i.e., alge- 

braic). However, these could be combined to form expressions, equations, or



494 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

functions. Each of these could be named and could generally be transformed 

from one type into the other. This is one of the most interesting facilities 

in the system. There were no arithmetic or Boolean (or any other kind of) 

variables. The arithmetic done was only that available in the LISP system and 

in the automatic simplification routine being used. The former permits 

(only) rational numbers. 

The assignment statement was written in the form 

DENOTE NIL 

A=B + C,, 

which assigns to the formal expression B + C the name A; conversely the 

variable A has the value B + C. If we now write 

DENOTE NIL 

B= D + 2,, 

then B has the value D + 2 but A still has the valueB + C. (The first comma 

delimits the equation while the second indicates that there are no more 

equations.) 
There was no alphanumeric data handling. Since this system was designed 

to operate essentially on a line-by-line basis, there were no control transfers, 

no conditional or loop-control statements, and no error condition statements. 

The available algebraic expression manipulation statements were as 

follows: 

An equation was named and defined by writing two equals signs. For 

example 

$2 == Tt2 = At2 + Bft2,, 

defines an equation 7? = A? + B? whose name is S. 

Arithmetic commands on algebraic items 

ADD ((Q7 Q2 ... Qn) NAME) 
The Qi could be equations, functions, expressions, or numbers. 

Equations were added by adding left and right sides independ- 

ently. If expressions, functions, and/or numbers were to be 

added to equations, the first three were added to both sides of 

the equation. The result was given the NAME. Using the A and 

S from the example above, ADD ((A S$) ANS) would produce 
(ANS)B+C+Tt2=B+CH+AtT2 + Bt2



Vil.4. MATHLAB 

MULTIPLY ((Q7 ... Qn) NAME) 
Similar to addition 

SUBTRACT (X Y NAME) 

The X and Y could be equations, functions, expressions, or 

numbers. 

DIVISION (X Y NAME) 

Similar to subtraction. 

RAISE (X Y NAME) 
Defined by NAME = XY 

NEGATIVE (X Y) 
Defined by Y = —X 

INVERT (X Y) 
Defined by Y = 1/X 

Commands involving simplification 

PLEASESIMPLIFY (X Y) 

This command simplified (using a particular routine developed 

at Stanford University) the expression X and named it Y. The 

action of this command could be affected by the next two 

commands. 

EXPAND ((XI X2... Xn)) 
This produced no immediate result, but in succeeding simpli- 

fications whenever one of the Xi occurred in a product of sums, 

that product was multiplied out. 

FACTOR ((XI X2... Xn)) 
This produced no immediate result, but in succeeding simpli- 

fications it caused the collection of all terms which contain X] 

ora power of X17 as a factor, then collection of terms involving 

X2 or a power of X2, etc. Thus X1*X2 + X12 + 2*X2 + 

X2%xC would be simplified to X1*(X2+X1) + X2*(2+C). 

Commands involving changing of algebraic items 

FLIP (X Y) 

Y becomes the name of the equation X with the left and right 

sides interchanged. 

495



496 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

MAKEEQUATION (X Y) 
An equation is formed with the name Y; the left side 1s X and 
the right side is the value of X. For example, 

DENOTE NIL 

A=B + C,, 

MAKEEQUATION (A R) 

caused the computer to respond 

(R)A=B+C 

where there is now an equation named R. 

MAKEEXPRESSION (E) 
E must be an equation whose left side is a single word. This 

command created an expression whose name is the left side of 

E and whose value is the right side. Thus, using the informa- 

tion above, 

MAKEEXPRESSION (R) 

would result in 

A=B+C 

which is where we started. 

MAKEFUNCTION (E) 

This applied to an equation E whose left side was of the form 

F(X1, X2,...,Xn) where each Xi was a single word. A new func- 

tion F was formed whose dummy variable list was (XI X2 .. . Xn) 

and whose value was the right side of E. 

Higher level commands 

DIFFERENTIATE (Y X Z) 

This differentiated Y with respect to X and called the result Z. 

LEARNDERIVATIVE 

The user defined for the system the derivative of a new function.



VI1I.4. MATHLAB 497 

INTEGRATE (X Y 2Z) 

This integrated X over Y and called the result Z. X must be a 

rational function of Y, with rational numeric coefficients. 

SOLVE (E X) 
This command required that the equation E be rational (but 

it could have symbolic coefficients) in X and be really (although 

not necessarily explicitly) quadratic or linear in X. 

System commands and miscellaneous 

RENAME (X Y) 
The name Y was assigned to the item which had the name x. 

NEWNAME (A 8B) 
This allowed the use of the command name B in place of the 

command name A. For example, instead of writing INTEGRATE, 

the user could say NEWNAME (INTEGRATE 1), which would cause 
| (A B C) to have the same meaning as INTEGRATE (A B C). 

REPEAT (X) 
This command printed out X. (It is useful when the programmer 

has forgotten what he typed or created earlier.) For example, 

using the earlier information, REPEAT A causes A=B+C to be 

printed out. 

FORGET (xX) 
This deleted the item X from storage. 

SUBSTITUTE ((XI X2... Xn) V W) 
The Xi must be a list of names of expressions and/or functions. 

The value of each Xi was substituted in V at each occurrence of 

the name Vi. The new equation, expression, or function was 

named W. For example, 

DENOTE NIL 

A=B+(C, 

B=D + 2,, 

SUBSTITUTE ((B) A M) 

results in 

M=D+2+C



498 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

There is considerable dialogue with the system as can be seen from 

Figure VII-2. Much of the information typed by the system is not required 

logically. 

The system just described is considered “dead” by its developer. It has 

been replaced by a new system, referred to as MATHLAB 68 when a dis- 

tinction is necessary, which started operating in the fall of 1967 on a PDP-6 

with a 256K core memory.’ Input and output are by means of a teletype- 

like keyboard with a fixed character display scope. It still employs linear 

FORTRAN-like typewriter input for expressions. 

Among the features of the old system which have been deleted are the 

excess verbiage, the restriction of input format caused by the old system’s 

direct conversation with LISP, the restriction of stored data to those stored 

by name, and the restriction of references to data to references by name. 

References by name and value can now be freely mixed within any instruc- 

tion. 

The character set consists of the 26 upper-case letters, 10 digits, and the 

following symbols: 

+ — « / ( ) , = 3: ' §$ blank 

The variables and function names of MATHLAB are LISP atoms, and 

the rules for constructing them are precisely the rules for constructing LISP 

atoms in whichever LISP system MATHLAB is embedded. 

The only numbers permitted for input/output are integers, but the 

internal arithmetic is rational. : 

The $ is used to terminate all input statements. 

The : is used to store an expression or equation by name, e.g., 

V:X + Y $ and to specify the definition of a function, e.g., F(Z) : Z**2$. 

Blanks are significant. 

The ' is used to evaluate symbols which are the names of stored data 

and to evaluate functions. Using the assignments of V and F above, 

F(V) evaluates to —F(V) 
F('V) evaluates to F(X+Y) 
'F(V) evaluates to So 
'F(V) evaluatesto  (X+Y)? 

Another use of the evaluation or unquote symbol, ', is to distinguish 

between formal and active references to the commands. This distinction is 

illustrated in later examples. 

Again assuming V as above and assuming, furthermore, that the formal 

4 The description of this new system is based on a private communication from 

C. Engelman and is included with his permission.



VII.4. MATHLAB 499 

SAMPLE PROGRAM—MATHLAB 68 

  

Problem: Given a random variable u with probability density f(u) defined by: 

pw = fas U-(H) I y—sysucytsy 

0 elsewhere 

We define a random variable p by: 

u— (1—r)x 

bu —x)+x-+ax u>x 

The problem is to find the value of a such that the expectation of p is maximized 
when x = y. 

Program: 

P1:(U—(1 —R)*X)/R+A&X$ 

U — (1 — R)X 

P2:B%x(U—X)+X+A*X$ 

B(U — X) + X + AxX 

F(U):3/(4*S*Y)*(1 —((U—Y)/(S*Y))**2$ 

3 U-Y 2 
WS (U): ~-——(1 —(--—)) 

ASKY SxY 

ALIAS SUBSTITUTE SUB$ 

DEFINT(EXPR,X,A,B):''(’SUB(B,X,INT:' INTEGRATE(EXPR,X))-’SUB(A,X,'INT))$ 

WS(EXPR,X,A,B) : "SUBSTITUTE(B,X,INT : INTEGRATE(EXPR,X)) 
—'SUBSTITUTE(A,X,'INT) | 

‘SOLVE('SUB(Y,X,’DERIV('DEFINT('P1*'F(U),U, Y —SxY,X)+'DEFINT('P2x'F(U),U,X,Y +S*Y), 
X)}=0,A)$ 

THE ROOTS ARE 

(B — 2)R + 1 

MLl: momo occ 

2R 

ONCE 

FINISHED 

Comments: 

The command “integrate” in MATHLAB computes indefinite integrals. 
This was used, after introducing the initial data, to define the definite integral as 

a MATHLAB function. After that, the problem can be posed in one instruction. 

In the program, the lines typed by the user end with $ and the others are the 

computer response. 
 



500 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

variables V and Y have not been declared dependent upon X, 

DV 
DX 

DERIV('V,X) evaluates to 5 (Y+X) 

'‘DERIV(V,X) evaluatesto 0 
‘DERIV('V,X) evaluates to 1 

DERIV(V,X) evaluates to 

The result of any computation, whether assigned a name by the user 

or not, resides in an area named workspace. It is also temporarily assigned 

the name WS and may be referred to as such in the next instruction. 

The command SUBSTITUTE is designed to imitate the evaluation concept 

above and, in effect, allows one to supply the evaluation signs as an after- 

thought. In its simplest utilization, 'SUBSTITUTE(X,Y,3*Y) evaluates to 3*X. 
Using the definition of F above, however, and assuming the expression in 

workspace is F(F(2)), then ‘SUBSTITUTE('F,F,,WS) will evaluate to 16. 
SUBSTITUTE can be further employed to change formal references to 

commands to active references. Thus, if the value of the workspace is 

INTEGRATE(X2,X), then the value of 'SUBSTITUTE (INTEGRATE, INTEGRATE, 

'WS) is X3/3. 

Arithmetic commands 

The arithmetic commands of the old system have disappeared. Instead 

of typing ADD((E7 E2) name) we now type NAME: 'E] + 'E2 $ if storage by 
name is desired, and 'E] + 'E2 $ if no name is needed. (In this case, the 

expression is referred to as WS.) The real point is that input like 

Xx(‘El + 'E2)$ is now allowed. It would have taken three commands to 

achieve the same result in the old system. 

Simplification 

The user controls the usage of a simplification routine by means of on 

and off switches, e.g., SIMP ON $ causes simplification to occur after the 

execution of each statement. The SIMP $ switch reverses the status of the 

simplification invocation. In addition, there is a command RATSIMP, which 

uses the rational function routines to perform the required divisions. Thus 

'RATSIMP(DATUM,EXPRESSIONI, ..., EXPRESSIONn) evaluates to the value 

of DATUM, expressed as a rational function with a single numerator and a 

single denominator, with all possible greatest common divisor cancellations 

having been made. The expressions EXPRESSIONI, ..., EXPRESSIONn, if 
present, are taken as the most important variables in decreasing order. 

Commands for changing data types 

The three fundamental elements of the formal algebraic data type are 

expression, equation, and function. The old system contained three MAKE



V1.4. MATHLAB 501 

commands which were removed from the current system since they are all 
special cases of the more flexible input syntax. Thus, to accomplish 

MAKEEQUATION(A R) of the old system, merely type R: A = ‘A$ 
since the ‘A really denotes the value of A. 

Output 

Output expressions are presented two-dimensionally on the scope or, 

when hard copy is desired, on the on-line printer. The display program is 

described in Millen [ZJ67}. 

Miscellaneous 
Writing ALIAS A B permits A to be used in place of B. 

VII.4.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

MATHLAB was the first complete on-line system with formal algebraic 

manipulation facilities. However, its effectiveness for man-machine inter- 

action has been very limited because of the inadequacies of typed input 

and output. It was the first language to include higher level operations such 

as integrate, solve, etc. While these are of interest, they are not of major 

significance from a language point of view. The major contribution of 

MATHLAB is actually in an area which is beyond the scope of this book, 

namely the routines which were created to implement these higher level 

commands. Some useful work was also done so that the typewriter could 

be used to print expressions and equations in a two-dimensional form, using 

standard equipment. 

The new version of the system (discussed briefly earlier) differs from 

the first one above in a number of ways. The notation and framework are 

more ALGOL-like, and they permit a stored program as well as the line- 

by-line mode. Probably the most significant part of the new system will be 

a method for defining and identifying mathematical subexpressions which 

have been typed; this is planned to be done by using input editing routines 

and by attempting to provide a typewriter facility equivalent to the concept 

of pointing at a scope with a light pen. 

Somewhat different from the question of language or syntax, but quite 

important to the potential usefulness of MATHLAB, are improvements 

(both internal and external) in its rational function routines which allow 

them to operate in any number of variables and, in particular, to factor 

polynomials over the integers in any number of variables. This results in 

commands available to the user which provide such facilities as the com- 

putation of direct and inverse Laplace transforms; the inversion of matrices; 

and a spectrum of solves, including the solution of one equation rational 

in the desired unknown, several equations linear in the unknowns, one linear



502 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

differential equation with constant coefficients, as well as the solution of 

several simultaneous implicit equations for several derivatives. 

Vil.5. ALTRAN 

ALTRAN is a language developed at the Bell Telephone Laboratories in 

Murray Hill, N. J. by W. S. Brown, M. D. McIlroy, D. C. Leagues, and 

G. S. Stoller. Its design and approach were heavily influenced by the 

ALPAK system on which it is based; ALPAK is a set of subroutines for 

handling polynomials and rational functions and is used with FAP. A version 

of the system called Early ALTRAN was running in late 1964 on the IBM 

7090/7094. It also runs on the 7040/44. 

SAMPLE PROGRAM—ALTRAN't 

  

Problem: Evaluate D in terms of the r’s and the c’s, where 

QA; Qo 3 

Gig Aq = Ag3 

G3; Az, G3 

_ 2 
a, = (ro + 14) 

Qj = 1o? + rors + rors — NN; 

_ 1 
r>>-- 

a C; 

D= 

    

Program: 

C DECLARATIONS. 
LAYOUT (L1) CO 9, Cl 9, C2 9, C3 9 
LAYOUT (L2) RO 9, RI 9, R2 9, R3 9 

POLYNOMIAL Al, A2, A3, A1l2, A23, A31, D 

C ESTABLISH THE A’S. , 
Al = (RO+RI)*xx2 

A2 = (RO+R2)xx2 
A3 = (RO+R3)x*2 

A112 = ROXX2+ROXR1] +ROXR2—RI1&R2 
A23 = RO*X*2+ROXR2+ROXR3—R2XR3 
A31 = RO*X*2+RO&XR3+ROXRI —R3*RI 

C COMPUTE AND PRINT THE CONDITION ON THE RADII 
C AND THE CORRESPONDING CONDITION ON THE CURVATURES. 

D=A1xA2xkA3k—A]12xk2kA3—A23%k2KA1 —A31] Xk2KA2+2%A1 2%*A23%A31 

PRINT D, D(RO=1/CO,R1=1/C1,R2=1/C2,R3=1/C3) 
STOP 
END 

tBrown [BW66a], pp. 6a, 6c—6e. 
 



VII.5. ALTRAN 503 

ALTRAN is an extension of FORTRAN, in a sense similar to that 

of FORMAC. Since the compiler was constructed from the beginning by 

using the TMG system (see Section IX.2.5.3 and McClure [MZ65a)), 

ALTRAN is not based on any particular version of FORTRAN;; in fact, 

the language is primarily FORTRAN II with some elements from FORT- 

RAN IV. Several new data types are added, most notably numeric rational, 

polynomial, and algebraic; the latter two are formal expressions, where alge- 

braic really means rational function, i.e., the quotient of polynomials. Expres- 

sions are created as they are in FORTRAN, except that the constituents 

can be any of the three new data types and/or integers. Floating point 

numbers can be used but not with the new data types, i.e., neither as coeffi- 

cients of polynomials or rational functions nor in expressions containing 

them. 

Data names are defined as they are in FORTRAN. Arrays of the new 

data types are conceptually allowed, but they were not actually implemented. 

Arrays of polynomials were implemented. 

As assignment is written the same way as in FORTRAN. The system 

knows whether it is to perform numeric computation or manipulation of 

rational functions by examining the data types involved. Much of this in- 

formation is provided by declarations available at compile time. 

The unconditional control transfers are the standard form GO TO and 

also the computed GO TO. The conditional control transfer can be of two 

forms. The first is 

IF (expr) ny}, N2, ng 

where expr is purely numeric and control is transferred to n;, nz, n3, depend- 

ing on whether expr is negative, zero, or positive, respectively. A second 

conditional statement has only two statement numbers associated with it 
and allows expr to be any of the five data types; control is transferred to 

n, if the value is not 0 and to nz if it is 0. The DO statement from FORTRAN 

II is permitted. 

Arithmetic is done on rational numbers to produce exact results, just 

as in FORMAC. When computation is done on rational functions, the 

greatest common divisor is calculated automatically and used to simplify 

the rational functions. 

The main algebraic statement directly permitted in ALTRAN is sub- 

stitution. There are two kinds, namely complete and partial. The complete 

substitution has the general form F(A), ..., A,) where A;,..., A, are any 

of the five variable types discussed above. The variables X;, ..., X, which 

appear in the expressions represented by F are replaced by the values of 

Ai, -.-, An, respectively. The substitute expression is distinguished from 

a function reference because the latter has a function declaration. A partial



504 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

substitution has the general form F(Y;=B), ... ,¥,==B,), where the Y; are some 

subset of the X; and the B; are expressions of type integer, rational, poly- 

nomial, or rational function. The Y; are replaced simultaneously by the B; 

in the expression represented by F. Note that every partial substitution could 

be written as a complete substitution by merely replacing each of the vari- 

ables which is not to be changed by itself. 

The only input statement is of the form 

READ (L) Bi, ..-, Bn 

where L is a layout (discussed later) and the B; are variables. When this 

statement is executed, the next n data items are read and converted appro- 

priately. The items must have the same type as B;. If none of the B; are poly- 

nomial or rational functions, L is unnecessary and may be omitted. 

The output statements are PRINT £;,..., E, and PUNCH &£;, ..., E, 

where the £; are either literals or one of the five data types discussed earlier. 

The expression name followed by = will be printed or punched and then 

followed on one or more lines or cards by the value of the expression. 

Subroutines may be invoked by writing 

CALL S(A1, .-. + An) 

where the A; can be one of the five data types or arrays of variables. 

The CONTINUE, RETURN, STOP, and END statements have the same mean- 

ing as in FORTRAN. 

A new statement with the form MODE INTEGER OVERFLOW CHECK 

causes every integer arithmetic operation from then on to include a check 

for overflow. 

Because it is desirable to obtain maximum efficiency by appropriate 

internal representation for polynomials, it is necessary for the user to supply 

certain information. This is done by means of the LAYOUT declaration. 

This has the form 

LAYOUT (L) X: Wi, ..- + Xn Wa 

where L 1s the layout name, the X; are the variables, and W, are the corre- 

sponding field widths. The W, refers to the amount of space to be allocated 

internally for exponents. All variables must be declared as either INTEGER, 

RATIONAL REAL, POLYNOMIAL, or ALGEBRAIC. The words FUNCTION and 

SUBROUTINE are used as in FORTRAN to declare functions and subroutines. 

Functions can also be declared to be any of the first five types. It is possible 

for the user to include FAP coded subprograms in his program. In particular, 

all the subroutines and facilities from ALPAK are made available to the



VII.5. ALTRAN 505 

user. ALTRAN is actually implemented by translating the expression manip- 

ulation statements to calls to ALPAK subroutines. Thus, while from a 

language point of view ALTRAN has very little beyond FORTRAN and the 

new data types in it, its ability to easily use all its ALPAK facilities makes 

it more powerful than it appears on the surface. 

The following built-in functions are available in ALTRAN,? using 

this notation: 

Arguments are denoted by the letters /, Q, R, P, A, and L representing 

the types integer, rational, real (= floating point), polynomials, algebraic 

(rational functions), and layout, respectively. Array arguments are under- 

scored. Subscripts are used to distinguish different expressions of the same 

type. Data variables, which will be transmitted as expressions of type poly- 

nomial, are denoted by X. Finally, expressions of arbitrary type are denoted 

by E£, and arrays of data variables or of language variables of arbitrary type 

are denoted by AR. 

Integer functions 

INT(E) Equals the value that would be obtained by an integer 

variable / as a result of the assignment statement 

| = E. 

IP(Q) Equals integer part of Q (truncation toward 0). 

INTTST(A) Equals | if A is an integer and 0 if A is not an integer. 

RATTST(A) Equals 1 if A is a rational and 0 if A is not a rational. 

POLTST(A) Equals 1 if A is a polynomial and Oif A is not a poly- 
nomial. 

EQ (Ai, Az) Equals 1 if Ai=A2 and 0 if Ai#A2.- 

QUO(I,, I2) Equals IP(I;/lI2). 

REM(I1, Iz) Equals l - lox IPCI) /l2) 

Rational functions 

RAT(E) Equals the value that would be obtained by a rational 
variable Q as a result of the assignment statement 

Q=E. 

Real functions 

REAL(E) Equals the value that would be obtained by a real vari- 

able Ras a result of the assignment statement R = E. 

5 This list is taken from pp. Al-2-A1-4 of McIlroy and Brown [ML66].



506 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

Polynomial functions 

POL(E) Equals the value that would be obtained by a 
polynomial variable P as a result of the assignment 

Statement P = E. 

NUM(A) Equals numerator of A. 

DEN(A) Equals denominator of A. 

GCD(P;, P2) Equals greatest common divisor of P; and Pp. 

Algebraic functions 

ALG(E) Equals the value that would be obtained by an 

algebraic variable A as a result of the assignment 

Statement A = E. | 

DIFF(A,/) Equals 0A/éx(I). 

This system has had very limited usage outside Bell Laboratories. 

In conclusion, while admitting that my view may be biased, I feel that 

ALTRAN itself has not contributed anything to the technology. The sig- 

nificant part of the effort was the work done on ALPAK, which of course is 

not within the scope of this book. 

Vil.6. FLAP 

FLAP is an experimental language that was written in LISP 1.5 (see Section 

VI.5) by A. H. Morris, Jr., at the U.S. Naval Weapons Laboratory at 

Dahlgren, Va.; it runs on the IBM 7090. FLAP permits the user to handle 

different types of symbolic mathematical data, e.g., differential equations, 

vectors and matrices, etc. Much of the nomenclature, although not the 

notation, comes from LISP. 

An atom is defined in FLAP to be a letter followed by up to 29 numbers 
or letters. Atoms are used as variables, constants, or function names. There 

are two special atoms defined, namely TRUE and NIL, which have the values 

true and false, respectively, 

A number of mathematical systems (which are really modes of arith- 
metic) are provided. The simplest is the *NUMBER, which assumes that 

only rational numbers are available. The systems available to the user are 

called algebras since they have been defined to be that from a mathematical 

point of view. The *SIMPLIFY is the second simplest algebra in FLAP. 

It assumes that the basic data are rational numbers and constant atoms 

such as A and PI, which are independent of each other. These constants can



vi.6. FLAP 507 

SAMPLE PROGRAM—FLAPT 

  

Problem: Given the two series >) a,x” and >) b,x" where b, + 0, evaluate 
n=0 n=0 

the first r + 1 terms ¢o,c),...,¢, Of the series >) c,x” = )) anx"/>> b,x". The 
n=0 n=O n=0 

variables A,B, N, R have the respective values a,, b,, n, r. 

Program: 

DEF 

INPUT 

DUMMY 

LOOP 

DEF 
INPUT 
DUMMY 

DIVIDESERIES sDOTPROD 
DIVIDESERIES 
AeBeNeR 

Kel eVe8BO0eNUM 

NUM # O 
MODE #SIMPLIFY 
BO = COMPUTE (SUBST (OeNeB) )#¥(—1) 
L = LISTCCOMPUTE (SUBST (OeNeA) 2 *#B0) 
Vee 
IF NUM=R THEN RETURN(CAR(V)) 
FLAPPRINT CAR(V) 
NUM = NUM+1 
K = CONS (COMPUTE (SUBST (NUM¢eNoB) Dok) 
RPLACD VeLIST(BO* (COMPUTE (SUBST (NUMeNeA) )=DOTPROD (Kel) )) 
v = cOR(V) 
GO tooP 
ENO 
DOTPROD 
KeY 

KeleM 

x 
Y 
0 
M+CAR(h.)#CAR(L) 
COR (K) 
COR (L) 

IF NULL (K) THEN RETURN(M) 
GO A 
END 
DIVIDESERIES (SINCA® (N41 ) DHFACTORIAL (ND ##(=11) SFACTORIAL (BN) HH (=1 De 
Ne2) 

C
A
R
E
C
 R
 

+Morris [MB67], pp. 22-23. 
  

be combined under the five normal arithmetic operators, and Morris applies 
his definition of simplification to expressions; this means expansion to 

eliminate parentheses, followed by combination of like terms. The algebra 

*NUMBER is imbedded in *S/MPLIFY and the latter in turn is included 

in every other algebra. 

For arbitrary values, FLAP assumes that the variables are listed at 

the beginning of the program so that the system can determine whether an



508 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

atom is a variable or a constant. A particular atom may be the name of 
a function, where assumptions may or may not have been made regarding 

its nature. 

There are five types of expressions in FLAP: Atoms; lists of items, 

each of which is an expression; mathematical expressions; expressions of 

the form A=B, where A and B are themselves expressions (and this com- 

posite expression then has the value true or false); and functional expressions 

of the form f(x;,..., xn), where fis the name of a function and the x; are 

expressions which are its arguments. Any expression which has only the 

values TRUE or NIL is called a conditional expression and its corresponding 

function is called a predicate. Thus the expressions A=B and EQUAL (A, B) 
have the same values and can be used interchangeably. 

The assignment statement is of the form A = B, where B Is an expres- 

sion. 

Blanks are critical in many places. 

The unconditional statement is of the form GO statement-name. The 

conditional statement is of the form IF A THEN B, where A 1s a conditional 

expression and B is an arbitrary expression; the latter can be of the form 

GO (statement-name). 
The main declaration is the MODE, which defines whatever algebra 

is needed. Its general format is MODE A, K, L, ...,M, where A is the name 

of the algebra and the sequence K, L,..., M is an ordered sequence of 

parameters associated with A. An arbitrary number of mode statements 

can be used in any program and the evaluation of any expression is con- 

trolled by the most recent MODE declaration given prior to the evaluation 

of the expression. As an example, the x MULT algebra is used to manipulate 

expressions containing constant atoms that fall into either a vector or scalar 

category. Thus, after writing MODE xMULT(X), an expression such as 

(3%X+6%X**2)*(A+B*XX+X**2) will have as its value the polynomial 
3x A*X+(6%A+3%B)*X kk 2+(34+6%B)*X%*3+6%XeK4. In this case, A and 
B are the scalar coefficients of the polynomial in the vector X. 

A COMPUTE function has a single argument § which is used after some 
algebraic mode has been set. The purpose of COMPUTE is to assign to § the 

value of the argument in this particular mode. 

Axioms about specifically defined functions can be made. Suppose that 

we wish the function § to have the values e(x;, ... , x,) Whenever the con- 

ditional expression p(x;, ... , x,) has the value TRUE. Then the axiom 

mapping h for f would be the function with the arguments x), ... , Xn 

having the value e(x,;, ... , x,) whenever pi(x;, ... , Xn) iS true and the 

value f(x;, ..., X,) Otherwise. By means such as these and other facilities, 

it is possible to use a function, e.g., COS(A), to have different meanings in 

differing algebras. 

A partial list of the algebras available is as follows:



vi.6. FLAP 509 

* MULTILINEAR 

This has two modifier lists, K and L. The items of L are con- 

sidered to be the mathematical data and each is assumed 

independent of the others. The constants of this mode are 

elements of the *MULT arithmetic based on the modifier list 

shown in K. The differentiation operator DIFF(A,X) is also 
defined. Using this operator, arbitrary symbolic differential 

expressions can be manipulated. 

* EXTERIOR 

There are three «EXTERIOR algebras available, differing only 

by the number of modifier lists used. If there is a single list B, 

then B must be a basis for a vector space having as its ring of 

scalars the xSIMPLIFY algebra. For two or three modifier lists, 

then either the «MULT or the *MULTILINEAR algebras are used. 

* MATRIX 

There are three xMATRIX modes available, depending on the 

number of modifier lists used. If no modifier list is used, then 

every expression in the mode is assumed to be a matrix whose 

components are values in the *S/MPLIFY arithmetic. If there 

are one or two modifier lists, then the values of the matrix 

elements are assumed to be in * MULT and *MULTILINEAR modes, 

respectively. 

A great many LISP functions are made available to the FLAP pro- 

grammer. These include the following: 

AND, APPEND, ATOM, CAR, CDR, CAAR, CADR, ..., CDDDR, CONC, 

CONS, COPY, EQUAL, GET, LENGTH, LIST, MEMBER, NCONC, NOT, NULL, 

OR, REVERSE, RPLACA, RPLACD, SELECT, SETQ, SUBST. 

There are functions which have arbitrary expressions as arguments. 

These include the following: 

FLAPPRINTS(S) Sis printed and NIL is returned as the value of the 

function. 

INTEGERP(S) If § is an integer, the value of the function is 
TRUE, otherwise it is NIL. 

LARGER(A,B) ‘If A is greater than B, the value of the function is 
TRUE, otherwise it is NIL. 

ONEPE(S) If S=1, the value of the function is TRUE, 
otherwise it is NIL. 

ZEROPE(S) If §=0, the value of the function is TRUE, 

otherwise it is NIL.



510 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

The following functions have lists of mathematical expressions as 

arguments: 

FACTORSINV(S) If S = (a;,...,,), the value will be 

a;}*--- xa, If § = NIL, the value is 1; if 

S = (a), the value is a. 

SUMMANDSINV(S) Similar to above, except the results are 
Q, + -:-::- +a,. 

DIFF (S,X) Involves differentiation. 

The functions PLUSP(S), POWERP(S), SUMMANDS(S), and TIMESP(S) 
are used for testing the form of the expression S. 

Functions having matrices as arguments include ADJOINTDATA(A), 

COEFFICIENTDATA(A), MATRIXMAP(A,X), SWITCH(A), and TRANSPOSE(A). 

Each has a specific definition, depending upon the form of A. 

Mr. Morris states, “The system has been employed in the development 

of techniques for the manipulation of transformations of families of matrices 
and partial differential equations. It is currently being used to study the 

algebraic structures of the indefinite integral and related operators such as 

the Laplace and Fourier transforms.”® FLAP is apparently only being used 

internally in the developing organization. 

Vil.7. SYSTEMS REQUIRING SPECIAL EQUIPMENT 

As in the case of the numerical scientific languages, anybody attempting 

to develop an efficient system for doing formal algebraic manipulation is 

hampered by the constraints of the normal input/output equipment. This 

section discusses two quite different systems which are using either special 

equipment or special hookups of standard equipment; they are wholly or 

partially dependent on a light pen. Since this is a book on languages, only 

enough of the physical and system aspects will be mentioned to make the 

language capabilities meaningful to the reader. 

VII.7.1. MAGIC PAPER 

The first attempt at an on-line system was the Magic Paper described 

by Clapp and Kain [CL63]; it was never fully implemented but, nevertheless, 

it presented some interesting ideas which are worthy of note. 

The system used the PDP-1, with a typewriter, display scope, paper 

tape reader and punch, magnetic tape, and light pen for input/output. Some 

6 Private communication, October, 1967.



VII.7.1. MAGIC PAPER 511 

of the control characters available to the user are shown in Figure VII-3. 

The main input device was considered to be the typewriter, but this is obvi- 

ously not the most convenient means of typing mathematical expressions. 

For that reason, a number of symbols were designated as format control 

characters; these are shown in Figure VII-4. 

The display scope was the principal on-line output device. Equations 

and other data could be displayed directly in fairly standard mathematical 

notation. The results could be saved by photographing the scope or by 

using punched paper or magnetic tape. 

Numerical evaluation could be done; in addition to the five standard 

operators, there were functions indicating summation or product over an 

index between limits, and conditional expressions. 

A new and independent version that retains the same name has been 

developed at Computer Research Corporation under the direction of L. 

Clapp, who was a developer of the first version. The newer version used 

a nonstandard PDP-1 and special visual display equipment. The system was 

not being used at the time of this writing because it needed to be integrated 

with other packages. For this reason, only the highlights of the language 

  

Symbol Control significance 

I Enter input mode 

Leave input mode 

Display pointer on scope 
Label equation 

Substitute 
Underline equation 
Replace underlined symbols 
Factor out underlined terms 
Get equation from storage and add to 

bottom of display 
Enter sketch input mode 
(to construct a figure) 

Display figure 

Transpose underlined strings 
Name underlined string 

Expunge equation 

Change window size to n 

Move window 
(u-up, d-down, b-page back, f-page front) 

EVAL Evaluate function 

GEN Generate graph 

e<...>i,j,...,0 Create new control function 

wn 
Q
n
w
c
l
r
o
u
r
.
 

2
E
x
z
a
o
 

  

Figure VII-3. Typical executive control characters in first Magic Paper. 

Source: Clapp and Kain [CL63], p. 511.



512 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

  

Symbol Function 
[] (Space) Delimiter (except after nonspacing characters) 

=> (Tab) Delimiter 
© (Carriage return) Delimiter (end of line) 

- (Center dot) Dismiss the symbol which follows from its con- 

trol significance 

T Denotes exponent 
w~ Denotes superscript 
Vv Denotes subscript 

| (Vertical bar) Restore to main line 
2 Drop exponent level one line 

> Equation label follows 

€ (Backspace) Ignore last character 

> Treat the string just typed as a defined symbol 

  

Figure VII-4. Format control characters in first Magic Paper. 

Source: Clapp and Kain [CL63], p. 513. 

capability will be given. The main report on this system is Clapp et al. 

[CL66]. 

The system contains a special keyboard, a flicker-free display, a light 

pen, a push-button panel, and two foot switches. The panel is the primary 

control for the system. Every button on it corresponds to a system command 

which is invoked by pressing the button. These commands control the display 

and also perform manipulations. The arguments either are selected by the 

light pen or are entered through the keyboard. Both input equations and 

calculated results are organized into a system of scrolls which are concep- 

tually like pages of a book. The scrolls are used for displaying current results 

and also expressions being entered. When the scroll is full it is automatically 

rotated, but the user can also control the movement forward and back. 

The light pen permits expressions on the screen to be brightened or under- 

lined, and it is used to select arguments for use with commands. 

The special keyboard used contains the 52 upper- and lower-case letters; 

the 10 digits; Greek letters; keys for Greek mode and English mode; a panic 

key; control keys for space, carriage return, and backspace; and keys for 

subscript and superscript. It also contains the following characters: 

+#-x/t=()E1C)12?-.,7 + @ 
Variables can only be single letters since juxtaposition is used to denote 

multiplication. Variables and function names can have subscripts and/or 

superscripts; the latter can themselves contain subscripts and superscripts. 

Multiple subscripts are permitted, with commas as separators; the same 

applies for superscripts. Each of the “scripting” (abbreviation for subscript- 

ing and superscripting) operations must be terminated by a question mark,



VII.7.1. MAGIC PAPER 513 

2, which has the meaning return to the previous line, or terminate last ex- 

ponentiation or scripting operation. Superscripting and exponentiation are 

logically different but are displayed similarly. Denoting sub- and superscript 

operations by ~ and A, respectively, 

x) 

would be input as x t ywin2222. Rules for interpretation in potentially 

ambiguous or special cases are defined. 

Spaces are generally ignored, but they cannot appear in the middle 

of a function name and must appear between a whole number and a fraction. 

Numbers can be decimal, fractional (e.g., 1/2), or mixed (2 1/2); 1/2c 

is interpreted as (1/2)a, whereas 1/ab is taken to mean 1/(ab). 
Nine elementary mathematical functions are available and typed in 

their normal form; arguments need not be in parentheses; e.g., sin 2x is 

interpreted as sin(2x). 

The categories of commands available are scroll manipulation, equation 

input, equation editing, arithmetic and mathematical (applied to expressions 

or equations) simplification, application of system-defined transformations 

to expressions, definition and execution of user-created procedures, and 

system status changes. These commands are invoked by using the correct 

pushbutton. 

The scroll manipulation commands are rewind (return to the starting 

equations), backup (shift the display back one equation), advance (shift 

forward one equation), unwind (place display window at end of scroll), 

save (name) (file the current scroll and assign the user-specified name), display 

(name) (retrieve the scroll name by the user), start (delete current scroll), 

and delete (expr) (delete the indicated expression from the current scroll). 

An equation or expression is used as the argument of an enter command 

and is placed into the current scroll. A label equation command assigns the 

next label number to the current equation. An existing item can be edited 

by inserting and deleting characters. 

The apply command has as arguments a mathematical operator (e.g., 

+, —) and a sequence of expressions or equations. The designated action 

is performed (on both sides of the equations if they are used) and the result 

is put into the scroll. Subtraction, division, and exponentiation allow only 

two arguments, while multiplication and addition allow any number. No 

simplification is performed automatically; this is done by the user with the 

commands combine terms, combine fractions, and simplify products and 

fractions. 

Substitution is accomplished by substitute, with the arguments consisting 

of an equation of the form a = expression b and an expression. All occur- 

rences of a in the designated expression are replaced by b.



514 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

An expression which is a summand on one side of an equation can be 

moved to the other side by the transpose command (and the sign will be 

changed automatically). 

The system transformations include such things as changing (a+b)? 

to a?+2ab+b2. The transformations are stored in tables and can be dis- 

played to the user by pressing a foot pedal. A particular one is activated 

by the apply transformation command in which the user specifies the trans- 

formation and the expression on which it is to operate. If the expression 

does not match, a no match found message is displayed. For example, 

((c + 2d/(e+1)) + 2)? 

would match the transformation mentioned above, but (c+1)? would not. 
New transformations can be put into the table by the insert information 

command, which specifies the transformation; similarly, one can be deleted 

by the remove transformation. Transformations can be used in both directions 

by appropriate use of the > and <. 

The most recent result can be deleted and the system returned to its 

earlier condition by the restart command. A cancel command deletes the 

last step the user took in setting up the arguments for an operation. 

The user has a procedure define which allows him to assign a procedure 

to a particular button, and he has ways to specify the operands. 

The most interesting language feature of this system is its provision for 

user-defined new operators. The user specifies (or responds to questions 

from the system) whether the operator is prefix, infix, or suffix; whether 

its arguments must be parenthesized; how many arguments it must have; 

whether it is associative and commutative; and what its precedence value is 

relative to the other operators. 

From a general point of view, most of the commands in this system 

relate to providing an appropriate means of using the hardware. It does not 

seem to have any significantly new or general concepts, although some of 

the details seem both interesting and novel. The one exception is the concept 

of the scroll, whereby previous information is available in a readable form 

and can be displayed upon proper request. This seems to be a valuable 

solution to one of the major problems in this type of system. 

VIIL.7.2. SYMBOLIC MATHEMATICAL LABORATORY 

The Symbolic Mathematical Laboratory, developed by W. A. Martin 

[ZB67] as his Ph.D. thesis at M.I.T., was running early in 1967. While the 

equipment used is standard, the interconnections are not, and Martin himself 

states that the system is inefficient for these and other reasons. The user



SAMPLE PROGRAM—Symbolic Mathematical Laboratory 

  

Problem: Application of the Poincaré-Lighthill procedure to X + w?x = ex’. 

Program: 

#t°E1 —'(DRV(:T,2,X(:T)) + OMEGAT24X(:T) = EP%(X(:T))13) # 
FH EDISPLAY('E1)# 
#t'E2<—'(X(TAU) = SUM(I,O,INF,EPTI*X[I](TAU))) # 
FH EDISPLAY('E2)## 
#t'E3<—'(:T(TAU) = TAU + SUM(J,1,INF,EPtJ*:T[J](TAU))) # 
FP EDISPLAY('E3)# 
#t'E4<—DRVFACTORIE1,':1,1)# 
FP EDISPLAY('E4)# 
#'E5— SUBSTITUTE(DELSUBST(E4, (DEL(: 1), '(DEL(TAU))/DRV('TAU,1,RIGHT(E3))), 

(X(TAU)),'(X(:T))) # 
FP EDISPLAY(‘E5) # 
#'E6<—DRVDO(SUBSTITUTE(ES, RIGHTIE2), (X(TAU))),, TAU) # 
Ft EDISPLAY('E6)## 
#£'E7 — TRUNCATE(E6, EP, 1) # 
Ft EDISPLAY('E7) ## 
Ft'E8<—!E7,6=;'E7,88# 
# EDISPLAY('E8)# 
#'E9<— SIMPLIFY(DRVDO(SUBSTITUTE(SOLVE(E8, '(X[1 ](TAU))),'(A*COS(OMEGAXTAU)), 

'(X[O](TAU))),’ TAU)) # 
FP EDISPLAY('E9) # 
4 'E10<—COLLECT(EXPAND(SUBSTITUTE(E9, '((COS(3 OMEGAXTAU) + 3xCOS(OMEGA* 

TAU))/4),'((COS(OMEGAXTAU))13))),((SINSOMEGAXTAU),COS(OMEGA&TAU)))) # 
# EDISPLAY('E10)## 
#'E11 —SIMPLIFY(SOLVE(SUBSTITUTE(!E10,44,'C,'(DRV(TAU, 1,:T[1 ](TAU))))=0,'C)) # 
FE EDISPLAY('E11)## 

Comment: An example of the first three displayed equations as plotted by 

the CALCOMP plotter is shown below. 

2 

(E1) S5x(e}e" x(e} ee X(t) 

(€2) KCa)=D EX C4) 

(E3) t(e=er>, e t (7) 

+Martin [ZB67], extracts from pp. 27-30. 
  

515



516 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

inputs information to a PDP-6 from teletype, or from a light pen acting on 

a display scope. Output is on a plotter, the display scope, or the teletype. 

Information is sent from the PDP-6 via a transmission device (the 7750) 

to a 7094. The calculations are done in the 7094, using a disc for auxiliary 

memory, and then transmitted back to the PDP-6 for output. This rather 

unusual configuration was required because it was the only way to provide 

minimum requirements of a time-shared computer with a large memory 

and a display with fast light pen response. 

One of the most interesting aspects of this system is its effective use of 

the display scope, both for showing expressions and for providing commands 

to manipulate expressions based on pointing with the light pen. Expressions 

are displayed on the scope in essentially normal mathematical notation, 

including, e.g., >. The list of commands given below contains several com- 

mands which permit the user to institute action based on pointing with the 

light pen. While this particular system is not a practical one for actual usage, 

it nevertheless has demonstrated a number of internal techniques which are 

useful and necessary in developing future systems in this area. 

Commands are typed and executed one at a time. The system is coded 

in LISP 1.5. 

The five operations of addition, subtraction, multiplication, division, 

and exponentiation for algebraic expressions are denoted respectively by 

+,—,*, /,and ¢. 

Variable names are composed of up to 120 letters. They can be sub- 

scripted with expressions to any number of levels, but only the first level is 

actually handled by the system. Subscripts are enclosed within square brackets 

and are separated by commas. Functional notation is shown by enclosing 

arguments in parentheses after the subscripts; e.g., A[I,J](C,D,E) is a function 

of A; with arguments C, D, and E. Sets are denoted by enclosing the 

elements in parentheses; e.g., (A,B,C) is a set with three elements. 
Assignment of a name to an expression is denoted by <; 1.e., A <— B 

gives the name A to the expression B. There are other ways of identifying 

expressions through the use of the light pen (discussed later). 

Either an expression or a variable name can be quoted, i.e., preceded 

by a '. Quoting a function name means that its arguments will be evaluated 

but the function will not be evaluated. 

The following is a typical command in this system:’ 

#'EI>'(X + Y) * 'DRV(':T,1,DRVCU,2,E1)) + 'E2,20 + '(FIIJ(X,Y)) t 2# 

This means that the name E1 is assigned to the expression which is the sum 

of three terms. The first term is the product of (X + Y) with the uneval- 
uated first derivative with respect to lower-case T of the second derivative 

7 Martin [ZB67], p. 20.



VII.7.2. SYMBOLIC MATHEMATICAL LABORATORY 517 

with respect to U of the expression currently named E1. The second term 

is the twentieth subexpression of a displayed expression currently named E2; 

this subexpression has been indicated with the light pen. The final term is 

the square of a subscripted function of X and Y. 
There are no control statements, either conditional or unconditional, 

except for a few which are inherent in some of the algebraic manipulating 

commands. The complete list of these is as follows, where the description 

of each command has been taken directly from Martin [ZB67],®> but the 

subhead grouping was done by me. The presence or absence of blanks is 

not significant. 

Differentiation 

DRV (X1, Ni, ---. Xr Nav Y) 
Differentiate Y N; times with respect to X;, for each i. 

DRVDO (EXP, X) 
All indicated derivatives with respect to X in EXP are carried 

out as far as posible. 

DRVFACTOR (EXP, X, N) 

dxNtH” dm (57 ) 
for each such subexpression in EXP. 

DRVZERO (EXP, X) 
All derivatives with respect to X in EXP are set equal to zero. 

DELSUBST (EXP, OLDDEL, NEWDEL) 

dx dx 
d OLDDEL = d NEWDEL 

for each such subexpression in EXP. 

Types of substitution 

REPLACE (E, X, Y) 

Expression X replaces Y in the expression named E. Y is a term 

indicated with the light pen or a group of terms indicated with 

GROUP. 

SUBSTITUTE (EXP, X, Y) 

Substitue X for each occurrence of Y in EXP. 

EVALUATE (EXP, SET) 

SET is a set of equations; whenever the left side of one of these 

equations can be matched to a subexpression in EXP, the right- 

hand side is substituted. The left sides must be variables or func- 

tions. A match occurs whenever a binding of the function 

variables and subscripts can be made. 

8 Martin [ZB67], pp. 21, 23-26



318 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

Commands involving simplification 

SIMPLIFY (EXP) 
Simplifies expression EXP. 

EXPAND (EXP) 
Multiplies out all expressions of the form a*(b+c) in EXP. In 
addition, 

d da , db 
dx (a+ b)-— dx + dx 

COLLECT (EXP, SET) 

Top level terms in EXP are collected on powers of the expres- 

sions in SET. 

FACTOROUT (EXP, FACTOR, Y) 

The factor FACTOR is factored from each term of EXP. The 

third argument Y is optional. If Y is present, the factor 

FACTOR 1s renamed Y. 

NORMPOLY (EXP, X) 
Every sum in EXP is treated as a polynomial in X and a power 

of X is factored out so that the lowest power of X in the polyno- 

mial will be zero. 

SUMEACH (EXP) 
S(a+b)—>3a+ db 

SUMEXPAND (EXP) 
Expands the finite summation EXP. 

ALLSUMEXPAND (EXP) 

Applies SUMEXPAND to every summation in expression EXP. 

TRUNCATE (EXP, VAR, N) 

Expands EXP up to power N in variable VAR. 

Rearrangement of expressions 

BRINGOVER (EXP, X) 

Subexpression X, which has been indicated with the light pen, 

is brought to the other side of equation EXP. 

EXCHANGE (EXP) 
If the top level connective of EXP is binary, its arguments are ex- 

changed from right to left. 

GROUP (SET) 
The set SET of terms which has been indicated by the light pen 
in EXP is grouped within the associated sum or product. The 

value of GROUP is the grouped set of terms. 

MULTIPLYTHROUGH (EXP, X) 

Multiplies each top level term of EXP by xX.



VII.7.2. SYMBOLIC MATHEMATICAL LABORATORY 519 

Obtaining or manipulating subexpressions 

RIGHT (EXP) 
Returns the right argument of the main binary connective 

of EXP. 

LEFT (EXP) 
Returns the left argument of the main binary connective of EXP. 

SPLIT (EXP) 
Subparts of EXP are named and replaced by their names in EXP 

so that EXP will contain less than 100 subexpressions. 

TERM (EXP, N) 
Returns the Nth argument of the top level connective of EXP, 

or NIL if there is no Nth argument. 

YA, N 

The Nth subexpression of A is the value of !. Intensify the 

desired subexpression of A by pointing to its main connective 

with the light pen. Then type !A and the computer will type 

N. If the expression has no main connective, point to one of 

its arguments and type ;!A instead of !A. 

Higher level commands 

SOLVE (EXP, X) 
Solves equation EXP for variable X as far as possible. 

ITG (X, LI, L2, Y) 

Integrate Y with respect to X between limits L7 and L2. 

LIMIT (EXP, X, N) 
Determines the limiting value of EXP as X approaches N. 

SUM (I, NI, N2, Y) 
Sum expression Y for values of | from N7 to N2. 

Input/output 

EDISPLAY (E) 
Displays the expression named E on the PDP-6 scope. 

EPRINT (E) 
Prints out the internal form of the expression named E with 

PLS, PRD, EQN, and PWR in infix form; the other operators 
are in prefix form. 

EDELETE (E) 
Deletes expression named E from the disc. 

Miscellaneous 

NEWNAME () 
Creates a name of the form Fn, where n is an integer.



520 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

DEPENDENCE (EXP) 

Returns a set of the variable and function names in EXP. 

There has been no real usage of the system except by the developer. 

The most significant elements are the methods for displaying and manipu- 

lating expressions and some of the internal techniques used for simplification. 

REFERENCES 

Vil.14. SCOPE OF CHAPTER 

[BB67a] Bobrow, D.G. (ed.), Symbol Manipulation Languages and Techniques, 
Proceedings of the IFIP Working Conference on Symbol Manipulation 

Languages. North-Holland Publishing Co., Amsterdam, 1968. 

[KD54] Kahrimanian, H.G., “Analytical Differentiation by a Digital Com- 

puter”, Symposium on Automatic Programming for Digital Computers, 
Office of Naval Research, Dept. of the Navy, Washington, D.C. (1954), 

pp. 6-14. 

[NO53] Nolan, J., Analytical Differentiation on a Digital Computer (M. A. 

thesis), M.I.T., Cambridge, Mass. (May, 1953). 

[RA67] Raphael, B. et al., “A Brief Survey of Computer Languages for Symbolic 

and Algebraic Manipulation”, Symbol Manipulation Languages and 
Techniques, Proceedings of the IFIP Working Conference on Symbol 
Manipulation Languages (D. G. Bobrow, ed.). North-Holland Publishing 

Co., Amsterdam, 1968, pp. 1-54. 

[SM66] Sammet, J. E., “An Annotated Descriptor Based Bibliography on the 

Use of Computers for Non-Numerical Mathematics”, Computing Rev., 

Vol. 7, No. 4 July—Aug., 1966), pp. B1—B31. 

[SM66a] Sammet, J.E., “Survey of Formula Manipulation”, Comm. ACM, 

Vol. 9, No. 8 (Aug., 1966), pp. 555-69. 

[SM67] Sammet, J.E., “Formula Manipulation by Computer”, Advances in 

Computers, Vol. 8 (F. L. Alt and M. Rubinoff, eds.). Academic Press, 
New York, 1967, pp. 47-102. 

[SM67a] Sammet, J. E., “Revised Annotated Descriptor Based Bibliography on 

the Use of Computers for Non-Numerical Mathematics”, Symbol 
Manipulation Languages and Techniques, Proceedings of the IFIP Working 

Conference on Symbol Manipulation Languages (D. G. Bobrow, ed.). 
North-Holland Publishing Co., Amsterdam, 1968, pp. 358-484. 

Vil.2. LANGUAGES OF HISTORICAL INTEREST ONLY 

[BM61]_ Bernick, M.D., Callender, E.D., and Sanford, J. R., “ALGY—An 
Algebraic Manipulation Program”, Proc. WJCC, Vol. 19 (1961), pp. 
389-92. 

VIl.3. FORMAC 

[BZ64] Bond, E. R. et al., “FORMAC—An Experimental FORmula MAnipula- 

tion Compiler”, Proc. ACM 19th Nat’! Conf., 1964, pp. K2.1-1-K2.1-11.



[BZ67] 

[CX65] 

[DB67] 

[HQ67] 

[IB65c] 

[1B67c] 

[JL66] 

[ND67] 

[SM64] 

[SM67] 

[SO65] 

[SV66] 

[TO66] 

[WB67] 

REFERENCES 52] 

Bond, E. R. and Cundall, P. A., “A Possible PL/I Extension for Mathe- 
matical Symbol Manipulation”, Symbol Manipulation Languages and 
Techniques, Proceedings of the IFIP Working Conference on Symbol 
Manipulation Languages (D. G. Bobrow, ed.). North-Holland Publishing 
Co., Amsterdam, 1968, pp. 116—132. 

Cuthill, E., Voigt, S., and Ullom, S., Use of Computers in the Solution 
of Boundary Value and Initial Value Problems, Annual Progress Report, 
SRO11-01-01 Task 0401 AML Problem 821-911, David Taylor Model 
Basin, Washington, D.C. (June, 1965). 

Duby, J. J., “Sophisticated Algebra on a Computer—Derivatives of Witt 

Vectors”, Symbol Manipulation Languages and Techniques, Proceedings 
of the IFIP Working Conference on Symbol Manipulation Languages 
(D. G. Bobrow, ed.). North-Holland Publishing Co., Amsterdam, 1968, 
pp. 71-85. 

Howard, J.C., “Computer Formulation of the Equations of Motion 

Using Tensor Notation”, Comm. ACM, Vol. 10, No. 9 (Sept., 1967), 
pp. 543-48. 

FORMAC (Operating and User’s Preliminary Reference Manual), 1BM 
Corp., No. 7090 R2IBM 0016, IBM Program Information Dept., 
Hawthorne, N.Y. (Aug., 1965). 

PL/I-FORMAC Interpreter, IBM Corp., Contributed Program Library, 

360D 03.3.004, Program Information Dept., Hawthorne, N.Y. (Oct., 
1967). 

Bleiweiss, L. et al., A Time-Shared Algebraic Desk Calculator Version 
of FORMAC, IBM Corp., TR00.1415, Systems Development Division, 

Poughkeepsie, N.Y. (Mar., 1966). 

Neidleman, L.D., “An Application of FORMAC”, Comm. ACM, 

Vol. 10, No. 3 (Mar., 1967), pp. 167-68. 

Sammet, J. E. and Bond, E., “Introduction to FORMAC”, IEEE Trans. 

Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), pp. 386-94. 

Sammet, J. E., “Formula Manipulation by Computer”, Advances in 

Computers, Vol. 8 (F. L. Alt and M. Rubinoff, eds.). Academic Press, 

New York 1967, pp. 47-102. 

Sconzo, P., LeSchack, A. R., and Tobey, R. G., “Symbolic Computation 
of f and g Series by Computer”, Astronomical Jour., Vol. 70, No. 4 

(May, 1965), pp. 269-71. 

Swigert, P., Computer Generation of Quadrature Coefficients Utilizing 
the Symbolic Manipulation Language FORMAC, NASA TN D-3472, 

Lewis Research Center, Cleveland, Ohio (Aug., 1966). 

Tobey, R. G., “Eliminating Monotonous Mathematics with FORMAC”, 

Comm. ACM, Vol. 9, No. 10 (Oct., 1966), pp. 742-51. 

Walton, J. J., “Tensor Calculations on Computer: Appendix”, Comm. 

ACM, Vol. 10, No. 3 (Mar., 1967), pp. 183-86. 

Vil.4. MATHLAB 

[EN65] Engelman, C., “MATHLAB—A Program for On-Line Machine Assis- 

tance in Symbolic Computations”, Proc. FJCC, Vol. 27, pt. 2 (Nov., 

1965), pp. 117-126.



522 FORMAL ALGEBRAIC MANIPULATION LANGUAGES 

[MV67] Manove, M., Bloom, S., and Engelman, C., “Rational Functions in 

MATHLAB”, Symbol Manipulation Languages and Techniques, Proceed- 
ings of the IFIP Working Conference on Symbol Manipulation Languages 

(D. G. Bobrow, ed.). North-Holland Publishing Co., Amsterdam, 
1968, pp. 86-97. 

[ZJ67] Millen, J.K., CHARYBDIS: A LISP Program to Display Mathe- 
matical Expressions on Typewriter-Like Devices, Proceedings of the Sym- 

posium on Interactive Systems for Experimental Applied Mathematics, 

Washington, D.C., August 26-28, 1967, Academic Press, Inc., New 
York, 1968. 

Vil.5. ALTRAN 

[BW63] Brown, W.S., Hyde, J. P. and Tague, B. A., “The ALPAK System for 

Nonnumerical Algebra on a Digital Computer”, Bell System Technical 

Jour., Vol. 42, No. 5, (Sept., 1963), pp. 2081-119; Vol. 43, No. 2 (Mar., 
1964), pp. 785-804; Vol. 43, No. 4, pt. 2 (July, 1964), pp. 1547-62. 

[BW66] Brown, W.S., “A Language and System for Symbolic Algebra on a 

Digital Computer”, Proc. of the IBM Scientific Computing Symposium 

on Computer-Aided Experimentation, IBM Corp., 320-0936-0 Data 
Processing Division, White Plains, N.Y. (1966), pp. 77-114. 

[BW66a] Brown, W.S., The ALTRAN Language and the ALPAK System for Sym- 
bolic Algebra on a Digital Computer (presented at the Princeton U. 

Summer Conference in Computer Sciences, Princeton, N.J., Aug., 1966) 
(unpublished). 

[ML66] Mcllroy, M. D. and Brown, W.S., The ALTRAN Language for Sym- 

bolic Algebra on a Digital Computer, Bell Telephone Lab., Murray 
Hill, N. J. (May, 1966) (unpublished). 

[MZ65a] McClure, R. M., “TMG—A Syntax Directed Compiler”, Proc. ACM 
20th Nat’l Conf., 1965, pp. 262-74. 

Vil.6. FLAP 

[MB67] Morris, A. H., Jr., The FLAP Language—A Programmer’s Guide, U.S. 
Naval Weapons Lab., K-8/67, Dahlgren, Va. (Jan., 1967). 

VII.7.1. MaGic PAPER 

[CL63] Clapp, L. C. and Kain, R. Y., “A Computer Aid for Symbolic Mathe- 
matics”, Proc. FJCC, Vol. 24 (Nov., 1963), pp. 509-17. 

[CL66] Clapp, L.C. et al., Magic Paper: An On-Line System for the Manip- 
ulation of Symbolic Mathematics, Computer Research Corp., Report 
No. R 105-1, Newton, Mass. (Apr., 1966). 

VII.7.2. SYMBOLIC MATHEMATICAL LABORATORY 

[ZB67] Martin, W. A., Symbolic Mathematical Laboratory, M.1.T., MAC-TR-36 
(Ph.D. thesis), Project MAC, Cambridge, Mass. (Jan., 1967).



Vi I : MULTIPURPOSE LANGUAGES 

Vill.1. SCOPE OF CHAPTER 

Chapters IV, V, VI, and VII contained descriptions of languages which were 

designed primarily for use in solving, respectively, numerical scientific, 

business data processing, string and list processing, and formal algebraic 

manipulation problems. In some cases a specific language might have been 

used for more than its intended purpose, but this was a by-product and not 

a deliberate intent. 

The term general purpose as applied to programming languages has been 

in vogue for many years. However, after careful deliberation, I have reached 

the conclusion that there is no programming language in this book which 

is truly general purpose by any reasonable definition of the term. Each 

language in this chapter provides effective capabilities for dealing with at 

least two of the areas in the preceding four chapters, but none is really good 

for all of them. Hence, the term multipurpose is used to provide a more 

accurate description of the languages in this chapter. This term also implies 

that a reasonable balance among the various areas is maintained in the defini- 

tion of the language in order to qualify as multipurpose. In other words, 

a language which provides excellent facilities in one area and primitive ones 
in another is not considered multipurpose. 

The first language developed which made a serious attempt to cover 

several areas was JOVIAL. Its primary objective was to solve command 

and control problems, and these involve both scientific calculation and a 
certain amount of data processing. Hence JOVIAL itself provided fairly 
balanced capabilities in both areas. | 

The major language in this chapter 1s, of course, PL/I, which is really 

523



524 MULTIPURPOSE LANGUAGES 

a culmination of the line of languages discussed in Chapters IV and V, with 

some facilities of the types discussed in Chapter VI. (A discussion of the 

connection of PL/I with the concepts of formal algebraic manipulation is 

given in Section VII.3.) In addition to the numerical scientific and data pro- 

cessing facilities, PL/I also allows the user significant interaction with the 

compiler and/or operating system, and it has a macro facility to allow some 

user-defined extensions. 

Both Formula ALGOL and LISP 2 are based on ALGOL. The former 

is a strict extension which provides facilities for formal algebraic manipula- 

tion and for string and list handling. LISP 2 is an ALGOL-like language 

based on LISP 1.5; it provides list processing capabilities as well as most 

of the regular ALGOL facilities. 

VIH.2. LANGUAGES OF HISTORICAL INTEREST ONLY 

There are no languages in this category. 

ViN.3. JOVIAL 

VIII.3.1. History oF JOVIAL 

In June, 1958, the System Development Corporation initiated a research 

project to investigate the problems of automatic coding. This project resulted 

in the development of CLIP (Compiler Language for Information Process- 

ing). Much of this work was similar in spirit to that being done for IAL 

(i.e., ALGOL 58); the specifications for IAL were published in December, 

1958, and SDC adopted the notation of IAL but made certain additions and 

modifications to permit greater convenience in expressing data manipula- 

tions. Certain other facilities were omitted. Thus, CLIP was really a deriva- 

tive of ALGOL 58. (A further discussion of CLIP, including some of the 

statements about its initial purpose and the list of references, is in Section 

IX.2.5.2.) Early in 1959, SDC’s SACCS (Strategic Air Command Control 

System) Division in New Jersey decided to develop a similar language 

(eventually called JOVIAL) that would be useful for programming SACCS. 

Since CLIP was a research effort involving compiler writing and was being 

developed 3000 miles away, it was not possible to keep the languages the 

same. Whether right or not, JOVIAL has survived as the major SDC lan- 

guage. 

SDC actually began work on JOVIAL in February, 1959. A year later, 

a JOVIAL interpreter was running on the 709, and by December, 1960 a 

compiler for the 709 was running on the 709.! 

1 Shaw [SH63b], p. 89.



VIIL3. JOVIAL 525 

The story of the name JOVIAL has been told many times in differing 

versions. According to the man who should know, namely Jules Schwartz, 

the key points are as follows: He wrote a draft proposal for a programming 

language to be used for the Air Force 465L program. The language was 

based on IAL, but it had additional facilities. The title he put on the draft 

was OVIAL (Our Version of the /nternational Algebraic Language). The 

language concept was accepted, but the word OVIAL was not considered 

satisfactory for several reasons. A suggestion for a new name was JOVIAL, 

and this was accepted. However, it was necessary to decide what JOVIAL 

stood for, and one joking suggestion was that it should be Jules’ Own Version 

of the /nternational Algebraic Language. According to Schwartz, he felt 

this was a joke but did not become too concerned about it. During a business 

trip shortly thereafter, a statement of work was formally submitted to the 

contracting officer which listed among the deliverable items a JOVIAL 

(Jules’ Own Version of the International Algebraic Language) compiler. Nobody 

would agree to changing the contract, and so the name remained, providing 

both more fame and more blame to Schwartz than he deserved.’ 

The original version of JOVIAL was implemented on both the IBM 

709 and the Military Computer used for SACCS (AN/FSQ-31). By no later 

than May, 1961 (and possibly earlier), JOVIAL 1 became obsolete, was 

replaced by JOVIAL 2 (running on the 709, 7090, and the SACCS com- 

puter), and then eventually by JOVIAL 3. JOVIAL 3 (hereafter referred 

to as JOVIAL) was implemented at least for the CDC 1604 and 3600, the 

Philco 2000, the SAGE AN/FSQ-7, and the AN/FSQ-32. JOVIAL 2 was 
implemented on the IBM 9020. 

As usually happens, even before the compilers were fully operational, 

work began on improvements to them and the language as well. In May 

1960, a decision was made to standardize on JOVIAL as a common pro- 

gramming language for SDC.’ 

JOVIAL has been used not only by SDC for Air Force projects but it 

has been adopted by the Navy for use in its NAVCOSSACT and by the 

Army in some of its programming efforts. In June, 1967 the Air Force issued 

its own specifications to establish (a version of) JOVIAL 3 as the standard 

programming language for Air Force command and control applications 

(see [AF67]). 

Although JOVIAL has been developed and used primarily by SDC, 

the history of its development, its modifications, and the implementations 
on various machines is almost as complicated as that of FORTRAN. Those 

people interested in further details should see Shaw [SH63b], Steel [ST66], 

and the references listed in [SH63b]. A list of usage in the Department of 
Defense and a list of compilers are given in Figure VIII-1. 

2 Private communication, August, 1967. 

3 Shaw [SHOO0].



526 MULTIPURPOSE LANGUAGES 

VIII.3.2. FUNCTIONAL CHARACTERISTICS OF JOVIAL 

JOVIAL tends definitely toward generality and falls somewhere in the 

middle relative to succinctness and naturalness; this middle ground charac- 

teristic occurs because the language is based on ALGOL 58, but it has 

added so many other features that there is no longer any resemblance. It is 

consistent and fairly easy to read or write. Since it has great power, it is not 

particularly easy to learn. The application area includes the whole command 

and control field, which itself subsumes much of the need for numerical 

scientific as well as some data-handling calculations, and a particular need 

for manipulation of logical entities. A significant objective was the neces- 

sity of handling system data described in a COMmunication POOL 

(COMPOOL). While this concept is independent of, and precedes, JOVIAL 

(e.g., see FAST [MI62]), the ability to use a COMPOOL was a design 

criterion in the language. The COMPOOL serves as a central source of data 

description, and it is particularly valuable in the large command and con- 

trol systems for which JOVIAL was designed and has been used. JOVIAL is 

a procedure-oriented, problem-oriented, and problem-defining language. 

  

JOVIAL USAGE IN USAF As oF AuGusT 1, 1967 

  

  

  

Dialect User systems Computer 

J3 SAGE 416L FSQ-7 

BUIC III 416M GSA-51 
RADC CDC 1604B 

NORAD Philco 2000/212 

AFSC (Sat. Cntrl) CDC 3600 

J2 SAC Planning IBM 7090 

SACCS 465L FSQ-31 
FTD IBM 7090 

JS ADC(STP) IBM S/360 
  

JOVIAL USAGE IN DOD OTHER THAN USAF 

AND OTHER DOD RELATED FEDERAL GOVERNMENT USAGE 
  

  

  

J3 NMCS/SC CDC 1604 

NAVCOSSACT CDC 1604A 

RADC CDC 1604B 

NASA (GEMINI) Philco 2000/212 

JOB CORPS CDC 3600 

J2 ARMY (ADSF) IBM 7090 

NAVSPASUR IBM 7090 

FAA-NAFEC IBM 7090 

FAA-NAS IBM 9020 

JS OASD (Manpower) IBM 7090 

NAVCOSSACT IBM 7090 
 



VIlI.3. JOVIAL 527 

Figure VIII-1. (cont.) 

  

JB NMCS/SC IBM S/360/50 
  

COMPILERS AS OF AUGUST, 1967 

  

  

  

  

Machine Developer Use 

J3 CDC 3870 SDC NRL 

Burroughs D825! Burroughs TWA 

Burroughs D825 SDC BUIC III 

(IBM) FSQ-7 SDC SAGE 
Philco 2000/210 SDC IR 

Philco 2000/212 SDC 425L 

(IBM) FSQ-32 SDC ARPA/TSS 

Univac M1218 UNIVAC RADC 

(Univac) C1667 PRC BuShips 

Hughes H3118 PRC IPG 

CDC 3600 SDC SSD 
CDC 1604 SDC NMCS 

CDC 1604A SDC NAVCOSSACT, RADC 

GE 635 PRC RADC 

CDC 1604 Teledyne RADC (Exper.) 

IBM 360 CSC IBM 

J2 (IBM) FSQ-31 SDC 465L 

(IBM) FSQ-32 SDC ARPA 

(IBM) 9020! CUC/IBM FAA 

IBM 7090 SDC SAACS, SAC, SPASUR, 

IBM 7094 SDC FTD, FAA, etc. 

RCA VIC! RCA Exper. 

JS (IBM) FSQ-32? SDC ARPA/TSS 

Univac 1107? CSC CSC Proprietary 

IBM S/360/50/65/67/75 SDC NMCS/SC, Multiple 
SDC Cmptr. Cntr. 

IBM 7090/7094 SDC CPSS, ACIS 

IBM 7094 SDC NAVCOSSACT 

JX2 Philco 2000/210 SDC IR 

(IBM) FSQ-32 SDC IR 

IBM 7090 SDC IR 
7094 

1Coded in Machine Language 
2Coded in FORTRAN IV 
3JTS (JOVIAL Time Sharing) 
4Variable Instruction Computer; micro programmed to simulate IBM 7090 

  

Figure VIII-1. JOVIAL usage and compilers. 

Source: [AA67]



528 MULTIPURPOSE LANGUAGES 

SAMPLE PROGRAM—JOVIAL 

  

Problem: Construct a subroutine with parameters A and B such that A and 

B are integers and 2 < A < B. For every odd integer K with A < K < B, com- 

pute f(K) = (3K + sin(K))? if K is a prime, and f(K) = (4K + cos (K))? if K is 
not a prime. For each K, print K, the value of f(K), and the word PRIME or 

NONPRIME as the case may be. 
Assume there exists a subroutine or function PRIME (K) which determines 

whether or not K is a prime, and assume that library routines for square root, 

sine and cosine are available. This program also assumes the existence of three 

output routines. [Note: JOVIAL has ODD as a primitive.] 

Program: 

PROC SPEC (Al, BI)$ ITEM Al 1 U 47 $ 
ITEM BI I U 47 $ 

BEGIN WRITE (0) $ 
IF NOT ODD (A1)$ 
Al = Al + 1$ 

FOR K = Al, 2, B1$ 
BEGIN WRITEN (15, K, 0)$ 

IFEITH PRIME (K) $ 

BEGIN WRITEN (30, SQR, (3*K + SIN (K)), 5)$ 
WRITEH (45, 5H(PRIME))$ 

END ORIF 1 $ 

BEGIN WRITEN (30, SQR (4*K + COS (K)), 5) $ 

WRITEH (45, 8H(NONPRIME))$ 
END 

END WRITE (1) $ 
END WRITE (4) $ 
END 
  

The language serves simultaneously as a reference, publication, and hard- 

ware language. JOVIAL was designed for the professional programmer and 

definitely to be used in a batch environment. However, a much later and 

much simpler version called JTS (see Sandin and Foote [SN65]) was installed 

under SDC’s time-sharing system, and an interpretive extended subset version 

called TINT was specifically designed and implemented for on-line use. 

(See Kennedy [KE 65].) 

JOVIAL has had the misfortune to suffer throughout its history from all 

the problems that could possibly arise from an attempt to have wide usage, 

maintain compiler independence, avoid dialects, and control subsetting and 

extensions. The proliferation of documents and systems on differing machines 

did not help the situation, although there were continuous attempts in SDC 

to control this problem. The earliest description seems to be the one by 

Schwartz, Petersen, and Olson [SC60]. The reader interested in pursuing 

which versions existed on which machines should see the papers by Shaw 
[SH63b] and Steel [ST66], but even these are not complete. (See also Figure



VII.3. JOVIAL 529 

VIII-1.) There have been several versions of the official specifications with 

the latest one by Perstein [PE66a], based on earlier ones by Shaw. On the 

more positive side, in August, 1965 certain internal management decisions 

were made in SDC with the resulting policy, stated in Perstein [PE66], that 

any new JOVIAL compiler must implement Basic JOVIAL as defined in that 

manual. If the new compiler provides capabilities included in J3 
(JOVIAL 3), it must implement them in accordance with the official descrip- 
tion given in Perstein [PE66a]. A new compiler may implement features that 

are not included in the specifications of JOVIAL and are not incompatible 

with the specifications of JOVIAL; of necessity, some features will be machine 

dependent, e.g., precision of the arithmetic. Since most of the language 

definitions have been given in a fairly formal way, there has been relatively 

little problem of incompatibility caused by misunderstanding. 

Until 1967 there was no significant attention paid to JOVIAL from the 

viewpoint of American standardization (i.e., through USASIJ), although 

obviously there has been tremendous attention paid to this within SDC 

itself. As a result of interest by the Air Force and SDC, there is a possibility 

that a USASI standard might be developed. 

The original CLIP language work was started by J. Schwartz and E. 

Book, and the former supervised the development of the first JOVIAL 

system.‘ Since then, numerous people within SDC have contributed to the 

further development of JOVIAL; in not all cases were the language designers 

directly involved with the implementation effort since SDC set up various 

groups to control the maintenance. 

The basic objective of the language was to create a language for use 

by professional programmers in solving large complex information pro- 

cessing problems. In the various documents on JOVIAL, several different 

notations for defining syntax have been used, ranging from reasonable to 

arbitrary notation that in my opinion did not seem to have any justification 

whatsoever, the latter appearing, for example, in Shaw [SH63a]. 

One complaint which never could be leveled against the JOVIAL 
activity is a shortage of documentation. Shaw states “My collection of docu- 
ments of JOVIAL weighs almost 50 pounds and stands almost two feet high.” 
Since that was written in 1962, it seems reasonable that the material has not 

decreased in quantity. Naturally some of those documents are working 
papers of interest to limited groups only, but on the other hand at least some 

of it is of widespread interest. The material ranges from primers (e.g., 

Kennedy [KE62]) to detailed syntactic descriptions (e.g., Perstein [PE66a]) 

to general description and tutorial articles (e.g., Shaw [SH63a] and [SH61)]). 
Other references are listed at the end of the chapter, and still more are 

4 Shaw [SHO0]. 
5 Shaw [SH63b], p. 90.



530 MULTIPURPOSE LANGUAGES 

given in Shaw [SH63b]. Some technical comparisons with other languages 

are given by Coffman [CO6I] and Shaw [SH64]. A JOVIAL Bulletin has 

been started and issued irregularly as part of SICPLAN notices [ACOO]. 

JOVIAL appears to have fulfilled its objectives, even though it is per- 

haps ready to be replaced by PL/I, at least in the view of Steel [ST66]. It 

seems surprising, however, that although JOVIAL has a potential applica- 

tion area that was wider than any other language until PL/I, and in spite of 

the fact that it has been implemented on a large number of machines, it 

does not appear to have been used much outside the military command and 

control applications (and for writing its own compilers). In that area it has 

been used more heavily for writing utility and support programs than for the 

operational programs themselves. Three instances in which JOVIAL has 

been used in other areas are writing a program to simplify JOVIAL source 

programs (described by Clark [CE67]), creating a teaching program (see 

Marsh [MD64]), and automatic essay paraphrasing (see Klein [KK65)). 

One reason for JOVIAL’s lack of major acceptance seems to be the lack 

of direct support by computer manufacturers and the natural reluctance by 

customers to produce a compiler themselves. In some other cases, an NIH 

(Not Invented Here) factor seems to have played a major role. However, 

it is not really clear to me why it has not received wider usage outside SDC. 

— VITI.3.3. TECHNICAL CHARACTERISTICS OF JOVIAL 

The character set in JOVIAL consists of the 26 capital letters, the 10 

digits, and the following 12 characters: 

+ —- x* f/f., = ()' $ blank 

An identifier is a letter followed by at least one letter, a numeral, or an 

apostrophe, ' (called a prime in JOVIAL), except that the identifier cannot 

end with the prime character nor contain two consecutive primes. Hence 

an identifier cannot consist of a single letter. The five standard graphic arith- 

metic operators are available. 

Data names and program unit labels are formed as the identifiers defined 

above, except that they cannot be the same as any of the reserved words in 

the language. Since statement labels and data names can be distinguished 

from context, the same name can be used in each of those categories, al- 

though this is certainly not recommended because of potential confusion 

to the user. Data names can have any number of subscripts, separated by 

commas and delimited by the dollar sign, e.g., ALPHA ($ 3+A*B, B/C $). 

There is no qualification because there is no data hierarchy except for a 

limited facility in creating tables. However, it is possible to refer to bits and 

bytes specifically (which are of course largely or completely machine depen-



V1.3. JOVIAL 531 

dent). There are a number of reserved words in JOVIAL, and they cannot 

be used as names. 

The relational operators are EQ, GR, GQ, LQ, LS, and NQ with the 

meanings of equal, greater than, greater than or equal, less than or equal, 

less than, and not equal, respectively. The logical operators are AND, OR, 

and NOT. Punctuation is used in JOVIAL, but it is not particularly signifi- 

cant except for the commas used to separate items in lists. Much of the 

delimiting normally done by punctuation (e.g., end of statement) is done 

through the use of the dollar sign. Blanks are quite significant, and the rules 

about when they can and cannot appear are complicated; however, the 

obvious cases where blanks can appear between operators and operands 

and between key words and names are allowed. Whenever one blank is 

permitted, any number are allowed. There are no noise words. 

Two types of literals are permitted, namely alphanumeric (denoted as 

Hollerith) and transmission code; the latter is used to specify the exact form 

of the machine language representation of the literal. In both cases, the 

number of characters in the literal precedes the identifying letter, e.g., 

AH(NUTS). It is also possible to denote literals by octal constants. 

The format is quite free form, with the programmer being allowed to 

start any JOVIAL statement in columns 1 to 72; more than one statement 

per line may be written, and one statement may extend over several lines. 

The conceptual form seems to fall on rather neutral ground; it is not par- 

ticularly symbolic or succinct, but on the other hand it is not as English- 

like as COBOL. 

The following is a partial list of the declarations in JOVIAL: ITEM, 

MODE, ARRAY, TABLE, OVERLAY, DEFINE, PROCEDURE, SWITCH, FILE. Many 
of these in turn have further declarations associated with them, and all are 

discussed later. 

The smallest executable unit is a statement containing one of the execu- 

table commands; it is terminated by $. Any such statement can be named, 

and the name is followed by a period. Groups of statements can be combined 

into a larger form which is composed of a BEGIN and END bracket, with 

statements (and possibly declarations) between them. These compound 

statements can be nested to any depth desired. Loops can be controlled by 

an IF statement or through the use of the FOR command. JOVIAL permits 

functions, procedures, and closed subroutines. The closed subroutine is a 

special kind of procedure that has no parameters. There are different rules 

involving the handling of all these with regard to loops. 

Comments are delimited by two primes (i.e., '') at the beginning and 

the end; the intervening string can consist of any characters except the dol- 

lar sign and, of course, it cannot contain two primes prior to the end nor a 

prime immediately preceding the ending pair. A complete program con- 

sists of a list of declarations and statements preceded by the key word START



532 MULTIPURPOSE LANGUAGES 

and optionally preceded by the word CLOSE. If the latter is used, it indicates 

the program is a closed subroutine. The program ends with TERM $. It is 

possible to specify the name of the first statement to be executed immediately 

after the TERM delimiter. 
The only interaction with the environment is from the input/output 

statements. 

The main delimiter is the dollar sign, which is used to end an executable 

statement, and of course the BEGIN... END pair for compound statements. 

Call by name and call by value parameter passage are provided. As indicated 

above, compound statements themselves can be contained within com- 

pound statements. A procedure can invoke other procedures (but no recur- 

sion is permitted). 

The executable units and the declarations can be intermingled in the 

program. It is possible to include machine code statements in a JOVIAL 

program by preceding the code with the key word DIRECT and following 

it with the key word JOVIAL. It is also possible to make a definite con- 

nection between the variables in the JOVIAL program and a machine 

register since the programmer is allowed to write ASSIGN A = variablename $ 

or ASSIGN variablename = A $. The A is considered an undefined machine 

register called the accumulator. 

JOVIAL introduces the concept of a functional modifier which provides 

built-in operations on certain types of expressions or conceptually provides 

answers to questions about various program items. From a structural view- 

point, functional modifiers seem to fall between direct executable statements 

and declarations, although they actually appear in statements. 

The types of data variables and constant permitted in JOVIAL are 

arithmetic, Boolean, status, literal, and dual. Status variables are essentially 

mnemonic names which can be associated with integer values of a data 

variable and can be tested against these values. (This is the same concept 

as the conditional variable in COBOL.) The dual constants represent an 

ordered pair which is not a rational number but is useful for calculations 

involving two-dimensional coordinate systems; it is only implemented on 

machines with dual arithmetic and was motivated by the early existence of 

such hardware. Arithmetic variables can be fixed, integer, or floating point. 

There are no complex, formal, string, or list variables. Arithmetic expressions 

are created in the normal way. Absolute value is designated by either 

JY Sf) 

or 

ABS (+)



VIII.3. JOVIAL 533 

There are both tables and arrays in JOVIAL. An array is an n-dimensional 

collection of values or variables of the same type, all identified by a single 

name (with the necessary subscripts). A table on the other hand is a one- 

dimensional array, each element of which contains a fixed but arbitrary 

number of data items of (possibly) different types. For implementation 

reasons, tables are handled more efficiently. JOVIAL permits access to 

bits and bytes through functional modifiers BIT and BYTE by writing, e.g., 

BIT ($ 0, 6 $) (COLUMN) or BYTE ($ 3 $) (STATE). In the first case, the 
information designated is an unsigned integral variable, and it can be 

assigned to another variable name (which can itself be designated through 

the BIT modifier). The BYTE modifier designates a literal variable. The first 

bit or byte of the data item and the number of bits or bytes are specified 

by the two numbers associated with the modifier, and the number (of bits 

or bytes) can be omitted if it is 1. 

All the data variables, constants, and aggregates of constants are 

accessible by the commands in JOVIAL. 

There are three types of arithmetic in JOVIAL: Floating point, fixed 

point, and dual fixed point. In the dual mode, operations are done in parallel 

with the left component of one operand combined with the left component 

of the other to yield the left component of the result. (This is a special case 

of more general array operations.) Operands of different modes can be 

combined, and automatic conversions from fixed to floating, floating to 

fixed, and fixed (or floating) to dual are implied. In the last case, the single- 

valued operand is duplicated before doing the arithmetic. The precision of 

the arithmetic result is computer dependent because of the word size. Stan- 

dard precedence and sequencing rules apply except that the unary minus 

takes precedence over exponentiation, e.g., —3**2=9. 

Boolean expressions are constructed in the standard way from the three 

operators AND, OR, and NOT. Parentheses are used to indicate grouping 

when necessary. The status variables can be included within a Boolean for- 

mula. 

Names defined within a procedure are defined only for that procedure, 

and they can be used outside it with a different meaning. Names defined 

within a program apply only to that program when it is used in conjunction 

with others. Names in a COMPOOL (described briefly on page 536) are 

defined for an entire system of programs, excluding programs or procedures 

that define identically spelled names. Names of data elements not defined in 

a COMPOOL should be defined before they are used. If they are not, a 

preset (compiler dependent) mode is assigned; this can be changed by the 

MODE directive. 
JOVIAL has a basic assignment statement; in addition, it permits the



534 MULTIPURPOSE LANGUAGES 

interchange of values of a pair of variables; this is designated by two equals 

signs. In both cases, the numeric quantities on the right are converted to the 

appropriate form on the left. Thus, writing the sequence 

5 $ 
7+ A$ 

> 
wo

 
> 

ll 

causes A to have the value 12 and B to have the value 5. 

There are no specific alphanumeric data-handling commands, although 

the easy access to bits and bytes make their programming fairly simple. 

The unconditional control transfer is the (single word) GOTO. It may 

have statement label information with it, to provide both a computed and 

an assigned GOTO. This command can be used to invoke a subroutine with 

no parameters permitted; after execution of the subroutine, control is re- 

turned to the statement immediately following the GOTO unless there has 

been a transfer of control out of the subroutine. Procedures with formal 

parameters are invoked by specifying the procedure name and a list of the 

parameters enclosed in parentheses and separated by commas; an equals 

Sign is written between the input and the output parameter lists to dis- 

tinguish between them. 

A function can be invoked from within an arithmetic or Boolean expres- 
sion. 

Conditional statements take one of two forms. The first is itself 

called a conditional statement by JOVIAL writers and is of the form 

IF Boolean-expression $ statement where the statement cannot contain an IF 

except within a BEGIN. ..END bracket. Thus, IF AR EQ BJ $ CR = DK + EM $ 

and IF ALPHA — BETA LS GAMMA + DELTA $ BEGIN IF HE EQ SHE $ 

GOTO BLAZES $ END are correct, but IF ALPHA — BETA LS GAMMA + 

DELTA $ IF HE EQ SHE $ GOTO BLAZES $ is not correct because the second 

IF is not within a BEGIN .. . END bracket. 

Another form of conditional statement provides alternatives, using the 

following format: 

IFEITH Boolean-expression $ statement 

[label .] ORIF Boolean-expression $ statement 
[label .| ORIF Boolean-expression $ statement 

END 

where | | indicate optional elements. Any number of alternatives can be 
listed, and the Boolean expressions are tested in sequence from the top; 

the statement associated with the first true Boolean-expression is executed 

and control is then passed to the statement following the END. For example,



VIII.3. JOVIAL 535 

IFEITH AB GR BB $ AB = CD $ 
NAME . ORIF AB + CD LS CD $ 

BEGIN EF = (AB + CD) ** 2 $ 
LL. AB = BB + 2 $ 

CD = ABC $ 
END 

ORIF 1 $ GOTO WARM $ 

END 

NEXTST . AB = CD + 1 $ 

In this example, if AB > BB, then AB = CD is executed and control passes 
to NEXTST. If AB < BB, then control passes to NAME and the AB + CD < CD 
test is made. Depending upon its truth value, either the three statements 
following the BEGIN are executed or else control passes to the next ORIF: 
in that case, since the 1 is defined as the Boolean constant true, control is 

passed to WARM. 

The loop-control statement is the FOR statement, which has the fol- 

lowing general format; 

FOR paramlist] $ [name .] FOR paramlist2 $...$ 

[name .| FOR paramlistn $ 
BEGIN statements END 

the range of the FOR is the set of statements contained within the BEGIN... 

END pair. The paramlist is of the form 

parameter = initial-value, increment, final-value $ 

or 

parameter = ALL (name) $ 

where the parameter is a single letter defined only within the range of the 

FOR, any of the three elements can be expressions, and the final value can 

be omitted (in which case the loop must terminate from within the range). 

The parameters following each separate FOR statement are varied in parallel, 

i.e., the initial value of each is set, then each is incremented, etc; nesting is 

accomplished by including a FOR statement within the BEGIN... END pair. 

Only one paramlist can contain a final-value for its parameter. In the use of 
the ALL case above, the name refers to a table or an item in a table, and the 

looping is executed for each element in the table. The value of a parameter 

can be used in an expression to determine the value of a parameter that 

appears in a succeeding FOR paramlist. 

A rather unusual TEST [parameter | statement exists. It permits control 

to transfer to the compiled code which causes incrementing and testing of 

a parameter in a loop.



536 MULTIPURPOSE LANGUAGES 

There are no error condition statements nor any symbolic data-handling 

statements. 

With regard to input/output, it is worth noting that neither JOVIAL | 

nor JOVIAL 2 on the 709/7090 contained any input/output commands be- 

cause the executive program that they were using did all the input/output. The 

input/output commands that were finally put into JOVIAL look much like 

COBOL, although they are not necessarily based on it. The first time a file 

is activated, the user must give an OPEN INPUT filename | recordinformation| $. 

Subsequently the user writes INPUT filename recordinformation $. The record- 

information can either be a variable name, an array name, a table name, 

sequences of table entries, or an individual table entry. The file is shut by 

means of a SHUT INPUT filename | recordinformation] $ statement. The actual 

READ operation transfers the information from the physical file into internal 

storage. Similarly, for output, the user would write OPEN OUTPUT filename 

[recordinformation| $ the first time, OUTPUT filename [recordinformation| $ 
the rest of the time, and then SHUT OUTPUT filename | recordinformation| to 
close the file and deactivate it. For each logical record read or written, the 

file position, accessed by the functional modifier POS (filename) is incre- 

mented by one. 

There is only one built-in function in JOVIAL, namely REM, and there 

is a built-in procedure REMQUO. They produce, respectively, the remainder 

and the remainder and quotient of division of two integers. Procedures and 

functions in the library are made part of the object program by just writing 

the names in the source program. The COMPOOL contains descriptions 

or definitions of both data declarations and programs. Any reference to 

data, procedures, or functions that are listed in the COMPOOL will be used 

as if they were a part of the program, unless the program itself defines such 

a name explicitly prior to its usage. 

There are no specific executable debugging or storage allocation state- 

ments. The only type of interface with an operating system is through the 

COMPOOL. The closest to machine feature statements are the availability 

of the bit and byte modifiers and the provision for a mythical accumulator. 

The basic units of data are called items, and the most basic data declara- 

tion is the JTEM, which must be written for each variable. A MODE declaration 

describes the item and provides an implicit declaration for all following and 

otherwise undefined simple items until another MODE declaration occurs. 

The ARRAY declaration provides the dimensions along with the rest 

of the ITEM declarations. Associated with each item are a number of char- 

acteristics. Some are either self-explanatory or have already been described, 

namely floating, fixed, integer, dual, signed, unsigned, Hollerith, transmission, 

status, and Boolean. Many of these are written using only the initial letter, 

e.g., F specifies floating point. 

A rounded attribute declares that any value assigned to the item should



VIII.3. JOVIAL 537 

be rounded rather than truncated. It is also possible to show for each variable 

an estimated minimum and maximum absolute value of the item. For each 

status item, the list of status constants is given; these are encoded in order 

by the integers 0, 1, 2, etc. The number of bits can be specified but if it is 

omitted, then the compiler determines the maximum number of bits required. 

It is often desirable to assign specific initial values; this can be done by 

inserting a preset declaration immediately after the name and description. 

As an illustration, the declaration 

ITEM ALPHA | 15 U 5 P 97.18 $ 

describes a variable named ALPHA as an Unsigned 15 bit Integer with 5 

fractional bits which is Preset to the value 97.18. 

There are TABLE and ARRAY declarations. For the table, it is possible 

to specify variable or rigid (=fixed) lengths; serial or parallel entry structure; 

and either no item packing, medium item packing, or dense item packing. 

A variable table declaration indicates that the number of entries can vary 

during program execution, whereas for a rigid table length this cannot be 

done. The difference between serial and parallel entry tables is the way in 

which their data is stored. In the serial table, words needed for an entry are 

allocated consecutive memory positions; whereas in the parallel structure 

the nth word of each entry resides in a contiguous block of memory. The 

density of packing indicates how the items are to be stored within a particular 

entry. No packing means that each item is allocated a full word; medium 

packing means that storage is allocated in subword units, where these sub- 

units can be of different sizes within the word and are of course completely 

machine dependent; finally, dense packing means that the storage is allocated 

primarily in consecutive bit positions. (Note that the language is heavily 

oriented toward a binary machine; it does not seem to have been implemented 

on a decimal machine.) If packing is not specified, then each compiler 

assumes some normal packing mode. (More recent specifications provide 

rules for this.) 

It is possible to define a table structure completely through the use of 
the structured item declaration and the STRING item declaration (which 
declares more than one occurrence of the item per entry of a table). This 

plus some other facilities allow the user to specifically indicate what item 

appears in what part of a word. Obviously this plays havoc with machine 

independence. 

The NENT (number-of-entries) is a parameter indicating the number of 

entries in a table. Thus one can write 

NENT (PAYROLL) = NENT (PAYROLL) + 1 $ 

if one wants to add somebody to the payroll. For fixed length tables this is



538 MULTIPURPOSE LANGUAGES 

an integer constant, while for variable length tables it is a counter that the 

program itself must maintain. Another parameter for table processing ts 

NWDSEN (number-of-words-per-entry) which is an integer constant estab- 
lished at compile time. The ALL modifier was already seen in the FOR 

clause to permit more effective processing of tables. The ENTRY modifier 

allows a table entry to be treated as a single value. The MANTissa and CHAR- 

acteristic modifiers permit the user to extract the indicated information from 

a floating point variable and assign it to another variable. The ODD 

modifier can be used to determine if the value of the least significant bit of 

a quantity is 0 or 1; it can be assigned to a Boolean variable which will then 

be true if it is odd and false if it is even. 

The file declaration is of the following form: 

FILE filename filestructure statuslist devicename $ 

where the filestructure specifies Hollerith or binary, the estimated maximum 

number of records, fixed or variable record size, and estimated maximum 

number of bits or bytes in a record. The list of possible file statuses, e.g., 

busy, ready, and error, are associated with integer values as status con- 

stants. The devicename is defined by the implementer, but it is assigned by 

the programmer. 

The overlay declaration is the word OVERLAY followed by a sequence 

of overlay lists; storage is assigned sequentially to the data elements in 

each list and each separate list can occupy the same space as another. 

Finally, JOVIAL contains a DEFINE declaration which permits a name 

to be substituted for a string. It is written DEFINE name ‘definition’ $. 

It can be used, for example, to abbreviate lengthy expressions, introduce 

noise words, or make key words more readable, e.g., 

DEFINE AREA "3.1416 * RADIUS ** 2” § 

DEFINE NUTS '" " §$ 

DEFINE GREATER ''GR" $ 

Procedure declarations usually have the following form: 

PROC name (inputparamlist = outputparamlist) $ 

[declaration list] BEGIN statements END 

The items in the paramlists are separated by commas. A function declara- 

tion also uses PROC, and the name is used as the output parameter. 

The STOP statement terminates execution; however, a statement label 

can be written after the STOP statement, and if execution is resumed, then 

the indicated statement will be the next one executed. 

Switch declarations also exist. The word SWITCH is followed by an



Vull.3. JOVIAL 539 

identifier and then a sequence of identifiers in parentheses. The choice is 

determined as a computed GOTO (see Section III.5.3.1). 

There is no self-modification of programs. There is also no self-extension 

of the language, except in the trivial sense permitted by the DEFINE which 

allows the user to substitute a name for a string. There are no specific com- 

piler directives. 

JOVIAL is the best documented and practical example of a language 

which can be used to write its own compiler. Almost all the recent JOVIAL 

compilers have been written that way, and even JOVIAL 1 was bootstrapped 

using itself. Most of the JOVIAL compilers are structured with a generator 

which accepts the source code, translates into an intermediate language 

and then a translator which converts the intermediate language into execu- 

table machine code. (In my opinion, these people are using the terms genera- 

tor and translator backwards. However, they picked up this terminology 

from the early work on the UNCOL concept (see Section X.2).) Not only 

does this procedure make it easier to construct new compilers, but it also 

helps significantly with the documentation and somewhat with com- 

patibility problems because both the generator and the translator them- 

selves are written in JOVIAL. 

It is clear that JOVIAL has been designed to provide efficiency at object 

time. The facilities for structuring the data internally all lead to efficient 

storage allocation and execution, with a minimum amount of incompatibility. 

Although the language is fairly general, there are annoying restrictions in it. 

Since the programmer is able to specify and control the storage allocation 

considerably through the declarations, the compiler needs to obey only the 

specifications given for each program. There are no particular debugging 

aids or error checking in the language, although most of the compilers pro- 

vide them. 

VIII.3.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

JOVIAL appears to have made several contributions to the technology. 
It was the first language (and until PL/I, the only one) to provide good 

facilities for simultaneously doing scientific numerical computation and 

nontrivial data handling, while at the same time it could also be used in 

general information handling areas. A second contribution, although not 

really introduced by JOVIAL, is the use of the COMPOOL (see Section 4.2 

in Perstein [PE66a]) in connection with a compiler. A third contribution to 

the technology is its practical usage as its own compiler. Finally, it has made 

a very significant contribution in terms of allowing the programmer great 

flexibility for controlling storage allocation when he needs to but not requir- 

ing him to do so otherwise.



540 MULTIPURPOSE LANGUAGES 

Vill.4. PL/I 

VIII.4.1. History oF PL/I 

Considering the potential impact of PL/I upon the computing industry, 

it is not altogether surprising that it developed a significant history in a 

short time span after its inception. 

It had been recognized by numerous people for many years that 

FORTRAN—while effective for solving numerical scientific problems—was 

sadly lacking in two main areas, namely in character and alphanumeric data 

handling and in having provisions for good interaction with more modern 

equipment and operating systems. Even the improvements which produced 

FORTRAN IV, while extremely significant and useful, did not really address 

themselves to these problems. In order to remedy this situation, SHARE and 

IBM agreed in September, 1963 to form a joint Advanced Language Develop- 

ment Committee under the SHARE FORTRAN project. The committee 

goal was to provide a language which would encompass more users while 

still remaining as a useful tool to the engineer. The members and their 

affiliations at that time were G. Radin, C. W. Medlock, and B. Weitzenhoffer 

of IBM (Radin being chairman of the IBM delegation) while the SHARE 

representatives were H. S. Berg (Lockheed) J. Cox (Union Carbide), and 

B. Rosenblatt (Standard Oil of California) (Rosenblatt serving as official 

chairman). Extensive help was also provided to the committee by T. Martin 

(Westinghouse), H. P. Rogoway (Hughes Dynamics, and also chairman of 

the SHARE FORTRAN project), and L. Brown and R. Larner of IBM. 

The committee and its advisors worked many long hours and weekends, 

particularly since several of the participants had many other responsibilities. 

Furthermore, in many cases there were specific (and somewhat unreason- 

able) deadlines imposed. 

While there was no explicit or implied commitment on IBM’s part to 

implement the final product resulting from the committee, it was certainly 

assumed that this would probably happen. The original definition of purpose 

was a 6-month project to specify a “major advance in FORTRAN”. AI- 

though compatibility with FORTRAN was considered very desirable, it 

was not defined as a requirement. For a long time there was a feeling that 

the committee would merely extend FORTRAN in significant places and 

remove some of the restrictions that existed, e.g., in subscripts, lack of 

mixed mode expressions, and limited input/output. The implied commit- 

ment to extending FORTRAN was evidenced by the double fact that the 

committee was under the auspices of the FORTRAN project and that for 

quite a while it was informally called the FORTRAN VI Committee within 

IBM. (Some preliminary work had been done at IBM the preceding year, 

involving the addition of character-handling facilities into FORTRAN;



vu.4. PLA 541 

this accounted for the missing FORTRAN V.) It soon became clear to this 

committee that they could not maintain compatibility with FORTRAN 

and still develop a language which they felt was needed to meet modern 

programming techniques and equipment. For example, in the minds of 

many people, such issues as the use of blanks, card-oriented format, and 

methods of handling declarations prevented a direct extension from being 
desirable. However, even while the first report was being prepared, there 

was considerable internal discussion about this issue until it was finally and 

irrevocably decided that the new language would not be a compatible ex- 

tension of FORTRAN. Obviously, the committee did not make arbitrary 

changes just for the sake of being different, but the designers were in no 

way bound by the provisions of FORTRAN. 

During its deliberations, the committee heard presentations by numerous 

people from both inside and outside IBM about features that the speakers 

thought should be in the language. The committee also attempted to study 

languages (e.g., ALGOL, COBOL, and JOVIAL) which contained features 

or capabilities which should go into a new language even if in a different 

syntactical form. Thus, every reasonable attempt was made to consider 

concepts from as wide a source as possible. 

A document dated March 1, 1964 and entitled “Report of the SHARE 

ADVANCED LANGUAGE DEVELOPMENT COMMITTEE” [XY64] 
was presented to SHARE in March, 1964. It was defined as “a status re- 

port, in the form of language specifications from the Advanced Language 

Development Committee”. It was received with mixed reactions; some people 

felt that this was a new powerful language that would be well suited to their 

needs, while others felt that it was a hodgepodge and not suitable for actual 

usage. 
It is of some historical interest to note a few of the items which were 

included in that report and which have subsequently been either dropped 

or significantly changed, e.g., the use of a dollar sign to terminate statements, 

restriction of an identifier to 8 characters, restriction of the number of 

subscripts to less than or equal to 15, and references to precision of 32 bytes 

(thus causing accusation of being machine dependent). Some of these items 

(most notably the first) were due to the planned use of only a 48-character 

set. A major omission was the block structure which first appeared in the 

April, 1964 version [XY64a] and the compile time (1.e., macro) facility which 

first appeared in the IBM December, 1964 report [IB64]. 

Following the initial presentation to SHARE in March, 1964, a number 

of comments, suggestions, and criticisms were received and an April 

revision [XY64a] was prepared. The original committee, augmented by 

M.D. Mcllroy (Bell Telephone Labs) and R. C. Sheppard (Procter and 

Gamble), the latter representing GUIDE, worked diligently and produced 

a drastically modified version in June [XY64b]. Somewhat later that year,



542 MULTIPURPOSE LANGUAGES 

the language received the (temporarily) official IBM nomenclature of NPL 

for New Programming Language; in December, 1964 another drastically 

revised version of the language appeared as [1B64]. However, conflict between 

the letters NPL and the National Physical Laboratory in England caused 

IBM to drop that name. The letters MPL and MPPL were considered, and 

IBM finally adopted PL/I, which is officially considered the name and not 

an acronym. While the computing industry watched with great interest, 

implementation started at the IBM Laboratories in Hursley, England; 

language work continued there and in the United States. A PL/I department 

was formed within IBM to centralize all the PL/I activities. The first official 

manual [I[B65e] was issued early in 1965, and subsequent manuals con- 

taining minor and major changes over previous versions were issued. The 

manual on which this description is based was issued late in 1966 [IB66b]. 

In August, 1966 the first compiler for System/360 was released; this F-level 

compiler implemented most (but not all) of the language as then defined. 

Subsequent releases included other features. The D-level compiler was 

based on a subset (see [IB65]). [[B66a] and [I[B66g] give descriptions of these 

specific compilers. 

While all this activity was going on within IBM, other groups also 

exhibited interest and concern. Several manufacturers set up their own 

internal teams to study the language and advise its management on the poten- 

tial desirability of implementing PL/I. A small, limited, and modified subset 

called NICOL I was implemented by Massachusetts Computer Associates 

in the fall of 1965 on the IBM 7094 [CQ6S5a]. A version called EPL was used 

by Bell Laboratories and M.I.T. in the development of their MULTICS 

system. A few other groups implemented small versions. An ACM-sponsored 

1-day forum on PL/I, held in August, 1967, heard presentations about an 

interpretive scientific subset on the UNIVAC 1108 (Glass [GX67]), and a 

PL/I-like extended subset for compiler writing developed at Stanford Univer- 

sity on the IBM 360/67 under OS/360 (McKeeman et al. [ZG67]). Other ver- 

sions have been under development but the exact status is unclear, and 

reminiscent of the early days of FORTRAN, ALGOL, and COBOL. 

Within 3 years from the start of the project, PL/I had already had a 

profound impact upon the computing industry and caused many debates. 

Its place in the future is unknown, but there is a good chance that even- 

tually it will replace the major existing languages, most specifically 

FORTRAN, COBOL, ALGOL, and JOVIAL. 

VIIT.4.2. FUNCTIONAL CHARACTERISTICS OF PL/I 

The reference used for the description of PL/I is [[B66b] and not any 

specific implementation of it.



vi.4. PLA 543 

PL/I is very general with the widest scope of any language in this book. 

PL/I notation is succinct and semiformal rather than English-like; it follows 

in the FORTRAN and ALGOL traditions rather than the COBOL line. 

It is not particularly consistent in the sense that there are a large number of 

special cases and exceptions. It is not particularly efficient to implement 

because of its size and the fact that good implementation techniques have 

lagged behind the development of languages that are this complex. It is fairly 

easy to read and write, with no great tendency toward error-prone usage 

except for errors due to its power and complexity. In considering its ease 

of learning, one must specify the amount to be taught and the experience of 

the learner. A person without any experience in a programming language 

would find it very difficult to learn all of PL/I. On the other hand, a FOR- 

TRAN programmer would find it easy to learn the PL/I subset equivalent 

to the capability of FORTRAN. PL/I is an excellent illustration of the 

point made in Chapter I that an extremely complex and powerful program- 

ming language might be harder to teach and to learn than a very simple 

machine code. Thus if a computer had no more than a dozen machine 

instructions, a person could undoubtedly be taught machine code more 

rapidly and easily than he could be taught the whole of PL/I. 

PL/I is definitely aimed at having an extremely wide application area. 

It was meant to be used in the fields for which FORTRAN and COBOL 

were individually designed and, similarly, with regard to JOVIAL, whose 

prime characteristic was the combining of such facilities into a single lan- 

guage. PL/I is also effective for systems programming. 

PL/I is a procedure-oriented language and, furthermore, it is really 

the culmination of the whole line of procedure-oriented languages. There 

are relatively few concepts that are relevant to this conceptual line of lan- 

guages which are not already in PL/I or are not possible or obvious potential 

extentions of it. PL/I is problem-oriented but only in the very broad sense. 

It is simultaneously a reference, publication, and hardware language; 

however, the 60-character set (defined in Section VIII.4.3) can be considered 

a reference language with a 48-character set representation. It has very defi- 

nitely been aimed at the entire cross section of users; i.e., PL/I has been 
designed so that a novice programmer can write simple correct PL/I programs 

without too much difficulty, while on the other hand the professional pro- 

grammer has more control over his machine and environment than he has 

ever had before. This environment, while primarily batch, has the facility 

of being used in a reasonable fashion in an on-line situation. The format 
was designed with that need in mind. In addition, there are facilities for use 

in a multiprogramming environment. 

PL/I as a language is quite machine independent except for certain 

provisions for doing arithmetic; if it has any faults along these lines, PL/I 
is more likely to be operating system dependent than actually hardware



544 MULTIPURPOSE LANGUAGES 

dependent. There is insufficient experience with which to judge the difficulty 

of writing completely compatible compilers. However, allowing the imple- 

menter to specify the largest precision he will handle makes the language 

compiler dependent as well as machine dependent, but at least this happens 

in a well-defined way. It is assumed that a reasonable connection between 

the machine word size and implementer choice normally exists. The dialect 

problem does exist, primarily for implementation reasons but also for the 

normal problem of personal taste. However, relative to its size, there will 

probably be only a minor problem along these lines because the people 

who are using PL/I are quite likely to be doing so because it has a combina- 

tion of features that they want. If they need only some subset or modification 

and do not care about doing all their programming in a single language, 

then they can probably fall back on FORTRAN, COBOL, or even ALGOL. 

Subsetting and extensions on the other hand present somewhat more of a 

problem. There are three major reasons for subsets of PL/I to be in existence. 

The first is based on a stated objective of modularity, 1.e., to cater to or pro- 

vide facilities for, previous users of FORTRAN, ALGOL, or COBOL who 

need only comparable capabilities provided to them but still wish to write 
in PL/I. Thus, it is both meaningful and even desirable to talk about subsets 

SAMPLE PROGRAMS—PL/| 

  

Problem: Construct a subroutine with parameters A and B such that A 

and B are integers and 2 < A < B. For every odd integer K with A< K<B, 

compute f(K) = (3K + sin (K))? if K is a prime, and f(K) = (4K + cos (K))? if 
K is nota prime. For each K, print K, the value of f(K), and the word PRIME or 

NONPRIME as the case may be. 

Assume there exists a subroutine or function PRIME (K) which determines 

whether or not K is a prime, and assume that library routines for square root, 

sine and cosine are available. 

Program: 

PROBLEM: PROCEDURE(A,B); 
DECLARE (A,B,K) FIXED(15,0), Q(0:1) 

CHAR(8) INITIAL(‘NONPRIME', PRIME’); 
DCL PRIME ENTRY(FIXED,FIXED) RETURNS(FIXED); 
DO K=2%(A/2)+1 TO B BY 2; 
E=PRIME(K)*SQRT(3*K-+SIN(K)) 

+ 1PRIME(K)*SQRT(4*K + COS(K)); 
PUT LIST(K,E,Q(PRIME(K))); 

END PROBLEM; 
 



vi.4. PLA 545 

Sample Programs—PL|I (cont.) 

  

Problem: Inventory control program for company with 20,000 stock items.f 

Program: 

INVCTL: PROCEDURE; 

DECLARE (OLDMAST INPUT, NEWMAST OUTPUT) BLOCK (FIXED,432,8), 

PFILE OUTPUT, 

1 WORK, 

2 PARTNO CHARACTER (7), 

2 DESCR CHAR(1 2), 

2 (QOH, QOO, RP, RQ) FIXED (5), 

2 UP FIXED (6), 

2 YTDSALE FIXED (8), 

2 CODE FIXED, 

1 TRANS, 

2 TNUMBER CHARACTER (7), 

2 TCODE FIXED, 

2 TQ FIXED (5), 

CODEIS (4) LABEL; 

ON ENDFILE (STANDIN) BEGIN; TNUMBER = '9999999';GO TO WRITNM; END; 

ON ENDFILE (OLDMAST) BEGIN; IF TNUMBER = '9999999' THEN DO; CLOSE 

OLDMAST DISCARD, (PFILE, NEWMAST) 

STORE, DISPLAY (‘JOB FINISHED’); 

END; 

ELSE ERROR: DISPLAY (‘FILE OR DATA 

ERROR’); EXIT; END; 

ON SUBSCRIPTRANGE BEGIN; DISPLAY (‘BAD CLASS CODE JOB HALTED’); 

EXIT; END; 

READ (TRANS)(A); 

READM: READ FILE (OLDMAST), (WORK) (A); 

TESTM: IF PARTNO < TNUMBER THEN WRITNM: DO; WRITE FILE (NEWMAST), 

(WORK) (A); GO TO READM; END; 

IF PARTNO > TNUMBER THEN GO TO ERROR; 

/*THEN PARTNO = TNUMBERX/ 

GO TO CODEIS (TCODE); 

CODEIS(1): QOH = TQ; GO TO JOIN; 

CODEIS(2):: QOH = QOH + TQ; QOO = QOO — TQ; GO TO JOIN; 

CODEIS(3): QOO = QOO + TQ; GO TO JOIN; 

CODEIS(4): IF QOH < TQ THEN DO; WRITE ('ONLY', PARTNO, ‘AVAILABLE’, 

QOH, ' REQUESTED’) (3A, F(5), A)); TQ=QOH; END; QOH = 

QOH—TQ; IF CODE = 1 THEN YTDSALE = YTDSALE + TQxUP; 

JOIN: IF QOH + QOO =RP THEN WRITE FILE(PFILE), (PARTNO, CODE, RQ) (3 A); 

READ (TRANS) (A); GO TO TESTM; END INVCTL; 

t{IBO0Oa], p. 41. Reprinted by permission from Introduction to PL/I (Student Text). © 
1967 by International Business Machines Corporation. 
 



546 MULTIPURPOSE LANGUAGES 

for scientific or commercial programming. Similarly, the needs of the sys- 

tems programmer can be met by appropriate subsetting. A second reason for 

subsetting is to reduce the size of the compilers; since this is a complex 

language requiring powerful compilation techniques, there will be some 

cases in which it is considered more desirable to have a smaller compiler 
and handle only a subset of the language. A third reason, which is related 

to the second but not identical to it, involves the use of small computer 

configurations. A computer (and operating system) configuration which is 

either small in memory or relatively low in speed or which does not provide 

facilities that would call for multitasking and other operating system interac- 

tions makes it appropriate to implement a subset of PL/I that can provide 

better performance on the smaller machines. In most cases, the subsets con- 

tain only those features which are common to many programming languages. 

Hence the subsets tend to have the syntax of PL/I but not its new or signifi- 

cant features. 

PL/I appears to have sufficient facilities to permit some bootstrapping. 

Because (and although) PL/I is such a powerful language, there is a 

great tendency for everybody to wish to incorporate in it facilities for areas 

that were not included initially. Among these proposed facilities are graphics, 

formal algebraic manipulation (see Bond and Cundall [BZ67]), associative 

data handling (see Dodd [DQ66]), and possibly even simulation. Since PL/I 

is being used for some experimental technical development in formal lan- 

guage definition, particularly in the semantic area (references are cited later), 

it seems likely that there will probably be less incompatibility due to prob- 

lems in language definition than would otherwise be expected. (This judgment 

is relative to the size of the language; on an absolute basis, the number and 

complexity of the rules make this type of incompatibility inevitable.) 

While some consideration has been given to sifting other languages 

to PL/I, there has been no work done (known to me) in going from PL/I 

to some other language. It would be almost a contradiction in objectives and 
timing if this were done. 

It is indicative of the importance of PL/I that consideration of its 
official standardization was taking place even while new language manuals 
were under development and long before the first compiler was in existence. 

Because of its potentially large impact on programming in future years, it 

is natural that both manufacturers and users were concerned about the 

direction in which the language would develop. Early in 1965, IBM suggested 

that X3.4 consider the standardization of PL/I. After debate and considera- 

tion for several months, the offer was rejected in August, 1965 as being 

premature. Late in 1965 and early in 1966 an ad hoc working group under 

BEMA met several times and reached the conclusion that there was a 

reasonable basis for a prestandardization activity; it was agreed that the 

most desirable place for such an activity to take place was under the auspices



vi.4. PLA 547 

of X3. As a result, X3.4 initiated a task group called X3.4.2.C, which held 

its first meeting in April, 1966. This group considered the problem of subsets, 

language development, character sets, and form of definition. Late in 1967, 

X3.4.2.C recommended that standardization of PL/I not be started at that 

time. In the spring of 1968 they reversed their position and issued an affirma- 
tive recommendation. Thus there will probably be a USASI PL/I standard 

at some point in time. 

As indicated under the discussion of history, the first preliminary 

specifications were designed by a group of six people, three from IBM and 

three users from SHARE. That group, plus two more, also designed the 

second version of the language which appeared 3 months after the first. As 

time went on, an increasingly large number of people became involved, and 

some of the original participants were no longer associated with the effort. 

In particular, the joint I]BM-SHARE effort was terminated as such, although 

a PL/I project was set up under SHARE. 

Since the language is powerful and complex, its objectives cannot be 

stated succinctly. The following statements of objectives are extracted from 

the March 1, 1964 report [XY64]: “...to recommend a successor lan- 

guage for currently available FORTRANSs to be used on unannounced 

IBM equipment. ...to provide a language which would encompass more 

users while still remaining a useful tool to the engineer. ...a deadline con- 

sistent with IBM scheduling...in order to allow consideration of the 

language for the new equipment. ...to redefine those parts of the present 

FORTRAN language which appeared to be in conflict with, and to augment 

those parts which were inadequate for, the ‘state of the art’ today. The 

changes would, where practical, follow current syntax, but... not restricted 

to this form. ...the need to keep the language simple, both to teach and 

to use. ...to allow subsetting of the language.’”® 

The following statements of objectives are extracted from the Introduc- 

tion in the original official IBM manual [IB66b]: “. .. None of the traditional 

high level languages,however, can be used with efficiency across the entire range 

of ability of these new computers. That is the reason for PL/I, a multipurpose 

programming language for use not only by commercial and scientific pro- 

grammers but by the real-time programmer and the systems programmer as 

well. It is a language designed for efficiency, a language that enables the 

programmer to use virtually all the power of his computer. ... any program- 

mer... can use it easily at his own level. ... One of the primary aims... was 

modularity, that is, providing different levels of the language for different 

applications and different degrees of complexity. ...every... description 

of a variable, every option, and every specification has been given a ‘default’ 

interpretation. ...a ‘default’ interpretation...is made by the compiler 

8 [XY64], p. 1.



548 MULTIPURPOSE LANGUAGES 

if no choice is stated by the programmer. ... The ‘modularity’ and the 

‘default’ aspects are the bases upon which the simplicity of PL/I has been 

built. They are also part of its power.”’ 

The first compiler for the language was implemented in IBM by the 

laboratory in Hursley, England and released in August 1966 (see [I[B66a]). 

The Hursley group was also responsible for setting up a language control 

board which met to resolve any ambiguities found in the manuals and to do 

language maintenance. Various definitions of the formal syntax and semi- 

formal translator and interpreter have been issued (see for example Beech 

et al. [BC66], [BC66a], and [BC67]). Significant language definition work for 

PL/I has been done by the IBM Hursley group (for the semiformal defini- 

tion) and the IBM Vienna Laboratory; the latter developed formal semantic 

definitions described in Walk et al. [VK67], Bandat [BA67], [1B66], and other 

more recent reports not included in the list of references. [[B66] was the 

first significant attempt to provide a formal definition of the semantics of 

any real and implemented programming language, let alone one as complex 

as PL/I. 

There are four types of documentation which existed for PL/I during 

its first few years, three issued by IBM and the fourth from other sources. 

The first set of documents were the reports of the Advanced Language 

Development Committee and its successors; these included the following: 

[XY64], [XY64a], [XY64b], and [IB64]. The specific and official reports put 

out by IBM were the language specification [IB66b], the subset definition 

[I1B65], specific implementation guides [1B66a] and [IB66g], the subroutine 

descriptions [IB66e], and a reference data card [IB67]. The third type of 

documentation from IBM was student texts, e.g., [1B65a], [I[B65b], and 

[1B66f]. The fourth type of documentation was not issued by IBM. It included 

papers prepared by individuals either critiquing the language or writing 

general descriptions of it, e.g., McCracken [MR64], Radin and Rogoway 

[RG65], Burkhardt [BU66], books by Bates and Douglas [QB67], and 

Weinberg [WC66]. In addition to these, an informal PL/I bulletin was issued 

irregularly by the Los Angeles ACM SICPLAN;; this was issued later as 

part of SICPLAN notices [ACOO]. 

As of this writing, there has been insufficient use of PL/I for a really 
valid evaluation. 

VIII.4.3. TECHNICAL CHARACTERISTICS OF PL/I 

The technical description of PL/I is being given in more detail than most 

other languages because of the relative newness, its potentially major 

significance, and also because of PL/I’s power and complexity. The de- 
scription is based on [IB66b] except where stated otherwise; however, not 

7 [IB66b], p. 9. Reprinted by permission from JBM System/360 Operating System: 
PL/I Language Specifications. © 1966 by International Business Machines Corporation.



vul.4. PLA 549 

all these features have been implemented. For this reason and because some 

of the specifications are being reconsidered, there may well be changes in 

the information given here. 

PL/I very carefully (and intelligently) defined two character sets, one 

consisting of 60 characters and the other of 48. The 60-character set is com- 

posed of the 10 digits, 26 upper-case letters, 3 characters defined as alphabetic, 

namely 

currency symbol $ 

commercial “At” sign @ 

number sign Ba 

and 21 special characters. The 48-character set does not have the commercial 

“At” sign or the number sign nor does it substitute graphics for them. The 

following list shows the graphics for the special characters in both sets, where 

the substitutions in the 48-character set are shown beneath the characters 

they replace: 

60-character set = + — * / () , «. ' & 73 

48-character set [1 ww 

60-character set (cont.) 5 & | > < _ ? blank 
48-character set (cont.) NOT AND OR GT LT 

Certain special rules apply to the usage of the 48-character set equiva- 

lents of : ; and &. In addition, certain character combinations in the 

60-character set are replaced by alphabetic equivalents, as follows: 

60-character set > >= {= <= 4< I] ~ 

48-character set NG GE NE LE NL CAT PT 

An alphanumeric character is either a digit or one of the 29 alphabetic 

characters (26 letters, 3 special characters). 

There is a long list of key words in PL/I and many of them can be 

abbreviated, e.g., SUBSCRIPTRANGE, which can be written as SUBRG, and 

FIXEDOVERFLOW as FOFL. The operators with graphics and punctuation are 

shown above. 

An identifier starts with an alphabetic character and is followed by a 
string containing no more than 30 alphanumeric and/or break characters; 

an identifier is preceded and followed by a delimiter. There are no reserved 

words which cannot be used as identifiers in the 60-character set (although 

a few must be specifically declared as identifiers) but in the 48-character set 

the alphabetic equivalents used for the physical graphics are considered 

reserved. Identifiers can be used for either data names or program unit 

labels; there is no distinction made in the formation. 

Both data names and statement labels can be subscripted. The sub- 
scripts are separated by commas and enclosed within parentheses, and they



550 MULTIPURPOSE LANGUAGES 

can be subscripted themselves. There is no limit on the number of subscripts 
nor on their formation; any expression that can be evaluated and converted 

to an integer may be used as a subscript. The lower limit can be specified, 

and it can be negative. The subscript notation is extended to include the 

concept of cross section; this is denoted by replacing one or more subscripts 

by asterisks, thus obtaining all the elements in that particular subscript posi- 

tion. Thus, A(3,x) denotes the third row of the array A. Similarly, if MATRIX 
is the array 

N
R
 

= 

0
C
O
 

Mm
 
b
o
 

Oo 
O
 

W
 

then MATRIX (x,2) is the (vertical) vector 

2 

5 

8 

Hierarchies are permitted in PL/I (which uses the word structure rather 

than hierarchy). This allows and requires qualification, with the rule that 

only enough names to resolve any ambiguity are needed. The qualifiers 

are written before the data name from left to right in increasing level- 

number order; they are separated by periods. Thus REGULAR.HOURS and 

OVERTIME.HOURS represent different variables. 

Structures can contain arrays and arrays can contain structures, so 

subscripted qualified names are permitted. The basic variable name is pre- 

ceded by the qualifiers as just defined, and each qualifier itself can be sub- 

scripted. Subscripts can actually be attached to names at a lower or higher 

level than the one to which they belong. Thus, for an array A of structures 

of the following description (where the notation is defined later), 

DECLARE 1 A (10, 12), 2 B (5), 3 C (7), 3 D; 

the following all represent the same item: 

A (10, 12) . B(5) . C(7) 

A (10) . B(12, 5). C (7) 
A (10).B.C (12, 5, 7) 

A.B (10, 12). C (5, 7) 
A (10, 12, 5, 7).B.C 

and there are even more possible ways of writing this.® 

8 This example, and most of the others in this section, are extracted and/or modified 

from [IB66b]. Reprinted by permission from IBM System/360 Operating System: PL/I 
Language Specifications. © 1966 by International Business Machines Corporation.



vu.4. PLA 551 

The operators are divided into four types: Arithmetic, comparison, 

bit string, and string. The arithmetic operators are the standard five. The 

comparison operators are >, >, >=, =, <=, <, and ;<, where ~ denotes 

not. The bit string operators are not, and, and or, written with the graphics 

shown earlier. The string operator is ||, denoting concatenation. 

The delimiters are operators, parentheses, and separators and other 

delimiters. The latter group includes the following: 

= ¢: ; , ' . & = blank 

Various punctuation characters have both specific and general uses. 

In particular, the parentheses, colon, semicolon, comma, and period can 

be used to separate identifiers, constants, or picture specifications. Each of 

these also has specific separate usages which will be described in the appro- 

priate places. 

Identifiers, constants, or picture specifications may not be immediately 

adjacent. They must be separated by either an operator, assignment symbol, 

parenthesis, colon, semicolon, comma, period, blank, or comment. Blanks 

are optional between certain key words of a command, e.g., GO TO, but 

they cannot be used between composite operators, e.g., 7=. At least one 

blank must appear between a level number and its following identifier. 

Blanks can be used to separate identifiers, constants, or picture specifications. 

Wherever one blank is used, any number of blanks or comments can be 

used. There are no noise words permitted. 

The following types of constant are allowed: Decimal and binary, 

fixed and floating, imaginary, sterling fixed point, and strings. The strings 

are enclosed within quote marks and if it is desired to represent a quote 

mark, this must appear as two immediately adjacent quote marks. The actual 

string can be preceded by an integer in parentheses to specify repetition. 

Thus, (3)'TOM' is equivalent to 'TOMTOMTOM’, and (5)'1'B is equivalent 

to '11111°B. 

The input form is definitely free, and string-oriented; 1.e., there are 

absolutely no restrictions or rules about card columns or equivalent con- 

cepts. The entire program can be written as one continuous string from 

beginning to end, naturally subject to all other rules of the language. From 

a conceptual point of view, the language is close in spirit to both ALGOL 

and FORTRAN, in the sense of providing reasonable but not complete 

formal symbolism. 

From a conceptual point of view, PL/I has three types of declarations, 

namely explicit, contextual, and implicit. 

The smallest executable unit is called a simple statement, which usually 

consists of a verb and its associated parameters and format. (PL/I uses the 

phrase statement identifier to mean a command or verb, and statement label 

for the name given to a particular statement written by the programmer.) 

There are two ways of grouping these smallest executable units. One is called



552 MULTIPURPOSE LANGUAGES 

a compound statement, of which there are two types, namely the /F and the 

ON; they are called compound because they precede a simple statement. 

The second type of grouping is actually called a DO group; this is used for 

control purposes. It has a simple and a looping form, and the looping form 

is discussed later. The simple form has an optional label, then the word 

DO and a semicolon, then the set of executable statements, and the key word 

END, which may have a label associated with it if the original DO statement 

itself did. For example, 

ALPHA: DO; A = BxC; IF A > O THEN DO; B = 1; C = QO; 

END; END ALPHA; 

Note that in this example any of the single statements except the DO or 

END statement is an example of a simple statement. 

Statements can be combined to form a block whose primary purpose 

is to establish the scope of an identifier but this can also be used for control 

purposes. A block also contains declarations. There are two kinds of blocks, 

namely begin blocks and procedure blocks. The format of the begin block 

is the same as that of a simple DO group except for the use of the word 

BEGIN instead of DO. A procedure block must have a label (which is simply 

an identifier followed by a colon); it can have more than one label; and it 

has the word PROCEDURE at the beginning. The begin block and the pro- 

cedure block are very similar in syntax and role relative to delimiting the 

scope of names. However, the begin block is executed in line whereas a 

procedure can be activated only by a CALL statement or by invocation from 

within an expression. A procedure block can also have more than one entry 

point. 

Loops are written using a DO statement or using an IF... THEN 

sequence. 
PL/I distinguishes between two types of procedures, namely function 

procedures and subroutine procedures, and each type can have multiple 

entry points. A procedure is considered a function if there is a specific result 

obtained when it is invoked. This result is indicated as part of the RETURN 

statement by which control is returned to the calling location. Functional 

procedures are normally used as operands in expressions. A subroutine 

procedure does not provide a value as part of the RETURN statement but 

specifies results by setting some of its parameters. A subroutine procedure 

may only be invoked by a CALL statement or by a statement with a CALL 
option. Because a procedure may contain more than one RETURN statement, 

it is possible to use it both as a function and as a subroutine procedure, 

although this is seldom done. 

A procedure that is not included in any other block is called an external 

procedure; a procedure included in some other block is called an internal



vi.4. PL/I 553 

procedure. Every begin block must be included in some other block; hence 

the only external blocks are external procedures. This distinction affects the 

scope of names, which is discussed later. 

A comment is defined as any string preceded by the two characters 

/x and terminated by x/ except that the comment cannot contain the 

two-character string */. A comment can be used wherever a blank 1s 

permitted (except of course within a literal). 

PL/I has many facilities which can be considered as interaction with 

the operating system or the environment. The first could be considered an 

implementation problem in providing the necessary interface but because 

of the complexity, it has wider implications; the interaction referred to 

involves the various language features that the programmer can use to con- 

trol storage allocation for the data variables. The second facility allows the 

programmer to create tasks, to synchronize them, to test whether or not 

tasks are complete, and to change the priority of tasks; thus he may perform 

operations asynchronously. The third class is a set of interrupt conditions, 

many of which relate to input/output conditions, both hardware and soft- 

ware. The final way of communicating with the system is the compile-time 

macro facility. 

There is no provision for inclusion of other languages. 

A program is composed of one or more external procedures. Thus, a 

program is a set of procedure blocks, each of which is completely nested and 

separate from the others. Statements and declarations can appear in any 

order except for the restrictions due to the placement of declarations to 

control the scope of variables. 

The concept of prologue is used to refer to computations that must be 

done at object time before executing the statements within a block. Thus, the 

prologue must allocate storage or automatic variables and may need to 

evaluate expressions which define lengths, bounds, and iteration factors, or 

to supply initial values to variables. For this reason and others, there are 

various rules which require that the allocation or initialization of differing 

items not be circular; i.e., variable A cannot require information from 

variable B and simultaneously have the converse be true. 

The primary method of delimiting is the semicolon, which indicates the 
end of all executable units and declarations. Labels are followed by colons, 

and the colon has other uses as well. Macro statements are preceded by a 

percent sign. A DO group is ended by reaching an END statement with the 

same label or by the first END without a label. It is this definition rather than 

a specific rule against it which prevents overlapping DO groups. 

Procedures can be used recursively if they are so declared. 

PL/I allows both call by location and call by value, although neither 

phrase is used in the manual. The call by value occurs whenever the argu- 

ment to be passed is either a constant, an expression involving operators,



554 MULTIPURPOSE LANGUAGES 

an expression in parentheses, or an expression whose data attributes disagree 

with those of the parameter. 

Statements can be embedded within others as indicated above. Arithmet- 

ic expressions can contain functions, Boolean expressions, and concatenated 

strings. An expression can be used wherever its value can syntactically be 

used. 

There are arithmetic variables and constants. There are no separately 

defined Boolean variables, although the use of a bit string of length 1 can 

be used to accomplish the same effect. There are no separately defined char- 

acter variables as such, but both bit and character strings are permitted; 

they can be either fixed or varying lengths (although the latter always has 

a maximum specified). Complex variables are permitted. There are no formal 

(i.e., algebraic) variables. 

There are no lists as such provided in PL/I, but there are the concepts 

of pointer variable and based variable which permit the creation of list struc- 

tures. Hierarchies are a legitimate data type. 

Several other data types are identified in PL/I, namely statement label, 

task variable, event variable, and cell. A statement label constant is simply 

an identifier that appears in the program as a statement label. A statement 

label variable is simply a variable having statement label constants as its 

values. These can be grouped into arrays or structures. A task variable is 

the name of a task, and an event variable is the name of an event. Both of 
these can be elements of arrays or structures: they are described in more 

detail later. However, an event variable has an associated completion status 

noted by '0’B or '1'B for not completed and completed, respectively. 

All the above variable types can be put into arrays. Furthermore, each 

of them can themselves be elements within a structure. Structures of arrays 

and arrays of structures are permitted. Expressions can consist of combina- 

tions of single variables of the types arithmetic, complex, and string; an 

array or structure expression is evaluated as a sequence of scalar expressions, 

using corresponding elements of the aggregates involved. 

The only hardware data type accessible is a bit. Each of the variable 

types indicated can be accessed by many of the commands, although some 

combinations are illegal, e.g., structures in a GOTO. A command which is 

allowed to access a single variable can usually also access a structure or array. 

A single command can access a cross section of an array through the use of 

the asterisk (described earlier). 

The arithmetic in PL/I includes decimal and binary, as well as fixed 

(including integer as a special case) and floating point. There is no rational 

arithmetic,? but complex arithmetic is performed. Arithmetic variables can 

® This capability exists in the PL/I-FORMAC interpreter described in Section VII.3.3 
and can be used in that system.



vi.4. PLA 555 

have any of the characteristics of base, scale, mode, and precision; these 

can be represented by a numeric picture. Formats for these are shown in 

the description of the declarations, but the concepts will be described briefly 

here. Base refers to binary or decimal, and scale refers to either fixed or 

floating point form. Mode refers to real or complex. There is no specific 

double or multiple precision in the language. Instead, the user specifies the 

precision he wants by defining the scale of the data and the total number of 

binary or decimal digits to be maintained, for both fixed and floating point 

data. The implementer specifies the largest precision that he will handle. 

Finally, it 1s possible to specify by means of a PICTURE the formats of the 

variables. This is described in some detail later. The higher level data units 

(1.e., arrays and structures) are handled by dealing with the individual 

subparts. 

There are a number of default conditions specified for arithmetic 

variables; i.e., if the user does not provide a specific declaration, certain 

characteristics are automatically assumed. Some examples are as follows: 

if the first letter of a name is I, J, K, L, M, N, then FIXED REAL BINARY is 

assumed; otherwise FLOAT REAL DECIMAL is assumed. If some but not all 

the characteristics are specified, then it is assumed that the base is decimal, 

the scale is float, and the mode Is real. 

Although there are no Boolean variables defined as such, the net effect 

of Boolean arithmetic is permitted because arithmetic expressions can con- 

tain the eight relational operators; furthermore, binary arithmetic is per- 

mitted and the operations of and, or, and not are defined on binary strings. 

Concatenation of bit and character strings is permitted and the result 

is a character string. 

Arithmetic can be done on structures and arrays. The operands of a 

structure expression are structures or a combination of structures and variable 

expressions. The result is a structure; arrays are not allowed as operands 

in structure expressions. To permit this arithmetic to be done, all the struc- 

tures in an expression must have the same number of contained scalars and 

arrays, their relative positioning must be the same, and similarly positioned 

arrays must have identical dimensions and bounds. The data types need 

not be the same. 

Because of the numerous data types which are allowed in PL/I, the rules 

for intermingling, converting, and precision are extremely complex. No 

attempt will be made here to supply all the details but merely to give the 

general principles involved. The term scalar expression is introduced rather 

than arithmetic expression because the expressions involved may contain 

nonarithmetic quantities. Scalar expressions can contain any variable types 

except statement labels, area variables, task variables, and event variables. 

Only the comparison operators = and 4= can appear with pointer data. 

However, as indicated earlier, structure expressions and/or array expressions



556 MULTIPURPOSE LANGUAGES 

can be formed and their evaluation is done by evaluating the respective 

scalars. The most significant conversions are exactly what would be expected; 

namely decimals are converted to binary if both appear, fixed point operands 

are converted to floating point if both appear, and real numbers are con- 

verted to complex if both appear as operands of the same operator. Bit 

string operations can be performed on arithmetic data by converting them 

to bit strings. If comparisons are to be made among arithmetic, character 

strings, and bit strings, then the operand of lowest type is converted to the 

operand of highest type, where the priority is decreasing in the order just 

stated; 1.e., bit string is the lowest priority. Only the operations of = and 

4= are defined if one of the operands is complex. 

Comparisons are actually of three types: Algebraic, character (left 

to right pair-by-pair comparison of characters according to a given collating 

sequence), and bit (left to right comparison of the binary digits). The result 

of a comparison is a bit string of length one; the value is '1'B if true and 

'0'B if false. 

The precedence of operations is as follows from the highest to the 

lowest: 

5 kk prefix + prefix — 

* / 
infix + infix — 

| 
>= > |> {= < 1< <= = 

& 

| 

(This differs slightly from the manual [IB66b] since an approved language 

change has occurred since that publication.) 

The rules of precision are based on a complicated formula. The aim is 

to give a large enough result field for a fixed point operation (or the maximum 

size in the case of division) or a result field for floating point with the greater 

of the precisions of the two operands. 

All the text of a begin block except the labels preceding the heading 

statement of the block is said to be contained in the block. All the text of 

a procedure except the entry names of the procedure is said to be contained 

in the procedure. That part of the text of a block B that is contained in block 

B but not contained in any other block contained in B is said to be internal 

to block B. The scope of a declaration of an identifier is defined as that block 

B to which the declaration is internal, but it excludes from block B all con- 

tained blocks to which another declaration of the same identifier is internal. 

This definition of scope applies to all identifier declarations except those for 

entry names of external procedures; these have slightly different rules.



vi.4. PLA 557 

It is possible to use the same name for different declarations of the same 

identifier through the EXTERNAL attribute. All external declarations for the 

same identifier are considered to be related to the same name; the scope of 

the name is the union of the scopes of all the external declarations for the 

identifier. The declarations must not be contradictory, of course. 

The specific formats for the executable statements are shown in Figure 

VIII-2. They use the metalanguage discussed in Section II.6.2.2 as pertain- 

ing to COBOL. The discussion given below assumes the reader will examine 

the formats. Because of differences in terminology, some items which are 

called executable statements in PL/I are not considered so within the frame- 

work of this book and so are not included in Figure VIII-2. Those omitted 

are: BEGIN, DECLARE, END, FORMAT, PROCEDURE. They are discussed in the 

body of the text and the format is described whenever it is appropriate to 

do so. 

The assignment statement can have multiple variables to the left of the 

equals sign; furthermore, as noted from the specific format, they can be 

arrays, structures, or label or pointer variables. The pseudo-variables are 

discussed below. By writing the assignment statement, e.g., A,B = C+D; 

the right-hand side is computed and assigned to the variables on the left- 

hand side. When necessary, the expression for values on the right-hand side 

is converted to the characteristics of the variables on the left, according to 

the standard rules mentioned earlier. It 1s possible to have both complete 

arrays and single elements from an array on the right-hand side, and there 

is a well-defined rule for computation of arrays on the left-hand side. 

If the variable on the left of the equals sign is a variable character string, 

the assignment is performed from left to right starting with the leftmost 

position. Specific rules are defined for the various cases that can arise. 

Three examples from p. 110 of [IB66b] are given below; the second is 

not self-evident without knowing the form of the DECLARE declaration which 

is shown in examples on page 578. 

Example. Given the arrays A and B, respectively, as 

Ph 
—
 

W
 

dN 

C
O
N
 

AO 

O
 
O
N
 —
 

O
h
 
O
N
 

then the assignment statement 

A = (A+B)**2 — A(I, 1) 

produces the following matrix for A (where the new A(1,1) is computed and



  

ALLOCATE 

Option I: 

Option 2: 

Assignment 

CALL 

CLOSE 

DELAY 

DELETE 

Option I: 

Option 2: 

Option 3: 

Option 4: 

Option 5: 

ALLOCATE [level| identifier [dimension] [attribute] ... 

[, [level] identifier [dimension] [attribute] ...] ... ; 

ALLOCATE based-variable-identifier SET (pointer-variable) 

[IN (area-variable) | 

[, based-variable-identifier SET (pointer-variable) 

[IN (area-variable) || 

(Scalar assignment) 

ee \ " scalar-variable | 
. . = scalar-expression ; 

, pseudo-variable , pseudo-variable 

(Array assignment) 

array , array __ farray-expression [, BY NAME] ; 

{ore array j oto-array oe (oy expression i \ 

(Structure assignment) 

structure , structure _ 

See rvcture h a evedes atructure |" 7 
structure-expression [, BY NAME] ; 

(Statement label assignment) 

scalar-label-variable |, scalar-label-variable] ... = {ola tebe ; \ 
scalar-label-variable ; 

label-constant ; 

array-label-variable [, array-label-variable] ... == + scalar-label-variable ; 
array-label-variable ; 

(Pointer assignment) 
pointer-variable |, pointer-variable| ... = pointer-expression ; 

array-pointer-variable [, array-pointer-variable] ... = 

pointer-expression 

array-pointer-variable 

CALL entry-name [(argument [, argument]. . .)] [TASK [(scalar-task-name) |] 
[EVENT (scalar-event-name)| [PRIORITY (expression) ] ; 

CLOSE FILE (filename) [IDENT (argument) | 

[, FILE (filename) [IDENT (argument)]}] ... ; 

DELAY (scalar-expression) ; 

DELETE FILE (filename) KEY (expression) [EVENT (event-variable)] ; 

558



Figure VIII-2. (cont.) 

DISPLAY 

Option I: 

DISPLAY (scalar-expression) ; 

Option 2: 

DISPLAY (scalar-expression) REPLY (character-variable) 

[EVENT (evenft-variable)| ; 

DO 

Option I: 

DO ; 

Option 2: 
DO WHILE (scalar-expression) ; 

Option 3: 

pseudo-variable ups gs wpe gs 
} = specification |, specification] ... ; 

variable 

A specification has the following format: 

. TO expression2 [BY Otero ss on . 
| 

expression] ley expression3 [TO expression2 | [WHILE (expression4) | 

ENTRY 

entry-name: -[entry-name:| ... ENTRY [(parameter [, parameter] ...) | 

(data-afttributes| ; 

EXIT 

EXIT ; 

FREE 

Option 1: 

FREE identifier [, identifier] ... ; 

Option 2: 

FREE [pointer-variable —> | based-variable-identifier 

[, pointer-variable —> | based-variable-identifier| ... ; 

GET 

GET [FILE (filename) | STRING (character-string-name) | 

data-specification [COPY] ; 

GO TO. 

GO TO) ([label-constant ; 

GOTO scalar-label-variable ; 

IF 

IF scalar-expression THEN unift-1 [ELSE unit-2| 

Figure VIII-2. (cont. next page) 

559



Figure VIII-2, (cont.) 

LOCATE 

LOCATE variable FILE (filename) SET (pointer-variable) 

(KEYFROM (expression) ] ; 

Null 

{label :] ... 3 - 

Example: 

ON OVERFLOW; 

The on-unit (see ON) is a null statement. 

ON 

Option 1: 
ON condition [SNAP] on-unit 

Option 2: 

ON condition [SNAP] SYSTEM ; 

OPEN 

OPEN opftions-group [, options-group]| ... ; 

Following is the format of options-group: 
FILE (filename) [IDENT (argument)| [TITLE (expression) | 

[INPUT | OUTPUT | UPDATE] [STREAM | RECORD] 
[DIRECT | SEQUENTIAL] [BUFFERED | UNBUFFERED] [EXCLUSIVE] 

[KEYED] [BACKWARDS] [PRINT] [LINESIZE (expression) | 

[PAGESIZE (expression) | 

PUT 

PUT [FILE (filename) | STRING (character-string-name)] [data-specification] 

[PAGE] [SKIP [(expression)]}] [LINE (expression)]} ; 

READ 

INTO (variable) 

READ FILE (filename) | SET (pointer-variable) | [KEY (expression) | 

IGNORE (expression) 

[KEYTO (character-string-variable)| [EVENT (event-variable) | 

[NOLOCK] ; 

560



Figure VITII-2. (cont.) 

RETURN 

Option 1: 

RETURN ; 

Option 2: 

RETURN (expression) ; 

REVERT 

REVERT ON-condition ; 

REWRITE 

REWRITE FILE (filename) [KEY (expression)] [FROM (variable) ] 
[EVENT (event-variable)] ; 

SIGNAL 

SIGNAL ON-condition ; 

STOP 

STOP ; 

UNLOCK 

UNLOCK FILE (filename) KEY (expression) ; 

WAIT 

General format: 

WAIT (evenf-name [, event-name]| ...) [(scalar-expression) | ; 

WRITE 

WRITE FILE (filename) FROM (variable) [KEYFROM (expression) | 

[EVENT (event-variable) | ; 

  

Figure VIII-2. Executable PL/I statement formats. Note that because of 
differences in terminology, some things which are called executable statements 
in PL/I are not considered so within the framework of this book and so are 

not included on this list. Those omitted are: BEGIN, DECLARE, END, FORMAT, 

and PROCEDURE. They are discussed in the body of the text, as are some 

of the terms used in the format, e.g., sealar-expression. The general notation 
is the COBOL metalanguage described in Section IT.6.2. 
Source: [I[B66b], extracts from pp. 104-132. Reprinted by permission from 
IBM System/360 Operating System: PL/I Language Specifications. © 1966 

by International Business Machines Corporation. 

561



562 MULTIPURPOSE LANGUAGES 

then used to compute the remaining elements): 

7 74 

93 189 

9 114 

93 114 

Example. Given the structure defined by 

DECLARE 1 X, 2 Y, 2 Z, 2 R, 3 S, 

2D,3 E 
3 P, 

1A, 2 B, 2 C, 2 D, 3 ’ Q , 

then the assignment statement 

X = X*A; 

has the same result as the following set of statements: 

Y = YxB; 

Z= ZxC; 

Ss = Sx*E ; 

P = PxQ; 

Example. Given 

A 1s a fixed-length string whose value is 'XZ/BQ' 

B is a varying-length string of maximum length 8 whose value is 'MAFY' 

C is a fixed-length string of length 3 

D is a varying-length string of maximum length 5 

Then in the statement 

C = A; The value of C is 'XZ/’. 

C='X' The value of C is 'X#b', where & designates blank. 

D = B; The value of D is 'MAFY’. 

When the BY NAME option is used, the basic principle of the rules is 

that only those names which are common to all the variables on both sides 

of the assignment statement are used to create appropriate assignments. 

PL/I introduces the concept of using certain built-in functions as 

pseudo-variables. (In addition to being used in an assignment statement, 

pseudo-variables can also appear in a DO statement or in a data list in a 

GET statement.) 

As an example, 

COMPLEX (A, B) = COMPLEX (U,V) + REAL (Q); 

is the same as writing



vi.4. PLA 563 

C 

A 

COMPLEX (U,V) + REAL (Q); 
REAL (C); B = IMAG (C); 

There are no specific separate statements for handling alphanumeric 

data; conversion of character strings was discussed earlier. A SORT state- 

ment appeared in earlier versions of the language, but it is not defined in 

the reference used for this description. 

The unconditional control transfer is the GOTO. Switch control is 

accomplished by assigning values to a label variable from an assignment 

statement; there 1s no separate switch statement. Because of the block 

structure and the provisions for tasks, there are some specific rules indicating 

when it 1s illegal to use a GOTO statement or indicating what effect a GOTO 

has on the execution of blocks and procedures. 

The CALL statement is used to invoke a procedure, and of course it 

causes control to be transferred to a specified entry point in the procedure. 

The TASK, EVENT, and PRIORITY options can be used alone or in any com- 

bination, and specify that both the invoked and invoking procedures are to 

be executed asynchronously. When the EVENT option is used, the EVENT 

name Is associated with the completion of the task created by the CALL state- 

ment. Another task can then wait for completion of this created task by 

specifying the event name in a WAIT statement. If the PRIORITY option is 

used, the priority of the named task is made relative to the task in which the 

CALL is executed, based on the value of the expression. 

The RETURN statement returns control to the invoking procedure; 

the expression must be used if and only if the procedure was invoked as a 

function procedure. The END statement also returns control to the point 

logically following the invocation. 

The conditional statement is the /F whose format is shown in Fig. VIII-2. 

Each unit is either a group or a begin block; each of these is terminated by 

a semicolon. The scalar-expression is evaluated and if necessary, converted 

to a bit string with the understanding that all zero’s mean false and a single 

occurrence of a one means true. In the true case, unit-] 1s executed and the 

control then goes to the next statement (assuming that unit-] does not con- 

tain a control transfer out). In the false case, unit-2 is executed if it is present 

and, if not, then control is immediately transferred to the next statement. 

Both unit-] and unit-2 can have labels and can also be JF statements themselves. 

Each ELSE clause is always associated with the innermost preceding JF which 

does not yet have an ELSE clause. An ELSE can be used with a null statement 

(i.e., just a semicolon) to provide proper pairing. In the following example 

if X ~ Y, then X is assigned the value 4 and $§ is given the value 5. If X = Y, 

S = R, and W < P then P is given the value of Q and S is given the value 5. 

IfX = Y,S = R,andW < P, then Y is assigned the value 1 and S§ is given 

the value 5.



564 MULTIPURPOSE LANGUAGES 

As IF X=Y THEN 

IF S = R THEN 

IF W < P THEN Y = 1; 

ELSE P = Q; 

ELSE ; 

ELSE X = 4; 

Js S = 5; 

There is one loop-control statement, namely the DO, whose format is 

shown in Fig. VIII-2. The range of the loop is the DO block containing the 

given DO as its heading. In the DO WHILE option, there is no parameter but 

merely a termination condition indicating when to stop executing the range. 

In the other option, the variable can be not only arithmetic but also a label, 

string, or complex variable, providing the last three items produce valid PL/I 

programs when used with the appropriate expansion of the iteration. As is 

common, if the BY clause is omitted, then expression3 is assumed to be 1. 
If the TO expression is omitted, then the iteration is performed until termi- 

nated by either the WHILE clause or by some other statement within the 

range of the DO. If both of these are omitted, there is a single execution of 

the DO group with the parameter having the value of expression], which 

is the initial value. If the variable in option3 is a label variable, then (only) 

the WHILE clause must be used. When the range is terminated, control is 

transferred to the statement immediately following the END which terminates 

the DO group. The most complex case actually occurs when the TO, BY; 

and WHILE clauses are all used; in that situation, the definition of the DO 

statement is defined in the manual in terms of other PL/I statements. The 

significant result of this is that all the unusual cases are specifically defined, 

unlike most other languages. 

Some examples of DO statements are the following: 

DO!|!= 1TOK-— 1, K + 1TON BY J; 

DO COMPLEX (X,Y) = O BY 1 + 2! WHILE (X LESS THAN 5); 

DO J = 1 TO 9, 22 TO 30; 

DO INDEX = Z WHILE (A GREATER THAN B), 5 TO 9 WHILE 

(A = B), 815; 

There are a number of conditions involving error or program checking 

which cause an automatic interrupt by the system unless something is done 

to prevent them. However, the user can override standard action by using 

what are known as ON-conditions. These are used in an ON statement and 

can be classified into computational, input/output, program check-out, list 

processing, programmer named, and system action. The specific list is given 

in Figure VIII-3. If an interrupt takes place before an ON statement for



vi.4. PLA 565 

  

Computational 

CONVERSION 

FIXEDOVERFLOW 

OVERFLOW 

SIZE 

UNDERFLOW 

ZERODIVIDE 

Input/Output 

ENDFILE (filename) 

ENDPAGE (filename) 

TRANSMIT (filename) 

UNDEFINEDFILE (filename) 

NAME (filename) 

KEY (filename) 

RECORD (filename) 

Program checkout 

SUBSCRIPTRANGE 

CHECK (identifier-list) 

List Processing 

AREA 

Programmer-Named 

CONDITION (identifier) 

System Action 

FINISH 

ERROR 

  

Figure VIII-3. List of ON-conditions in PL/I. 

Source: [IB66b], extracts from pp. 162-166. Reprinted by permission from 
IBM System/360 Operating System: PL/I Language Specifications. © 1966 

by International Business Machines Corporation. 

a specific condition has been executed, standard system action is taken. 

However, the programmer may specify some other action to take place 

and in that case it is considered as a procedure internal to the block in 

which it appears. Thus one can write ON OVERFLOW GOTO ALPHA; or 

ON CONVERSION Y = X+1;. The on-unit to be performed when the 

condition occurs is either an unlabeled simple statement (other than BEGIN, 

DO, END, RETURN, FORMAT, PROCEDURE, or DECLARE) or an unlabeled begin 

block. If SNAP is specified, a calling trace is listed when the given condition 

occurs. 
There are specific detailed rules about the scope of the ON statement. 

A condition raised during execution results in an interrupt if and only if 

the condition is enabled at the point where it is raised. Most conditions are 

enabled by default, and the remainder are disabled by default. For several, 

the enabling or disabling may be controlled by the use of condition prefixes. 

As implied earlier, an interruption for most error conditions of a general



566 MULTIPURPOSE LANGUAGES 

type will occur whether or not an ON statement has been executed; the ON 

statement merely determines the action to be taken when the condition 

arises, but it has nothing to do with allowing or preventing an interruption 
to occur. However, the programmer can actually control certain interrup- 

tions through the use of condition prefixes. An enabling condition prefix 
is a list of condition names, enclosed in parentheses, and prefixed to a 

statement with a colon that precedes the label. Thus the user can write 

(SIZE, SUBSCRIPTRANGE) : LABEL: executable statements;. By preceding certain 

condition names with the letters NO, the condition is disabled from causing 
an interrupt. If the condition name is prefixed to any statement other thana 

PROCEDURE or BEGIN statement, the condition is enabled (or disabled) only 

through the execution of that single statement. If it is prefixed to an /F state- 
ment, its scope is only through the evaluation of the expression in the /F clause. 

If a condition name is prefixed to a DO statement, its scope is only through the 

DO statement itself. If the condition name is prefixed to a PROCEDURE or 

BEGIN statement, its scope is through the entire block including all nested 

blocks except for any statements that lie within the scope of another condi- 
tion prefix with a different specification for the same condition. Unlike the 

scope in an ON statement, the scope of a condition prefix does not extend 
to a block that is invoked remotely. 

The REVERT command has essentially the effect of canceling an ON 

statement once the latter has been actually executed, assuming that they 

were internal to the same block. It also reactivates the most recent ON state- 

ment in the containing block. 

It is possible to simulate the existence of one of the interrupts through 

the use of the SIGNAL statement, which causes the same action as if the 

specified condition had actually occurred. 

There are no algebraic expression manipulating statements. (However, 

see the PL/I-FORMAC interpreter discussed in Section VII.3.) 
The basic idea of the PL/I list processing facilities is to allow the user to 

determine the detailed structure of his lists. In other words, instead of spec- 

ifying a particular form of list structure like in previous list processing lan- 

guages such as IPL-V and LISP (see Sections VI.3 and VI.5), the user is 

given a variable type called pointer and a form of controlled variable called 
a based variable. (The newer list processing language L® (see Section VI.4) 

also permits the user to define his own structure.) The term based means 

that the actual storage position accessed in a reference to the variable is 

determined by the value of a pointer to it. For example, writing 

DECLARE P POINTER, ALPHA FLOAT BASED (P); 

defines P as a pointer variable and ALPHA as a floating point based variable, 

whose location is identified by P when reference is made to ALPHA. The value 
of P itself can be set during the program by assignment, by SET, or through



vill.4, PL/(T 567 

the use of the built-in ADDR function, which returns a pointer value which 

“points to” its argument. (The word BASED replaced the word CONTROLLED 
which was used in [IB66b].) 

In some list processing applications there is a need for more than one 

pointer to identify a given item of data. In these cases, other pointers may 

be used to refer to a based variable. The symbol —> (called a pointer 

qualifier) is used for this. To identify the last item in a list, the NULL built-in 

function 1s usually used to provide a null pointer. 

A fairly thorough discussion of this subject is given by Lawson [LH67]. 

It is true but misleading to say that there are no specific string-handling 

statements in PL/I. Since a character string is a very legitimate data type, 

strings are handled in the same manner as most other data variables, with 

appropriate rules for conversion, etc. These rules will be discussed briefly 

here, but the reader is cautioned to realize that the strings are handled through 

the assignment or some other statement. 

Both bit and character strings are permitted. Most of the relevant 

information has been provided earlier, but it is being summarized here for 

reference. Bit strings can be combined using AND, OR, NOT. Strings of any 

kind can be concatenated; if both are bit strings, then no conversion is done 

and the result is a bit string; but in all other cases the operands are con- 

verted to character strings. If the variable on the left of an assignment state- 

ment is arithmetic, then a string to be converted must be either an arithmetic 

constant with or without a sign or a real constant with a sign followed by 

either a plus or a minus sign and an imaginary constant. In such an instance, 

the arithmetic value of the constant is converted according to specified rules. 

If the variable on the left side of the equals sign is a bit or character string, 

the assignment is performed according to the rules of list-directed output 

which is described later. There are specific rules about truncating and filling 

out strings when needed. 

There are a number of built-in string functions, and they are shown in 

Figure VIII-4. 

There are no pattern-handling statements in PL/I. A primitive facility 

in this area is provided by the INDEX built-in function. 
PL/I allows for two different kinds of data transmission, namely 

stream- and record-oriented. The verbs GET and PUT are used for input and 

output of data items in the stream, while the statements READ and WRITE do 

similar things for the record-oriented data. In the stream-oriented case, the 

data is considered to be a continuous stream of data items in character form, 

and an assignment must be made from the stream to the variables or vice 

versa. With record-oriented transmission, the data set is considered to con- 

sist of a collection of physically separate records, each of which consists of 

one or more data items in an encoded form; each record is transmitted as 

an entity directly without any conversion. 
There are three types of stream-oriented transmission, namely list-



  

Arithmetic generic 

ABS 

MAX 

MIN 

MOD 

SIGN 

FIXED 

FLOAT 

FLOOR 

CEIL 

TRUNC 

BINARY 

DECIMAL 

PRECISION 

ADD 

MULTIPLY 

DIVIDE 

COMPLEX 

REAL 

IMAG 

CONJG 

Float arithmetic generic 

EXP 

LOG 

LOGIOT 

LOG2t 

ATANDi 

ATAN?t 

TANDt 

TAN 

SINDt 

SIN 

cospt 

COs 

TANH 

ERFT 

SQRT 

ERFCi 

COSH 

SINH 

ATANH 

ATAN 

ATAND 

+Defined only for real arguments. 

String generic 

BIT 

CHAR 

SUBSTR 

INDEX 

LENGTH 

HIGH 

LOW 

REPEAT 

UNSPEC 

BOOL 

Generic functions for manipulation of arrays 

SUM 

PROD 

ALL 

ANY 

POLY 

LBOUND 

HBOUND 

DIM 

Condition 

ONFILE 

ONLOC 

ONSOURCE 

ONCHAR 

ONKEY 

ONCODE 

DATAFIELD 

List processing 

ADDR 

NULL 

Others 

DATE 

TIME 

ALLOCATION 

LINENO (filename) 

COUNT (filename) 

ROUND (expression, decimal-integer-constant) 

STRING (structure-name) 

EVENT (scalar-event-name) 

PRIORITY (scalar-task-name) 

  

Figure VITI-4. List of Built-in functions in PL/I. 

Source: [IB66b], extracts from pp. 152-158. Reprinted by permission from 

IBM System/360 Operating System: PL[I Language Specifications. © 1966 

by International Business Machines Corporation. 

568



vul.4. PLA 569 

directed, data-directed, and edit-directed. In each case, the user usually 

supplies the file name and the list of variable names involved (which is called 

a data list). For edit-directed data, the format of each data item must be given. 

In several cases there are default conditions so the user need not always 

supply this information explicitly. 

In the list-directed transmission, the data items in the stream are always 

written as arithmetic or string constants. The user provides in the GET or 

PUT statements a list of variables to which the data items are to be assigned 

or to be output from in sequence; the variables in the data list are separated 

either by commas or blanks when used as input, while on output the blanks 

are supplied automatically between items. The PUT statement also allows 

the user to write an expression in his list and the output is the value obtained 
by evaluating the expression. Some examples are as follows: 

GET LIST (A,B,C); 

specifies the input transmission of values to be assigned to the 

variables A, B, and C from the default condition standard file. 

GET FILE (BETA) LIST (CITY, MONTH, MIN_TEM, MAX_TEM); 

If the input file contains the following data: 

‘NEW YORK’, ‘JANUARY’, —6.5, 72.6 then the first two varia- 

bles would be assigned as character strings and the second two 

would be assigned the numerical values; this of course assumes 

that the appropriate data declarations for the four variables 

have been given. 

PUT FILE (JUNK) LIST (NAME, 3.5*RATE, NUMBER — 10); 

would cause the output of the value represented by NAME 

and the values resulting from evaluating the expressions 

3.5*RATE and NUMBER — 10. 

In the data-directed form of transmission, the data list need not appear 

in the GET statement because the stream is in the form of a series of assign- 

ment statements that specifies each variable name and the value assigned to 

it. Thus, the data in the input stream might look like the following: 

A = 7.3 B = 'ABC' C (4,2) = 1234; 

Note that the last data item is followed by a semicolon which is used to 

delimit the number of items obtained by a single GET statement. On output, 

the data list must be written to specify which data items are to be written 

into the stream. The PUT statement referring to the data items just given 

could be 

PUT FILE (OUT) DATA (A,B,C(4,2)); 

On input, the assignments can be separated by commas or by blanks. On



570 MULTIPURPOSE LANGUAGES 

output, blanks are supplied and the semicolon is written after the last item 

specified in the data list. 

In both the data-directed and list-directed cases, there are various rules 

about what types of data may appear in the data list, when and how sub- 

scripts can be used, and when subscripts are evaluated. 

The edit-directed transmission allows the user to control the format by 

providing information about things such as precision, strings, conver- 

sion, etc. In addition, the user can control pagination and lines through the 

use of the PUT statement. The LINE option causes the data to be written on 

a new line; the PAGE option allows the user to start a new page; the expres- 

sion in the LINE option essentially controls which line is used, 1.e., which 

new line the data will start on. The SKIP option also allows the user to con- 

trol the start of a new line and to indicate how many lines are to be skipped; 

however, it also permits the user to overprint a particular line. 

It is possible to use the input/output statements for an internal char- 

acter string; this is done by using the STRING option, which allows the user 

to obtain information from an internal character string and place data there. 

Although the string option can be used with any of the three types of stream- 

oriented transmission, it is usually most practical in association with a for- 

mat list since individual items in the string need not be separated by commas 

or blanks. 

Each READ and WRITE statement transmits a single logical record 

between the external medium and the variable specified, without any con- 

versions. The variable specified must be a “level-1” item and normally contains 

several data items or arrays. If the file specified in a READ or WRITE state- 

ment is not open when the command Is given, it is opened automatically. 

The variable associated with the words INTO and FROM in the READ and 

WRITE, respectively, specifies the variable in internal storage into which or 

from which the record is to be read or written. In the READ statement, the 

SET option places a record in a buffer and assigns a pointer variable as its 

identification so that a based variable can be subsequently referred to via 

the pointer value. The IGNORE option may be specified for SEQUENTIAL INPUT 

and SEQUENTIAL UPDATE FILES. It controls the number of records that are 
skipped. The KEY option must appear if the file is DIRECT; the expression 1s 

converted to a character string but it determines which record is read. The 

KEYTO option can be given only if the file is SEQUENTIAL and keyed; it 

specifies that the key of the record is to be copied onto the string variable. 

The EVENT option allows processing to continue while the record is being 

read or ignored. The NOLOCK option prevents the statement from causing 

a record on an EXCLUSIVE file from being locked against access by other 

tasks. 

In the WRITE command, the KEYFROM option is converted to a char- 

acter string and attached to the record as a key. As examples, the statement



vin.4. PLA = 5571 

READ FILE (BETA) KEY (VALUE) INTO (WORK); causes the record identified by 
the key VALUE to be transmitted from the data set associated with BETA into 

the variable WORK. The statement WRITE FILE (BETA) FROM (UPDATE) 
KEYFROM (UKEY); specifies that the record UPDATE is written as the next 

record in the data set associated with the file BETA, and the key identifying 

the record in the data set is taken from UKEY. 

As noted later in the file description, a file can be INPUT, OUTPUT, or 

UPDATE. The REWRITE statement can be used for the UPDATE and serves 

the purpose of replacing an exiting record in the data set in the file involved. 

The other key words provide options similar to those in the WRITE com- 

mand. 

The OPEN statement causes the opening of a file and provides a number 

of additional file characteristics beyond those shown in the file description. 

The JDENT option associates the identifying user label on an input file with 

the variable given as the argument; for output, the argument is an expres- 

sion which is evaluated and converted to a character string which is placed 

as a header label. If an input file is a BACKWARDS file, the label will be a 

trailer label; otherwise it will be a header label. The TITLE option causes the 

conversion of the specified expression to a character string which identifies 

the data set associated with the file; if this option does not appear, the file 

name ts taken as the identifier. The other options are either self-explanatory 

or are discussed under the file description. 

The CLOSE statement dissociates the named file from the data set with 

which it was associated by opening, and it also dissociates all the attributes 

declared for it in the original opening of the file. However, attributes for that 

file which are explicitly given in a DECLARE statement remain in effect. The 

argument in the /DENT option essentially serves as a trailer label. 

The DELETE statement removes a record from a DIRECT UPDATE file. 

The expression associated with the KEY identifies the record to be deleted. 

The DELETE statement can cause implicit opening of a file. 

The UNLOCK statement makes accessible a record which would other- 

wise be inaccessible as a result of the READ statement accessing it from an 

EXCLUSIVE file. 

The LOCATE statement applies to BUFFERED OUTPUT files and allows a 

record to be created in buffer storage and later written out. The SET option 

specifies a POINTER variable which is to be set to identify the variable in 

the buffer. 

The DISPLAY statement causes a message to be displayed to the machine 

Operator; a response may be requested by using the REPLY option. If the 

EVENT option is used, execution of subsequent statements will continue 

before the reply is completed. 

The library references which are specifically available to the user are 

the built-in functions, of which there are a large number; they are listed in



572 MULTIPURPOSE LANGUAGES 

Figure VIII-4. Many of these are generic; this means that the same name 

can be used for differing types of arguments. For example, EXP 1s used for 

the exponential function, regardless of whether the argument is of REAL 

or COMPLEX mode, regardless of the precision, etc; the system automatically 

supplies the function of the EXP family that fits the requirements. Almost 

every built-in function, whether or not it is generic, has a specified number 

of arguments given. In some cases the actual number of arguments is optional 

beyond a specified minimum, while in others a maximum is specified. If a 

built-in function which is not generic is used, then any argument whose 

characteristics do not match the specified ones are converted to the appro- 

priate form before the function is invoked; the return values are determined 

by the function. There are also many built-in functions that can return array 

or structure values. Although the names of the functions are fixed as far as 

the language is concerned, they can also be used for identifiers. However, 
in such a case, the name must be explicitly declared. 

The functions can be divided into the following classifications: Arith- 

metic generic (e.g., ABS, MAX, and TRUNC); float arithmetic, which converts 

all input arguments to floating point before the function is invoked and 

produces floating point numbers, as results (e.g., LOG2, SIND, which are 

defined only for real arguments, and SIN, LOG, and SQRT, which are defined 

for real and complex arguments); string generic (e.g., BIT, SUBSTR, and BOOL); 

array manipulation, which has array expressions with scalar values as argu- 

ments but no arrays of structures (e.g., SUM, POLY, and LBOUND). All the 

built-in functions in the arithmetic and string generic categories may have 

array or structure expressions as arguments except where integer decimal 

constants are required, and they yield arrays or structures as results; condi- 

tion (e.g., ONFILE, ONCHAR, ONKEY), /ist processing (ADDR and NULL), and 

the miscellaneous category (DATE, TIME, LINENO, EVENT, and PRIORITY). 

The category of debugging statements in some cases overlaps with the 

error condition statements which were described earlier. There are currently 

none which can be truly classed as pure debugging statements, although 

some of the options under some of the commands have this effect, in par- 

ticular, the SNAP in the ON statement. 

Although there are only two actual commands dealing directly with 

storage allocation, namely ALLOCATE and FREE, there are actually four 

classes of storage which are controlled by the declarations. In order to 

understand the meaning of the statement, it is necessary to discuss the 

storage categories themselves here. The four storage classes are static, auto- 

matic, controlled, and based. (The latter was added after the issuance of 

[[B66d], and is described in later editions of [I[B67d]. The formats of 

ALLOCATE and FREE shown in Figure VIII-2 do not reflect these changes 

which are minor syntactically.) Static storage is assigned before first entry 

to the program and remains in effect throughout the life of the program.



vi.4. PLA ©5573 

The other three classes define dynamic storage allocation. Automatic storage 

is assigned at object time upon entry to the block in which it is declared 

and released upon exit from that block. The dimensions can of course be 

variables or expressions. 

Controlled and based storage are under programmer control. Variables 

declared as CONTROLLED and BASED can and must have storage assigned 

and released by the ALLOCATE and FREE statements, respectively. The 

ALLOCATE command essentially. serves the purpose of placing something 

on top of a pushdown stack, while the FREE command performs the popup 

function. References to a stacked controlled variable always refer to the 

most recent allocation, whereas ai/ current allocations for a based variable 

can be obtained by a pointer value. In Option 1 of the ALLOCATE statement, 

the attribute indicates a BIT, CHARACTER, or INITIAL attribute, where the 

first two can only appear with identifiers of that type. Since bounds or lengths 

can be Specified in the ALLOCATE statement, they override any similar infor- 

mation which might be included in a DECLARE statement; if no bound or 

length is specified in the ALLOCATE statement, it must be specified in a 

DECLARE statement. When an identifier is allocated, the initial values will be 

assigned if the identifier has that attribute. To ascertain whether or not 

storage has been allocated for a particular identifier, the built-in function 

ALLOCATION may be used. 

Both controlled and based variables can be specified in the same 

ALLOCATE and FREE statements. In Option 2 of the ALLOCATE statement, 

there is no pushdown list, and any generation of the based variable can 

be referenced through a pointer variable. The SET clause indicates the pointer 

variable that is to receive the pointer value identifying the particular value 

of the variable for which storage is to be allocated. If the JN clause appears 

in the ALLOCATE statement, storage will be allocated in the named area for 

the based variable; if that clause is omitted, space will be allocated in systems 

storage. For based variables, all characteristics must be specified in the 

declaration and cannot be included in the ALLOCATE statement. In the use 

of the FREE statement, if a specific pointer qualification is not given for the 

based variable, then the pointer declared with the based variable will be 

used. In Option 1, a CONTROLLED variable must be used. 
There are no specific segmenting instructions in PL/I. 

Aside from the normal input/output, the primary way in which PL/I 

has interaction with the operating system is through the creation and execu- 

tion of tasks. As indicated under the CALL statement, the TASK, EVENT, 

and PRIORITY options specify that the called and calling procedures are to 

be executed asynchronously. The task is not a set of instructions but rather 

the execution of a set of instructions. There is always one major task and 

optionally available subtasks; each of the latter category can be named and 

the name can be used to refer to and set the priority of the task. A task can



574 MULTIPURPOSE LANGUAGES 

be suspended by the programmer until some particular point in the execution 

of another task has been reached; this specified point is known as an event 

and it can in fact be associated with the completion of a particular task. 

The WAIT statement causes the task in which it 1s executed to be suspended 

until the condition EVENT (event-name) equals '1'B is satisfied. The methods 
of defining this are described later. All the event names listed, or a number 

equal to the value of the optional expression (if used), must satisfy the 

condition in order for the task issuing the WAIT statement to be allowed to 

resume. 
The DELAY statement causes execution of the controlling task to be 

suspended for n milliseconds, where v is the value of the expression shown 

in the format. Execution resumes after 1 milliseconds only if the controlling 

task is of sufficiently high priority to be selected in preference to all other 

ready tasks. 

The STOP statement causes immediate termination of the major task 

and all subtasks. The EXIT statement terminates the task containing the EXIT 

statement and all tasks attached by this task; hence if the EX/T statement 

occurs in a major task, it 1s equivalent to a STOP statement. 

The Null statement causes no action and has no effect on sequential 

operation. It can be used with an ELSE to obtain the desired pairing in an 

IF statement. 

PL/I has a number of extremely significant (and some new) features 

connected with its data description. The first is the very large number of 

different data types which were discussed earlier. Because of that, the data 

declarations tend to be somewhat voluminous. However, two features make 

this easier for the programmer than might be expected on the surface. The 

first is the requirement that all characteristics of a data item (which is a term 
being used loosely here to indicate individual variables, arrays, structures, 

and all the different data types) must be shown together in a single DECLARE 
statement. (There are a few minor exceptions to this requirement.) This 

makes it clear to the reader of any program just what type of data is being 

dealt with at a particular point in the program. A second very useful feature 

is the ability to factor characteristics by writing a declaration only once if 

it applies to many variables. A third feature whose value is more controversial 

is the occurrence of default conditions; this means that in a number of 

specific instances if no characteristic is given for a data item, the compiler 

will automatically assume one; e.g., an identifier starting with one of the 

letters | though N is assumed to be FIXED BINARY REAL if no attributes are 

given. (PL/I uses the term attributes for characteristics of data items.) A 

fourth concept is the existence of deduced declarations, which means that 

certain characteristics are assumed when other information is given. For 

example, the use of a GET automatically assigns the attributes STREAM and 

INPUT to the file.



vul.4. PLA 575 

Related to this is the concept of contextual declarations, which means 

that identifiers appearing in certain specific contexts are recognized without 

an explicit declaration. For example, writing GET FILE (MASTER) DATA; 
declares MASTER to be a file without need for an explicit declaration. Finally, 

PL/I permits an identifier to be used in a block without any explicit or 

contextual declaration. In this case the identifier is said to be implicitly 

declared in the containing external procedure. 

There are a number of attributes which can appear in a DECLARE state- 

ment, and they can be subdivided into major and minor categories. Those 

items marked with a dagger are described more fully below. The purpose 

of the others is shown briefly in the list. 

Data description 

datat (arithmetic, PICTURE, string, LABEL, TASK, EVENT). 

INITIAL 

Specifies values to be assigned when storage is allocated, or 

names a procedure to be invoked to perform the initialization. 

structure (LIKE) 
Data being declared has the same structure as the name follow- 

ing LIKE. 

File description (Some of these are assumed when others are used or 

when the variable name is used in an appropriate statement). 

FILE 

Identifies variable as a file. 

file usage (STREAM, RECORD) 

Specifies type of data in file. 

function (INPUT, OUTPUT, UPDATE) 

Specifies function of file; UPDATE means both input and 

output. 

PRINT 

Specifies that data is eventually to be printed. 

access (SEQUENTIAL, DIRECT) 
In SEQUENTIAL the next record is the next one physically 

available; in DIRECT a key must be specified. 

buffering (BUFFERED, UNBUFFERED) 

Applies to SEQUENTIAL RECORD files only; specifies whether 

there is intermediate storage. 

BACKWARDS 

A SEQUENTIAL INPUT file is to be accessed from back to front.



576 MULTIPURPOSE LANGUAGES 

EXCLUSIVE 

A DIRECT UPDATE file cannot be used by two tasks simulta- 

neously. 

ENVIRONMENT 
Implementation defined in order to cover any missing aspects. 

Format descriptions 

PICTURE 
Is used as part of data description. 

Storage allocation 

DIMENSION 

Specifies upper and lower bounds for each dimension, separated 

by colons; missing lower bound is assumed to be 1; bounds 

can be expressions. 

SECONDARY 

Data does not require efficient storage. 

storage class (STATIC, AUTOMATIC, CONTROLLED, BASED) 

Concepts were defined earlier. 

ALIGNED or PACKED 

PACKED data is stored contiguous to the fields surrounding 

it; ALIGNED data may have each string data element start at a 

storage boundary defined by each implementer. 

DEFINED 

Data declared is to occupy the same storage area as that as- 

signed to other data. 

CELL 

Alternative declarations share the same storage. 

list processing (AREA, POINTER, OFFSET) 

AREA defines storage for based data items; PO/JNTER data identi- 

fies values in any storage class; OFFSET data identifies data 

relative to the start of an area. (This last item was added after 

the issuance of [IB66d].) 

Procedure declarations 

ENTRY 

Declares entry names. 

entry namet (SETS, USES, GENERIC, BUILTIN, RETURNS, REDUCIBLE, 

IRREDUCIBLE). 

scope (INTERNAL, EXTERNAL) 

Specifies scope of data.



vi.4. PLA = 5577 

Miscellaneous 

ABNORMAL or NORMAL 

ABNORMAL data may be accessed at an unpredictable time 
during execution. 

scope (INTERNAL, EXTERNAL) 

Specifies scope of identifiers. 

In considering the data description, the basic data attribute for a numer- 

ical variable is the arithmetic, which consists of base (BINARY or DECIMAL), 

scale (FIXED or FLOAT), mode (REAL or COMPLEX), and precision (specifies 

number of significant digits to be maintained and scale of the data). The 

PICTURE declaration shows the formats of numeric and character-string data 

fields and specifies editing. The string characteristic has the format 

BIT 
{ CHARA cer! (length) [VARYING] 

| PICTURE specifications 

LABEL defines the variable as a statement label. TASK specifies that the 

variable is used as a task name. EVENT specifies the use as an event name. 

These last two are really part of the interaction with the operating system. 

ENTRY declares entry names referred to in a procedure. The attributes 

SETS and USES for entry name specify, respectively, that the invoked pro- 

cedure reassigns, allocates, or frees that item, or that it is accessed but not 

reassigned unless it also has a SETS attribute. GENERIC defines the name 

as a family of entry names; the proper one is selected, based on the char- 

acteristics of the input arguments. BUILTIN specifies the reference is to a 

built-in function or pseudo-variable. RETURNS defines the attributes of the 

value to be returned by that entry. IRREDUCIBLE specifies that invocations 

of the specified entry may not be reduced to a smaller number of invocations. 

The default conditions for arithmetic data are basically dependent on 

the first letter of the name; if it is | through N, FIXED REAL BINARY is 

assumed; otherwise, FLOAT REAL DECIMAL. If some but not all attributes 

are specified, then DECIMAL, FLOAT, and REAL are assumed for the missing 

ones. Other default conditions are AUTOMATIC (for storage unless scope is 

EXTERNAL, in which case STATIC is default), PACKED (for structures) and 

ALIGNED (for arrays not in structures), and INTERNAL (for scope). 

In certain contexts, identifiers are implicitly defined, e.g., FILE, EVENT, 

entry name, and pointer. 

Some illustrations of declarations and their meanings (taken from 

[IB66b]) are as follows:



578 MULTIPURPOSE LANGUAGES 

DECLARE A FLOAT (3), B REAL (10) FLOAT, X FIXED (5,2); 
means A is (real) floating point with 3 significant digits; B is 

real, floating point with 10 significant digits, and X is fixed with 
5 significant digits and 2 decimal places. 

DECLARE (A(7), J BINARY (32)) FLOAT, C CHARACTER (5); 
means A and J are floating point but A is a decimal array with 

7 elements and J is binary with 32 bits; C is a 5-character string. 
This illustrates the factoring of the attribute FLOAT. 

DECLARE A BIT (10), B PICTURE 'XAA9AA’, D BIT(x) VARYING 

CONTROLLED ; 
means A is a field of 10 bits, B is a field consisting of any char- 

acter followed by 2 alphabetic characters (or blanks) followed 

by a decimal digit (or blank) followed by 2 alphabetic char- 

acters (or blanks). D is a field of bits with a maximum length 

to be taken from a previous allocation or to be specified in a 

subsequent ALLOCATE statement. 

DECLARE 1 A (10) PACKED, 2 B BIT (200), 2 C BIT (500), 2 D 
BIT(300), E (10, 15) ALIGNED BIT (15); 

means that the array of structures called A will occupy a contin- 

uous area of storage. Each element of the array E will start 

at a storage boundary defined by the implementer. 

DECLARE MAX__VALUE INITIAL (99), MIN_VALUE INITIAL (_99), 

TABLE (20,20) INITIAL CALL INITIALIZE (X,Y); 
means that the variables MAX_.VALUE and MIN_VALUE re- 

ceive initial values of 99 and —99, respectively, and the array 

TABLE is initialized by a procedure called INITIALIZE. 

DECLARE ((A FIXED, B FLOAT) STATIC, C CONTROLLED) EXTERNAL; 

is equivalent to DECLARE A FIXED STATIC EXTERNAL, B FLOAT 

STATIC EXTERNAL, C CONTROLLED EXTERNAL ;. 

DECLARE 1 A AUTOMATIC, 2 (B FIXED, C FLOAT, D CHAR (10)); 
is an illustration of factoring of the level number and is equiva- 

lent to DECLARE 1 A AUTOMATIC, 2 B FIXED, 2 C FLOAT, 2 

D CHAR (10);. 

DECLARE A(0:99, —2:7) FIXED, B(MsA+1, NsY+1); 

means that variable A is a two-dimensional array with fixed 

point, decimal elements whose first subscript ranges between 0 

and 99 and whose second subscript goes between —2 and 7. 

B is a floating, real, decimal array with two subscripts whose 

initial and final values are evaluated when storage is allocated 

for it.



vul.4. PLA ©5579 

Procedure declarations are defined by the following format: 

entry-name : | entry-name :| ... PROCEDURE 
[(parometer [, parameter] ...)] [OPTIONS (option-list) | 
LRECURSIVE | [data-attributes | ; 

body of procedure 

END ; 

The parameters are names that are associated with the entry point and of 

course are put into one-to-one correspondence with the arguments used 

with a CALL statement. The OPTIONS attribute is implementation dependent. 

The RECURSIVE attribute specifies that this procedure may be invoked 

recursively. It applies to all the entry points for the given procedure. 

The data attributes that are permitted in the PROCEDURE declaration 

(which is actually defined as a statement in the PL/I manual) are the arith- 

metic, string, picture, and pointer attributes. They apply to the value 

returned by the procedure when it is invoked as a function. Default at- 

tributes are supplied if necessary. The value specified in the RETURN state- 

ment of the invoked procedure is converted to the specified data attributes. 

There are no additional facilities that are specifically and only defined 

as compile-time directives in PL/I, except for the macro facility to be de- 

scribed later. However, there are a number of such language facets which have 

been discussed under other headings. In particular, a number of the declara- 

tions are really compiler directives. 

There is no self-modification of programs at object time. However, 

the macro facility provides this facility at compile time. 

PL/I has a macro facility which can be used either to make it easier to 

write some types of PL/I programs or alternatively to allow the user to write 

a program with new command names and then have the compiler automati- 

cally translate these into appropriate PL/I coding. There is no direct facility 

to extend the data types, although the system can be judiciously used (and 

tricked) to provide primitive capability in this direction (see, e.g., PL/I- 

FORMAC in Section VII.3.3). 

The macro (i.e., compile-time) facility is defined at the language level 

to be handled by a preprocessor to the regular compiler. The preprocessor 

interprets compile-time statements and acts upon the source program 

accordingly. In most cases, the compile time-statements must be preceded 

by a percent sign. The facilities of PL/I which are available in the macro 

language are the following: 

1. The assignment statement evaluates expressions. The expressions can con- 

tain decimal integer, bit string, or character string constants; compile-time 
variables; compile-time procedure references; or references to the SUBSTR 

built-in function. No exponentiation is permitted. For arithmetic operators 

only decimal integer arithmetic is performed.



580 MULTIPURPOSE LANGUAGES 

2. The GOTO statement can of course only transfer control to a compile-time 

label. 

3. The IF statement is available and has the following general form: 

% |label:|... 1F compile-time-expression 
% THEN compile-time-group-! 

[% ELSE compile-time-group-2 | 

The compile-time group is either a single executable compile-statement, or 

a compile-time DO group. 

4. The DO group has the following format: 

% [label s|... PO| fem Ks m2 [BY m3 ; 
BY m3 [TO m2] 

% [labels]... END [label]; 

where the j is a compile-time variable and the mi are compile-time expres- 

sions. 

A compile-time procedure is an internal procedure that is executed only 

at the preprocessor stage. The only difference in its syntax is that the 

PROCEDURE and END statements must have a leading percent sign and the 

only types of parameters that are allowed are those which are either 

CHARACTER or FIXED. A compile-time procedure can contain the assignment, 

GO TO, /F and RETURN statements, and the DO group. In this situation, the 

individual statements are not preceded by the percent sign; it is used only 

at the very beginning and at the end. A compile-time PROCEDURE can also 

contain a null statement and a DECLARE. 
In addition to the normal PL/I statements above, an additional state- 

ment called JNCLUDE is. permitted outside procedures. This incorporates 

a string from some external text into the program text which is being formed. 

Finally there are two other statements which are executed at the macro 

processor time, namely ACTIVATE and DEACTIVATE, which refer to compile- 

time variables and compile-time procedures. When one of those is activated, 

the specified identifier is replaced by its current (i.e., compile-time) value. 

When it is deactivated, this replacement no longer takes place. 
Only the CHARACTER (with no length specification), FIXED, ENTRY, and 

RETURNS attributes are allowed in the compile-time DECLARE statement. 

Factoring is permitted. 

As an example (from [IB66b]) of the use of the macro facility, suppose 

that the programmer wished to execute at object time the following loop 

in an expanded form for greater efficiency: 

DO | = 1 TO 10; 
Z(I) = X() + Y(I); 
END ; 

This could be accomplished by writing the following:



vu.4. PLA ©5581 

DECLARE | FIXED; 

|= 1; 

LAB:; 

Z(1) = X(Il) + Y(N); 
l=!/1+1; 

IF | <= 10 % THEN % GO TO LAB; 

DEACTIVATE I; 

L
L
 

LV 
LK 

As a result of the macro program above, the following PL/I statements 

would be put into the program text and eventually compiled into the object 

program: 

Zl) = X(1) + Y(1); 

Z(2) = X(2) + Y(2); 

(10) = X(10) + Y(10); 

While no PL/I compiler has yet been written in PL/I, it is believed that 

this is definitely possible. Some of the facilities, in particular the pointer and 

based variables, are provided very specifically to help with that problem. 

Furthermore, because of the many features in PL/I which provide interac- 

tion with the operating system, the use of PL/I itself might not introduce too 

many further inefficiencies in writing the compilers. 

PL/I provides many more facilities for producing object-time efficiency 

than for improving compilation. Many of the features in the language have 

been chosen to aid the user at the expense of compilation time. (In my 

opinion, that is a desirable choice.) There are a number of features in PL/I 

which are there specifically to permit the compiler to generate optimized 

code, e.g., the ABNORMAL, NORMAL, IRREDUCIBLE, REDUCIBLE, and USES 

and SETS attributes. The RECURSIVE attribute avoids the need to make all 

object-time procedures recursive. 

PL/I provides great flexibility to the user and, in particular, provides 

generality rather than restrictions. (One of the major design goals of PL/I 

was to provide this generality.) Among the specific features that have signifi- 

cant (but harmful) effect on compilation efficiency are the ability to use the 

key words as identifiers, the freedom to state many options in any order 

that is desired, and the ability to factor attributes. Some of the features that 

help to improve object-time efficiency have already been mentioned. 

As noted earlier, the general problem of storage allocation has been 

given considerable attention at the language level in PL/I. A large amount of 

information is given to the compiler either directly or indirectly to assist 

it in doing reasonably good storage allocation. Of course, if the user writes 
inefficient programs, then he has only himself to blame if he obtains inef- 
ficient object code; thus, if he declares all variables to be CONTROLLED, he



582 MULTIPURPOSE LANGUAGES 

should certainly expect less efficient object code than if he deals more 

intelligently with that portion of the problem. 

As noted earlier, there are a number of facilities in the language for 

both compile and object time debugging and error checking. There are a 

large number of consistency rules, i.e., requirements that items either must 

or must not appear together, and the compiler can and should certainly 

check for these. Since PL/I was designed to have an almost universal applica- 

tion area, it is not too surprising that it can be used for a wide variety of 

problems. There are some things, however, that are unavailable in the lan- 

guage as defined in [IB66b], e.g., graphics, simulation, formula manipula- 

tion, and complicated pattern matching. However, PL/I provides many 

powerful facilities in the areas heretofore covered by languages such as 

FORTRAN, ALGOL, COBOL, and JOVIAL. 

VIII.4.4. SIGNIFICANT CONTRIBUTION TO TECHNOLOGY 

PL/I has made a large number of significant contributions to the 

technology. In my opinion, it seems valid to say that PL/I is the culmination 

of the so-called standard procedural line exemplified by ALGOL, COBOL, 

FORTRAN, and JOVIAL. It has included virtually all the good features 

from each of those languages, although often in a different syntax; this is 

to be expected since it is not possible to extract both concept and syntax 

from four or five languages and expect them all to fit together. In addition 

to amalgamating the features from those languages, PL/I is the first lan- 

guage to address itself seriously to the problems arising from interacting with 

an operating system. It also has provided more facilities for dealing with 

storage allocation, tasking, and interrupt handling than any other language. 

Although the concept of a default condition for a variable has really been 

around for a long time, PL/I has carried this out to a very large extent. 

However, although the PL/I philosophy—that what the user does not know 

should not hinder or hamper him in writing a program—seems an interesting 

one, it is not completely obvious that it is really desirable. The user may in 

fact obtain very unexpected results because he did not even know that there 

was something in a particular area to be concerned about. Another signifi- 

cant contribution to the technology is the macro facility; it seems fair to 

assume that it will prove valuable and lead to further practical developments 

to match the numerous conceptual developments currently underway in 

this area. 

In summary, PL/I seems to have made its major contribution to the 

technology by synthesizing in a very reasonable way almost all that has been 

known about languages that are useful for solving numerical scientific 

and business data processing problems, and combinations of them.



VIII.5. FORMULA ALGOL 583 

Vill.5. FORMULA ALGOL 

The first version of the Formula ALGOL system was developed on the 

CDC G-20 at Carnegie Institute of Technology (now Carnegie-Mellon) 

in 1963 by Professor Alan Perlis and R. Iturriaga. The version described 

here was developed over the next few years by R. Iturriaga and T. Standish, 

with assistance from R. Krutar and J. Earley, under the direction of Pro- 

fessor Perlis. The initial development and motivation for this system was 

to add a formula-manipulating capability to ALGOL. (See Perlis and 

Iturriaga [PR64].) If that had been the sole extent of the work, then this 

language would appropriately belong in Chapter VII, where formal algebraic 

manipulation languages are discussed. However, over a period of several 

years, the original system evolved into a much more general language, con- 

taining not only the simple formula manipulation facilities but also string 

and list processing operations. It is because of the inclusion of these three 

somewhat different types of facilities within an ALGOL framework that the 

language appropriately belongs in a chapter on multipurpose languages. 

Since the language was developed at a university as an experimental 

and educational tool (and on a fairly obsolete computer), it has been used 

only at Carnegie. Furthermore, because of the environment, there were 

numerous versions, and many of them underwent frequent change to better 

suit the needs of the designers and users. The version described here is 

reported in Perlis, Iturriaga, and Standish [PR66]. 

SAMPLE PROGRAM—Formula ALGOLt 

  

Problem: Clear fractions in arithmetic expressions. 

Program: 

begin form F, X, A, B, C ; symbol S, P, T ; 

A< A: any; B <—B: any; C <—C: any; 

P — / (operator: +][comm: true]; T — / [operator: X][comm: true]; 
S — [At(—B) > 1/.ATt .B, 

A {P| (B/C) > (.A X .C + .B)/.C, 

A |T| (B/C) > (.A X .B) /.C, 

A—B/C—>(A X .C — .B)/ .C, 
B/C—A >(B—.AX .C)/<C, 

A/(B/C) > (.A X .C) /.B, 

(B/C)/A—> B/(.C/.A), 
B/AtTC>[Bt.C/.At .C]; 

Fo(X+3/X)t2/(X—1/X); 
PRINT (F | S) end 

t Perlis, Iturriaga, and Standish {[PR66], p. 44. 
 



584 MULTIPURPOSE LANGUAGES 

An interesting characteristic of Formula ALGOL relates to its imple- 

mentation, much of which was done using various compiler-compiler 

techniques based on the work of Feldman [FJ66]; see Iturriaga et al. [IT66] 

and [I[T66a]. An illustration of the use of the system is given by Iturriaga 

[1167]. 
The power and complexity of the concepts and notation that are added 

to ALGOL make it impossible to describe them adequately in any reasonably 

short amount of space. Hence this description will attempt to concentrate 

more on the concepts that are being added than on any type of formal 

definition. Almost all the specific examples have been copied from the basic 

manual by Perlis, Iturriaga, and Standish [PR66]. 

A long list of additions to the basic ALGOL character set has been 

made (remember that any sequence of letters in this or this type 1s con- 
sidered a single symbol; thus the word element is a single symbol and not 

a word composed of seven letters). The character set additions can be 

grouped in the following ways: 

Related to formula manipulation: 

form eval subs replace operator comm index 

Related to list processing and retrieval: 

symbol nil before after between all after ail before 

sublist text let elements attributes parallel 

Related to editing: 

insert delete is is not is also 

Miscellaneous: 

of the st th nd rd first last all atom any 

The most significant concepts introduced into Formula ALGOL relate 

to formal algebraic manipulation, symbols, and lists. Two new data types, 

form and symbol, corresponding to formulas and list structures, respectively, 

can be used to declare identifiers, arrays, or procedures. When any of these 

declarations is used for simple variables, not only is storage reserved but the 

value of each variable is initialized to the name of the variable; this is 

referred to as the atomic name. Furthermore, any identifier which is of type 

form or symbol can have a description list associated with it into which 

attributes and values can be entered and retrieved; variables of type symbol 

name a pushdown stack into which can be stored list structures and their 

degenerate cases, namely symbols and individual data terms.



VIH.5. FORMULA ALGOL 585 

Formulas are written in the normal way, except that they can also 

contain Boolean expressions. A dot (i.e., period) has several new meanings. 

When used with the name of an expression, it means the actual name and 

not the current value. A dot can also be used to prefix operators, identifiers, 

subscript lists, parameter lists, and the assignment arrow in an expression; 

when this is done, it causes a postponement of the indicated action. To 

institute the indicated action, the user must explicitly write the eval operator; 

this causes numeric evaluation of formulas and permits replacement by 

numbers, Boolean variables, formulas, etc. It also causes trivial simplifica- 

tions for both numeric quantities and Boolean variables. 

The assignment statement is indicated by a dot and a left arrow; e.g., 

F .« F + G which means actually to create the data structure repre- 

senting the expression F + G as the (new) value of F. The trivial simplifica- 

tions of eval primarily include appropriate handling and disposal of ones 

and zeros, such as A + 0-—>AandA x 0-—O. In addition, certain trans- 

formations relating to negative signs are made, e.g., A —(—n) — A + n, 
(—n)—A — —(n+A). The Boolean simplification carries out four com- 

mutative operations: A V true — true; A A false — false. For example, 

executing the assignment statement 

F<- G.<«- A+B 

where F is of type form and G, A, and B are type real, causes the construc- 

tion of the formula G <— K, where K = value (A + 8B), and causes this 
formula to be assigned to F as a value. Execution of eval F causes eval (K) 
to be stored as the value of G, and the value of the expression eval F 

becomes eval (K). 
There are two commands directly relating to formula manipulation, 

namely subs and eval; there are two pattern-matching commands which 

apply to formal expressions. A replace function is also available. The subs 
command is written 

D <- subs (x, Xo, ceey Xn) F(Y;, Yo, .--, Yn2) 

in which X; is replaced by Y; (assuming a few other conditions are true). 

The eval command has a similar format and somewhat similar results, except 

that in addition to the action of the subs operation some simplification is 

done and one actually obtains the effect of eval F where F is an assignment 

statement, a procedure, or an array access. Writing replace (F) causes re- 

placement of every atomic variable in F by its value and causes an eval 

of the result. 

It should be clear to the readers of Chapter VII from the discussion 

above that the philosophy in Formula ALGOL is to provide to the user 

an absolute minimum in the way of built-in commands for formula manip-



586 MULTIPURPOSE LANGUAGES 

ulation. The advantage to this approach is that the user is not hampered 

by the existence of commands which are similar to what he wants and yet 

do not exactly suit his purpose. The best analogy—and one which is not 

meant to be derogatory—is that the facilities for manipulating formal alge- 

braic expressions are similar in spirit to an assembly program. The user 
has the ability—and simultaneously the need—to write and hand-tailor the 

procedures which are provided automatically by many of the systems 

described in Chapter VII. In some cases this leads to great inefficiency for 

some very basic operations. This actually happened in the first several 

versions of Formula ALGOL because differentiation was not a built-in 

operation. It could be programmed very easily in the language but the 
result was quite inefficient. For that reason, it was eventually put into the 

language as a specific function. 

It is possible for the user to specify transformation rules as produc- 

tions, e.g., 

A: expr X (Bs: expr + Cs: expr) > .A X .B+ .A xX .C 

which, using two given sequencing rules, can be applied to a given formula. 

IfF -— D t 2 x (Y +sin(Z)) is operated on by the production, then 
the subexpressions D ft 2, Y, and sin(Z) are extracted into the variables A, B, 
and C, respectively, and cause the replacement of the atomic names A, B, 

and C on the right-hand side of the production. This results in the transfor- 

mation of the value of F into the formula Dt 2x Y+Dt 2 x sin(Z). It 
is clear that this type of facility is extremely powerful in terms of writing 

the types of operations that a user would want in doing formula manipu- 

lation. 

A symbolic expression is a rule for computing either a single symbol 

or a list as a value. The list is a string of symbols separated by commas and 

contained within square brackets. The symbols can be any kind of expres- 

sions or patterns, including description lists. Sublists are permitted. A 

description list is of the form / attribute : [list]. Description lists are created 

and attached by assignment statements and can be assigned to variables 

of type form. Examples are as follows: 

T < /[properties: continuous, differentiable, integrable] 

R < /[color: blue, green, pink] [processed: true] [shape : round] 

Specific values in description lists are retrieved by essentially writing 

the attribute, an atomic symbol, or the position in the list structure having 

the description list. More specifically, the user can write attrib (.name), 

attrib (ith of name), or the attrib of .name. The first and third of these are 

essentially the same, except that in the third the attribute can be calculated 

by using any symbolic or formula expression. From the examples shown



VIII.5. FORMULA ALGOL 587 

above, shape (.R) has the value round and 3rd of color (R) has the value pink. 
There are a number of operations that can be performed on symbolic 

expressions. First, there are pushdown and popup operators indicated by 

| and ft, respectively. The actual contents of any variable of type symbol 

are considered a pushdown stack; by applying these operators as many times 

as needed, the desired information can be manipulated. It is also possible 

to insert, delete, and alter symbolic expressions, and the user can also add 

or delete values on the description lists. 

Among the most interesting features in Formula ALGOL are the various 

ways of handling patterns. It is possible to determine in both formulas and 

lists whether one expression is an exact instance of another or whether it 

contains an exact instance of another; furthermore, it is possible to name 

these various subpatterns. More specifically, writing F = = P is a Boolean 

expression whose value is determined by whether or not F is an exact 

instance of P. The notation F>>P is a Boolean expression whose value is 

determined by whether F contains an instance of P; more specifically, this 

means that F>>P is true if F contains a subexpression W (which might equal 

F) such that W==P Is frue. To illustrate these, consider an expression and 

three cases (this is technically illegal because the Boolean and arithmetic 

expressions cannot be combined, but it is a useful illustration nevertheless): 

P = integer + form xX Boolean 

Case 1: F = 3+ (A — B) x (C < D) 

Case 2: F = 3.2 + (A — B) x (C < D) 

Case 3: F Y + 3 + (A — B) x (C < D) 

For Case 1, statement F==P is true; for Case 2, it is false. For Case 3, 

the statement F==P is false but F>>P is true. | 
A more complex illustration of the use of the search for a subpattern 

and how it can be used is illustrated by considering the execution of the 

statements 

F «+ 2x (sin (Xt 2+ Yt 2) + co(Xt2— Yt2)) / 5; 
G < sin (form) + cos(form); 

where all variables used are of type form. Then A: E>>T:G is a pattern with 

value true. The value of T will replace the first instance of G in F, 1.e., the 
expression sin(X t 2+Y t 2) + cos(X t 2—Y t 2) (this being the first subexpres- 
sion matching the pattern G). A is assigned the expression 2 x T / 5. Thus 

A is the same as F with the first subexpression of F matching G replaced 

by the value of T. 

It is also possible to define operator classes and use them in a formula 

pattern. A definition of an operator class is accomplished by assigning to 

a variable of type symbol a description list of the form



588 MULTIPURPOSE LANGUAGES 

/ {operator : operator-list] operator-attribute-list 

It is then possible to write 

R< / [operator: +, —, /] [comm: true, false, false] [index: J] 

where J is a variable declared of type integer and the words operator, 

comm, and index are reserved for special attributes. If P is a formula pattern 

structure such as A |R| B, then F==P is true if and only if F is of the form 

C operator D and one of the two following conditions holds: (1) 

C == A, D == B, and operator is a member of the operator value list 

on the description list of R which is [+, —, /]; (2) C==B, D==A, and 

operator is on the operator value list and has the value true following 

the attribute comm (i.e., in this case it must be +). If F==P is true, then 

the variable name which is the attribute of index will be set to an integer 

denoting the position of the operator in the value list. 

List patterns are permitted to test whether a list is an instance of a 

certain linear pattern. The notation used in COMIT (see Section VI.6) is 

carried over here, where the symbols $ and $n represent an arbitrary number 

of, and n arbitrary, consecutive elements, respectively. For example, suppose 

that the statement § < [A, B, C, D] has been executed, where all variables 

involved have been declared of type symbol and where the values of A, B, C, 

and D are their respective names. Consider the statement 

if S == [$1, B, $] then T < [T, B] else T < [T, last of S]; 

Since the contents of S$, which is the list [A, B, C, D], are an instance of the 

pattern [$1,B,$], the list pattern S == [$1, B,$] is true. Therefore, 

T < [T, B] is executed, which has the effect of appending B to the end 

of the list stored as the value of T. If, however, the first part of the state- 

ment were written 

if S == [$1, C, $] 

then it would be false and D would be appended to the list stored as the 

value of T. 

List-editing statements include insert, delete, and alter, with placement 

and selector locators of before position of, after position of, and 

the symbolic-expression of symbolic-expression is expression (where is can be 

replaced by is not or is also). As an illustration, suppose § < [X, A, A, X] 
has been executed. Then the statement 

insert [[Y, Z]] (after 1 st of, before last of) S; 

changes the value of S to look like [X, [Y, Z], A, A, [Y, Z], X]. If the user



Vi.6. LISP 2. 589 

wrote § < / [class: freshman, sophomore], then the statement the class of S 
is also junior would append the value junior to the value list following the 

attribute class, while the class of S is not sophomore; would change the 

original description list to be of the form / [class: freshman]. 

It 1s possible to define classes and test for membership in a class. 

Additions have been made to the for statement, both in terms of the 

variables which can be listed and the way in which they are processed. In 

the first instance, the user can write elements of or attributes of symbolic 

expressions or just show a symbolic expression. The purpose of this is to 

permit the user to assign to the control variable in a for statement the 

elements of a list or the attributes of a description list, one by one. This can 

be done either in series or in parallel. 

There are about 10 special built-in functions available to the user; 

they include DERV(F, X), which takes the derivative of a formula F with 
respect to the variable X, and REPLACE, which was discussed earlier. Most 

of the others are specialized; they relate to modifying counters, erasing 

lists, or testing Boolean expressions. 

It is difficult to evaluate Formula ALGOL because its use has been 

limited to one place and it continues to be changed as the need arises. 

It is certainly the first language to include the three components of algebraic 

formula manipulation (although to a very limited extent), list processing, 

and string manipulation and pattern matching. Many of these facilities 

have been included in a rather primitive way; the net overall effect 1s power- 

ful (although awkward). 

Vill.6. LISP 2 

LISP 2 is too new to have much history except that which relates to its 

creation; even its future is uncertain at the time of writing. Since the moti- 

vation for LISP 2, as well as many of its technical developments, comes 

from the earlier versions of LISP (primarily LISP 1.5), it is assumed that 

the reader is familiar with LISP 1.5. (See Section VI.5.) Since LISP 2 is also 

based heavily on ALGOL, familiarity with that language is also assumed. 

(See Section IV.4.) 

It was clear for a long time even to the staunchest advocates of LISP 

1.5 that it had certain significant disadvantages. For one thing, the arith- 

metic was very slow, making it impractical to use LISP for any problem 

involving significant numerical computations. Secondly, the interpretation 

(which was for a long time the major method of running LISP programs) 

was also slow; that problem has been improved by the development of 

LISP compilers. The biggest disadvantage of LISP was its notation, which 

was bad from several points of view. One was the tremendous dependence



590 MULTIPURPOSE LANGUAGES 

upon parentheses with the resultant difficulty in reading and writing LISP 

programs. Another problem was the requirement for writing all mathe- 

matical expressions in Polish notation and receiving them in that form as 

output. Thus it became increasingly clear that while the fundamental con- 

cepts of LISP were extremely valuable, the general framework within 

which they existed was much more awkward to use than it really needed 

to be. For these reasons, starting late in 1963, several people at M.I.T. 

began to concern themselves with potential remedies for some of these 

defects. One of the earliest documents relative to this situation was the 

memorandum by Levin [LE64]. This paper described additions and changes 

to be made in ALGOL 60 to incorporate the LISP concepts. Work has 

subsequently been done jointly by the Systems Development Corporation 

and Information International Inc. of Cambridge, Massachusetts, with 

funds from ARPA (Advanced Research Projects Agency). The primary 

people participating were, from I.I.I., P. W. Abrahams, L. Hawkinson, 

M.I. Levin, and R. A. Saunders; from SDC, J. A. Barnett, E. Book, D. 

Firth, S. L. Kameny, and C. Weissman. Support and contributions were 

given by Professors Marvin Minsky of M.I.T. and John McCarthy of 

Stanford and their associates; significant assistance was given by Dr. Daniel 

Bobrow (Bolt, Beranek, and Newman). 

The only published paper is by Abrahams et al. [AH66a], although 

numerous internal SDC documents have been accessible. Quoting from 

[AH66a] “Typical application areas for LISP 2 include heuristic pro- 

gramming, algebraic manipulation, linguistic analysis and machine trans- 

lation of natural and artificial languages, analysis of particle reactions in 

high-energy physics, artificial intelligence, pattern recognition, mathe- 

matical logic and automata theory, automatic theorem proving, game- 

playing, information retrieval, numerical computation, and exploration of 

new programming technology.”!® This list certainly makes LISP 2 the most 

ambitious language to date, at least in terms of application areas that are 

claimed to be covered. The careful reader will note that most of these 

areas are those in which earlier versions of LISP proved useful. It seems to 

me highly unlikely that someone wishing to do straight numerical com- 

putation, or for that matter linguistic analysis, would deliberately choose 

to use LISP 2. About the only area for which LISP 2 does not claim to be 

useful is business data processing. 

Since LISP 2 is a frequently changing item, any description must be 

based on a particular version. The primary sources for the following mate- 

rial are Abrahams et al. [AH66a], Book [BO66], Firth and Kameny [F166], 

and Kameny [KA66]. 

LISP 2 is designed for a professional programmer. The general LISP 2 

10 Abrahams et al. [AH66a], p. 661.



vill.6. Lisp 2. 591 

programming system description calls for not only a compiler but also 

object-time facilities, including capabilities for on-line interaction and 

communication with the computer monitor system, whatever it may be. 

LISP has been implemented on the AN/FSQ-32V with intentions for boot- 

strapping it onto other machines. Since this has not yet been accomplished, 

SAMPLE PROGRAM—LISP 21+ 

  

SYMBOL SECTION EXAMPLES, LISP; 
% LCS FIND S THE LONGEST COMMON SEGMENT 
% OF TWO LISTS LI AND L2 
FUNCTION LCS(L1,L2); SYMBOL L1, L2; 

BEGIN SYMBOL X, Y, BEST <— NIL; INTEGER 
K<—0, N, LX<LENGTH(L1); 

FOR X ON L1 WHILE LX > K DO 
BEGIN INTEGER LY < LENGTH (L2); 

FOR Y ON L2 WHILE LY > K DO 
BEGIN N <— COMSEGL (X,Y); 

IF N <=K THEN GO A; 
K <— N; 

BEST < COMSEG (X,Y); 
A: LY — LY — 1 
END; 

LX — LX — 1 

END; 

RETURN BEST; 
END; 

% COMSEGL FINDS THE LENGTH OF THE 
% \LONGEST INITIAL COMMON SEGMENT 
% OF 
% TWO LISTS X AND Y. 

INTEGER FUNCTION COMSEGL (X,Y); 
IF NULL X OR NULL Y OR CAR X /=CAR Y 

THEN O ELSE COMSEGL (CDR X, CDR Y) + 1; 
% COMSEG FINDS THE LONGEST INITIAL 
% COMMON SEGMENT OF TWO LISTS X AND Y 
SYMBOL FUNCTION COMSEG (X,Y); 

IF NULL X OR NULL Y OR CAR X /= CAR Y 
THEN NIL ELSE CAR X. COMSEG(CDR X, CDR Y); 

% LENGTH COMPUTES THE LENGTH OF L 
INTEGER FUNCTION LENGTH (L); SYMBOL L; 

BEGIN INTEGER K <— 0; SYMBOL LI; 
FOR L1 INL DO K <— K+1; 
RETURN K; 

END; 

t Abrahams et al. [AH66a], pp. 670-671. 
 



592 MULTIPURPOSE LANGUAGES 

and is not likely to be since work is at a virtual standstill due to funding 

problems, it is impossible to determine anything about machine and/or 

compiler independence. 

Although strongly based on ALGOL, the language is not a true exten- 

sion of ALGOL. Those familiar with ALGOL should have no difficulty 

in learning the deviations, but they must learn the LISP concepts them- 

selves. At one public meeting, I asked one of the key LISP 2 designers why 

the name LISP 2 was given to the language when it really looked much 

more like ALGOL than LISP 1.5. The answer was that if the language 

was called LISP 2, then people would intuitively expect certain things from 

it; whereas if it were called ALGOL-LISP or something like that, people 

would expect something quite different. This seems to be a very valid 

answer. An interesting discussion of the overall concept of LISP is given by 

Weizenbaum [WZ67] in his review of the article by Abrahams et al. [AH66a]. 

The language definition was written by various people among those 

listed earlier. To a large extent, the same people were involved in the imple- 

mentation, although there have been numerous reports of disagreement 

on techniques and objectives within the project itself. Since part of the 

implementation is being done by use of a syntax translator, namely META 2 

(see Schorre [QT64]), the syntax has been formally defined in the second, 

third, and fourth items in the reference list at the end of this chapter. 

The character set in LISP 2 consists of the 26 capital letters, the 10 

digits, and the following symbols: 

+ —-— * f/f ) (CJT? #.,82 ; 

= >< t « \ & $ blank 

Identifiers consist of a letter followed by any number of letters, numerals, 

and periods. Both data names and program unit labels are formed this way. 

Data names can have subscripts, which are shown in parentheses and sepa- 

rated by commas. Any expression (including conditional statements) which 

evaluates to an integer can be used as a subscript. Any number of sub- 

scripts are permitted, and they can be subscripted. 

Since there is no data hierarchy, there is no qualification of that kind. 

However, LISP 2 introduces the concept of a section (similar to an assembly 

language section); names can be qualified with respect to the section name, 

using the $ to indicate that JOHN$DOE refers to the variable JOHN in 

section DOE. 

A significant difference between LISP 2 and ALGOL is that the single 

characters in ALGOL such as goto, if, and real are not single characters 

in LISP 2; they are strings of characters and are analyzed as such by the 

compiler. They are considered reserved words, and data names must not 

conflict with them.



Vill.6. LISP 2. 593 

The operators include the five basic arithmetic ones and the relational 
operators =, <, >, /=, <=, and >=. There are logical operators AND, 
OR, and NOT; also there are operators carried over from LISP 1.5, namely 

CAR, CDR, ATOM, NULL, and CONS. Rules on punctuation, blanks, and 

noise words are the same as in ALGOL, except that blanks cannot be 

used within identifiers. Literals are defined through the use of the number 

sign, #, at the beginning and the end. The character ' within the string 

causes the character following it to be entered in the string; thus writing 

FHA'#256# # creates a string of six characters, namely A##256#. 

The input form is similar in principle to that of ALGOL. 

The program structure is similar to that of ALGOL, except for two 

significant differences. First, any expression other than a variable can be 

used as a statement; when an expression appears in a place where a state- 

ment is expected, the expression is evaluated but the value is discarded. 

Secondly, LISP 2 has functions but no procedures. 

A block heading is in the form D] D2 D3 SI, $2, ... , Sn, where 

the Di represent declarations described later. Each of the Si is either the 

name of a variable or an assignment statement which gives an initial value 

for the variable; if no initial value is given, a default value, depending on 

the type, is used. A block declaration causes all the specified variables to 

be internal parameters of the block and to have the properties specified by 

the Di. 

The delimiting of statements by semicolons, and of groups of state- 

ments by BEGIN...END, is the same as in ALGOL. Since recursion is 

even more crucial to the LISP concepts than to ALGOL, it is of course 

permitted for functions. Parameter passage is of the call by value and call 

by location type; there is no call by name, although the use of a functional 

argument which remembers the context of its definition point together with 

a call by location achieve most of the call by name capability. 

The most general form of LISP 2 data is an S-expression. S-expressions 

are built up from atoms which may be numbers, strings, identifiers, Booleans, 

functionals, and arrays. As in LISP 1.5, the class of S-expressions is defined 

recursively as follows: Every atom is an S-expression and if el and e2 

are S-expressions, then (el . e2) is an S-expression. Constant arrays are 

written by enclosing the elements in square brackets, e.g., 

[INTEGER 2 5 —1 4] 

[SYMBOL [A B C] [Al B1 Cll] 

There are arithmetic variables, which can be integer, real, or octal, and 

Boolean variables. The value FALSE, the atom NIL, and the empty list () 

are synonymous. The FUNCTIONAL data type is a LISP 2 function, and 

type ARRAY denotes an array whose elements are of the specified type. There is



594 MULTIPURPOSE LANGUAGES 

a SYMBOL type which includes all other classes of data. Except for SYMBOL, 

all the data classes include atomic data only. A symbolic constant is denoted 

by preceding an S-expression with a prime, e.g., 'ALPHA or ’(L1L2). 
The operators CAR and CDR have the same meaning as in LISP 1.5; 

e.g., CDR (A B C D) yields the list (B C D). 
Arithmetic is performed in the normal ALGOL manner; the reverse 

slash, \, is used for computing integer remainder, and integer division is 

designated by a minus sign followed by a colon, —:. In the creation of expres- 

sions, the prefix operators ATOM and NULL have lower precedence than the 

relational operators but higher precedence than the Boolean operators. 

The infix operator for CONS, which is #. & has the lowest precedence of all. 
There are three levels of binding which control the scope of data 

relative to the program structure. 

Assignment statements are designated by a left-pointing arrow and are 

similar to ALGOL, except that there are additional operators such as CAR 

and CDR. The addition of these operators requires the user to be quite 

careful about precedence. Thus, the assignment statement A — CAR C < D.E 

means the same as A < (CAR(C < (D.E))). 
There are no alphanumeric data-handling statements. 

The unconditional control transfer is indicated by the single word GO 

followed by the label. 

A RETURN statement may be used inside a block and its effect is to 

determine the value of a block expression. However, execution of the block 

is terminated either by executing a RETURN statement or by executing the 

last statement of the block without a transfer of control. 

A conditional statement is of the form IF El THEN S17 [ELSE $2] 
where £7 1s an expression and S] is any kind of statement except a condi- 

tional statement or a FOR statement; $2 is any kind of statement. By enclos- 

ing a conditional or FOR statement with BEGIN and END or with parentheses, 

it can be used in place of the $1, e.g., 

IF A < B THEN GO M ELSE IF A > B GON ELSE IF B < 0 GOL; 

IF A THEN BEGIN IF B THEN X < 1 ELSE X « 2 END ELSE GO L; 

As usual, the expressions are evaluated from left to right until one is found 

whose value is other than FALSE; then the corresponding THEN statement 

is executed. 

The FOR statement has the same format as in ALGOL, but it has some 

additional facilities. The user can write FOR V IN Y DO S, which causes 

the statement § to be executed for each element of the list Y, with V assuming 

the successive elements as its value in each execution of S. If ON is used 

instead of IN, V first assumes as values the entire list Y, then its successive



VIIL6. LISP 2. 595 

terminal segments, CDR Y, CDDR Y, etc., until the list y is exhausted. There 

are also WHILE and UNLESS expression clauses. 

There is a TRY statement which causes control to be returned to itself 

if an error condition is detected during the execution of a statement within 

the TRY statement. 

The CASE statement has the form CASE(S, &, Es, ..., E,), Where § 

is an integer-valued expression known as the selector; if the value of § is 

between 1 and n, then the expression Es 1s evaluated and is the resulting value 

of the CASE expression; if § < 1 or S > n, the value is E,. 

Although there are no direct list-handling statements in the LISP 2 

source language, there are a number of list-handling functions, including 

CAR and CDR. There has been some consideration about including string- 

and/or pattern-handling statements but this has not been done yet. 

The LISP input/output facilities are fairly general; every input or output 

operation references implicitly or explicitly a specific file. Although the user 

must associate a file with a particular device, the actual commands and 

operations available to the user are fairly device independent. The largest 

restrictions are that only one file can be active for input and one for output 

simultaneously; furthermore, in order to reduce buffering requirements, 

only one record for a given file can be in main memory at a time. (Since 

the main objective of LISP 2 is to handle problems which need list processing 

mechanisms and since such problems almost always have a shortage of 

storage, this restriction is not unreasonable.) It is possible to select a single 

file for both input and output simultaneously. 

A file can be either inactive or available; in the latter case, it can be 

either selected or deselected and only one input and one output file can be 

selected at a given time. The commands for making an inactive file avail- 

able or an available file inactive are, respectively, OPEN (name, descr) and 

SHUT (name, descr), where name and descr obviously represent the name and 

description of the file. The OPEN command establishes all the necessary 

communication linkages between LISP 2 and the (time-sharing) monitor 

or operating system. A variable FILES is used to maintain a list of all avail- 

able file names and their descriptions. To select a file, the user writes 

INPUT (name) or OUTPUT (name). By using one of these commands in an 
assignment statement, the name of the previously selected file can be saved 

for subsequent reselection, e.g., ALPHA < OUTPUT(ANSWER), and thus the 

user can later write OUTPUT(ALPHA) to reselect the file named ANSWER. 
The user has reading and printing facilities which always operate on 

the currently selected input or output file. (The facilities are actually func- 

tions rather than statements.) The user either can use default conditions or 

program things such as page control and record control through the fol- 

lowing functions:



596 MULTIPURPOSE LANGUAGES 

READCH 

Reads a character from the currently selected input record; 

increments counters and positions for the next line or record 

if necessary. 

PRINCH(name) 
The name is any expression evaluating to a one-character 

identifier that is entered in the line at the current column; 

counts and controls are automatically updated. 

PRINATOM (expression) 
The expression must evaluate to an atom and it is entered 
into the output line starting at the current column. 

PRINSTRING (expression) 
The expression must evaluate to a string which is taken 

literally as its print name. 

PRIN (expression) 
The expression is printed as an S-expression. 

READ 

Its value is the next S-expression in the file. 

POSITION (exprl, expr2) 
The expressions must evaluate to the name of an opened file 

and an appropriate positioning action, respectively. 

There are other functions for handling S-expressions, for dealing with 
binary files, for printing unusually formed strings, etc. There are also 

terminating functions which are affected as a result of page control variables 

and relative positioning of input records. 

One of the more interesting or unusual facilities available through the 

LISP 2 input/output system is that the control variables can be changed 

or examined. These are fixed variable names which are qualified to the 

input/output section. For example, it is possible to define a new function 

that would advance the current column of the selected output file to some 

desired legal column and return the original column as output. There is 

a rather long list of these variables and what can be done with them, but 

naturally caution must be used. 

The major emphasis in the development of LISP 2 has been at the 

level of the internal operation and facilities. This is in contrast to most 

languages, in which the language is first defined and then implemented. 

For a long time it was facetiously said of LISP 2 that it was “an implemen- 

tation in search of a language”. For these reasons, it is not surprising that 

there is significant interaction with the operating system and/or environ- 

ment, although it is not really that directly available to the normal user. 

In particular, the storage allocation which is crucial in any list-handling 

system is done by garbage collection which is invoked automatically and 

can also be invoked by the user.



VIIL.6. LISP 2. 597 

There is a CODE command which allows the user to write LAP assembly 

language. 

With the exception of the input/output functions, there are no direct 

facilities for communicating with an operating system or a time-sharing 

system. On the other hand, nothing in LISP 2 makes it unusable within 

a time-sharing environment; in fact, it was designed to be so used. 

There are three types of data declarations in LISP 2: Type, storage 

mode, and transmission mode. The types are INTEGER, REAL, BOOLEAN, 

SYMBOL, OCTAL, FUNCTIONAL, and type ARRAY. The data type SYMBOL 

includes all other classes of data and, except for that type, all the others 

include atomic data only. There are three types of storage mode, with one 

of them a default condition. The two types of transmission mode are 

LOC(ation) and by value, where the latter is the default condition. There 

is also a section type which does not change until the programmer changes 

it by means of another declaration; initially the section type is SYMBOL 

and if no type declaration is given, then the default condition is the section 

type. The section type determines the default data type for the section. 

It is also possible to have free declarations that are not made within func- 

tions or blocks but rather are made on the top level of LISP; free variables 

essentially have universal scope. 

The file description consists of a number of specific, free-formatted 

entries which are actually on a file description list. The first is the UNIT, 

which specifies the device type, e.g., (UNIT . DISK) or (UNIT TAPE REELS). 
A second entry is the FORM, which can be either ASCII, BCD, or BINARY. 

There is also the potential of setting a connection flag by writing NEW or 

OLD so that the time-sharing system knows about the file. The NEW is the 

default condition. File security can be obtained by using the dotted pair 

(PROTECT . Z) to convey keys; the nature of the parameter Z depends 

on the protection scheme provided by the monitor. 

The last characteristic of a file is its format, specifically its blocked 

and printed structure for input and output files, respectively. The parameter 

RECORD specifies the number of lines to be blocked in each record and is 

considered permanent for the life of the file. Page format is controlled by 

declarations HORIZONTAL, VERTICAL, and OVERFLOW. HORIZONTAL has 

a left margin, a right margin, and a maximum column parameter. VERTICAL 

has an upper-line boundary, a lower-line boundary, and a page boundary. 

All these declarations have default conditions. 

There is a set of reserved variable names whose values are file de- 

scriptions for various input/output devices; although these are fixed, they 

can be modified. A few examples of these are 

DISC. ((UNIT . DISC) (FROM . BCD) (RECORD . 50) 
(HORIZONTAL . (1 73 80)) (VERTICAL . (1 51 50))) 

CRT. ((UNIT . CRT) (FORM . BINARY) (RECORD . 680))



598 MULTIPURPOSE LANGUAGES 

A key factor in the LISP 2 development is the creation and clear usage 
of two distinct language levels—source language (SL) and intermediate 

language (JL). The preceding discussion has been entirely about the source 

language, which obviously strongly resembles ALGOL 60. On the other 

hand, the syntax of JL is almost identical to LISP 1.5. JL is designed to retain 

the characteristic of allowing the program to have the same structure as 

data, so it can be manipulated by both the user and system programs. Thus 

LISP 2 loses at the user level the facility of having programs look like data, 

but it retains it at the intermediate language level. There is a macro expan- 
sion capability at the JL level but not at the source language level. 

There are some machine dependent operations which are useful com- 

piler directives. 

LISP 2 can be used to bootstrap itself onto a new machine, and in fact 

the first LISP 2 system was written in JL. In any case, since earlier versions 

of LISP have been written in themselves, this facility can certainly be con- 

tinued at least at the intermediate language level and, presumably, also at 

the source language level. 

The most significant effect of the language on the compiler is the 

mapping into the intermediate language, because a person who merely 

looked at the source language and had no background whatsoever of 

earlier work on LISP would not necessarily tend to develop an internal 

system the way the designers did. One thing that has been done to improve 

efficiency is to store numbers directly as single words rather than to pack 

them. Because of the tradition of garbage collection in LISP, it was 

continued in LISP 2. (See the discussion of this issue in Weizenbaum 

[WZ67].) 
Since LISP 2 has not received any real usage, no comment along those 

lines can be made. It appears that little—if any—further work will be done 

on it, but of course this is subject to immediate change. 

REFERENCES 

Vill.1. SCOPE OF CHAPTER 

[IC62a] “General Panel Discussion: Is a Unification ALGOL-COBOL, 

ALGOL-FORTRAN Possible? The Question of One or Several Lan- 

guages”, Symbolic Languages in Data Processing, Gordon and Breach, 

New York, 1962, pp. 833-49. 

[SM61] Sammet, J. E., “A Method of Combining ALGOL and COBOL”, Proc. 
WICC, Vol. 19 (1961), pp. 379-87. 

VilI.3. JOVIAL 

[AA67] “JOVIAL Usage and Compilers (as of 8/67)”, Appendix 1, Minutes of 

USASI X3.4 meeting (Sept. 29, 1967).



[AF67] 

[(CE67] 

[(CO61] 

[KE62] 

[KE65] 

[KK65] 

[MD64] 

[MI62] 

[PE66] 

[PE66a] 

[SC60] 

[SH00] 

[SH61] 

[SH6la] 

[SH63] 

[SH63a] 

[SH63b] 

[SH64] 

[SN65] 

[ST66] 

REFERENCES 599 

Standard Computer Programming Language for Air Force Command and 

Control System (CED 2400), Air Force Manual AFM 100-24 (June, 
1967). 

Clark, E.R., “On the Automatic Simplification of Source-Language 
Programs”, Comm. ACM, Vol. 10, No. 3 (Mar., 1967), pp. 160-65. 

Coffman, E.G., Jr., A Brief Description and Comparison of ALGOL 
and JOVIAL, System Development Corp., FN-5618, Santa Monica, 
Calif. (June, 1961). 

Kennedy, P. R., A Simplified Approach to JOVIAL (A Training Docu- 
ment), System Development Corp., TM-780/000/00, Santa Monica, 
Calif. (Sept., 1962). 

Kennedy, P.R., The TINT Users’ Guide, System Development Corp., 
TM-1933/000/02, Santa Monica, Calif. (Mar., 1965). 

Klein, S., “Automatic Paraphrasing in Essay Format”, Mechanical 
Translation, Vol. 8, Nos. 3 and 4 (June, Oct., 1965), pp. 68-83. 

Marsh, D.G., “JOVIAL in Class”, Annual Review in Automatic Pro- 
gramming, Vol. 4 (R. Goodman, ed.). Macmillan, New York, 1964, 
pp. 167-81. 

FAST—FORTRAN Automatic Symbol Translator (reference manual), 
MITRE Corp., SR-24, Bedford, Mass. (Jan., 1962). 

Perstein, M.H., Grammar and Lexicon for Basic JOVIAL, System 
Development Corp., TM-555/005/00, Santa Monica, Calif. (May, 1966). 

Perstein, M. H., The JOVIAL (J3) Grammar and Lexicon, System Devel- 

opment Corp., TM-555/002/04, Santa Monica, Calif. (May, 1966). 

Schwartz, J.I., Petersen, K.E., and Olson, W.J., JOVIAL and its 
Interpreter, A Higher Level Programming Language and an Interpretive 

Technique for Checkout, System Development Corp., SP-165, Santa 
Monica, Calif. (Apr., 1960). 

Shaw, C. J., Programming Languages and JOVIAL, System Development 
Corp., BR-3/11-60, Santa Monica, Calif. 

Shaw, C. J., “System Development Corporation’s Procedure-Oriented 

JOVIAL”, Datamation, Vol. 7, No. 6 (June, 1961), pp. 28-32. 

Shaw, C. J., The JOVIAL Manual, pt. 3, The JOVIAL Primer, System 

Development Corp., TM-555/003/00, Santa Monica, Calif. (Dec., 1961). 

Shaw, C. J., “A Specification of JOVIAL”, Comm. ACM, Vol. 6, No. 12 

(Dec., 1963), pp. 721-36. 

Shaw, C.J., “JOVIAL—-A Programming Language for Real-time Com- 
mand Systems”, Annual Review in Automatic Programming, Vol. 3 

(R. Goodman, ed.). Pergamon Press, New York, 1963, pp. 53-119. 

Shaw, C. J., “JOVIAL and Its Documentation”, Comm. ACM, Vol. 6, 

No. 3 (Mar., 1963), pp. 89-91. 

Shaw, C. J., A Comparative Evaluation of JOVIAL and FORTRAN IV, 

System Development Corp., N-21169, Santa Monica, Calif. (Jan., 1964). 

Sandin, N. A. and Foote, E. B., JTS User’s Manual, System Develop- 

ment Corp., TM-1577/000/01, Santa Monica, Calif. (Apr., 1965). 

Steel, T. B., Jr., Some Observations on the Relationship Between JOVIAL 
and PL/I, System Development Corp., TM-2930/000/01, Santa Monica, 

Calif. (May, 1966).



600 MULTIPURPOSE LANGUAGES 

Vil.4. PL/I 

[AL67] 

[AN66] 

[BA67] 

[BC66] 

[BC66a] 

[BC67] 

[BU66] 

[BZ67] 

[CQ65a] 

[CQ67] 

[DL67] 

[DQ66] 

[EC66] 

[GX67] 

[1B00a] 

(1B64] 

[IB65] 

[I1B65a] 

Alber, K., Syntactical Description of PL/I Text and its Translation into 

Abstract Normal Form, IBM Corp., TR 25.074, Vienna Lab., Vienna, 

Austria (Apr., 1967). 

Allen, C. D. et al., An Abstract Interpreter of PL/I, (BM Corp., TN 3004, 

Hursley, England (Nov., 1966). 

Bandat, K., On The Formal Definition of PL/I, IBM Corp., TR 25.073, 

Vienna Lab., Vienna, Austria (Mar., 1967). 

Beech, D. et al., Concrete Syntax of PL/I, 1BM Corp., TN 3001, Hursley, 

England (Nov., 1966). 

Beech, D., Nicholls, J. E., and Rowe, R., A PL/I Translator, IBM 

Corp., TN 3003, Hursley, England (Oct., 1966). 

Beech, D. et al., Abstract Syntax of PL/I, 1BM Corp., TN 3002 (Version 

2), Hursley, England (May, 1967). 

Burkhardt, W. H., “PL/I: An Evaluation”, Datamation, Vol. 12, No. 
11 (Nov., 1966), pp. 31-39. 

Bond, E. R. and Cundall, P. A., “A Possible PL/I Extension for Mathe- 

matical Symbol Manipulation”, Symbol Manipulation Languages and 

Techniques, Proceedings of the IFIP Working Conference on Symbol Ma- 

nipulation Languages (D. G. Bobrow, ed.). North-Holland Publishing 

Company, Amsterdam, 1968, pp. 116-132. 

Christensen, C. and Mitchell, R., Reference Manual for the NICOL 1 
Programming Language, 3rd ed., Computer Associates, CA-6511-3011, 

Wakefield, Mass. (Nov., 1965). 

Christensen, C. and Mitchell, R., Reference Manual for the NICOL 2 

Programming Language, Computer Associates, CA-6701-2611, Wake- 

field, Mass. (Jan., 1967). 

Donovan, J. J. and Ledgard, H. F., “A Formal System for the Speci- 

fication of the Syntax and Translation of Computer Languages”, Proc. 

FICC, Vol. 31 (1967), pp. 553-69. 

Dodd, G.G., “APL—A Language for Associative Data Handling in 

PL/I”, Proc. FJCC, Vol. 29 (1966), pp. 677-84. 

A Minimum PL/I Subset (working paper), European Computer Manu- 

facturers Association, ECMA/TC10/67/2, Geneva, Switzerland (Dec., 

1966). 

Glass, R.L., SPLINTER, A PL/I Interpreter Emphasizing Debugging 

Capability (presented at ACM-sponsored PL/I Forum, Aug., 1967), 

Washington, D.C. (unpublished). 

Introduction to PL/I (student text), IBM Corp., C20-1632, Data Process- 

ing Division, White Plains, N.Y. 

NPL Technical Report, IBM Corp., 320-0908, Data Systems Division, 

Poughkeepsie, N.Y. (1964). 

PL|I Subset Language Specifications, 1BM Corp., C28-6809-1, Data 

Processing Division, White Plains, N.Y. (1965). 

A Guide to PL/I for FORTRAN Users (student text), IBM Corp., C20- 
1637-1, Data Processing Division, White Plains, N.Y. (1965).



[IB65b] 

[1B65e] 

[IB66] 

[I1B66a] 

[IB66b] 

[1B66e] 

[IB66f]} 

[1B66g] 

[1B67] 

[I1B67d] 

[1B67f] 

[LH67] 

[MR64] 

[PU67] 

[QB67] 

[RG65] 

[VK67] 

[WC66] 

[XY 64] 

[XY 64a] 

601 REFERENCES 

A PL/I Primer (student text), IBM Corp., C28-6808-0, Data Processing 
Division, White Plains, N.Y. (1965). 

IBM System/360 Operating System: PL/I Language Specifications, 
IBM Corp., C28-6571-0, Data Processing Division, White Plains, N.Y. 
(1965). 

Formal Definition of PL/I, 1BM Corp., TR 25.071, Vienna Lab., Vienna, 
Austria (Dec., 1966). 

IBM System/360 Operating System PLI/I(F): Programmer’s Guide, 
IBM Corp., C28-6594-0, Data Processing Division, White Plains, N.Y. 
(1966). 

IBM System/360 Operating System: PL/I Language Specifications, 
IBM Corp., C28-6571-4, Data Processing Division, White Plains, N.Y. 
(Dec., 1966). 

IBM System/360 Operating System: PL/I Subroutine Library, Com- 
putational Subroutines, IBM Corp., C28-6590-0, Data Processing Divi- 
sion, White Plains, N.Y. (1966). 

A Guide to PL/I for Commercial Programmers (student text), IBM Corp., 
C20-1651-0, Data Processing Division, White Plains, N.Y. (1966). 

IBM System/360 Disk and Tape Operating Systems: PL/I Programmer’s 
Guide, IBM Corp., C24-9005-0, Data Processing Division, White Plains, 
N.Y. (1966). 

PL/I Reference Data: Keywords and Character Sets, IBM Corp., 
X20-1744-1, Data Processing Division, White Plains, N.Y. (1967). 

IBM System/360 PL/I Reference Manual, IBM Corp., C28-8201-0, Data 
Processing Division, White Plains, N.Y. (1967). | 

IBM System/360 PL/I Subset Reference Manual, IBM Corp., C28-8202-0, 
Data Processing Division, White Plains, N.Y. (1967). 

Lawson, H. W., Jr., “PL/I List Processing”, Comm. ACM, Vol. 10, 

No. 6 (June, 1967), pp. 358-67. 

McCracken, D. D., “The New Programming Language”, Datamation, 

Vol. 10, No. 7 (July, 1964), pp. 31-36. 

Pursey, G., Concrete Syntax of Subset PL/I, IBM Corp., TN 3005, 

Hursley, England (Feb., 1967). 

Bates, F. and Douglas, M. L., Programming Language/One. Prentice- 
Hall, Inc., Englewood Cliffs, N.J., 1967. 

Radin, G. and Rogoway, H.P., “NPL: Highlights of a New Pro- 
gramming Language”, Comm. ACM, Vol. 8, No. 1 (Jan., 1965), pp. 9-17. 

Walk, K. et al., Abstract Syntax and Interpretation of PL/I (draft for 
version 2), IBM Corp., TR 25.082, Vienna Lab., Vienna, Austria, (Dec., 

1967). 

Weinberg, G. M., PL/I Programming Primer. McGraw-Hill, New York, 

1966. 

Report of the SHARE Advanced Language Development Committee 

(Mar., 1964) (unpublished). 

Specifications for the New Programming Language (Apr., 1964) (un- 

published).



602 MULTIPURPOSE LANGUAGES 

[XY64b] Report II of the SHARE Advanced Language Development Committee 

[YH67] 

[ZG67] 

(June, 1964) (unpublished). 

Balzer, R. M., “Dataless Programming”, Proc. FJCC, Vol. 31 (1967), 

pp. 535-44. 

McKeeman, W. M. et al., Interim Report on the Stanford PL/I Com- 

piler Generation Project (presented at ACM-sponsored PL/I Forum, 

Aug., 1967), Washington, D.C. (unpublished). 

VIH.5. FORMULA ALGOL 

[FJ66] Feldman, J. A., “A Formal Semantics for Computer Languages and its 
Application in a Compiler-Compiler”, Comm. ACM, Vol. 9, No. 1 
(Jan., 1966), pp. 3-9. 

[1T66] Iturriaga, R. et al., “Techniques and Advantages of Using the Formal 

Compiler Writing System FSL to Implement a Formula ALGOL 

Compiler”, Proc. FJCC, Vol. 28 (1966), pp. 241-52. 

(IT66a] Iturriaga, R. et al., The Implementation of Formula ALGOL in FSL, 

Carnegie Inst. of Tech., Pittsburgh, Pa. (Oct., 1966). 

[1T67] Iturriaga, R., Contributions to Mechanical Mathematics, Carnegie Inst. 

of Tech., Pittsburgh, Pa. (Ph. D. thesis) (1967). 

[PR64] Perlis, A. J. and Iturriaga, R., “An Extension to ALGOL for Manip- 

ulating Formulae”, Comm. ACM, Vol. 7, No. 2 (Feb., 1964), pp. 127-30. 

[PR66] Perlis, A. J., Iturriaga, R., and Standish, T. A., A Definition of Formula 

ALGOL, Carnegie Inst. of Tech., Pittsburgh, Pa. (Aug., 1966). 

Vill.6. LISP 2 

[AH66a] Abrahams, P. W. et al., “The LISP 2 Programming Language and 

[BO66] 

[F166] 

[KA66] 

[LE64] 

[LE66] 

[QT64] 

[WZ67] 

System”, Proc. FJCC, Vol. 29 (1966), pp. 661-76. 

Book, E., The LISP 2 Syntax Translator, System Development Corp., 

T™M- 2710/331 /00, Santa Monica, Calif. (Apr., 1966). 

Firth, D. and Kameny, S. L., Syntax of LISP Tokens, System Develop- 

ment Corp., TM-2710/210/00, Santa Monica, Calif. (Aug., 1966). 

Kameny, S.L., LISP 2 Source Language Syntax Specifications for 

Syntax Translator, System Development Corp., TM-2710/230/00, Santa 

Monica, Calif. (Dec., 1966). 

Levin, M., Syntax of the New Language, M.I.T., MAC-M-158, Project 

MAC, Cambridge, Mass. (May, 1964) (unpublished). 

Levin, M. and Berkeley, E., LISP 2 Primer, System Development Corp., 

TM-2710/101/00 (draft), Santa Monica, Calif. (July, 1966). 

Schorre, D. V., “META-II A Syntax-Oriented Compiler Writing Lan- 

guage”, Proc. ACM 19th Nat’l Conf., 1964, pp. D1.3-1-D1.3-11. 

Weizenbaum, J., “Review R67-22” (of The LISP 2 Programming Lan- 

guage and System), [EEE Trans. Elec. Comp., Vol. EC-16, No. 2 (Apr., 

1967), pp. 236-38.



IX 

  

SPECIALIZED LANGUAGES 

IX.1. SCOPE OF CHAPTER 

This chapter covers a whole category of languages which are classified 

as being used in specialized areas. In this context the word specialized is 

interpreted as fairly narrow, where this obviously implies a value judgment 

of the breadth by the author. It is possible, however, to be slightly less sub- 

jective than such a statement would imply. The majority of the categories 

in this chapter are those which either require very specialized knowledge 

and training (e.g., civil engineering) or are of interest to only a limited 

number of programmers (e.g., compiler writers). 

This chapter has been divided into two major sections. The first deals 

with languages for special application areas, and the second describes lan- 

guages which can be utilized in several application areas. The major distinc- 

tion is that the first section requires (or assumes) knowledge of a particular 

technical discipline, whereas the languages in the second part could con- 

ceivably be used in a variety of applications. More specifically, the special 

application areas which are discussed are machine tool control, civil engi- 

neering, logical design, digital simulation of block diagrams, compiler 
writing, and some small miscellaneous applications. The second major 

section discusses languages for simulation, query (i.e., retrieval), graphics, 

computer-aided design, text editing, and on-line and operating systems. 

There is some overlap among various categories since no major attempt has 

been made to sharpen the distinctions. Finally, the list of languages discussed 

in each area is not necessarily exhaustive; the reference list at the end of this 

chapter is believed to be moderately complete. 

Many of the languages in this chapter are those which have colloquially 

been called problem-oriented. However, as indicated in Chapter I, I prefer 

603



604 = spECIALIZED LANGUAGES 

to reserve that phrase for a very wide area which essentially encompasses 

all programming languages. Because many of the languages (although cer- 

tainly not all of them) contain terms and concepts which are meaningful 

only to those people with specialized knowledge, relatively little detail about 

each language is provided. In many cases, what has been done is merely to 

indicate the intended scope of the language, show an example or two, and, 

wherever appropriate, provide the list of basic statements or facilities in the 

language. Those interested in obtaining more detail about any particular 

area can do so by consulting the cited references, which are deemed to be 

the most significant. 

One of the characteristics of these special application languages is that 

they tend to require more software support in the way of special application 

programs than the more general languages do. Thus, many of these special 

languages not only require a large majority of the facilities which are in the 

more general languages discussed in earlier chapters but need their own 

specialized routines as well. For example, most languages—even though 

they may be very specialized—provide some type of arithmetic, control trans- 

fers and some type of testing facilities. However, in addition to these, spe- 

clalized routines may be required, such as computing a set of coordinates 

or representing an analogue computer integrator. In some cases, what has 

been done is first to provide a large set of subroutines; these might 

even be in a form which could be used with a CALL from FORTRAN or 

some other similar language. A language syntax is then placed on top to 

avoid the necessity of subroutine calls and notation. I do not mean to 

imply that the languages in this chapter are merely addenda to existing 

languages; with only a few exceptions, this 1s not the case. However, in a 

number of languages, they have been designed so that it is very easy to 

make additions from a language viewpoint to correspond to new facilities 

that might be desired or developed. 

Most of the languages which are not additions to existing ones tend to 

have a fairly rigid format which resembles the macros in assembly programs 

more than the higher level languages in this book. Thus, the defining char- 

acteristics of a programming language which were given in Section I.4.2 

have been interpreted much more loosely in this chapter than in any of 

the others, systems which would not have been included in the general 

categories discussed in Chapters IV—VIII are included here. I feel they are 

worth mentioning because they reflect a very significant trend in showing 

the need for specialized languages. For some of the application areas the 

syntactic flexibility of the more general languages is neither necessary nor 

desirable. 

This entire area has received what I consider insufficient attention in 

developing generalized systems, but the proliferation of specialized languages 

attests to its importance. A discussion of the need for the latter is given by 

Licklider [LI65]. Early work in the development of tools for generating



1X.2.1.1. APT 605 

specialized languages was done in the SHADOW systems (see Barnett and 
Futrelle [BI62]). Although the term syntax-directed compiler was not used 

when the SHADOW work was originally started in the late 1950’s, the 

designers were actually providing tools whereby a single system could 

handle the syntax for languages of widely differing kinds. (The SHADOW 

system needed specialized routines created to carry out the specialized 

tasks.) The syntax-directed compiling efforts discussed in Section IX.2.5 

are more oriented toward generalized languages. Other attempts to provide 

systems whereby people can define their own specialized languages in narrow 

areas (and have them translated and executed) are being developed within 

the ICES system (see Section [X.2.2.3) and the AED work (see Section 

IX.3.4.2). As noted in Chapter XI, I personally feel this is an extremely im- 

portant direction for future developments, and I actually started a project 

in 1962 with this objective. For various reasons, it was never completed. 

IX.2. LANGUAGES FOR SPECIAL APPLICATION AREAS 

TX.2.1. MACHINE TOOL CONTROL 

The use of tools for cutting pieces of metal is well-known even for 

those not involved in the field known as numerical control (N/C). What is 

perhaps not so clear is that these tools can be controlled either manually 

or by means of a paper tape. The latter is presumably preferable from 

most viewpoints. The punched paper tape contains a steady stream of 

signals which provide appropriate direction to the tools involved. However, 

it is, of course, necessary for instructions to be prepared on the paper tape; 

the person who does this is commonly called a part programmer and the 

latter word has nothing to do with the programming associated with digital 

computers. The part programmer is the individual who takes a blueprint 

or other specification and prepares the punched paper tape. Since a tre- 

mendous amount of computation is involved in determining the coordinates 

of specified shapes (e.g., an ellipse), it seems natural to consider the use of 
a computer for doing this. 

1. APT 

In 1952, the M.I.T. Servomechanisms Laboratory (subsequently re- 

named Electronic Systems Laboratory) worked on a project sponsored by 

the Air Force Air Materiel Command to develop an automatic programming 
system for numerically controlled machine tools. In 1955 a prototype system 

was coded for the Whirlwind to demonstrate feasibility. This early version 

was restricted to two dimensions but it allowed parts to be programmed 

in terms of straight lines and circles in a variety of ways. In 1956 the APT 

(Automatically Programmed Tools) Project was formed and in 1957 a group



606 SPECIALIZED LANGUAGES 

of Aerospace Industries Association member companies formed a joint 

effort under M.I.T. coordination to develop a more capable system, and 

better versions were produced. 

A more advanced system (APT II) was prepared for the IBM 704 in 

1958. This relieved the part programmer of the responsibility for com- 

puting successive cutter locations, and it enabled him to describe the curve 

in an artificial language with English words. A still more advanced system 

known as APT III was produced for the 7090 and released in December, 1961. 

In September, 1961 the Aerospace Industries Association selected the 

Armour Research Foundation of the Illinois Institute of Technology to 

assume maintenance and validation responsibility and to direct the APT 

Long Range Program. The latter was to be a research and development 

effort involving the continued application and extension of the APT system. 

Member companies were to receive complete current systems, documen- 

tation, and information as they were developed. Work continued under that 

plan, and APT has been implemented on many different computers. 

The APT system has three major sections. The first reads the program 

and does the necessary translation, compiles a sequence of numeric instruc- 

tions, and does some geometric calculations to prepare the data in standard 

form. About 100 alternate geometric definitions are reduced to about 10 

canonical forms. The second section interprets and controls the sequences 

of cutting instructions, and it computes the coordinate points through which 

the tools must pass to produce the specified part. The last section, known 

as the postprocessor, converts the control data into the proper format for 

a specific machine tool, compensates for machine tool dynamics, and adapts 

any previous generalized information to the peculiarities of individual 

cutting hardware. Figure [X-1 shows a part to be produced, the APT pro- 

gram to do this, and an explanation of that program. 

The standardization of APT under USASI is well underway at the time 

of this writing; the work is being done by subcommittee X3.4.7, and con- 

sideration is also being given to international standardization. A definition 

of APT using Backus notation was given by Brown, Drayton, and Mittman 

([BP63]. The list of vocabulary words taken from that article is shown in 

Figure IX-2. 

2. Others 

A number of other computer systems have been developed for numerical 

control programming. Systems like AUTOSPOT (IBM) and PRONTO (GE) 

simplify tape preparation for point-to-point equipment. A subset of APT 

called ADAPT was defined. In 1956 an approach for handling three-dimen- 

sional milling was developed at the M.I.T. Servomechanisms Laboratory. 

Based on this approach, IBM developed a system called AUTO-PROMPT 

on the 709/90 to permit three-dimensional shapes to be programmed in 

terms of regions instead of space curves.



Part Program 

CUTTER/1 
TOLER/.005 
FEDRAT/80 
HEAD/1 
MODE/1 
SPINDL/2400 
COOLNT/FLOOD 
PT1 =POINT/4,5 

  ®
 

      
  

      

        
  

  

  
    

  

  

  

SET POINT   

        O 1 2 3 4 
        5 ao N

 

@
 

Fart to be cut 

FROM/(SETPT=POINT/1,1) 

INDIRP/(TIP=POINT/1,3) 

BASE=LINE/TIP, AT ANGL, O 

GO/TO, BASE 
TL RGT, GO RGT/BASE 

GO FWD/(ELLIPS/CENTER, PTI, 3,2,0) 

GO LFT/(LINE/2,4,1,3,), PAST, BASE 

GOTO/SETPT 
COOLNT/OFF 
SPINDL/OFF 
END 

FINI 

Explanation 

Use a one inch diameter cutter. 

Tolerance of cut is .005 inch. 

Use feedrate of 80 inches per minute. 
Use head number 1. 

Operate tool in mode number 1. 

Turn on spindle. Set at 2400 rpm. 

Turn on coolant. Use flood setting. 

Define a reference point, PT1, as the point 
with coordinates (4,5). 

Start the tool from the point called 

SETPT, which is defined as the point 
with coordinates (1,1). 

Aim the tool in the direction of the point 
called TIP, which is defined as the point 
with coordinates (1,3). 

Define the line called BASE as the line 

through the point TIP which makes an 

angle of 0 degrees with the horizontal. 

Go to the line BASE. 

With the tool on the right, go right along 

the line BASE. 

Go forward along the ellipse with center 

at PT1, semi-major axis = 3, semi-minor 

axis = 2, and major axis making an 
angle of 0 degrees with the horizontal. 

Go left along the line joining the points 
(2,4) and (1,3) past the line BASE. 

Go to the point SETPT in a straight line. 

Turn off coolant flow. 

Turn off spindle. 
This is the end of the machine control 

unit operation, 

and the finish of the part program. 

  

Figure IX-1. Example of APT program for specific part to be cut. 

Source: Hori, S., Automatically Programmed Tools, Armour Research 

Foundation of Illinois Institute of Technology, AZ-240, November, 1962. 

(Brochure.) 

607



Figure IX-2. 
  

Arithmetic Transfer Statements 
IF 

JUMPTO 

Geometric Transfer Statements 
TRANTO 

Termination Statements 

FINI 

Statements 

LOOPST 

LOOPND 

Procedure Statements 

CALL 

Input-Output Control Statements 
PRINT 

READ 

TITLES 

PUNCH 

Remarks 

REMARKS 

Explicit Positioning Statements 

FROM 

GODLTA 

GOTO 

Initial Continuous Motion Statements 

GO 

OFFSET 

END 

STOP 

OPSTOP 

ISTOP 

RAPID 

SWITCH 

RETRCT 

DRESS 

PICKUP 

UNLOAD 

PENUP 

PENDWN 

ZERO 

CODEL 

RESET 

Intermediate Continuous Motion 

Statements 

Function Designators 

GOLFT 

GORGT 

GOFWD 

GOBACK 

GOUuP 

GODOWN 

DOTF 

LNTHF 

SQRTF 

SINF 

COSF 

EXPF 

LOGF 

ATANF 

ABSF 

Geometric Expressions 

POINT 

LINE 

PLANE 

CIRCLE 

CYLNDR 

ELLIPS 

HYPERB 

CONE 

GCONIC 

LCONIC 

VECTOR 

MATRIX 

SPHERE 

QADRIC 

POLCON 

TABCYL 

Post Processor Control Statement 

PLABEL 

PLUNGE 

HEAD 

MODE 

CLEARP 

TMARK 

REWIND 

CUTCOM 

REVERS 

FEDRAT 

DELAY 

AIR 

OPSKIP 

LEADER 

PPLOT 

MACHIN 

MCHTOL 

PIVOTZ 

MCHFIN 

SEQNO 

INTCOD 

DISPLY 

AUXFUN 

CHECK 

POSTN 

TOOLNO 

ROTABL 

ORIGIN 

SAFETY 

ARCSLP 

608 

COOLNT 

SPINDL 

TURRET 

ROTHED 

THREAD 

TRANS 

TRACUT 

INDEX 

COPY 

PREFUN 

COUPLE 

PITCH 

CLAMP 

ENDMDI 

ASLOPE 

SADDLE 

LOADTL 

SELCTL 

CLEARC 

CYCLE 

DRAFT 

RITMIDI 

PLOT 

OVPLOT 

LETTER 

PPRINT 

PARTNO 

INSERT 

CAMERA



Array Declarations 

RESERV 

Coordinate Transformation Declarations 
REFSYS 

Z-Surface Declarations 
ZSURF 

Procedure Declarations 

MACRO 

TERMAC 

Vocabulary Equivalence Declarations 
SYN 

Direction Declarations 

Cutter Specifications 
CUTTER 

Calcuation Constant Controls 

CUT 

DNTCUT 

2DCALC 

3DCALC 

NDTEST 

TLAXIS 

MULTAX 

MAXDP 

NUMPTS 

THICK 

NOPS 

PSIS 

Tool Position Declarations 

609 

Figure IX-2. (cont. next page) 

INDIRP TLLET 

INDIRV TLRGT 

TLNDON 

Tolerance Specifications TLON 

TOLER TANCRV 

INTOL TLONPS 

OUTTOL TLOFPS 

Modifier Words 
ATANGL NOMORE IPR POSY TYPE 

CENTER SAME CIRCUL POSZ NIXIE 

CROSS MODIFY LINEAR RADIUS LIGHT 

FUNOFY MIRROR PARAB RIGHT FOURPT 

INTOF START RPM SCALE TWOPT 

INVERS ENDARC MAXRPM SMALL PTSLOP 

LARGE CCLW TURN TANTO PTNORM 

FEFT CLW FACE TIMES SPLINE 

LENGTH MEDIUM BORE TRANSL RTHETA 

MINUS HIGH BOTH UNIT THETAR 

NEGX LOW XAXIS XLARGE XYZ 

NEGY CONST YAXIS XSMALL TRFORM 

NEGZ DECR ZAXIS MIST NORMAL 

NOX INCR TOOL TAPKUL UP 

NOY ROTREF AUTO STEP DOWN 

NOZ TO FLOOD MAIN LOCK 

IN PAST PARLEL SIDE SFM 

OUT ON PERPTO LINCIR XCOORD 

ALL OFF PLUS MAXIPM YCOORD 

LAST IPM POSX REV ZCOORD



610 SPECIALIZED LANGUAGES 

Figure IX-2. (cont.) 

MULTRD YLARGE RED RANGE MILWAK 

XYVIEW YSMALL GREEN PSTAN BENDIX 

YZVIEW YZPLAN BLUE CSTAN DYNPAT 

ZXVIEW YZROT INTENS FRONT TRW 

SOLID ZLARGE LITE REAR ECS 

DASH ZSMALL MED SADTUR CINCY 

DOTTED ZXPLAN DARK MILL TRUTRA 

CL ZXROT CHUCK THRU PRATTW 

DITTO 3PT2SL COLLET DEEP FOSDIK 

PEN A4PTISL AAXIS TRAV BURG 

SCRIBE SPT BAXIS NORMPS PROBOG 

BLACK INTERC CAXIS CONCRD DVLIEG 

XYPLAN SLOPE TPI GECENT 

XYROT SUNTRN OPTION $C4020 

  

Figure IX-2. APT vocabulary list. Each of these words has a meaning and is 

understood by people working in this field. 
Source: Brown, Drayton, and Mittman [BP63], pp. 657-658. By permission 

of the Association for Computing Machinery, Inc. 

There have been more than 100 part programming languages developed 

over the years, but relatively few have received widespread use. The trend 

appears to be to generalize the APT system to include all types of features 

from point-to-point to sophisticated geometric programming and then to 

extract subsets for various purposes. 

IX.2.2. Crvit ENGINEERING 

The languages in this section are those specifically designed for use 

by people concerned with civil engineering. They certainly use languages 

such as FORTRAN, but the languages mentioned here are oriented specif- 

ically toward problems in the cited area. Among the most important char- 

acteristics of these languages is the minimum amount of computer expertise 

required. In other words, the objective is to allow the engineers to state 

the operations they wish to perform in a manner which is reasonably natural 

or logical for them. There is no question but that the same logical effect 

could be obtained by adding the necessary subroutine packages to a language 

such as FORTRAN or PL/I, but this would allow neither the syntactic 

flexibility that the engineer can obtain from a special language nor the 

scale of capabilities required to integrate the computer into the engineering 

process. Considered from the opposite point of view, it might be possible 

to develop systems whereby the engineer needs only to fill out a form to



1X.2.2.1. coco 611 

obtain his desired results. However, there is obviously less flexibility and 

freedom of development that way, 

1. COGO 

One of the most widely implemented and used languages for a special 

area is COGO. It has been implemented on at least the following computers: 

IBM 1620, 1130, 7040/44, 7090/94, 1410, 7070, and System/360; Burroughs 

5000/5500; CDC 3600 and 160 A/1604; RCA Spectra 70; UNIVAC 1107; 
and under several time-sharing systems, e.g., CTSS (see Crisman [ZR65]) 

and QUIKTRAN. It was initially developed on the 1620 around 1960 under 

the direction of Professor C. Miller at M.I.T.’s Civil Engineering Department. 

COGO (COordinate GeOmetry) is a language to assist civil engineers 

  

    
Point 1 \ 

(1000., 2000.) 

Point 95 
(?, ?) 

STORE 1 1000. 2000. 

LOCATE/AZIMUTH 7 1 256.17 45 00 00 

LOCATE/AZIMUTH 95 1 350.0 102 35 12.35 

AREA ] 7 95 

PAUSE 

  

Figure IX-3. Small COGO program for figure shown. In the 

figure above, given the coordinates of point 1, the length and 

azimuth (clockwise angle from north) of lines 1-7 and 1-95, 
the COGO program shown computes the coordinates of points 

7 and 95 and the area of the triangle. In the program, the 

second line reads: Locate point 7 by going from point 1 a 

distance of 256.17 at an azimuth of 45 degrees 00 minutes 00 

seconds. 
Source: Fenves [FE66], p. 48. Reprinted by permission from 

Proceedings of the IBM Scientific Computing Symposium on 

Man-Machine Communication. © 1966 by International Business 

Machines Corporation.



612  sPECIALIZED LANGUAGES 

in doing plane geometry computations that are needed in surveying. Each 

command consists of a name and relevant data, e.g., DIVIDE/LINE J N M, 

which divides the line between defined points J and N into M equal parts 

and assigns intermediate point numbers J+1, J+2,..., J+ (M—1). 

There is no interconnection between the commands except through the 

data. The engineer determines which commands to use, in which order, 

and their associated data. As an illustration of a COGO program, see 

Figure I1X-3. A list of command names for the 7090 version is shown in 

Figure IX-4, and one of those commands is shown in more detail in Figure 

IX-5. 

  

ADJUST/ANG/LS 
ALJUST/AZ/LS 
ALIGNMENT 
ANGLE 
ANGLE/SAVE 
ARC/ARC/INTERSECT 
ARC/LINE/AZ 
ARC/LINE/POINTS 
AREA 
AREA/AZIMUTHS 
AREA/BEARINGS 
AZ/INTERSECT 
BR/INTERSECT 
CLEAR 
COORD/EL/OFFSET 
COORD/EL/POA 
COORD/OFFSET 
COORD/POA 
CROSS /TANGENT 
CURVE/SPIRAL 
DEFINE/CURVE 
DISTANCE 

Long command name 

DISTANCE/SAVE 
DIVIDE/LINE 
DIVIDE/STATION/LINE 
DUMP 
EVEN/STATIONS 
EXTERNAL/TANGENT 
FINISH 
GIRDER/LENGTHS 
INVERSE/AZIMUTH 
INVERSE/BEARING 
LINES 
LOCATE/ANGLE 
LOCATE/AZIMUTH 
LOCATE/BEARING 
LOCATE/DEFLECTION 
LOCATE/LINE 
OFFSET/ALIGN 
OFFSET/ELEV 
OFFSET/EL/ALIGN 
ORIGIN 
PARALLEL/LINE 
PI 

POINTS/INTERSECT 
REDEFINE 
RT/TRI/HYP 
RT/TRI/LEG 
SEGMENT 
SEGMENT/MINUS 
SEGMENT/PLUS 
SPIRAL /CURVE/INTER 
SPIRAL /LINE/INTER 
SPIRAL/SPIRAL/INTER 
START 
STATION/EL/POA 
STATION/POA 
STORE 
STORE/SUPER 
SUBGRADE 
SUPER/EVEN 
SUPER/SPECIAL 
SURVEX/STATION 
TERMINUS 
VERTICAL/SEGMENT 

  

Figure IX-4. List of 7090 COGO command names. 
Source: Roos and Miller [RS64], extracts from pp. 27-29. 

2. STRESS 

STRESS (S7Ructural Engineering Systems Solver) is designed for use 

by engineers in analyzing framed structures. Work was started in the fall 

of 1962 at M.I.T. under the direction of Visiting Professor S. J. Fenves of 

the University of Illinois. STRESS has been implemented on at least the 

following computers: IBM 7090/7094; UNIVAC 1107; CDC 1604, 3400, 

and 3600; Burroughs 5500; under CTSS (see Crisman [ZR65]); and a subset 

on the IBM 1620 and 1130.



1X.2.2.2. STRESS 613 

  

  

CROSS/TANGENT M J RL K N RS SIGN 
  

  

Locate M and K as the two end points connecting 

the tangent to the two circles with centers J and 

N and Radii RL and RS. RL and J are associated with 

the larger of the two circles. 

SIGN is used for the selection of one of two possi- 

ble solutions. 

SIGN is +l when the angle formed by the extension of 

the line connecting the centers of the two circles and 

the extension of the desired tangent is clockwise and 

~l1 when the angle is countercloctwise. 

Output 

Coordinates of M and K 

Distance and Azimuth of the tangent from M to K       

  

Figure IX-5. Specifications for a particular COGO command. 
The figure is a copy of an actual page in the manual. 

Source: Roos and Miller [RS64], p. 46. 

The data in STRESS is more complicated than in COGO since COGO 

requires only geometric information, whereas stress also requires topological 
and mechanical properties and a great deal more other information. A 

sample STRESS problem, illustrating both the diagrammatic representation 

and the program for analysis of the space truss, is shown in Figure IX-6. 

A listing of many of the commands is given in Figure IX-7. 
STRESS has been replaced and expanded by a system called STRUDL, 

an application subsystem of ICES.



  

t 

{10,000 Ibs. 

| C) Joint numbers 

(1) <> Member numbers 

5,000 Ibs. 

       

  
  

  

STRUCTURE SAMPLE TOWER 

TYPE SPACE TRUSS 

NUMBER OF JOINTS 7 

NUMBER OF SUPPORTS 3 

NUMBER OF MEMBERS 12 

METHOD STIFFNESS 

JOINT COORDINATES 

1X00 Y 16.0Z 0.0 

2X00 Y 80Z 0.0 

3X 40Y 802Z 4.0 

4X40Y 80 Z —4.0 

5X00 Y 0.0 Z 0.0 SUPPORT 

6X80 Y 0.0 Z 8.0 SUPPORT 

7X 8.0 Y 0.0 Z —8.0 SUPPORT 

614



Figure IX-6. (cont.) 

MEMBER INCIDENCES 

O
N
 

AO 
OH 

kh 
W
D
 

— 
Oo

 

N
O
O
O
 

O
O
 

bh 
W
D
 

&
 
W
 

10 

11 

12 

MEMBER PROPERTIES, PRISMATIC 

O
N
 
O
G
 

bk 
W
H
D
 

=
 

Oo
 

10 

11 

12 

NUMBER OF LOADINGS 1 

LOADING ARBITRARY 

2 

7 

1 

-F 
R
W
 

W
N
N
D
 

&
 
W
H
 

=
 

2 

AX 

AX 

AX 

AX 

AX 

AX 

AX 

AX 

AX 

AX 

AX 

AX 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1X.2.2.3. ICES 615 

TABULATE FORCES, JOINT DISPLACEMENTS, REACTIONS 

JOINT LOADS 

1 FORCE Y —10.0, FORCE Z 5.0 

4 FORCE X 6.0 

SOLVE THIS PART 

  

Figure IX-6. STRESS program for analysis of space truss shown in the 

diagram. 
Source: Fenves [FE66], p. 50. Reprinted by permission from Proceedings of 
the IBM Scientific Computing Symposium on Man-Machine Communication. 

© 1966 by International Business Machines Corporation. 

3. ICES 

Following the successful systems described above, work to create a 

much more generalized system was started at the M.I.T. Civil Engineering 

Department under the supervision of Professor C. L. Miller. ICES (/ntegrated 

Civil Engineering System) was first implemented on the IBM System/360



616 SPECIALIZED LANGUAGES 

  

Structure Statement Termination Statements 

STRUCTURE Title SOLVE 

Loading Statement SOLVE THIS PART 
LOADING Title FINISH or FINISHED 

or STOP 
Loading N Selective Output Statements 

Size Descriptors SELECTIVE OUTPUT 
NUMBER OF JOINTS N PRINT DATA 
NUMBER OF SUPPORTS N Modification Descriptors 

NUMBER OF MEMBERS N ADDITIONS 

NUMBER OF LOADINGS N CHANGES 

Tabulate Statement DELETIONS 

TABULATE Joint Release Statement 

followed by any of the following JOINT RELEASES 
descriptors, singly or in a string: J FORCE X Y X MOMENT X Y X, 

FORCES 0; @2 83 
REACTIONS 

DISTORTIONS 

DISPLACEMENTS 

ALL 

Members Properties Statement 
MEMBER PROPERTIES, List-of-common-properties 

M Properties-not-included-in-the-list-of-common-properties 

Member Distortion Statement 

MEMBER DISTORTIONS 

M DISTORTION X a1 Y @2.Z a@3 ROTATION X a4 Y a5 Z 

Member End Load Statement 

MEMBER END LOADS 

M END FORCE X a Y d@2 Z a3 MOMENT X a4 Y a5 Z 6 

START FORCE X a@7 Y a@g Z a9 MOMENT X aio Y 11 Z 12 

  

Figure IX-7. Partial listing of STRESS commands. 

Source: Fenves [FE64], extracts from pp. 24-34. 

around 1967. It was released in November 1967 and ordered by over 300 

organizations. ICES consists of four major elements: (1) A set of en- 
gineering subsystems, each of which is designed to solve problems in 

a particular area of civil engineering, such as structural analysis and 

design, soil mechanics, and highway engineering; some specific systems are 

COGO, STRUDL, ROADS, BRIDGE, TRANSIT, PROJECT, (2) a set 
of special application area languages which are used to operate these sub- 

systems, (3) facilities whereby people can relatively easily design new lan- 

guages and embed them in the system and modify existing subsystems, 

and (4) an executive system which combines all these modules in the correct 

fashion. It is hoped that one of the most useful characteristics of ICES 

will be its facility to allow the user access to subroutines from more than 

one particular branch of engineering.



1X.2.2.3. ICES 617 

One of the facilities of ICES is a language called ICETRAN which has 

been used to write the subsystem programs. ICETRAN is an extension and 

expansion of FORTRAN IV. It contains a number of additions to 
FORTRAN which are similar in style and spirit and then some other addi- 

tions which are quite dissimilar. Some of the statements in the former 

category are as follows:! 

DYNAMIC ARRAY a;(k:), a2(k2), a3(k3), .. +, On(kn) 
The a; are nonsubscripted array names which are to be treated 

dynamically. The k; is optional and may be one of the letters 

|, R, or D to indicate integer, real, or double precision, re- 

spectively. 

DEFINE o(i;, i2,.-.,%n), Ste S2r+++s Snr tr Pr 

This essentially defines the structure of part or all of a dynamic 

array. The i; may be integer expressions, the s; are expres- 

sions, the ¢ 1s optional and indicates data type, the p indicates 

priority for retention in core, and the g indicates automatic 

growth beyond the defined size. 

RELEASE a(i;, i2,..-.,in), p 
This releases arrays when they are not immediately needed 

but are to be saved for later use. 

SIZE 

DESTROY oaf(i;, i2,..-, in), reouce| 

blank 

This destroys the arrays when they are no longer needed. 

SWITCH (a, b) 
The oa and b are dynamic array pointers which are to be 

interchanged by the command. 

These statements are executable at object time to structure and control 

data according to the problem parameters. Memory is automatically 

managed by an executive routine. 

There are statements that involve linking of modules within subsystems, 

namely LINK, TRANSFER, and BRANCH. A global COMMON makes data 

accessible to all modules. 

There are statements to operate on a pushdown stack, namely 

ADD TO STACK (count, name) 
DELETE FROM STACK (count) 

COPY FROM STACK (count, name) 
TRANSFER TO STACK 

LINK TO STACK 

1 Extracted from [MTOO], pp. 2-4—2-27, and 2-44.



618 sPECIALIZED LANGUAGES 

The terms count and name refer to the number of items to be handled and 

the address of the stack. 

There are a number of error processing statements such as /NHIBIT, 

ENABLE, and ERROR RETURN. There are various statements to permit control 

of secondary storage. There is a matrix declaration which enables the user 
to write statements which are similar in structure to the regular ones but 

which operate on matrices. Thus, for example, the user could write 

V(2)=V(2)—TRN(X(1))*B*V(2)* INV(TRN(X(1))*B*X(1))*X(1) 

where TRN means matrix transposition and INV means inversion. 

It should be stressed again that the purpose of ICETRAN 1s to permit 

programmers (who might themselves be the engineers) to write the necessary 

subsystem programs for the differing application areas. 

One of the most interesting facets of ICES is its command definition 

language (CDL) which is used by the subsystem programmers to define 

and specify the processing of the language command for each subsystem. 

It is assumed that each of the application-oriented commands will consist 

of a word or a phrase defining some unit of engineering computation (e.g., 

LOCATE AZIMUTH and STIFFNESS ANALYSIS). The data for the command 

may be on the same or a following card. Phrases themselves may be data, 

and complex commands consisting of phrases mixed with data are permitted. 

One common thing to do, of course, is to add to the vocabulary. This 

is done by means of the following type of statement: 

REQUEST ‘label’ MODE ‘variable’ treatment 

The 'label' is the vocabulary word, the MODE represents the internal form 

of the data, the ‘variable’ specifies the internal name of the variable or 

array, and treatment specifies whether the data is required or not. Com- 

mands are handled by means of the following: 

ADD ; ; ae 
‘pep A ce} command name’ [MODE ‘variable’ treatment] 

where MODE specifies the internal form for the data. Other commands are 

shown in Figure [X-8. As an illustration of this, if the STORE command, 

used to define the X and Y coordinates of a known point, is to be added 

to the COGO subsystem, then the engineer might write 

STORE POINT 10 X 1000.53 Y 960



  

Subsystem Specification 

SYSTEM 'subsystem-name’ ['password' | 

Specification of Communication Variables 

COMMON 

ADD 
{ REPLACE 

DELETE J. 
END COMMON 

‘variable-I' location-] ... 'variable-n' location-n 

  

Data Descriptors 

\ ID ‘label’ 
NO ID \ MODE ‘variable’ TREATMENT 

Existence Data 

EXISTENCE ‘list’ SET ‘variable’ TREATMENT 

Presetting Storage Locations 

PRESET MODE ‘variable’ EQUAL value 

Counting 

INCREMENT [MODE] ‘variable’ [BY constant] 

Equating Variables 

MOVE [MODE] ‘variable-I' to ‘variable-2' 

Ignorable Words 

IGNORE ‘word-I' 'word-2' ... 

Command Modifier 

MODIFIER ‘label’ [MODE ‘variable’ TREATMENT] 

. requests ... 

OR MODIFIER ‘label’ [MODE ‘variable’ TREATMENT] 

. requests .. 

END MODIFIER \ OPTIONAL 

—— {CONDITION REQUIRED 

Tests on COMMON Variables 

CONDITION 4 VARIABLE ‘variable’ 
lon conpitiont [MODE] ‘variable’ RELATION {Constant \ 

Incremental Processing 

REPEAT —_—— ' I’ 
laereat rapuLar} ['symbol] 

. requests ... 

END REPEAT [TABULAR] 

  

Figure IX-8. Some of the CDL commands in ICES. The general notation is 

the COBOL metalanguage described in Section IT.6.2. In addition, the use 

of... requests... represents any request that adds to a subsystem a vocabu- 

lary word which describes a data item. 

Source: [MTOO], extracts from pp. 3-5—3-19. 

619



620  sPECIALIZED LANGUAGES 

and this would be added to the COGO vocabulary by the following small 
program :” 

SYSTEM 'COGO' 

ADD 'STORE’ 

ID 'P’ INTEGER 'NPOINT’ REQUIRED 

ID 'X' REAL 'XCOORD’ STANDARD O 

ID 'Y’ REAL 'YCOORD’ STANDARD 0 

EXECUTE ‘STORE’ 

FILE 

An example of how to define a language called STRUDL 1s worked 

out in Walter [WQ66]. 

There are many other reports describing ICES besides those listed 

in the references at the end of the chapter. 

IX.2.3. LOGICAL DESIGN 

The problem of debugging hardware is well-known to engineers just 

as the problem of debugging programs is well-known to programmers. 

Because of difficulties in eliminating the errors from a digital computer 

when it is built and the desirability of having a systematic way to describe 

its logical design, there have been a number of developments which provide 

languages for describing logical design of a digital computer. One of the 

hopes is that through the use of these languages the computer could be 

used to simulate the design of another machine and thus reduce the difficul- 

ties after the system is built. Not all the languages mentioned here are for 

the sole purpose of aiding the debugging; in some cases, they are merely 

to present an accurate picture of the actual logical design in a form different 

from that originally prepared. Not all these languages have beenimplemented. 

1. APL (Iverson) 

One of the early attempts along these lines is discussed in Chapter 2 

of Iverson [[V62] (see Section X.4 in this book) where he describes instruc- 

tions on an IBM 7090. This approach was carried further in providing a 

formal description of IBM System/360 (see Falkoff, Iverson, and Sussenguth 

[FA64]). 

Unfortunately, since this language in that form was not implemented, 

it could not be used in a practical way for simulation. 

2 Roos [RS65], p. 154.



IX.2.3.3. LDT 621 

2. LOTIS 

LOTIS is a formal language for describing machine LOgic, TIming, 

and Sequencing. It adapts features from both ALGOL 60 and APL. LOTIS 

describes parts of an object machine but does not simulate it; in order to do 

that, it would be necessary to provide commands to specify what the simu- 

lator is to do. A machine is defined completely by describing the structure 

and behavior of its data flow. The assignments provide this information. 

Among the facilities provided in this language are the following: The 

naming of memory locations or registers and the identification of individual 

positions within them (e.g., [31] represents the least significant position 

in a 32-bit register whose address is in ar); strings of consecutive positions 

can be defined and labeled; logical operators apply to single values and 

also to vectors; expressions are used to describe networks and conditional 

forms can be used; assignment statements specify register-to-register trans- 

fers; time declarations allow for differences in response time of a circuit; 

duration of transfers; and various mechanisms from languages such as 

ALGOL and FORTRAN (e.g., GO TO, CALL). An example of a portion 

of a program in this language is shown in Figure IX-9. 

  

seq add, arit/ 

1, core: call read/ 

2, ready: md := sr/ 
3, 8: ov := (ac{[O] # md[0]); ac:= ac + md/ 

4: if not ov then ov := (ac[0O] # md[O])else ov := 0; 

call instrfetch, 1/fin. 
  

Figure IX-9. Portion of LOTIS program defining a hypothetical computer. 
In this program, orit contains sequences using the arithmetic registers ac and 

md; a fixed point add is shown, assuming negative numbers represented in 2’s 

complement form. Step 3 is fixed-timed to account for carry propagation 

through the long adder by overriding the + operator-time declared for address- 

length adders. Step 4 completes forming the overflow indication in ov and 

activates instrfetch for the next instruction cycle. 

Source: Schlaeppi (QY64], p. 448. 

3. LDT 

The Logic Design Translator (LDT) was designed to develop logic 

equations for a computer from the information contained in a systems 

diagram and the instruction repertoire of the machine. The system is com- 

posed of three programs (written in Burroughs ALGOL 58): The trans- 

lator, a timing analysis, and a term development and logic equation generator. 

The language used to provide the system description is composed of three 

main sections: The declarative, which is a linguistic description of the 

block diagram of a machine; an operational section, which represents most 

of the processes used in doing the programming (e.g., arithmetic statements, 

conditional statements, etc.); and finally a design table, which is an inter-



622 SPECIALIZED LANGUAGES 

  

  

  

    

  

  

  

  

SUBCOMMAND MATRIX ANDO CONTROLS | 

4 » 

128 

THIN— FILM 

REGISTERS 

2 aoa nh eayo ees 

THIN- FILM INTERRUPT 
ADDRESS REGISTER 
GATING     

MULT/; 
COUNTER 

FUNCTION 
REGISTER REGISTER 

       

  

K a | ISTER ©! REGISTER | E REGISTE ¢ 

4 

ADDER 

M REGISTER | 

        

L 

REGISTER 

    

    
   

   

  

    

   ASK 
REGISTER 

reaat yes 

ARITHMETIC 

UNIT 

A 

REGISTER 

8 

REGISTER 

eh 

os ve tetet tend aes atta, 

etree aE. 

    

  

[so RATOR 

UPPER LIMIT 
(x) 

Lower Limit Be 
{Y) 

  

   

  

  

  
    

| REGISTER | 

ADDER L 

      

  

  

xFER S&S 

wep A & (KEe Ae LOGCUs ZEROe ARITHe Co LM) & 

“7 AES = (ZERO. ONE) $& 
ARITH = (LM. KEe ONEs Co As 8B) & 

Br(LMeKE.OeCIS 

BRF = (ZERO. ONE) §& 

C = (ARITHe KE) & 

CAOD = (LM) & 
CLOCK = (ZERO. ONE) & 

CORE = (LM) & 

COUNT = (ZERO + SCMeSeAs COUNT )S 

Fo « (KEe ZERO) & 

FRP = (KE. ZEROe ONE) & 

2 (ZERO. ONE?) S$ 

CONE. SCMe PO) §$ 

2 (ZERO. ONE) & 

= (ZERO. ONE) S& 

= (TFMEM, ZERO~ LM,e Ae Cd S 

LM = (ZERO. ARITH,. LOGCUs KE. Ae CORE) & 

LOGCU = (RSFe LMe Ae Be Xe YI) & 

MC1 = (ZERO. ONE) $ 
mC2 (ZERO. ONE) & 

(ZERO. ONE) $ 
(ZERO. ONE) $ 

(ZERO. ONE) $ 
(KEe ONE» ZERO) & 

(KEe ONE. ZERO) §$ 

CKEe ONE. ZERO) §& 

(KE. ONE. ZERO) $ H
n
e
d
h
t
b
n
w
n
w
 a
 

= (KEe ONE. ZERO) §& 

= (KEe ONEe ZERO) & 

= (LOGCUe ONE. ZERO) & 

(KEse LM) & 

= (ZERO, COUNTe KEe Se Fe Ie LOGCU) & 

= (SCM, S$) $ 

pTFMEM = (TEAG. KE) § 
xX 2 (A) $& 

Y= CA} 

FINIS 

  

Figure IX-10. Relationship between information flow on a block diagram 

and LDT input. 

Source: Proctor [PC64], p. 425. 

mediate language used in translating a systems design block diagram into 

logic equations. An experiment was run where the object machine was the 

Burroughs D825. An example of a portion of the program 1s given in Figure 

IX-10. 

4. Language for Simulating Digital Systems 

Another running system is that described by McClure [MZ65] and 

implemented on the CDC 1604. His language contains sections for decla- 

rations, equations, and the executive. The language has a flavor very much 

like that of FORTRAN. Specific declarations which exist include FLIPFLOPS, 

BOOLEAN, INTEGER, and REGISTER. The equation section contains the 

input equations for the system flipflops and the equations for the inter- 
mediate signals. Control and testing information looks very straightforward; 
a short program for elementary testing might be the following:° 

3 McClure [MZ65], p. 18.



1X.2.3.7. SFD-ALGOL 623 

READ X,ABC,N 
LOOP.. STEP 

PRINT X,ABC,N 
N=N-1 
IF (N.GT.0) THEN GO TO LOOP 
STOP 

5. Computer Compiler 

An unimplemented system is that described by Metze and Seshu 

[MX66]. This proposal for a computer compiler allows the user to provide 

information about the design of the system at a higher level than the lan- 

guages just described. The output of this computer compiler would be a 

description of the hardware with the logical conditions, flipflops, and their 

interconnections. The input language involves things such as register dec- 

larations, information about the decoding of instructions, transfer of infor- 

mation between registers, and branching statements. 

The output of the system compiler is actually some preliminary infor- 

mation and then a string of microinstructions; the microlanguage is actually 

permissible in the source program as well. 

An example of a little bit of the system design of a small digital com- 

puter is shown in Figure IX-11. 

6. Computer Design Language 

The work of Chu [CB65] is one of the two very ALGOL-like systems 

in this area, but it was also not claimed to be implemented. A subset was 

implemented on the 7094 for simulation purposes; it 1s described in Mesztenyi 

[YZ67]. Not only the flavor but much of the terminology and syntax is that 

of ALGOL. An example is shown in Figure [X-12. 

7. SFD-ALGOL 

The work of Parnas ([PN66] and [PN66a]) is a true extension of ALGOL 

for the purpose of allowing unambiguous descriptions of synchronous 
systems. It must be emphasized that the language provides a description of, 

rather than a program which would simulate, the system; Parnas indicates 

in [PN66] how the SFD-ALGOL description could be converted to an 

executable program relatively easily. 

The major additions to ALGOL are as follows: A new delimiter, 

time begin (with a corresponding end), has been added. It is assumed that 

all statements within such delimiters are actions taken by the system during 

one clock pulse. These groups of statements are referred to as time blocks. 
Two new declarations have been added, namely input and output. The 

procedure INPUT with one parameter must be declared in the outermost 

block.



  

+ 
t+ 

+
 

%
%
 

+
 
  
  

  
      

      
    
  

M 
| OV A 

Q 
AIR | ACTR 
A 
RQ 

MAIN |S S S >| ARITH 
eens eed                 
  

  

    

/ \ M 
[MUR | MIAD Y, MCIR | MCAD 

    
      

MI x MC 
ral // RQ 

\ L 

  
      

                    
  

  

  

  

Io = |-/-*s ——-s ——-s———»]_ corE 
iC 

RQ 
IcIR | ICAD 

ext devces——>L_OBFR       
MACHINE CSLIAC 

GLOBAL HEADERS 

SYN (WL,20), (DWL,39), (AL,10), (FL,10), (AAL,5), (AFL,3), 

(IOFL,1), (CFL,1) 

LENGTHS OF REGISTERS ARE DEFINED AS FOLLOWS: 

WL = SINGLE WORD, DWL = DOUBLE WORD, AL = ADDRESS, FL = FUNCTION, 

AAL = ARITHMETIC ADDRESS, AFL = ARITHMETIC FUNCTION, 

IOFL = INPUT/OUTPUT FUNCTION, CFL = CORE MEMORY FUNCTION 

PARALLEL (MAIN, 10), (MAIN, CORE) (10, CORE) 

MEMORY READ DEFINITION 

MACRO MEMRD (X,Y,AD,DT,IR,RQ) 

X IS SOURCE REGISTER FOR MEMORY ADDRESS, Y IS DESTINATION REGISTER FOR 

CONTENTS (OPERAND OR INSTRUCTION), AD IS INTERFACE ADDRESS REGISTER, 

DT 1S INTERFACE DATA (OPERAND OR INSTRUCTION) REGISTER, IR IS INTERFACE 

MEMORY INSTRUCTION REGISTER, RQ IS REQUEST FLAG. 

NAME OF MEMORY CONTROL IS CORE. 

CALL CORE (RQ) 

AD = X 

IR = RCM 

ENDC 

IFF (Y = DT) 

Y = DT 

ENDM 

MEMORY WRITE DEFINITION. SAME ARGUMENT LIST 

MACRO MEMWR(X,Y,AD,DT,IR,RQ) 

CALL CORE (RQ) 

  

Figure IX-11. System layout and data paths in a sample computer, and part 

of computer compiler program. 

Source: Metze and Seshu [MX66], p. 259 

624



1X.2.3.7. SED-ALGOL 625 

The initial state of the system is defined to be the result of executing 

the first time block. 

A new declaration, nonstate, modifies ALGOL in the sense that it must 

precede declarations for data which will remain fixed during the program. 

This is primarily to improve efficiency. 

As an illustration, Figure [X-13 describes a pushdown stack which 

accepts one bit of information, pushing down any information which may 

already be in the stack to a maximum depth of five. 

  

sequence MULTIPLICATION 

comment begin This sequence describes 

a multiplication which employs Booth's 

algorithm for binary numbers in signed 

The 

multiplier and multiplicand are_ initially 

two's complement representation. 

in register B and R respectively, and the 

product is finally in the cascaded register 

A&B[0-26]. end 

register B[O-27], S[0-5], MULTIPLYALARM 

operation MULTIPLY, RIGHTSHIFT 

WFO5kTO: R«< MA[C];B <— A; A —0 
WxFOSXT1: do PARITY; S — 26 

WFO5&T2: G <—H[G]; do MULTIPLY 
WxFO5*T3: H<— MB[G]; do RIGHTSHIFT; C — D 

WxFO6xTO: do MULTIPLY 

WxXFO6%TI: do RIGHTSHIFT 

WFO6&T2: do MULTIPLY; if S = 0 then G — H[G] 
WxXFO6xT3: do RIGHTSHIFT; if S = 0 then H — MB[G] 

WFO7&TO: de MULTIPLY; Y < R[O] 
WFO7K&T1: STOP — MULTIPLYALARM < A[O}%B[27]*Y 
WFO7KT2: G<—H[G]; 
WFO7%T3: H<— MG[G]; W —0 
MULTIPLY: if B[27]xY' = 1 then A — A subR 

if B[27]'xY = 1 then A <— AaddR 

RIGHTSHIFT: A&B&Y <— shr A&B&Y; 

if S¥#0 then S — S sub 1 

  

Figure IX-12. Computer Design Language program to define multiplication. 

Source: Chu [CB65], p. 613. By permission of Association for Computing 

Machinery, Inc.



  

TOPIN 

  

    

    

      

CONTROLDOWN TOPOUT 

CONTROLUP BOTTOMOUT 

BOTTOMIN 
begin 

Boolean array DATA [1:5] 

input Boolean CONTROLUP, CONTROLDOWN, TOPIN, 

BOTTOMIN; 

output Boolean TOPOUT, BOTTOMOUT; 

procedure INPUT (1); value |; integer |; 

begin 

if! <5 then CONTROLUP := CONTROLDOWN := false 

else 

ifl>4AI<9 then begin 

CONTROLUP := true; 

CONTROLDOWN := false; 

I: 1—4 

end else 

if | > 8 then begin 

CONTROLUP := false; 

CONTROLDOWN := true; 

{:= I—8 end; 

BOTTOMIN := 1 > 2; 

TOPIN :=!1=1VIi=3 

end of INPUT 

INITIALIZATION: time begin integer |; 

for |:= 1 step 1 until 5 do DATA [I]: false; 

TOPOUT := BOTTOMOUT := false 

end of initialization; 

WORK: time begin integer |; 

if CONTROLUP then begin 

for | := 4 step —1 until 1 do DATA [I+1] := DATA [I]; 

DATA [1] := BOTTOMIN 

end else 

if CONTROLDOWN then begin 

for|:= 4 step 1 until 4 do DATA [I] := DATA [I+1]; 

DATA [5] :== TOPIN; 

end; 

626



IX.2.4. DIGITAL SIMULATION OF BLOCK DIAGRAMS 627 

Figure [X-13. (cont.) 

TOPOUT := DATA [5]; 

BOTTOMOUT := DATA [1]; 

go to WORK 

end of WORK time block 

end of description 

  

Figure IX-13. SFD-ALGOL program to describe action of pushdown stack 

shown in the diagram. Any information which is already in the stack is pushed 
down to a maximum depth of 5. 

Source: Parnas [PN66], pp. 74, 79. By permission of Association for Com- 

puting Machinery, Inc. 

IX.2.4. DIGITAL SIMULATION OF BLOCK DIAGRAMS 

1. Introduction 

The phrase digital simulation as applied to languages actually has two 

meanings: One involves the simulation of block diagrams (primarily but 

not exclusively analog computers), whereas the other refers to discrete 

processes. The second category is discussed in Section IX.3.1 and the first 

is discussed here. The reason for making this distinction is that Section IX.2 

is for those languages which require very specialized knowledge on the part 

of the user, which applies in this case because of the analogue computer or 

other scientific problem areas. The discrete simulation languages can be 

applied to very many technical disciplines, and the simulation techniques 

are relatively independent of the problem source. 

Simulation languages have been written for two more or less diverse 

reasons: to provide analog check cases, and to solve differential equa- 

tions (in other words, replace an analog computer). .. . The overwhelming 

majority of authors state that their language (or program) was designed 
to simulate systems that can be represented by block diagrams.‘ 

A few of the systems which are apparently of great use in this area 

are not specifically mentioned because their /anguages are even less problem- 

oriented than the ones cited below. In this category are PACTOLUS (see 

Brennan and Sano [YR64]), MIDAS (see Petersen et al. [PS64]), and 

TELSIM (see Busch [QD66]). One of the earliest papers in this area is 

Selfridge [YD55]. An on-line system which is designed for use in a hybrid 

configuration is described by Cramer and Strauss [CR66]. Excellent summa- 

ries and reviews of the programs and/or languages in this field are given in 

Brennan and Linebarger [YR64a] and Clancy and Fineberg [ZZ65]. 

4 Clancy and Fineberg [ZZ65], pp. 27-28.



628 SPECIALIZED LANGUAGES 

2. DYANA 

DYANA (DYnamics ANAlyzer) is a language used for describing 

vibrational and other dynamics systems. It is one of the older specialized 

languages, and it was implemented on the IBM 704 around 1958 at the 

General Motors Research Laboratories. It is essentially an extension to 

FORTRAN, although a few minor restrictions are placed on naming vari- 

ables and on other points. 

Specifically defined variables are used to name the elements, excitations, 

and dependent and independent variables of dynamic systems described 

using DYANA. These variables have meaning in both FORTRAN and 

non-FORTRAN statements. As an illustration, the general form Ewky 

(e.g., EI5KO7, EOOKO5) represent the spring element whose terminals are 

to points w and y when used in a non-FORTRAN statement, but they 

represent the value of the coefficient of damping when used in FORTRAN 

arithmetic or input/output statements. An example of a simple mechanical 

system and its DYANA program is shown in Figure IX-14. 

  

LLLLLLLLLLLLLLLLAL LALA AAA LA LALA ALA AAA 

      

  

            

|! |EOOCO3 

EOOKO! & LJ EOOCOt 

O03 

EO3KO2 

EOINO2 
EOOMO1!] O01 *~ O2 |EQOMO2E 

EFO' 

INPUT WITH DIAGNOSTIC COMMENTS FLAGGED BY AN @ 

x SYSTEM DESCRIPTIO¥ CaRO 1 
£00M0) 0E00MO02 0EO0K0] 0 E00C01 eE00C03 CARO 2 

E03K02sE01NO02,EF 01 CARO 3 
x PRE=COMPUTATION CARO s 

EO3KO2 = 204 + 0,6*E00K0) CARD 5 
x DAMPING RATEs E00C03( X03) CARD 6 

—€00CO3 = A#X03 + B CARO 7 
x FORCEs EFOL CARD 8 

EFO]L = FeSINE (WOTIME) CARD 9 
x INPUT SVARTABLES CARD 10 

AsBeF CARD 11 
x PRINT *PRECOMPUTATION ANSWERS CARO 12 

beat d teheat F hehe Sh A ala cele a al CARD 15 
x PRINT TIME DEPENDENT ANSWER CARD 14 

Pa MC oer: oXOa oXOpoX03 oNXO1 X02 CARO 15 

x TRANSLATIONAL CARD 16 

x TRANSIENT CARD 17 

x CARD 18 

  

Figure IX-14. Mechanical system and corresponding DYANA program. 

Source: Theodoroff [TD58], p. 145.



1X.2.4.3. DYSAC 629 

3. DYSAC 

DYSAC (DigitallY Simulated Analog Computer) is a language (imple- 

mented on the CDC 1604) where the user has available to him a large 

number of analog computer components which he can interconnect accord- 

ing to the needs of his problem. The list of components available to him is 

shown in Figure IX-15 and the various input data required to describe the 

  

Components Serial numbers 

Integrators NOl to N99 

Adders AQ] to A99 

Limiters LO! to L50 

Sq. Root Generators Q01 to Q50 

Sine Generators $01 to $50 

Cosine Generators COl_ to C50 

Log. Generators GOl to G50 

Exp. Generators X01 to X50 

Function Generators FOI to F50 

Time Delay Units TOl to T12 

Dividers DO! to D99 

Relays ROI to R99 
Potentiometers PO! to P99 

» HOI to H99 

» JO] to J99 

» KO] to K99 

  

Figure IX-15. DYSAC components. 

Source: Hurley and Skiles [HJ63], p. 70. 

  

Dysac Input Data Sections Control Options 

1. Problem title. TITLE 
RETAIN TITLE 

2. Patching. Description of connec- PATCHING 

tions between components. RETAIN PATCHING 
3. Initial values for integrators. INITIAL VALUES 

CLEAR INITIAL VALUES 

RETAIN INTEGRATOR VALUES 

4. Potentiometer settings. POT SETTING 
RETAIN POT SETTINGS 

5. Function tables. FUNCTION TABLES 
RETAIN FUNCTION TABLES 

6. Headings. HEADINGS 

RETAIN HEADINGS 

7. Supplementary machine language MACHINE LANGUAGE INSTRUCTIONS 

instructions. NO MACHINE LANGUAGE 
RETAIN MACHINE LANGUAGE 

  

Figure IX-16. DYSAC statements for input data sections. 
Source: Hurley and Skiles [HJ63], p. 71.



  

In + 1+1.2S 1 25 25 Qut pe peed EY > 

20.4 Y X| 14.025 [xs] 79 x3 | 1+.4S — 1+25 | xs] 145 XG 

  

Compensator Amplifier Exciter Generator Load 
        

  

                              

  

    <— 002   
    
  

  
      
  

BCD 
3cv 
oCD 
aco 

5CD 
aco 

DEC 

FND 

3 

5 
3 

3 
3 
3 

a
o
a
 

8 

TITLE 
CURRENT REGULATION SYSTEM 
2064 VOLT STEP INPUT 
PATCHING 
NO1#AC2. NO2=AQ4SPLIENOZP 126 NO3*NO2P134 NO3P14— 
NO42P15N03+P16NO04e 
AO1L#PO5+P06N04G~4 AIZ=POTADL+POBNO Le AO3*=PO9ADZeNOl. 

A042P10A03. OUTsP0l1. OuUT#A01, OUTZA036¢ 

OUTS A04G. OUT= NO2e OUTZNOQ3-6 OUT=ENO4e 

CLEAR INITIAL VALUES 

POT SETTINGS 

0920050794 

20 040-2 002 0 809-50 

1620040 e2050-205 

LeeS ere e25s- 1 
RETAIN FUNCTION TABLES 

HEADINGS 
TIMEs Sec ERROR VOLTS COMP. OUTesr V AMP. VOLTS 

EXCIT. VOLTS GENe VOLTS LOAD AMPS 
NO MACHINE LANGUAGE INSTRUCTIONS 

  
Figure IX-17. Problem, diagram, and corresponding DYSAC program. 

Source: Hurley and Skiles [HJ63], p. 76. 

630



1X.2.4.4. DAS 631 

actual analog simulation are shown in Figure I[X-16. A block diagram of 

an illustrative problem and the corresponding DYSAC program is shown in 

Figure [X-17. 

4. DAS 

The DAS (Digital Analog Simulator) system on the IBM 7090 also 

provides a number of components representing analog computer elements. 

A sample block diagram and equivalent program are shown in Figure 

IX-18. 

  

    

    

            

Mathematical Block Diagram of Engineer’s DAS Language 
Statement Problem Program and Data 

of Problem 

X+X=0 
X (0) =10 1)K TF, PI, DELT 
O<T <3 2)IC 1 

IC 3)START 
4)NEG1 I1 
5 )I1 NEG1 

BS 6) FIN IT, TF 
| 7 )RO PI, IT, 11, NEG1 
{ 8 EN 

9)3. > 0.1 O.| 
Xx Xx }O}10-9 

NEG1 > 11 —< RO1> I1)0 DAS SOLUTION OF A FIRST 
B2 ORDER LINEAR 

I2) DIFFERENTIAL EQUATION 
WITH UNITY TIME 

13) CONSTANT AND NO 
) FORGING TERM 

14 
I5) TIME-SECS. DISPLACEMENT 

VELOCITY 

    

  

| 
IT FIN1 

      
  

Figure IX-18. Mathematical problem, block diagram, and corresponding 

DAS program. 

Source: Gaskill [GL64], p. 417.



632 SPECIALIZED LANGUAGES 

5. DSL/90 

A more recent system called DSL/90 is an extension of FORTRAN 

implemented on the IBM 7090/94. A few of the blocks, switching functions, 

and function generators available to the user are shown in Figure IX-19. A 

block diagram and the program to represent it are shown in Figure I1X-20. 

The variable TIME is a system name representing the independent variable 

of integration and it can be renamed by the user. The right-hand sides of 

the assignment statements are merely FORTRAN expressions, since things 

such as INTGRL are merely new functions as far as FORTRAN is concerned. 

  

FUNCTIONAL DESCRIPTION OF STANDARD DSL/90 BLOCKS 
  

GENERAL FORM FUNCTION 
  

Y=INTGRL (IC, X) 

Y¥(O) =IC 

INTEGRATOR 

t veftx at +c 

EQUIVALENT LAPLACE TRANSFORM : ; 

  

Y=MODINT (IC, P,, Pp, X) 

MODE -CONTROLLED INTEGRATOR 

  

Y =DELAY (N, P,X) 

P =TOTAL DELAY IN TERMS OF INDEPENDENT VAR 

N= MAX NO. OF POINTS DELAY 

DEAD TIME (DELAY)     
t Ye}, X dt + IC P,*1, P2 =O 

Y= 1C P, =0, Po = | 
Y= LAST OUTPUT P,=0, P2= 0 

Y(t) = X(t-P) t{2P 

yY:z0 t<P 

EQUIVALENT LAPLACE TRANSFORM: e~?S 
  

SWITCHING FUNCTIONS 
  

  

    

Y= FCNSW (P, X,, Xa, X3) Y= X, P<O 

Y*Xo P=#0O 

FUNCTION SWITCH Y=Xz P>O 

INPUT SWITCH (RELAY) Y*Xo Pad 
  

FUNCTION GENERATORS 
  

GENERAL FORM FUNCTION 
  

Y= AFGEN (FUNCT, X) Y=FUNCT (X) XpeX « Xq 

LINEAR INTERPOLATION 

  

PULSE GENERATOR WITH P AS TRIGGER 

Y=FUNCT (X,) X< XQ 

ARBITRARY LINEAR FUNCTION GENERATOR Y=FUNCT (Xp) X>Xpy 

Y= PULSE (P, x) Y20 INITIAL 

Y=! Thet<(T, +X) x k= k 
Y:0 OTHERWISE “| r ' 

kel,2,3,.... 
TI T2 T,*! OF PULSE k, P, 

  

Y=NORMAL (P,P, Ps) 

NOISE GENERATOR 

(NORMAL DISTRIBUTION)       

Y=GAUSSIAN DISTRIBUTION $y) 
WITH MEAN, A, AND 
STANDARD DEVIATION, P, SN y 
(P/s ANY ODD INTEGER) ja | 
  

  

Figure IX-19. Examples of some DSL/90 functional blocks, switching 

functions, and function generators. 

Source: Syn and Linebarger [QP66], extracts from pp. 167-169. 

  

 



IX.2.4.5. DSL/90 633 

  

Mathematical Statement of Problem 

y+(1+Acost)y=O y(O)=0, y(O0)=Yo 

Block Diagram of Problem 
  

      
  

      

  

                  

        
  

        

> YoDOT 
=| = o> JS YOO! JS >Y 

MULT. x be 

FCN A cos t 
      

Basic DSL/90O Program 

Y2DOT= —Y*(1.+ A*COS(TIME)) 
YDOT = INTGRL (0.,¥Y2DOT) 
Y = INTGRL (YO, YDOT) 

  

Figure IX-20. Differential equation, diagram, and corresponding 

DSL/90 program. 

Source: Syn and Linebarger [QP66], p. 169. 

There are also control statements, e.g., PRINT, PREPAR, GRAPH, LABEL, and 

ARRANGE. Control statements can be used to set error bounds or cutoff 

conditions, integration methods, etc. (e.g., CONTRL and CONTIN). 
One of the interesting characteristics of DSL is that it has a certain 

amount of nonprocedural aspect to it since it will alter the sequence of 
input statements if desirable, and any operational statement is considered 

properly sequenced if all its inputs are available. 

[X.2.5. COMPILER WRITING 

1. Introduction 

It may come as somewhat of a shock to some readers when they realize 

that compiler writing is being considered a special application, in the same 

category as the other sections in this chapter. However, this is a perfectly 

justifiable viewpoint, since the preparation of a compiler is a relatively 

narrow task from a technical point of view, although it may actually be of



634 SPECIALIZED LANGUAGES 

more interest to many readers than several of the other specialized appli- 

cation areas discussed here. It is essential to realize that this is definitely 

not a section on writing compilers, nor does the reference list at the end of 

this chapter provide a complete bibliography of compilation techniques. 

An overall view of compilation techniques from several (but not all) view- 

points is given by Feldman and Gries [FJ68]; that report also contains 

a good bibliography. 

To reemphasize the difference between compiler-writing techniques and 

languages, we can consider the analogies between techniques used for 

solving differential equations and FORTRAN, or the systems design and 

analysis for an accounts receivable application and the language (e.g., 

COBOL), in which this application is actually written. Unfortunately, one 

major class of techniques for writing compilers, namely the syntax-directed 

(sometimes called syntax-oriented or table-driven), tends to blur the distinc- 

tion between the technique and the language. 

It is ironic that many compiler writers have tended to be very resistant 

to the use of higher-level languages for their own application. There has 

been a common attitude of “it is all right for people writing application 

programs to use my compilers, but I cannot afford any potential inefficiency 

in the compiler itself”. This is probably one of the reasons that there has been 

less development along the lines of languages for writing compilers than 

one might expect. 

There are really two major directions in which compiler-writing lan- 

guages have progressed. The second has just been mentioned, and the first 

one is not very prevalent currently. The first, and actually classical, approach 

to a compiler-writing language is simply to design a language which provides 

in a convenient way those facilities deemed necessary by a compiler writer, 

independently of the types of algorithms that he might wish to use for 

various phases of the compiler-writing activity such as scanning, storage 

allocation, and code generation. One of the earliest of these languages is 

the CLIP work (see Section IX.2.5.2) done at the System Development 

Corporation; this was mentioned in Section VIII.3.1 as part of the history 

of JOVIAL. 

There does not seem to be any other significant and successful develop- 

ment in the area of providing or defining a language specifically useful for 

writing compilers, although various attempts have been made. The relatively 

recent emergence of PL/I may cause it to become a strong contender for 

use in this area since it contains essentially all the provisions and features 

that are needed. It has in fact been used to write much of a large time-sharing 

system (1.e., MULTICS) which is an application with some similarity to 

compiler writing. 

The modern techniques for compiler writing are primarily based on the 

concept of syntax-directed compilation, sometimes called table-driven com-



1X.2.5.2. CLIP 635 

pilers. The foundation work in this technique was done by Irons [IR6]], 

Glennie [GC60], and Brooker and Morris [BX62]. Even earlier—though 

unpublished—work by Barnett at M.I.T. on the SHADOW systems had 

many of the rudiments of this concept (see Barnett and Futrelle [BI62]). 

It is completely beyond the scope of this book to provide a description of 

what 1s meant by syntax-directed compiling. A good reference for obtaining 

fundamental information about this subject is the article by Cheatham and 

Sattley [CH64]; the article by Floyd [FL64] also provides useful background. 

Unfortunately, the distinction between the syntax-directed compiling tech- 

nique and the languages that have been developed along these lines is an 

extremely subtle one which cannot be described here. A further and even 

more difficult subtlety is the distinction between the metalanguage used to 

define the language syntax (as discussed in Section I1.6.2.2) and the language 

used to write programs to handle the definitions. In some cases mentioned 

here, this difference is blurred or ignored for the sake of simplicity. As 

in the other sections in this chapter, only a few examples can be given to 

show the flavor of what is involved. The essential point is that given a set 

of syntactic definitions for a language, there needs to be a program written 

to handle them, and a language might be designed to be useful in writing 

programs of that type. Furthermore, there is increasing recognition of the 

need for defining the semantics of the language, and again a possible need 

for a language to write either the semantic definitions or the programs to 

handle such definitions. As the simplest illustration of this concept, we must 

recognize that a syntactic definition can specify that A+B is legitimate, but 

we need further information to know that the machine code for such an 

expression might be something of the form CLA A, ADD B. One of the dif- 

ficulties in discussing these languages is that they presuppose a particular 

form for the syntactic definition of the language. These are not described. 

Various attempts at compiler-writing language systems, not discussed 

in later sections, are listed in the references for this section at the end of the 

chapter. 

2. CLIP 

The CLIP work was literally an early attempt to define a language 

which would be useful for writing compilers; however, the designers rapidly 

reached the conclusion that this was not an application significantly different 

from a more general information processing problem, hence the acronym 

CLIP is for Compiler Language for /nformation Processing. The designers 

used ALGOL 58 (née IAL), but they made the essential and obvious addi- 

tions to it in the area of data manipulation and declarations and input/output. 

Specifically, they added a type declaration to specify the type and size of 

unsubscripted variables. For example,



636 SPECIALIZED LANGUAGES 

Type(10,A,B: 6H,Cs D,E,F) 

declares A and B as integers less than the value 10; C is an alphanumeric 

symbol of 6 characters; and D, E, and F are Boolean variables. In addition 

to this, a table declaration is used to specify subscripted variables. A string 

declaration specifies up to 120 character positions. Finally, there is an origin 

declaration to specify the arrangement of tables, string and/or unsubscripted 

variables, in machine storage. READ and WRITE statements are used for 

input and output. 

CLIP was one of the first illustrations of a compiler used to write itself 

since portions of it were written in CLIP and hand-translated to 709 machine 

code. As discussed earlier, in the description of JOVIAL, the latter was an 

outgrowth of CLIP, and JOVIAL itself has been used to write many of its 

own compilers. CLIP has thus served its purpose and faded away. 

3. TMG 

One of the apparently successful attempts at a compiler-writing system 

is TMG. According to its developer, McClure, “The original objective of this 

system was to make it as easy as possible to construct a simple one pass 

translator for some specialized language.”*> An example of a statement in 

TMG is the following: 

INTEGER .. ZERO* MARKS DIGIT DIGIT* INSTALL 

This statement says that the scanning mechanism should skip over an 

arbitrary number of leading zeros, mark the start of the string, find at least 

one digit and then space over all additional consecutive digits, and put the 

symbol in the symbol table and the output tree. Arithmetic can be done dur- 

ing compilation using a function COMPUTE which has anassignment statement 

as its argument, e.g., COMPUTE (NEXT—VALUE = LAST—ONE+2). A condi- 

tional statement can also be written, e.g., IF (INTVAL .LE. LAST—LABEL). 

There are a number of built-in functions in TMG; e.g., ARBNO (_) looks 
for an arbitrary number of occurrences of the syntactic unit which is its 

argument, GLOT spaces over the input string to the next card boundary, 

etc. The reader interested in pursuing this system in detail will find a com- 

pletely worked out example in [MZ65a]. A small section of this is shown 

in Figure IX-21. 

TMG was used to write ALTRAN (see Section VII.5). It has been 

implemented on a few machines. 

  

5 McClure [MZ6Sal], p. 262.



  

STOP—STATEMENT.. $STOP$ =$( TRA S.JXIT //$) 
GO-TO-STATEMENT.. $GO$ $TO$ LABEL = $( TRA ~~ $P1//$) 
IF—STATEMENT.. $IF$ $($ BOOLEAN—EXPRESSION $)$ $,$/*-+-1 UNLABELED-—STATEMENT = 

(1)$($P2(BV1)$P1$Q1 BSS OO  //$) 
ASSIGNMENT... VARIABLE $=$ SUM = $($P1$P2(STO)$) 
BOOLEAN-—EXPRESSION.. SUM RELATIONAL—OPERATOR SUM = (1)$($P1 STO R.TMP 
$P3 FSB = R.TMP — es //$P2(BV1)$) 
RELATIONAL—OPERATOR.. $.NE.$/ROI] = (1)$( TZE $Ql //$) 
RO}.. $.EQ.$/RO2 = (1)$( TNZ $Qi = //$) 
RO2.. $.GT.$/RO3 = (1)$(/TZE/$Q1///TPL/$Q1//$) 
RO3.. $.LT.$ = (1)$(/TZE/$Q1///TMI/$Q1//$) 
* 

* 

SUM.. TERM = $($P1$)/SUMA 
SUMA..AOP TERM = $($P1 STO  — A.TMP-++ $F 3(T) $F 1(T) 
$P3. $P2. 0 A. TMP-+$F2(T)$F3(T)//$1/SUMA 
AOP.. $+$/($—$ = $(FSB$)) = $(FAD$) 
* 

TERM.. PRIME = $($P1$)/TERMA 
TERMA.. $x$/TMA1 PRIME = $($P1 STO A.TMP-+ $F3(T)$F1(T) 
$P2  XCA // FMP A.TMP-+ $F2(T)$F3(T)//$)/TERMA 
TMAI.. $/$ PRIME = $($P1 STO A.TMP-+$F3(T)$F1 (T) 
$P2 FDP A.TMP + $F2(T)$F3(T) // XCA = //$)/TERMA 
* 

PRIME.. VARIABLE/PR1 $($P1(CLA)$) 
PRI... CONSTANT/PR2 $( CLA =$P1//$) 
PR2..($/PR3 SUM = $)$ _= $($P1$) 
PR3..SIMPLE—VARIABLE $($ SUM $)$ = $($P1 STO A.TMP-+ $F3(T) 

TSX $P2,4 // PZE A.TMP+$F3(T) //$) 
VARIABLE.. SIMPLE—VARIABLE $($/V1 CHECKFLAG(ARRAY)/V2 SUM $)$ = 

(1)$($P1 UFA =0232000000001 // ARS 1// PAC ,4///$Q1/$P2-1,4//$) 
V2.. SETFLAG(FUNC) ** 
V1... NOFLAGS = (1)$( $Ql $P1//$) 
* 
SIMPLE—VARIABLE.. MARKS LETTER LETTER-OR-DIGIT% INSTALL = $($P1$) 
INTEGER... ZEROX MARKS DIGIT DIGIT% INSTALL = $($P1$) 
* 

IO-LIST.. IO—VAR ($,$ IO—VAR )*& = (1)$( TSX $Q1,4 
$P2$P1 TSX X.IEND,4 //$) 
IO—VAR.. VARIABLE = $($PI(STR)$) 
CONSTANT... MARKS DIGIT DIGIT* PERIOD/CN1I DIGIT* INSTALL = RI 
CN1.. INSTALL = $($P1..$) 

-DEFINITIONS. 
READ = _  $(X.READ$) 
PRNT = = $(X.PRNT$) 
FAD =  $(FAD$) 
FSB == = $(FSB$) 
CLA = = $(CLA$) 
STO = = $(STO$) 
BVi == = $($Q1$) 
STR = = $(STR$) 
EMPTY =  $($) 
RI = $($P1$) 

END 

  

Figure [X-21. Example of part of TMG program. 

Source: McClure [MZ6Sa], p. 273. By permission of Association for 

Computing Machinery, Inc. 

637



638  sPECIALIZED LANGUAGES 

4. COGENT 

The COGENT (COmpiler and GENeralized Translator) programming 

system on the CDC 3600 and 3800 is an attempt to combine elements from 

syntax-directed compiling and list structures. Quoting from its developer, 

Reynolds, “Thus a program written in the COGENT language is a list 

processing program in which the list structures normally represent phrases 

of one or more object languages (1.e., the input and output languages to be 

processed by the program), in a representation determined by the syntax 

of these languages. Correspondingly, the COGENT language itself contains 

two major constructions: productions, which define the object language 

syntax, and generator definitions, which define list processing subroutines 

called generators.”® The productions are similar to those of the Backus 

Normal Form discussed in Section II.6.2. A generator is actually a sub- 

routine for manipulating list structures and has a language form similar to 

that of an ALGOL procedure. However, it differs conceptually in that the 

values of the variables for the generators are list structures, usually repre- 

senting phrases of the object language. The meaning of variables, expres- 

sions, and simple assignment statements is the same in COGENT as in 

most programming languages. However, there are synthetic and analytic 

assignment statements to deal with list structures. As an example of an 

analytic assignment statement, if Z has the value (TERM/ABE*BED) then 

the statement 

Z /= (TERM/(FACTOR)*(FACTOR)),X,Y- 

will give X the value (FACTOR/ABE) and Y the value (FACTOR/BED). As an 
example of a conditional statement, preceding the statement above by 

+10 IF 

will cause X and Y to be assigned the factors of Z if it has any, and it will 

transfer control to statement 10; otherwise control goes to the next state- 

ment without changing X and Y.’ 

A complete example for translating algebraic expressions from Polish 

prefix notation into conventional infix notation is given in Reynolds [RE65a]. 

A small section of this is shown in Figure [X-22. 

5. META 5 

On the West Coast, an active working group of the ACM Los Angeles 

Chapter and a number of specific individuals have been involved in producing 

  

6 Reynolds [RE6S5a], p. 422. 

7 Reynolds [RE65a], extracted from pp. 426-27. By permission of Association for 
Computing Machinery, Inc.



IX.2.5.5. META 5 639 

  

$SECSYN 
(FACTOR) = (VAR),(()(EXP)()). 
(TERM) = (FACTOR),(TERM)(MOP)(FACTOR). 
(EXP) = (TERM),—(TERM),(EXP)(AOP)(TERM). 

$PROGRAM 
$GENERATOR GVAR ((X) 

X /= (EXP/VAR)),X. $RETURN(X). ). 
$GENERATOR GMULT((OP,X,Y) 

+1 IF X =/ (EXP/TERM)),X. 
X /= (TERM/(()(EXP)())),X- 

1/ +2 IF Y =/ (EXP/(FACTOR)),Y. 
Y /== (FACTOR/(()EXP)())),Y- 

2/ X /= (EXP/(TERM)(MOP)(FACTOR)),X,OP,Y. 
$RETURN(X), ). 

  

Figure IX-22. Example of part of COGENT program. 

Source: Reynolds [RE6Sa], p. 434. By permission of Association for 

Computing Machinery, Inc. 

a series of syntax-directed compiling systems known as the META compilers. 

Three references to differing phases in this development are listed at the end 

of this chapter. The META 5 version has proved to be fairly powerful, 

and it has been used for the translation of Basic FORTRAN to JTS (one of 

the versions of JOVIAL), and JS (another version of JOVIAL) to PL/I. 

The META 5 language has a number of predefined functions in the areas 

of data manipulation, arithmetic, relations, and input/output. The language 

definition itself uses essentially Backus’ notation. The example shown in 

Figure IX-23 converts constants written in JOVIAL format to those of 

  

"ABC','(("'))’ 
*KTHIS IS A DEMONSTRATION PROGRAM 

IN METAS xx (1) 

eMETAS DEMO SEQCON (2) 

ITEM CNT XV; (3) 

SEQCON 1$(.BK HOLCON .OUT(—x/)); (4) 

HOLCON = .NUM 'H(’.SET(*V).PUT(*,CNT) 

-PUT('"',*) (5) 
$1(.GR(CNT,0)(—""".CHAR/.CHAR.PUT('"')) 

-SOR(CNT)) (6) 

')'-PUT("''*); (7) 

-END (8) 

  

Figure IX-23. META program to convert JOVIAL constants to PL/I 

constants. 

Source: Oppenheim and Haggerty [OP66], p. 467. By permission of the 
Association for Computing Machinery, Inc.



640 SPECIALIZED LANGUAGES 

PL/I format. In the former, the actual format is nH (n characters), whereas 
in PL/I the characters are simply enclosed within apostrophes. Thus, 

3H(ABC) is converted to 'ABC'; the conventions on apostrophes in PL/I 
cause apostrophes to be duplicated within a constant if they occur once, 
so 5H((('))) converts to '((’’))' in PL/I. 

6. TRANDIR 

One of the most prolific groups in the field of compiler writing 1s the 
small firm, Massachusetts Computer Associates, Inc. (COMPASS). They 

have developed a series of compilers and compiling techniques, most of 
which are beyond the scope of this section. However, the TGS-II (Translator 

Generator System) involves a significant language embedded within an 

overall system. The language is called TRANDIR, and the system 1s called 

TRANGEN; the latter is essentially an interpreter which executes programs 

written in TRANDIR to describe a specific translation process. TRANDIR 
contains primarily an algebraic section, a pattern-matching section, and 

a number of built-in functions. The TRANDIR language is used for all 

phases of the compiler, as distinguished from the FSL language to be dis- 

cussed later. TRANDIR contains a number of action operators, such as 

CYCLE, EMIT, and SCAN, which involve system-defined tables. There are 

  

Ul...SIF REL S$THEN USTAT // SELSE // Z = FAIL. FAIL = NEWLBL. 
EMIT( TRANS, FAIL). 
EMIT(LABEL,Z). 

Z1.. EXCISE. SCAN(1).TRY(10). 

U2...S1F REL $THEN USTAT // §. // Z2.. EMIT(LABEL, FAIL). 
Z3.. CYCLE. TO(Z1). 

...SELSE USTAT // §. // TO(Z2). 

..-USTAT // §$. // TO(Z3). 

.. USTAT // PRINT(#ERROR 3#). 
RELEASE. 
CURSYM = §. . TRY(U2). 

  

Figure [IX-24. Example of part of TRANDIR program. 

Source: Dean [DE64], p. 73.



1X.2.5.7. FSL 641 

symbol descriptor variables as well as integer and statement label variables. 

The symbol descriptor variables refer to locations in a communications area. 

As an illustration, one of the built-in functions is COPER, which has as an 

argument a symbol descriptor value which represents a terminal symbol of 

the language being translated. The action statements listed earlier are real- 

ly a set of functions that specify the operations to be performed to execute 

a given translation. For example the EMIT transfers a sequence of symbol 

descriptors from one table to another; PHRASE replaces the syntactic struc- 

ture just analyzed with a symbol descriptor value specified by the argument 

of the phrase. A pattern test can be used to recognize specific syntactic 

patterns for macro sequences. A small portion of a TRANDIR program 

to translate a simple language is given in Figure IX-24. 

7. FSL 

The FSL (Formal Semantic Language) work on the G-20 by Feldman 

[FJ66] and its subsequent use in the VITAL system (see Mondshein [LQ67]) 

is a specific example of a well-defined language for expressing semantics. Its 

actual usage for the development of Formula ALGOL (see Section VIII.5) 

is described by Iturriaga et al. [IT66]. In Feldman’s system, the overall com- 

piler-writing system uses two formal languages to describe a compiler. The 

first is the production language which is used to define the syntax analyzer, 

and the second is the Formal Semantic Language which is used to write a 

set of routines to define the semantics of the source language. The basic unit 

in an FSL program is a labeled statement. Whenever a production contains 

something of the form EXEC n then the semantic routine labeled n is executed. 

For example, whenever a double-precision real variable is declared in a 

source program, the following semantic routine is executed: 

TO + STORLOC; SET[TO, DOUBLE]; ENTER[SYMB; LEFT2, TO, REAL, LEV]; 

STORLOC <— STORLOC +2 | 

This causes the current value of STORLOC to be placed in a temporary 

location with bits marking it as a double-precision operand. A description of 

the variable, containing its name, the tagged address, the word REAL, and 

the current level, is placed in the SYMBol table. The storage pointer is then 

increased by 2. An illustration of part of a semantic routine to check the 

types of A and B in a sum A+B is shown in Figure IX-25. 

8. AED (cross-reference only) 

The AED system is discussed in Section IX.3.4.2 because the key 

developers tend to continually describe it as being related to computer-aided 

design. However, many of the concepts and techniques are directly related 

to compiler writing, and it is worth noting that fact here.



642  sPECIALIZED LANGUAGES 

  

100 | TEST[LEFT4,BOOLEAN] V TEST[LEFT2,BOOLEAN] — 

FAULT 100 : RIGHT2 — RIGHT2 A X7 ; 
TEST[LEFT4,FORMULA] V_ TEST[LEFT2,FORMULA] — 

MACHINE <— 2 ; 
—~ TEST[LEFT4,FORMULA] — 

CODE(CONSTRUCTFORMULA|LEFT4]) $; 
~ TEST[LEFT2,FORMULA] —> 

CODE(CONSTRUCTFORMULA|LEFT2]) $: 
MACHINE <— 1 ; 
TEST[LEFT2,REAL] YV TEST[LEFT4,REAL] — 

SET[RIGHT2,REAL] : SET[RIGHT2,INTEGER] $$$ 

  

Figure IX-25. Example of part of FSL program. 

Source: Iturriaga et al. [IT66], p. 248. 

[X.2.6. MISCELLANEOUS 

The previous sections in this chapter have discussed languages for the 

indicated application areas. The purpose of this last section for special 

application areas is to mention briefly some languages which do not con- 

veniently (or by any stretch of the imagination) fall into one of the other 

sections. Except for the Matrix Compiler, the languages here are relatively 

recent and pretty much “one of a kind”. While there are other languages 

which could be considered to fall into special categories, the ones mentioned 

here appear to be the most unusual or interesting. 

1. Matrix Computations: Matrix Compiler 

One of the earliest of these specialized systems was the UNIVAC 

Matrix Compiler. It was highly oriented to the 12-character UNIVAC 

word and thus violates some of the criteria in Section 1.4.2. Its interest 1s 

historical since it provided the user with language and facilities for per- 

forming a number of operations on matrices, including addition, multipli- 

cation, inversion, computing the norm, and transposition. For example, 

if the user wrote I+MULTYOOIJO this meant that the matrices on tapes | 

and J were to be multiplied together and have the identity matrix added 

to them to produce the result. This was followed by another 12-character 

operation to specify information about the output. 

2. Cryptanalysis: OCAL 

The OCAS(On-line Cryptanalytic Aid System) of Edwards [ED66] is 

an on-line system designed to ease the work of a cryptanalyst. It contains 

a display generator, control program, and also a language OCAL (On-Line 

Cryptanalytic Aid Language). The language requirements include the need 

for manipulating strings of alphabetic characters and also for doing alge- 

braic computations, including matrix operations. OCAL is primarily a



  

PERIOD: PROCEDURE (CRYPT, PER,N,M) 

PARAMETERS ARE: 
CRYPT - A STRING GIVING THE CRYPTOGRAM 
PER - AN INTEGER VECTOR WITH SUBSCRIPT RANGE N TO M 

THE WEIGHTED TALLIES ARE RETURNED IN THIS VECTOR 
N - AN INTEGER GIVING THE LOWEST PERIOD TO BE TESTED 
M - INTEGER GIVING HIGHEST PERIOD TO BE TESTED 

DECLARATIONS NEXT 

s
o
e
 

e
e
 
o
D
 

Do 
8
 

STRING CRYPT 
CHARACTER C 
INTEGER PER,N,M 
INTEGER DIST, INDEX, ALPS,K, LI, L2 
INTEGER SEP, TR 
READER R, 
DECLARE PER(#) 

* THE VECTOR PER IS DIMENSIONED IN THE CALLING PROCEDURE 

DECLARE DIST(LENGTH. (CRYPT)/S) 

* DECLARING THE LOCAL VECTOR DIST 

READER R 

« THE ACTUAL PROCEDURE BEGINS HERE 

ATTACH. (R, CRYPT) 
ALPS = SIZE. CALPHABET. (CRYPT) ) 
INDEX = 1 
DO WHILE INDEX .LE. ALPS, LOOP1: BEGIN 

e ITERATE OVER THE SIZE OF THE ALPHABET. 

C =$NC.(R) 

* RETURN READER TO HEAD OF STRING AND READ FIRST CHARACTER 

K = 1 
DO UNTIL ENOSTRING, LOOP2: BEGIN 

e 
© 

READ THE STRING CRYPT CHARACTER BY CHARACTER 

1F C .E. INDEX, COND1: BEGIN 
DISTCK) = $V.(R) 

s 

* RECORD DISTANCE FROM HEAD OF STRING 

K =K +1 
END CONDI] 

C = $I1C.(R) 

* INCREMENT THE READER AND READ NEXT CHARACTER 

END LOOP2 

Ll 21 

DO UNTIL LI .E. K, LOOP3: BEGIN 

* COMPUTE THE CHARACTER DISTANCE BETWEEN EACH OCCURENCE 

L2 = L1l+*1 
DO UNTIL L2 .G. K, LOOPh: BEGIN 

SEP = DIST(L2) - DISTCL1) 

R=WN 
DO UNTIL TR .G. M, LOOPS: BEGIN 

» 

* TEST EACH PERIOD FROM N TO M FOR REMAINDER 0 

IF (SEP .R. TR) .E. 0, 
. PER(TR) = PER(TR) + 1 

TR = TR #1 
END LOOPS 

L2 = t2+¢41 
END LOOPS 

Ll = tl +1 
END LOOP3 

INDEX = INDEX + 1 
END LOOP1 

» 

# NOW WEIGHT EACH ITEM IN PER BY THE RESPECTIVE PERIOD 

K = 1 
DO UNTIL K .G. M, LOOP6: BEGIN 

PER(K) = PER(K) + 1 
K zk +] 
END LOOP6 

*® 

* ALL DONE 
* 

END PERIOD 

  

Figure IX-26. OCAL program for solving a cryptanalysis problem. 

Source: Edwards [ED66], pp. 51-52. 

643



644 = sPECIALIZED LANGUAGES 

synthesis of MAD and SNOBOL, together with some ideas from SLIP and 

PL/I. OCAL includes declarations and statements for sequence control, 
string pattern-matching, assignment, and error control. An example of 

an OCAL program is shown in Figure IX-26. 

3. Movie Creation: Animated Movie Language and BUGS YS 

The very interesting work of Knowlton [KO64] in using a computer 

to produce movies involved the use of two languages—scanner and movie— 

on the 7090. Scanner is based on a conceptual framework which includes 

a number of scanners which the programmer imagines sitting on various 

squares of the surfaces. An example® of an instruction in the scanner lan- 

guage is 

IFANY (B,R,10) (B,A,C) (A,E,7)T(A,T,B) (A,U,2) (A,W,3) LOC5 

This says that if scanner B is to the Right of X=10, or scanner B 1s Above 

  

SURF MACRO X1,Y1,WIDTH,HEIGHT,NAME,SIZELN,SHIFT (SHIFT OPTIONAL) 

PLACE  B,BB,X1,Y1 

THEN (A,T,B) (A,R,WIDTH) (A,L,1) (A,U,HEIGHT) (A,D,1) 

PAINT A,B,WRITE,2 | PAINT RECTANGULAR AREA 

WITH 2'S 

THEN (C,T,B,) (C,U,1) (C,R,1) (D,T,B) (D,D,8) 

TYPE NAME,C,8X11,1,1,WRITE,O TYPE NAME WITH 0's 

CENTER A,B CENTER IT 
IFF 0,/CRS/SHIFT 
THEN _—_(D,R,SHIFT) SHIFT SIZE LABEL RIGHT 
TYPE — SIZELN,D,5X7,1,1,WRITE,7_ «TYPE SIZE LABEL 
ENDM END OF SURF DEFINITION 

* END OF DEFINITIONS OF NEW 
MACROS 

FILM BEGINNING OF PROGRAM 
FRAMES O (NO OUTPUT DESIRED DURING 

TYPING) 
PAINT —BB,O,WRITE,O CLEAR SURFACE BB TO O'S 
BENTLN 46,173( (L,3,D,2) (D,18) (L,3,D,2) (R,3,D,2) (D,17) (R,3,D,2) ) 

BENTLN 95,173( (R,3,D,2) (D,46) (R,3,D,2,) (L,3,D,2,) (D,40) (L,3,D,2) ) 

PLACE C,BB,8,167 (TWO BRACES NOW DONE) 

TYPE ORSUR,C,5X7,1,2,WRITE,7 TYPE "OR SURFACE ...'' NOTE 

PLACE C,BB,10,60 

TYPE FIG2A,C,5X7,1,3,WRITE,7 TYPE "FIG. 2A...'' CAPTION 

PLACE C,BB,103,125 

  

Figure IX-27. Part of movie animation program. 

Source: Knowlton [KO64], p. 86. 

8 Knowlton [KO64], p. 69.



1X.2.6.3. BUGSYS 645 

(i.e., in a higher line than) scanner C, or scanner A is sitting on a number 

Equal to 7, then the following things are to be done: Scanner A moves 

To the same surface and the same square as scanner B, scanner A moves 

Up 2 squares and Writes the number 3; control then goes to the line of 

coding labeled LOC5. Operations include tests on the position of the scanner 

relative to particular coordinates, tests on size, etc. There are operations 

for moving horizontally, vertically, up and down, and left and right for a 

specified number of squares, and provisions for doing simple arithmetic. 
The flavor of this language is very similar to that of L® (discussed in Section 

VI.4); this is hardly surprising since both languages were developed by the 

same person. 
Instructions of the movie language fall into three categories: (1) Con- 

trolling the output or temporary storage of pictures, e.g., CAMERA, FRAMES, 

and UNTIL; (2) performing drafting and typing operations, e.g., entire 

scanner language, LINE, and ARC; and (3) modifying rectangular areas, e.g., 

BORDER, GROW, DISOLV, ZOOMIN. A portion of a complete program is 

shown in Figure IX-27. 

The BUGSYS system on the 7094 is based on the work just described ; 

  

DOWN3 MOVE AA, DOWN, 1 

GO.TO ERROR 

TEST AA, EQUAL, 6 

GO.TO DOWNS 

CENTER AA, COLUM, 12, 6 

GO.TO ERROR 

GO.TO ERROR 

PLACE ORIGIN, A, AA—1 

RIGHT MOVE AA, RIGHT, 1 

GO.TO ERROR 

TEST AA, EQUAL, 6 

GO.TO ERROR 

CENTER AA, COLUMN, 12, 6 

GO.TO ERROR 

GO.TO BACK 

GO.TO RIGHT 

BACK MOVE AA, LEFT 

PLACE BB, AA, AA—1 

UPI MOVE BB, UP, | 

GO.TO ERROR 

TEST BB, EQUAL, 0 

GO.TO UPI 

  

Figure IX-28. Example of part of BUGSYS program. 
Source: Ledley, Jacobsen, and Belson [LL66], p. 82. By permission of 

Association for Computing Machinery, Inc.



646 SPECIALIZED LANGUAGES 

it can be used for varying types of applications, including the analysis of 

photomicrographs of neuron dendrites. The concept of the system is the 

use of a set of figures which are visualized as a family of bugs. A bug can 

be placed and then moved. It can also change the gray-level value of the 

spot on which it is located and can lay down a stick across a thick line 

in a picture as an aid to locating the middle of the line. The PLACE statement 

assigns a name and initial coordinates to a bug. The MOVE moves it a 

specified distance either horizontally or vertically. There is a series of test 

statements which examine the gray-level value of the picture at the location 

of the bug. The gray-level value may be changed by the change statement. 

A small section of a program is shown in Figure IX-28. 

4. Social Science Research: DATA-TEXT® 

The DATA-TEXT System, developed in the Department of Social 

Relations at Harvard University, is a system to aid people who are doing 

social science research. It was implemented on the IBM 7090/94. The user 

is allowed to specify information about the data and invoke a number of 

specific routines to do calculations for him. In some cases, the raw data 

(assumed to be on punch cards) can be used directly; whereas in other cases 

it must be modified somewhat before being used as input to do statistical 

analyses. For example, if the subject concerns the attitude of college students 

toward education, a partial indication of what the variables look like is 

  

*VAR(1) = X(1) = SEX OF SUBJECT (MALE/FEMALE) 

*VAR(2) = = X(2) == YEAR AT COLLEGE (FIRST/SECOND/THIRD/FOURTH) 

*VAR(3) = = X(17) = HOME REGION (NORTH/MIDWEST/WEST/SOUTH) 

*KVAR(4) = X(6)+1 == PARENTS EDUCATION (GRADE/HIGH SCHOOL/COLLEGE) 

*VAR(5) = ORDER X(4) = VERBAL IQ (1—-4=LOW/5—7=AVERAGE/OVER 7=HIGH) 

*VAR(6) == ORDER X(5) = MATH IQ) (1—4=LOW/5—7=AVERAGE/OVER 7==HIGH) 

*VAR(7) = X(4)/X(5) s= RELATIVE VERBAL/MATH ABILITY 

*VAR(8) = X(4)-+-X(5) = TOTAL IQ SCORE 

*VAR(9) = = X(7)**2 = SQUARED ACTIVITIES INDEX 

*VAR(10) = X(8)%4 + X(4)%2 + X(9) = SOCIAL—ECONOMIC STATUS 

*KVAR(11) = = (X(3)+X(5)) / (X(11)-4+X(12)) = RATIO OF STUDY TIME 

*VAR(12) = SQRT(X(27)%*2+ X(28)%*2) = MEAN SQUARE HOURS 

*VAR(13) = LOG(ABS X(35)/ABS X(36)) = DEVIATION INDEX 

*VAR(14) = INT X(43) = GRADE INDEX (A/B/C/D/E) 

*VAR(15) = ARCSIN X(29) = PERCENTAGE INDEX 

  

Figure IX-29. Example of DATA-TEXT input data. 

Source: Couch, A. 8. [DF67], p. 2. 

® This has no connection with the IBM on-line system for text editing called 
DATATEXT which is mentioned in Section IX.3.5.



1X.2.6.5. STROBES AND DIMATE 647 

given in Figure [X-29. In some cases it is necessary to transform the data, 

as illustrated in Figure I[X-30. The user can also cause the reading of text 

material and request various kinds of content analyses as shown in 

Figure IX-31. 

  

*VAR(51) = 1 IF X(81) = 5 = FIELD OF CONCENTRATION 

*OR = 2 IF X(81) = 6 AND IF X(82) LESS THAN 3 

*OR = 3 IF X(83) GREATER THAN 9 OR IF X(84) = BLANK 

*VAR(52) = X(25)+X(26)+X(27) IF X(30) = 0 = CONDITIONAL INDEX 

*OR = X(28)*50—X(29) IF X(30) = X(31) 

*xOR = SUM X(16—20) IF X(30) = BLANK 

*VAR(53—60) = X(53—60) IF VAR(1)==1—ARRAY OF SCORES 

*OR = X(63-70) IF (VAR(10)-+VAR(11)) LESS THAN VAR(12) 

*OR = SQRT X(83—90) IF X(9)=2 AND IF X(8)=5 AND IF X(7)=1 

  

Figure IX-30. Example of defining new variables based on conditions. 
Source: Couch, A. S. [DF67], p. 3. 

  

*DECK COMPARATIVE ANALYSIS OF INTERVIEW MATERIAL 

FORMAT (A6,74A1)/ UNIT, TEXT(74) 

*CONCEPTS 

FAMILY == MOTHER, FATHER, SON, DAUGHTER, CHILDREN 

SELF = |, MYSELF, ME, MINE, MY 

MALE = MAN, MASCULINE, HE, HIM, HIS, MEN, BOY 

FEMALE = WOMAN, FEMININE, SHE, HER, WOMEN, GIRL 

*CONCEPTS END 

*COMPUTE WORD FREQUENCIES 

*COMPUTE CONCEPT FREQUENCIES, COMPARE(UNIT) 

  

Figure IX-31. DATA-TEXT program. 

Source: Couch, A. S. [DF67], p. 4. 

5. Equipment Check-out: STROBES and DIMATE 

To assist in the repair of electronic systems, STROBES (Shared 7ime 

Repair Of Big Electronic Systems) involves hardware and also a means for 

the user to communicate with the hardware. The language statements are 

generally of the form 

label, opcode, parameter, parameter; comments 

Other slightly more powerful forms are available. A few of the operations 

available include TON (turn the oscilloscope trace on), TP/ (type in a set 
of integers starting at a specified location), JN/ (clear the temporary library), 

and ATO (type the alphanumeric contents of specified number of words



648  spECIALIZED LANGUAGES 

  

T TSK, MEM, 2, 1; 

0000 ENT; SPACE FOR THE MARK 

0001 PAR, 1; BRING THE FIRST PARAMETER 

0004 STL,, LO; STORE IT IN LOCATION LO 

0005 PAR, 2; BRING THE SECOND PARAMETER 

0010 STL,, L1; STORE IT IN LOCATION L! 

0013 STZ, 1, LO; STORE ZEROS IN THE LOCATION SPECIFIED BY LO 

0014 CAL,, L1; CLEAR ADD THE PATTERN IN LOCATION LI} 

0015 STL, 1, LO; STORE THE PATTERN IN THE LOCATION SPECIFIED BY LO 

0016 TOF; TURN OFF THE OSCILLOSCOPE TRACE 

0017 RTM; RETURN TO MARK 

0020 LO, 0; DECLARE LO AND ITS CONTENTS 

0021 LI, 0; DECLARE Li AND ITS CONTENTS 

0022 END; TERMINATE ASSEMBLY 

  

Figure IX-32. Example of STROBES program. The sequence numbers 

are actually typed by the STROBES system. 

Source: Quatse [QU65], p. 1071. 

beginning at the specified location). An illustration of what the maintenance 

engineer might do is shown in Figure [X-32. 

Another language to assist in check-out (see Scheff [SD66] and [SD66a]) 

is incorporated as part of DIMATE (Depot /nstalled Maintenance Automatic 

Test Equipment) to assist in conducting equipment tests. The complete lan- 

guage can be divided into three major categories: Basic test processes (e.g., 

establishing proper time delays and evaluating measured values against speci- 

fied limits), internal test program control and arithmetic computation (e.g., 

conditional jumps), and compiler processing. For example,'® the artificial 

language statement 

CONNECT 100 VDC J80—19 J80—20 

would be written to mean connect a 100-volt DC stimulus source to test points 

J80-19 and J80-12. Similarly, the sentence measure 30.3 ohms with a tolerance 

of 12 percent between joints J\-20 and P\-20 would be written as 

MEASURE 30.3 OHMS +12% J1—20 P1—20 

Stimuli available include voltage (both AC and DC), sine waves (both AM 

and FM), and pulse train. Measurement capabilities include voltage, resis- 

tance, frequency, and pulse width. Stimulus statements include relay supply, 

signal ground, and chassis ground. Measurement statements include AC 

and DC voltage, frequency, and time. A sample of a portion of a test pro- 

gram is given in Figure I[X-33. 

10 Scheff [SD66], p. 261. By permission of Association for Computing Machinery, Inc.



  

rOoL 

POOL 

T0602 

TO03 

7004 

PO04 

MSGi 

COMPILE VALIDATE9075 

PRINT C. MUGHES TEST PROGRAM. UUT NO. 9075, 

CONNECT 6,3 VFIL 6OCPS 8 Ji0e% Jide? 

CONNECT 220 vP3 00CPS JU209S Ji0ed Ji093 Jided 

MEASURE 250 voc 25 Jd1007 Ji098 

GOTO APOOd aog2 

PRINT VOLTAGE TOO HIGH, 

MALT 

PRINT VOLTAGE TOO LOW. 

CONNECT 45 VAMS LOOCPS ecreces Ji09 

PRINT CONNECT DC/AC PROGE YO Jideid,. PRESS PROCEED. 

PAUSE 

oNEASUREL,S VRF °,5 A 

CONNECT C SWITCH Ji0e14 Ji0012 cnccces 

MEASURE 

@oro 8003 

PRINT (MSGi) 

DISCONN 45 VRMS LOOCPS eesscee= Ji0e9d 

DELAY 2 SEC J100¢13 

CONNECT 5,0 voc J10414 J1006 

TRIGGER 

MEASURE 0 KOWMS 002 J100145 J10°46 
LOWER LIMIY 18 OUT OF RANGE 

GOTO ° Ae A004 

PRINT (MSGi) 

DISCONN € SWITCH 

CONNECT 2.0 VKAS SKC °e10D8 J410/ 
ATTEN OUTPUT AT ai13Ji4, CHECK PRINT MESSAGE 

DELAY 20 MSEC 

MEASURE 4 KOWMS 0% Ji0015 yideo16 

aoro P005 Po04 

MALT 

PRINT END OF PROGRAM, 

WALT 

MESSAGE TEST OUT OF TOLERANCE, 

&NOD 9073 4 a 

  

Figure IX-33. Program for testing equipment. 

Source: Scheff [SD66], p. 266. By permission of Association for Computing 
Machinery, Inc. 

649



650 = sPECIALIZED LANGUAGES 

1X.3. SPECIALIZED LANGUAGES ACROSS APPLICATION AREAS 

IX.3.1. DISCRETE SIMULATION 

1. Introduction 

The subject of simulation languages is probably the one field that is 

receiving insufficient space in this book. That complaint might be rendered 

on the basis of the significant number of simulation languages that have 

been developed, the numbers of computers on which they have been imple- 

mented, and the amount of their usage, which might be as widespread as the 

string and list processing languages or the formal algebraic manipulation 

languages. The justification for including the simulation languages in this 

more specialized area with limited descriptions is that their usage is unique 

and presently does not appear to represent or supply much carry-over into 

other fields. In the areas of list and string processing, the techniques (if not 

the individual languages) have received significant usage in a wide variety 

of places and languages. The formal algebraic manipulation languages are 

either newer or less generally available, but they represent a potentially 

major usage for the entire field of scientific problems; most people 

with mathematical training should be able to determine for themselves the 

meaning of these languages and perhaps form an opinion on their potential 

future value. In the case of simulation languages, unless an individual has 

actually tried to simulate a system or a process, he is not apt to appreciate 

or completely understand the importance or subtleties of the facilities 

being provided. 

There are two major subcategories within the simulation languages: 

Continuous and discrete. The continuous, and particularly the simulation 

of analog computers, was discussed in Section IX.2.4 rather than here 

because the languages require specialized knowledge of analog computers, 

whereas those in this section require only detailed knowledge of any problem 

area to be simulated. The discrete simulation languages themselves are 

again subdivided into flowchart-oriented and statement-oriented languages. 

In the first case, the user 1s defining blocks (and then flowcharts or equivalent 

diagrams) and assembling these blocks into a program structure that repre- 

sents the system to be simulated. The statement description languages use 

programming statements to define conditions that must apply before certain 

actions can take place and to describe the results of these actions (including 

use of the time relationships between the system elements and activities). 

The most notable example of the block diagram approach is GPSS, while 

SIMSCRIPT exemplifies the event school. Stated another way, GPSS is 

fundamentally different from most of the other languages because it de- 

scribes the structure and action of a system by using block diagrams in which



1X.3.1.2. DYNAMO 651 

each block represents a step in the action of the system. This is higher level 
but less flexible than the other languages which consist of statements com- 
bined to form subprograms. Except for GPSS and DYNAMO, each lan- 
guage requires some knowledge or understanding of a particular general 
purpose language. 

A still further distinction that can be made is whether the languages 

are stand-alone or additions to existing languages. SIMULA is a direct 

extension of ALGOL; the others are independent, except that SIMSCRIPT 

is an extended FORTRAN-like language which in its first version used 

the implementation technique of translating to FORTRAN statements. 

One other characteristic of the simulation languages is important to 

note. The latter represent a field in which the existence of a Janguage spurred 

a great deal of activity, whereas the previous sets of subroutine packages 

had been used but not as extensively. The most widely used languages are 

GPSS and SIMSCRIPT; most of the others are research-oriented. 

For the reader who is interested in pursuing the differences and simi- 

larities of these systems in a general way, there are several excellent articles, 

in particular those by Teichroew and Lubin [TE66], Krasnow [KQ67], and 

Kiviat [KW66]. I would like to specifically acknowledge the invaluable 

background given to me by those articles in preparing much of this section. 

2. DYNAMO 

One of the earliest of the simulation languages, and the only one dis- 

cussed here which is continuous, is DYNAMO; this was developed at M.I.T. 

and completed as early as 1959 on the IBM 704. Versions were developed on 

the 709 and 7090 computers. A significantly improved version, DY NAMO II, 

was written using AED-0 (see Section [X.3.4.2) and was running on the 

7094. Plans exist for making DYNAMO II available on the IBM System/360 

and GE 645. Only DYNAMO (I) is discussed here. 

DYNAMO is a continuous system, meaning that every basic variable 

is continuous and has a first derivative with respect to time. DYNAMO 

actually approximates the continuous process by a set of first-order difference 

equations. In this sense it is similar to the languages discussed in Section 

IX.2.4, but the area of usage is the same as the others in this section. Level 

equations are used to describe the basic variables. A level at TIME K depends 

only upon the preceding time instant (TIME J) and the rates of change over 
the time interval JK (K = J + DT), where DT is a standard time incre- 
ment. For example, an inventory at TIME K (=IAR.K) is equal to the inven- 

tory at TIME J (=IAR.J), plus what was received during the interval JK 

(=SRR.JK), minus what was shipped during the interval JK (=SSR.JK). This 

is represented by the level equation 

IAR.K = IAR.J + (DT) (SRR.JK — SSR.JK)



652 sPECIALIZED LANGUAGES 

While that happens to be equivalent to the exact language format, most 

equations are represented differently than normally written. For example, 

V = V + (DT) ((P+Q)/Y) 

is actually punched exactly as 

V.K = V.J+(DT) (1/+ Y)(+P+Q) 

  

RUN 

NOTE 

NOTE 

TL 

TL 

20A 

20A 

54R 

4OR 

12A 

3L 

39R 

NOTE 

NOTE 

NOTE 

12N 

6N 

6N 

NOTE 

NOTE 

NOTE 

7R 

45A 

NOTE 

NOTE 

NOTE 

N
A
N
A
A
N
A
 

NOTE 

PRINT 

PLOT 

M478—248,DYN,TEST,1,1,0,0 

2698JP 

MODEL OF RETAIL STORE 

IAR.K==IAR.J-+(DT) (SRR.JK—SSR.JK) 
UOR.K==UOR.J+(DT) (RRR.JK-+SSR.JK) 
NIR.K==IAR.K/DT 
STR.K=UOR.K/DFR 
SSR.KL=MIN(STR.K,NIR.K) 
PSR.KL==RRR.JK-+(1/DIR) (IDR.K—IAR.K) 
IDR.K==(AIR) (RSR.K) 
RSR.K==RSR.J-+(DT) (1/DRR) (RRR.JK-RSR.J) 
SRR.KL =DELAY3(PSR.JK,DTR) 

INITIAL CONDITIONS 

UOR=(DFR) (RRR) 

RSR=RRR 

IAR=IDR 

INPUT 

RRR.KL=RRI-+RCR.K 

RCR.K=STEP(STH,5) 

CONSTANTS 

AIR=8 WKS 
DFR=1 WK 
DIR=4 WKS 
DRR=8 WKS 
DTR=2 WKS 
RRI=1000 ITEMS/WK 
STH=100 ITEMS/WK 

1)IAR,IDR/2) UOR/3)RRR,SSR/4)PSR,SRR 
IAR=1, UOR=U/RRR=R,SSR=S,PSR=P,SRR=Q 

SPEC DT=0.1/LENGTH=10/PRTPER=5/PLTPER=0 

INVENTORY ACTUAL 

UNFILLED ORDERS 

NEGATIVE INVENTORY 

SHIPMENTS TRIED 

SHIPMENTS SENT 

PURCHASE ORDERS SENT 

INVENTORY DESIRED 

REQUISITIONS SMOOTHED 

SHIPMENTS RECEIVED 

REQUISITIONS RECEIVED 

REQUISITION CHANGE 

CONSTANT FOR INVENTORY 

DELAY IN FILLING ORDERS 

DLY REFILLING INVENTORY 

REQUISITION SMTHNG T C 

DELAY IN TRANSIT 

REQ. RECEIVED INITIALLY 

STEP HEIGHT 

  

Figure IX-34. DYNAMO example of model of retail store. 

Source: Pugh [PG63], p. 17.



IX.3.1.3. GPss 653 

Multiplication is generally noted implicitly, i.e., without any intervening 

operator. 

DYNAMO assumes that it is dealing with a continuous process with 

each state variable having its level and all derivatives with respect to time 

existing and known at each instant of time. DYNAMO also provides 

auxiliary equations to allow more complicated variables, initial value equa- 

tions, constants, and tables for defining arbitrary functions. DYNAMO 

obtains results by performing a sequential solution of all the equations de- 

scribing the system to be simulated. An example of a DYNAMO program 

is given in Figure [X-34. 

3. GPSS 

One of the earliest simulation languages is GPSS, first described publicly 

in 1961 (see Gordon [GG6l]). It was originally implemented on the IBM 

  

  

XXXXX 
  

A,B,C,D       

ADVANCE ALTER PRINT 

ASSEMBLE ASSIGN TRACE 
BUFFER INDEX UNTRACE 
COUNT LOOP WRITE 
DEPART MARK 
ENTER PRIORITY 
EXECUTE SAVE VALUE 
GATHER 
JOIN 

LEAVE i C) 
LOGIC EXAMINE 
MATCH GATE 

PREEMPT SCAN 

QUEUE GENERATE TEST 

RELEASE TERMINATE TRANSFER 

REMOVE 
RETURN 

SEIZE 
SELECT 
SPLIT 
TABULATE 

UNLINK 

  

  

Figure IX-35. Some of the GPSS block types and corresponding operations. 

Source: [IB67j], p. 73. Reprinted by permission from General Purpose 

Simulation System/360 Introductory User’s Manual. © 1967 by International 

Business Machines Corporation.



654 = sPECIALIZED LANGUAGES 

7090 and since then newer versions have been implemented on other machines, 

e.g., IBM 7040/44, 7090/94, System/360, RCA Spectra 70, and the UNIVAC 

1107. 

Unlike most of the other simulation languages, GPSS programs are 

based on a block diagram drawn by the user to represent the system he 

wishes to simulate. The principal data elements in GPSS are transaction 

(representing units of traffic), equipment acted upon by transactions (includ- 

ing facilities, storages, and logic switches), and blocks (specifying the logic 

of the system). Other elements are provided for statistical measurements, 

  

  

Ships arrive at harbor in a specified arrival pattern. | 

J 
If pier is free, dock ship and go to next block. If 

busy, join waiting line, if any. 

JL 
Unload cargo at a specified rate. Unloading time is 
a function of amount of cargo. When finished, con- 

  

  

  

  

    

      
  

  

tinue. 

L 

Record total time ship spent in harbor. | 

. L 
Ship leaves harbor. | 

LOCATION OPERATION 

* SIMPLE HARBOR SYSTEM 

* BLOCK DEFINITION CARDS 

GENERATE 32,5 ONE SHIP EVERY 322%5 HOURS 

QUEUE 1 JOIN QUEUE, WAIT FOR PIER 

SEIZE 1 OBTAIN PIER WHEN FREE 

DEPART 1 LEAVE QUEUE (NO LONGER WAITING) 

ADVANCE 25,20 HOLD PIER 2520 HOURS 

RELEASE 1 FREE PIER FOR NEXT SHIP 

TABULATE 10 ENTER TRANSIT TIME IN TABLE 10 

TERMINATE 1 REMOVE SHIP FROM SYSTEM 

* 

* TABLE DEFINITION CARD 

10 TABLE M1,10,5,20 DEFINE TRANSIT TIME TABLE 

* 

* CONTROL CARD 

START 100 RUN FOR 100 TERMINATIONS 

  

Figure IX-36. Example of harbor arrival problem and GPSS solution. 

Source: [I[B67j], pp. 1 and 6. Reprinted by permission from General Purpose 

System/360 Introductory User’s Manual. © 1967 by International Business 

Machines Corporation.



1X.3.1.4. SIMSCRIPT 655 

computation, data referencing, and chaining. A set of subroutines is associ- 

ated with each type of standard block. The system is represented in terms 

of these blocks, and the program then creates transactions, moves them to 

the specified blocks, and executes the actions associated with each block. 

Some of the block formats and the symbols associated with them are shown 

in Figure IX-35. An example of a simple harbor system is shown in Figure 

IX-36. 
GPSS appears to be easier to learn than the statement-oriented simu- 

lation languages, although it is somewhat less flexible. 

4. SIMSCRIPT 

SIMSCRIPT was developed at the RAND Corporation in the early 
1960’s, based on other work in developing programming packages. It has 

undergone improvement, including the development of SIMSCRIPT I.5 

and II. SIMSCRIPT I.5 has been widely implemented and runs on at least 

the following machines: IBM 7090/94, System/360, CDC 3600, 3800, 6400, 

6600, and 6800; Philco 210, 211 and 212; UNIVAC 490, 1107, and 1108. 
The basic idea in SIMSCRIPT is that a system can be described in terms 

of entities, attributes (i.e., the properties associated with entities), and sets 

  

Entity Operations Decision Commands 

Control and Decision Phrases 

CREATE IF 
DESTROY GO TO 
CAUSE FIND 
CANCEL Input/Output Commands 
FILE SAVE 

REMOVE READ 

WRITE 

Arithmetic and Control Commands ADVANCE 

LET BACKSPACE 

STORE REWIND 

DO TO ENDFILE 
LOOP LOAD 
REPEAT RECORD MEMORY 

RESTORE STATUS 

Miscellaneous Commands 

FOR ACCUMULATE 

WITH COMPUTE 

OR STOP 

AND DIMENSION 

WHERE FORTRAN Inserts 

  

Figure IX-37. Names of SIMSCRIPT commands and phrases. 

Source: Markowitz, Hausner, and Karr [MA63]}.



656  sPECIALIZED LANGUAGES 

(groups of entities). For example, an entity might be PERSON; an attribute 

might be ADDRESS, AGE, and SEX; and sets might be ACM, IEEE, and SIAM. 

Unlike the block diagram approach in GPSS, the user writes a set of state- 

ments to indicate the action of the system. For example, if an order is shipped 

to a base, its arrival following a transit-time delay might be caused by the 

following statements:!! 

CREATE ARRVL 

STORE ORDER IN ITEM(ARRVL) 

STORE BASE IN DESTN(ARRVL) 

CAUSE ARRVL AT TIME + TRANT 

The language is very FORTRAN -like in appearance; in fact, its initial 

implementation was by means of a translation to FORTRAN programs. 

A list of the names of available commands and phrases is shown in Figure 

IX-37. An example is given in Figure IX-38. 

  

ENDOGENOUS EVENT EPROC 

STORE ORDRP(EPROC) IN ORDER 

STORE MGPRC(EPROC) IN MG 

DESTROY EPROC 

C — DISPOSITION OF THE ORDER — 

IF ROUT(ORDER) IS EMPTY, GO TO 10 

CALL ARRVL(ORDER) 

GO TO 20 

10 LET CUMCT == CUMCT -++ TIME — DATE(ORDER) 

LET NORDR = NORDR + 1.0 

DESTROY ORDER 

C — DISPOSITION OF THE MACHINE — 

20 IF QUE(MG) IS EMPTY, GO TO 30 

REMOVE FIRST ORDER FROM QUE(MG) 

CALL ALLOC(MG, ORDER) 

ACCUMULATE NINQ(MG) INTO CUMQ(MG) SINCE TMQ(MG), 

X POST NINQ(MG) — 1.0 

RETURN 

30 LET NOAVL(MG) = NOAVL(MG) + 1 

RETURN 

END 

  

Figure IX-38. SIMSCRIPT program for order in machine shop. 

Source: Markowitz, Hausner, and Karr [MA63], p. 27. 

5. SOL 

SOL (Simulation Oriented Language) is an attempt to combine the 

best features of GPSS and SIMSCRIPT but to cast them in an ALGOL-like 

notation. It has apparently been implemented on the Burroughs B5000/5500 

and the UNIVAC 1107. 

  

1! Markowitz, Hausner, and Karr [MA63], p. 7.



1X.3.1.7, SIMULA 657 

The fundamental elements in SOL are local and global variables, 
transactions, facilities, and stores. Each of these may have a value. A formal 
definition of the syntax of SOL is given in Knuth and McNeley [KN64a]. 

An example involving the simulation of a communication system with 

multiple on-line consoles is given in Figure [X-39. Note that although SOL 

is very ALGOL-like, it is not an extension of ALGOL as is SIMULA, 

discussed in Section IX.3.1.7. 

6. MILITRAN 

MILITRAN was developed on the 7090/94 to provide a language 

specifically useful in simulating the analysis of military systems, although 

it is certainly not restricted to that. It is FORTRAN-like in its notational 

approach and in some of its facilities. In addition to providing simulation 
capability, it also provides well-defined list processing operations. A list 

of the statements is given in Figure IX-40. An example is shown in Figure 

IX-41. 

7. SIMULA 

SIMULA (SIMUlation LAnguage) is a true extension of ALGOL 60. 

It was originally implemented on the UNIVAC 1107 early in 1965. The 

basic idea is to add to ALGOL the concept of a collection of programs 

called processes conceptually operating in parallel. The processes perform 

  

Three 
other 
PBU 
pairs 

  

Le
 

  
  

  

      
  

  

              

SB[2] =< > 

" “ ZA 

Tu[6] sB(3] Jo 

Queues Terminal Site Communication Processor buffer Processor 
units buffers lines units (PBU’s) 

Figure IX-39. (cont. next page)



658 = sPECIALIZED LANGUAGES 

Figure 1X-39., (cont.) 

begin 

facility TU[6], SB[3], LINE, COMPUTER; 

store 10 QUEUE[6]; 

integer TUSTATE[6], SBNUMBER[6], 

TUMESSAGE[6]; 

table (2000 step 500 until 15000) TABLE[6]; 

process MASTER CONTROL; 

begin SBNUMBER[1]<—1; SBNUMBER[2]<—2; 

SBNUMBER[3]<—1; SBNUMBER[4]<—2; 

SBNUMBER[5]<—1; SBNUMBER[6]—3; 

wait 60 X 60 X 1000; stop end; 

process USERS; 

begin integer Q, START TIME, MESSAGE TYPE; 

new transaction to START; new transaction 

to START; 

ORIGIN: new transaction to START; wait 

0:5000; go to ORIGIN; 

START: Qe1:6; enter QUEVE[Q]; 
MESSAGE TYPE<(1,1,2,2,2,2,2,3,3,3); 

seize TU[Q]; 
TUMESSAGE[Q]<—MESSAGE TYPE; 

wait 6000:8000; 

START TIME<—time; 

output #TU#, Q, SENDS MESSAGEF, 

MESSAGE TYPE, # AT TIMEF, time; 

TUSTATE[Q]<1; 

wait until TUSTATE[Q]=0; 

release TU[Q]; leave QUEUE[Q]; 

tabulate (time —START TIME) in TABLE[Q]; 

output # TUF, Q, FFRECEIVES REPLY AT 

TIME #, time; 

cancel end; 

process PBU; begin integer S, T, WORDS; 

new transaction to SCAN; T<—3; 

SCAN: T<—T+1; if T>6 then T—1; wait 1; 

S<SBNUMBER[T]; 
seize LINE; 

wait 5; if SB[S] busy then (wait 80; release 

LINE; go to SCAN); 

seize SB[S]; wait 15; if TUSTATE[T]1 then 

(wait 65; release LINE; release SB[S]; go to 

SCAN); 

wait 225; SEND: wait 170; if pr(0.02) then 

(wait 20; go to SEND); 

new transaction to COMPUTATION; wait 20; 

release SB[S]; 
release LINE; TUSTATE[T] <2; cancel; 

COMPUTATION: seize COMPUTER; 

WORDS<—-TUMESSAGE[T]-+ 2; 

wait (if WORDS=3 then 250 else if WORDS 

=4 then 300 else 400); 

release COMPUTER; 

OUTPUT: wait 1; seize LINE; wait 5; 

if SB[S] busy then (wait 80; release LINE; 

go to OUTPUT); 

seize SB[S]; wait 75; 
RECEIVE: wait 80; if pr(0.01) then (wait 20; 

go to RECEIVE); 

release LINE; 

WORDS+WORDS—1; 

if WORDS=O then new transaction to 

SCAN; 

wait 325; release SB[S]; wait 170; 
if WORDS>0 then go to OUTPUT; 

TUSTATE[T]—0; cancel end; 

process OTHER PBUS; 

begin integer |; |—6; 

CREATE: new transaction to COMPUTE; 

i<_I—1,; if I>0O then go to CREATE; cancel; 

COMPUTE: wait 3200: 5000; seize COMPUTER; 

wait (250, 250, 300, 300, 300, 300, 300, 400, 

400, 400); 

release COMPUTER; go to COMPUTE end; 

end. 

  

Figure IX-39. Complete SOL program for the multiple console on-line 

communication system shown in the diagram on the preceding page. 

Source: Knuth and McNeley [K N64], p. 403.



1X.3.1.7. SIMULA 659 

  

Substitution Statement 

a=b 

Control Statements 

GO TO s 

PAUSE j 

STOP 

IF (b),st,s¢ 
UNLESS (b),s¢,s+ 

DO (s) UNTIL b, n=e1,e2 

DO (s) FOR a.IN.b 

CONTINUE 

Procedure Statements 

PROCEDURE n 

PROCEDURE n(q1,a2,...,0n) 

EXECUTE n 

EXECUTE n (a1,a2,.--,Gn) 

RETURN 

RETURN a 

Input/Output Statements 

FORMAT (format specification) 

READ (t,s) list 

WRITE (f,s) list 

READWRITE (f7,s7,%2,82) list 

BINARY READ (f) list 

BINARY WRITE (f) list 

END FILE RETURN (s) 

ENDR ECORD RETURN (s) 

Environment Declarations 

REAL n(i7,i2,.-+,ik),+«+)m(i1,12,+++,ij) 

INTEGER 17 (i7,i2,-++,ik),+-+,Mm(i1,12,+++ 4) 

LOGICAL n1(i1,i2,--+ik),«+-,Mmli1,i2,-++,/j) 

OBJECT n7(i7),n2(i2),..-,2m(im) 

PROGRAM OBJECT 11 (i1,i2,---,ik),-++,Mm(i1,12,-++,4j) 

CLASS (c) CONTAINS a1,a2,...,0m 

NORMAL MODE m}7(a1,02,..-,ak),m2(b1,b2,...,br) 

VECTOR N((a1,02,.-+,ai),d1,d2,.--,di) 

COMMON 7],n2,...,Ni 

List Processing Statements 

LIST n ((c7,¢2,---,ci),d) 

LENGTH (n) 

RESET LENGTH (n) to p 

PLACE (e1,e2,...,e)) IN n 

REMOVE ENTRY n(k) 

PLACE ENTRY m(j) IN n 

REPLACE ENTRY n(k) BY (e7,€2,..-,ei) 

REPLACE ENTRY n(k) BY ENTRY m(j) 

REMOVE (b7,b2,...,bi) FROM n 

REPLACE (b7,b2,...,bi) BY (e7,e2,...,ej]) IN n 

REPLACE (bj,b2,...,bi) BY ENTRY m(j) IN n 

MINIMUM INDEX (n(b7,b2,..-,bi,bx),s) 

RANDOM INDEX (n(b1,b2,...,bi,bx),s) 

Event Statements 

PERMANENT EVENT n((a1,02,.--,ai),d) 

CONTINGENT EVENT n((a1],c2,...,ai),d) 

NEXT EVENT 

NEXT EVENT (n7,n2,...,ni) 

BACKSPACE (ft) 

BACKSPACE FILE (f) 

END FILE (f) NEXT EVENT EXCEPT (n7,n2,...,ni) 

REWIND (t) END 

UNLOAD (ft) END CONTINGENT EVENTS (s) 

  

Figure IX-40. List of MILITRAN statements. 

Source: MILITRAN...A Technical Summary, Gulton Systems Research 

Group, Inc., Mineola, N.Y., p. 6. (Booklet). 

their operations in groups called active phases or events. A process carries 

data and executes actions. Some of the extensions are purely syntactic, while 

others simply provide a set of relevant and necessary procedures. 
It is particularly worth noting that significant elements of list process- 

ing are provided.



660 sPECIALIZED LANGUAGES 

  

READ (5,INPUT) ARRIVAL RATE, SERVICE RATE, DAYS PER RUN, 

] PROFIT PER TRUCK, COST PER SPACE PER DAY 

INPUT FORMAT (5F10.3) 

PLACE (DAYS PER RUN) IN END OF RUN 

PLACE (—LOG(RANDOM)/ARRIVAL RATE) IN ARRIVAL 

NEXT EVENT ... SIMULATION BEGINS 

CONTINGENT EVENT ARRIVAL ((ARRIVAL TIME), 1) 

IF(LENGTH(SERVICE QUEUE).GE.SPACES), NEXT TRUCK 

SERVE TIME = MAX(TIME,SERVE TIME) — LOG(RANDOM)/SERVICE RATE 

PLACE (SERVE TIME) IN SERVICE QUEUE 

NEXT TRUCK REPLACE ENTRY ARRIVAL (1) BY (TIME—LOG(RANDOM)/ARRIVAL RATE) 

END ... THIS STATEMENT IS ALSO INTERPRETED AS ‘NEXT EVENT' 

CONTINGENT EVENT SERVICE QUEUE ((SERVICE TIME), SPACES) 

PROFIT = PROFIT + PROFIT PER TRUCK 

REMOVE ENTRY SERVICE QUEUE (INDEX) 

END 

CONTINGENT EVENT END OF RUN ((END TIME), 1) 

WRITE (6, OUTPUT) PROFIT — SPACESXTIMEXCOST PER SPACE PER DAY 

OUTPUT FORMAT (9H PROFIT = F7.2) 

STOP 

END 

  

Figure IX-41. MILITRAN program for finite length queue. 
Source: MILITRAN...a Technical Summary, Gulton Systems Research 

Group, Inc. Mineola, N.Y., p. 7. (Booklet.) 

An example of a skeletal description of a classical job shop system 1s 

shown in Figure [X-42. 

8. OPS 

OPS (which was originally an acronym for On-Line Process Synthesizer) 

is the one simulation language designed for use with (and embedded in) 

an on-line system (namely M.I.T.’s CTSS, see Crismann [ZR65]). It went 

through several versions, under the direction of Professor M. Greenberger 

of M.I.T., starting in 1964; the one described here is OPS-3. Ideas for 1m- 

provements in OPS-4 are mentioned briefly later. OPS is considered to be 

experimental in the sense that it is trying to explain how to do on-line simu- 

lations effectively. Because of the on-line environment, the user has many 

advantages in changing and working on parts of his model. 

The two main concepts in OPS are the KOP (an ordered set of new 

operators written in terms of old ones) and the AGENDA, which is a schedule 

of activities and is available for modification by the user. Activities are 

scheduled on the AGENDA for execution at a specified time or as the result 

of meeting a particular condition. Delays and waits are used to combine 

events to define activities.



1X.3.1.8. OPS 661 

  

begin integer nmg; read(nmg); 

SIMULA begin integer array available [1 : nmg]; 

set arrary que [1]: nmg]; 

activity order(n); integer n; 

begin integer i, mg; integer array mgroup[1 : n]; 

array ptime[1: n]; 

read(mgroup, ptime); 

for i:=1 step | until n do 

begin mg := mgroup [i]; 

if available[mg] = 0 then 

begin wait (que[mg]); remove(current) end 

else available[mg] := available[mg] —1; 

hold(ptime[i]); 
if empty(que[mg]) then available[mg] := available[mg] +1 

else activate first (que[mg]) 

end path through shop 

end order; 

integern; real T; 

read(available); 

next: read(n,1T); reactive current at T; 

ifn > 0 then begin activate new order(n); go to next end 

end SIMULA end program 

  

Figure IX-42. Skeleton SIMULA description of job shop system. 

Source: Dahl and Nygaard [DH66], p. 676. By permission of Association 
for Computing Machinery, Inc. 

A SCHED operator has three options (to denote time T or the current time 

or to meet a condition), and parameters may be passed to an activity when 

it is called. Conditions are (unfortunately) specified in prefix notation, but 

they may be quite complex, e.g., SCHED JOE WHEN OR LESS A B GREATER 

C 25, which places a conditional call to the activity named JOE on the 

AGENDA with stipulations on the relation to the variable TIME and with 

the condition that execution should take place when either A is less than B 

or C is greater than 25. 

Other operators include DELAY, WAIT, RETRNA, PRINTK, CALLAK, 

LOCAL, DRAW, CANCEL, RSCHED, PRINT, and READ. An example is shown 
in Figure 1X-43. 

Plans for OPS-4 are described in Jones [JM67]. The key points are as 

follows: It will use the MULTICS system being implemented on the 

GE 645 at Project MAC; PL/I will be used as the basic language, and special 

data types (e.g., sets, queues, and tables) will be added; the activity repre- 

sentation of SOL and SIMULA will be used rather than the event orien- 

tation of SIMSCRIPT.



662 SPECIALIZED LANGUAGES 

  

KOP ARRIVE 

10 SETQ =Q +1 

20 DRAW DT EXPONE 5 

30 SCHEDK ARRIVE AT SUM TIME DT 

40 SCHEDK STAT IMMED 

390) =RETRNA 

KOP STAT 

10 IF @ .LE. QMAX 

20 GOTO 50 

30 SET QMAX = @ 

40 PRINT QMAX 

590 =#=IF S .GE. 5 

60 WAIT LESS S 5 

70 SETS =S + 1 

80 SCHEDK SERVIC IMMED 

90 RETRNA 

KOP SERVIC 

10 SETQ =Q- 1 

20 DRAW STIME RANDOM 5 50 

30 DELAY STIME 

40 SETS =S- 1 

50 RETRNA 

  

Figure FX-43. OPS-3 program for multi-server queuing model. 

Source: Greenberger and Jones [YP66], pp. 135-136. By permission of 

Association for Computing Machinery, Inc. 

TX.3.2. QUERY 

1. Introduction 

The subject area encompassed by the phrase query language is an ex- 

tremely wide one, with a number of different concepts shading from one to 

another in a hazy fashion. Some of the terms which tend to become inter- 

mingled in this way are query languages, information retrieval languages, 

data base and file management systems, natural languages, and question- 

answering systems. Conceptually, these range from one extreme involving 

a fixed format file and a few very rigid ways in which to extract information 

from it, to the other extreme which includes the general question-answering 

systems from English text. Two useful surveys are given by Simmons, [SE65] 

and [SE66a]. Part of the difficulty in sorting out these concepts is that it 

depends considerably on the viewpoint of the user. In one case, the prime 

interest (perhaps technically if not administratively) is in the structure of 

the file. In such a case, the main interest lies in determining how complex



1X.3.2. QUERY 663 

a data structure can be incorporated, how easily it can be updated and 
changed, and how complex are the queries which can be addressed to it. 
In this instance, the complexity of the query applies to the substance of the 
question itself and not to the way in which it is phrased. For example, a state- 
ment saying FIND SHIPS/BH RH: NOT NY/6M, might have the same logical 
meaning as FIND ALL THE SHIPS LOCATED IN BOSTON HARBOR WHO 

HAVE RED-HEADED MEN ABOARD AND HAVE NOT BEEN IN NEW YORK 

WITHIN THE PAST SIX MONTHS. 

Although the format is considerably different in a case like this, the 

retrieval is based on a very simple set of Boolean conditions, while the lan- 

guage in which it is phrased may be simple or complex. On the other hand, 

if we ask WHAT NEW YORK CITIES HAVE A LARGER POPULATION THAN 

PODUNK?, this is actually more complex from a data retrieval point of view 

because New York can be both a city and state and the question implies 

that the system is able to ascertain which is being referred to from the 

context of the question. 

Most of these systems really have two languages associated with them; 

one for file (or data) definition and updating, and the other for use in re- 

trieving information. The latter is usually a stable and well-defined language, 

i.e., one that makes an attempt to look natural but is in reality very restricted 

and formalized like the languages in earlier chapters. (No attempt is made 

here to discuss the file management language unless it coincides with the 

retrieval language.) Some of these query languages may or may not have 

computational facilities, i.e., permit counting, tabulating, or simple formula 

evaluation. It is no secret (or surprise) that a number of the efforts in this 

area have been motivated by the needs of the military command and control 

environment. In a military situation, it is considered desirable by many 

(although not all) people to allow the military commander direct access to 

the machine to obtain the information he wants. Unfortunately, there may 

be inherent ambiguities in the questions posed that are understood only by 

the people preparing the system. For example, if somebody were to query a 

system and ask HOW MANY PLANES WERE LOST DURING WORLD WAR II?, 

the answer would really depend on the definition of the word Jost and 

this might only be known to the people who created the files. Even more 

undesirable is the possibility that the person making the request might not 

realize the potential ambiguity and misapply the resulting answers. 

Most systems concerned with data management require some capability 

to do logical processing, computations, and input/output. This is not unlike 

any programming system, but there is an added need here for good file 

manipulation capabilities. For the sake of those readers who may be inter- 

ested in the more general file management problem, a number of items are



664  sPECIALIZED LANGUAGES 

listed in the references at the end of the chapter, even though they have 

little or no interest from a language point of view. Those systems that I 
deem to be the most interesting or typical, from a language viewpoint, 

are discussed below. 

The phrase question-answering system is applied primarily to those 

systems which accept a natural-looking English statement or question as 

input, and provide answers based on files whose format might be rigidly 

fixed as in the data base systems, or general text from an encyclopedia, or 

somewhere in between. Almost all these systems, of necessity, concern 

themselves with the three aspects of syntax, semantics, and fact retrieval. 

In the syntax, the sentence is analyzed to obtain its grammatical structure; 

the semantics determines which of several possible meanings is most relevant 

in the given case; and the fact retrieval portion actually does the work that 
is required. This last aspect becomes related to the file structure problem. 

If we assume that the information stored is well structured but sufficiently 

general to be capable of being used to answer a number of questions, then 

its method of storage and retrieval becomes a significant problem. On the 

other hand, some of the systems use English text as a data base from which 

to find answers. Naturally, the flexibility of the English language input is 

quite significant. Some of the systems, e.g., STUDENT (see Bobrow [BB64], 

[BB64c]), operate primarily on recognizing key words. Those mentioned 

later perform grammatical analysis to varying levels of complexity. Those 

readers who are particularly interested in this aspect of the query language 

problem will find additional useful references in Section X.5. 

2. COLINGO and C-10 

One of the systems in the general category of higher artificial languages 

with a wide data base is COLINGO, developed at the MITRE Corporation 

and implemented on the IBM 1401. More accurately, COLINGO 1s a system 

of programs called by an interpreter for the COLINGO control language. 

The files are described using a language based heavily on the COBOL DATA 

DIVISION. Typical statements in COLINGO are the following: 

GET FORCE—STATUS—FILE IF UNIT EQ 82—ABN COMPUTE 

FORCE—RATIO TOTAL—OFFICERS/ TOTAL—EM 

GET A-—FILE IF STRENGTH/AUTH GR 500 EXECUTE 01 02 03 

IF/NOT PRINT ALL 

The basic command list in COLINGO is shown in Figure 1X-44.



1X.3.2.3. 473L QUERY 665 

  

Input/Output 

GET 

PRINT 

TYPE 

PUNCH 

REPORT 

WRITE 

DUPLICATE 

TITLE IS 

CLASSIFICATION IS 

DTG IS 

Data Manipulation 

and Computation 

IF 

IF/NOT 
COMPUTE 

HOLD 

SORT 

File Generation 

GENERATE 

DIG 

ANALYZE 

File Update 

UPDATE 

CHANGE 

Sequence Control 

EXECUTE 

Miscellaneous 

COMMENT 

PAUSE 

Maintenance 

ADD 

DELETE 

UPDATE 

SET 

CLEAR 

ALLOCATE 

CREATE 

  

Figure IX-44. List of basic commands in COLINGO. 
Source: Spitzer, Robertson, and Neuse [SZ65], p. 43. Reprinted from 

INFORMATION SYSTEM SCIENCES: Proceedings of the Second Con- 

gress, Ed. by Joseph Spiegel and Donald E. Walker, Spartan Books, 1964. 

Attempts to improve COLINGO by putting it on a larger machine and 

obtaining greater flexibility lead to the C-10 system developed on the 1410. 

A small sample of a C-10 program is shown in Figure IX-45. Note that it 

really looks very much like the style of programming languages discussed 

in earlier chapters. 

Both COLINGO and C-10 are more systems than languages, and the 

file structure in C-10 is more developed than in COLINGO. 

3. 473L Query 

Another system with similar principles but which allows more com- 

plicated (although still formally defined) sentences is the query language 

developed for the Air Force 473L system. A typical statement in this system



666  sPECIALIZED LANGUAGES 

  

**REPORT IS TO COVER DIVISIONS, DEPARTMENTS 
T2, T.TITLE, T.QUANT'*, GROUPS, OR SECTIONS; AND N, 

T.CODE, T.UNIT,**HOW MANY UNITS TO REPORT ON, 
INDICATING 

**OECLARE VARIABLES, 
ee 

** INITIALIZE. 

**ENCREMENTS HAVE TO DO WITH THE 
1f;END;**ASSIGNMENT OF NUMBERS TO UNITS, 

*'CPERSONNEL FILE HAS BEEN SORTED BY 

BEGIN; , 
VARIABLE Tl, 

. T.SAL, 
IND, TN, 13, INC, INCL, *? 
LIMIT, LIMITI, U.TITLE; 

IND = §; 

= §; ‘e 
IF LEVEL = *SECTION'; INC = §; ve 
IF LEVEL = "GROUP'; 

BEGIN; INC = 93 INC1 = 13 END; °** 
IF LEVEL = '"DEPARTMENT®; 

BEGIN; INC = 993 INC1 = 
IF LEVEL = 'DIVISION’; 

BEGIN; INC = 999; INC1=198;END;"* 
OUTPUT TO PRINTER; 

UNIT NUMBER) 
**DECLARE PRINTER AS OUTPUT DEVICE, 

DEFINE PAGE FOR OUTPUT AS 33* "1325 | (DEFINE SIZE OF PRINTER PAGE, 
DO WRITE. TITLECLEVEL); 
READ PERSONNEL; ELSE RETURN; 

ORG:READ ORGANIZATION; ELSE RETURN; 
IF ORG.LEVEL NE LEVEL; 
™| = TNl3 

IF TN > Nz RETURN; 
LIMIT = ORG. UNI T4INC3 
DO WRITE.HEADINGCORG, UNIT, 

REPORTS.TO, ORG.NAME);3 
Tl = 6; 
T2 = 6; 
T3 = @; 

O.JOB:READ JOB; ELSE GO TO O.UNIT; 
DO WRITE.LINE (8, JOBCCODE), 

JOBCTITLE), JOBCQUANT), 
JOBCSALARY))3; 

Tl = Tl + JOBCSALARY); 
T3 = T3 + JOBCQUANT); 
GO TO 0O,JOB; 

RITE TITLE 
ve 

**F IND ORGANIZATION UNIT OF APPROPRIATE 
GO TO ORG; *"LEVEL IN ORGANIZATION FILE. 

te 

"*RETURN IF ENOUGH UNITS PROCESSED, 
ve 

"WRITE HEADINGS, 
*'TS PRINTED 
ne 

"TINITIALIZE 
te 

AUTHORIZED COMPLEMENT 
FIRST. 

TOTALS. 

te 

**WRITE LINE 

** INCREMENT TOTALS. 
te 

OF REPORT FOR EACH JOB. 

  

Figure IX-45. Portion of a C-10 program. 
Source: Steil [QZ67], p. 208. 

is the following: 

RETRIEVE FORCE STATUS WITH COMMAND EQUAL SAC, UNIT 

EQUALS 413ATW THEN RETAIN ACFT POS: RETRIEVE FORCE 

STATUS WITH COMMAND = SAC, ACFT POS > [R1, ACFT POS, 

OR] THEN LIST UNIT, ACFT POS 

The general form of a statement is as follows: 

program-indicator file-indicator qualifier-conjunction qualifier 

selector-conjunction output-director ouftput-selector 

The program-indicator provides a begirining for the sentence, e.g., 

RETRIEVE, FIND. The file-indicator is a file name. The qualifier-conjunction is 

usually WITH. The qualifier describes the data to be retrieved and 

usually consists of an _ attribute, a comparator, and a_ value, e.g., 
RUNWAY LENGTH > 5000. The selector-conjunction 1s usually THEN. The 

output-director is usually a single word defining the output device and 

format. The output-selector contains the names of the output variables and 

details on their format.



1X.3.2.4. ADAM 667 

  

Punctuation 

‘xe []:, 

=#>< 
7 Lo () ? 

Key Words 

ALL PUNCH 

AND READ 

ANY RETAIN 

BY RETRIEVE 

CARDS RN (Retained File Number) 

DECR (Decreasing) SAME 

GCD (Great Circle Distance) SAVE 

GET SUM 

GREATEST TAPE 

H (Horizontal) THEN 
INCR (Increasing) TITLE 

LEAST TOTAL 

LIST TRANSFER 

MAX UPDATE 

MIN V (Vertical) 

OR WITH 

PRINT 

  

Figure IX-46. Punctuation characters and key words in 473L Query language. 
Source: Barlow and Cease [BL65], extracts from pp. 81-86. Reprinted from 

INFORMATION SYSTEM SCIENCES: Proceedings of the Second Con- 
gress, Ed. by Joseph Spiegel and Donald E. Walker, Spartan Books, 1964. 

The punctuation (which is definitely significant) and key vocabulary 

words are shown in Figure I[X-46. 

4. ADAM 

Still another system developed at MITRE is ADAM (A generalized 

DAta Management system), which runs on the IBM 7030 (STRETCH) and 

has been operational since early 1965. As with other systems in this category, 

a significant part of the attention is devoted to the format of the file and 

the methods for updating it. From a language point of view, the most 

interesting aspect about ADAM is that it has a syntax-directed translator 

which enables the user to define other languages. The user also has avail- 

able a substitution macro facility whereby he can abbreviate complex 
expressions. For example,’ 

LET NONSTOP MEAN (IF NR OF STOPS EQ 0) 

  

12 Connors [CY66], p. 198.



668  sPECIALIZED LANGUAGES 

and 

LET SKED MEAN (FOR DESTINATION/2/./3/ TYPE ORIGIN/1/FLIGHTS) 

USING REINSERT 

define substitutions, and the message 

SKED BOSTON CHICAGO NONSTOP 

would be transformed to 

FOR DESTINATION CHICAGO.IF NR OF STOPS EQ 0, TYPE ORIGIN 

BOSTON FLIGHTS 

ADAM is an on-line system. Its language contains common arithmetic, 

assignment, conditional, and control statements. A specific language for 
defining files exists. 

5. BASEBALL 

The development of questioning-answering systems has been underway 

since 1959 if not earlier. One of the first was the BASEBALL system in 

which the user was able to write such things as 

WHERE DID THE RED SOX PLAY ON JULY 7? 

WHO DID THE YANKEES LOSE TO ON AUGUST 8? 

The input sentences are restricted to single clauses and do not permit 

logical connectives such as and and or. Relation words such as most or highest 

are also not permitted. 

BASEBALL is programmed in IPL-V (see Section VI.3) and organizes 

the data into list structures. The first part of the program uses a dictionary, 

parsing routines and semantic analysis routines to translate the input ques- 

tion into a specification list similar in format to that of the data. This 

permits retrieval of the answers. 

6. DEACON 

DEACON (Direct English Access and COMtrol) has been under devel- 

opment at GE TEMPO since at least 1963. Some of the allowable state- 

ments in DEACON strongly resemble those in the systems discussed earlier, 

but that 1s because they are related to military subjects rather than because 

of their structure, which is far more general. In systems such as COLINGO



1X.3.2.7. PROTOSYNTHEX 669 

and the 473L Query Language, the languages are definitely artificial with 
limited or no syntactic flexibility, whereas DEACON actually uses linguistic 
techniques to analyze sentences which are far more complex, e.g., 

HAS THE 25TH BATALLION ARRIVED IN TEXAS SINCE 3 P.M.2 IS THE 
1OOTH SCHEDULED TO ARRIVE AT FT. LEWIS BEFORE THE 200TH 

LEAVES FT. LEWIS? 

The data is stored in ring-type list structures. It includes time-dependent 

data. “Thompson hypothesizes that English essentially becomes a formal 

language as defined if its subject matter is limited to ‘material whose inter- 

relationships are specifiable in a limited number of precisely structured 

categories [memory structures].’... Because these programs are written 

in terms of structural categories (independent of content), the interpretation 

rules apply to any subject matter that is stored in these categories.”!? The 

authors state in a footnote that “This is the major advance of DEACON 

over Green’s BASEBALL ... and Lindsay’s SAD SAM.”?4 

Work on this project seems either dormant or terminated. 

7. Protosynthex 

The Protosynthex system is based on natural English text since it 1s 

an attempt to answer questions (phrased in natural English) from an ency- 

clopedia. As such, it is the only system described in this section which does 

not have a structured data base. The basic principle is to use synonyms, 

intersection logic, and a simple scoring function to find the sentences and 

paragraphs which most closely resemble the question. Statements thus 

retrieved which do not match the structure of content words of the question 
are rejected. For example, the question What animals live longer than men? 

might cause the following list of content words to be used in searching the 

index :}° 

  
Word Words of Related Meaning 

animals mammals, reptiles, fish 

live age 

longer older, ancient 

men person, people, women 
  

The smallest unit with the greatest intersection with these words is then 

found, where some weighting is applied to certain words in the search. 
  

13 Craig et al. [CJ66], p. 365. 
14 Op. cit., 
15 Simmons [SE65], p. 60.



670 SPECIALIZED LANGUAGES 

The highest scoring units are selected and then both the question and the 
proposed answer are parsed to make sure that the structures are the same. 

An example of input data, questions, and answers is given in Figure 

1X-47. 

  

ENTERCCCHORSE »« NOUNDCIS « ISVB)CANIMAL « NOUN) CLIVE « VERB) 
CON « PREP) CFARM »« NOUN) CSTRONG »- ADJ) (PULL - VERB) 
CWAGON »« NOUN) CMOST ~« ADJ) CARE « ISVRICEAT « VERB) CHAY »- NOUN) 
CALL « ADJ CRED « ADJ CMANY . ADJ) CHAVE + HAVB)CLONG - ADJ) 
(MANE »« NOUN) CSOME .« ADJ) CPERSON »« NOUN) CRACE + VERB))) 
DICTIONARY 

PLURALSCCCHORSE « HORSES) CANIMAL »« ANIMALS) (FARM -« FARMS) 
CWAGON . WAGONS) (MANE . MANES) (PERSON » PEOPLE))) 
OK 

STARTO) 
READY 

A HORSE IS AN ANIMAL 7 HORSES LIVE ON A FARM / STRONG HORSES 
PULL WAGONS / MOST HORSES ARE STRONG . 
LEARNED 
READY 

HORSES EAT HAY / ALL HORSES ARE RED / MANY HORSES HAVE LONG 
MANES / SOME PEOPLE RACE HORSES - 
LEARNED 
READY 

FORGETC CALL HORSES ARE RED)) 
FORGOTTEN 
READY 

WHAT IS A HORSE ? 
HORSE IS AN ANIMAL 
READY 

WHAT DO HORSES DO ? 
HORSES LIVE ON A FARM AND EAT HAY / STRONG HORSES 
PULL WAGONS 
READY 

WHAT DO STRONG HORSES DO ? 
STRONG HORSES PULL WAGONS 
READY 

DO MANY HORSES HAVE LONG MANES ? 
YES 
READY 

DO ALL HORSES HAVE LONG MANES ? 
TO MY KNOWLEDGE- NO 
READY 

DESCRIBE HORSES ? 
HORSES ARE AN ANIMAL / MOST HORSES ARE STRONG / MANY 
HORSES HAVE LONG MANES / HORSES LIVE ON A FARM AND EAT 
HAY / STRONG HORSES PULL WAGONS / SOME PEOPLE RACE HORSES 
READY 

WHAT DO HORSES EAT ? 
HORSES EAT HAY 
READY 

  

Figure IX-47. Examples of control statements, questions, and 

answers from Protosynthex II. 

Source: Simmons [SE66a], p. 69. 

8. AESOP 

The advent of on-line techniques naturally is playing an important role 
in the development of query systems. One of the interesting examples of such 

a system is AESOP (An Evolutionary System for On-Line Processing), 

which was developed at the MITRE Corporation with a prototype running 

on the IBM 7030 (STRETCH). Heavy use is made of the display screen 

and a light pen. The latter is used both for causing immediate execution 

of system functions and for engaging in a preparatory interactive dialogue.



1X.3.2.8. AESOP 671 

AESOP is primarily oriented toward retrieving data from a data base, 

acting upon it, and restoring it. Input is from typewriter or light pen. The 

light pen is used to define the system mode, to select displayed abbreviations 

for frequently used stmple commands, and to compose complex messages 

for data retrieval and file modifications. For example, a portion of the 

screen might display the mode names TABULAR, TREE, FILE MANIP, ERASE, 

and COPY. Another part of the screen shows SET FILES, CLEAR FILES, ADD 

FILES, and FINISH. If the user points to SET FILES, for example, the screen 

will display the names of all files in the system. Pointing to the desired 

names causes the system to display on the screen only those pointed to. 

Pointing to the name in its new position causes the first part of the file 

to be displayed. 

The TREE mode causes selected information to be displayed in the form 

of a tree. The user language tree is used to compose messages at the top 

of the screen. This technique greatly reduces the likelihood of composing 
illegal input messages. In particular, one such tree is part of the user lan- 

guage and is shown in Figure IX-48. The selection of the ERASE, COPY, 

or FILE MANIP modes results in the display of skeleton user messages at the 

  

GET WEAP-DATA 

GET - TABULAR 
[ + TREE 

> FILE MANIP 

- ERASE 
FILENAME - COPY 

  
OBJECTNAME DISPLAY RENAME 

RENAME DISPLAY LIST CHANGE PAGE EOM EOM 

  

CHANGE LIST EOM PROPERTIES ALL PROPERTIES ALL LIST 

LIST EOM PROPERTIES ALL EOM EOM EOM EOM 

PROPERTIES ALL EOM EOM 

EOM EOM - 

  

Figure IX-48. Communication tree in AESOP. 

Source: Summers and Bennett [UT67), p. 74.



  

DATA RETRIEVAL MESSAGES 

Display Request Messages 

GET filename DISPLAY [PAGE number [SECTION number}] 

DISPLAY PAGE number 

DISPLAY SECTION number 

RESTORE 

GET filename object DISPLAY ae . \| 
— ———_ | (propertylist 

DISPLAY LINE number te . i 
oO propertylist 

  

Hardcopy Output Request Messages 

GET filename object LIST ae . \ 
— —— | |propertylist 

Booster System Typewriter Input Messages 
PRINT DISPLAY 

GET filename PRINT 

latitude longitude TO \ilerene object 

latitude longitude 

[filename] object } 

latitude aromas \ 

FIND DISTANCE FROM 

filename object TO { 

FILE MODIFICATION MESSAGES 

GET filename object CHANGE propertyname) propertyvalue] ... 

propertyname, propertyvaluen [RENAME newobjectnome] [LIST...] 

object RENAME 
ET fil 

GET filename {eeetame object 
GET filename RENAME object; newobjectname] ... object, newobjectnamen 

GET filename objectspec CHANGE propertyname value] ... valuen 

\ newobjectname [CHANGE...] [LIST...] 

ADD 
GET filename object (eur integer] propertyname) ... 

integer, propertyname, (LIST... ] 

ERASE MESSAGE 

ALL \ 

ALLPROPS 

OBJECTNAME 

propertylist 

GET filename objectspec ERASE 

LINE MOVE OPERATIONS 

  

  

LINE ) (# AND # 
GET fil — SE ~~ 
GET filename SWAP {ines} eo AND goa} 

LINE 
GET fil REORDER 4——— ilename REORDER {ines} H-# AS HF#H... 

LINE) # BEFORE 
GET filename INSERT {umes} #—-#F# \areR \ # 

——" ##HF... -— 

672



Figure [X-49, (cont.) 

COLUMN MOVE OPERATIONS 

oO OL 
GET filename objectspec SWAP (Sor 5} propertyname AND propertyname 

  

oO 

  

  

. . COL . BEFORE 
GET filename objectspec INSERT {esr} propertylist \aeee \ 

propertyname 

COPY MESSAGE 

COPY FROM filename (objectspec) ‘Fecerea 
—_ propertylist 

ALLPROPS 

oer 

COPY WITH OBJECTNAMES FROM filename (objectspec) 

INTO filename (objectspec) 

COPY WITH OBJECTNAMES FROM filename (objectspec) { 

INTO filename (objectspec) { 

  

  

ALLPROPS 

ee} 

ALLPROPS 

oe 

ALLPROPS 

rere 

ALLPROPS 

er | 

INTO filename (objectspec) { 

  

COPY WITH PROPNAMES FROM filename (objectspec) { 

INTO filename (objectspec) { 

OBJECTNAMES AND PROPNAMES 
—_________ —___ —__________—. FR fil cory win | PROPNAMES AND OEECTNAMES| FROM filename 

ALLPROPS | 

propertylist 
(objectspec) | INTO filename (objectspec) 

ALLPROPS \ 

propertylist 

SELECTIVE RETRIEVAL MESSAGE 

GET filename [objectspec] IF propertyname 

LT LT 
LEQ LEQ 

EQ value ‘ort propertyname \EQ value... 

GT = GT 
GREQ GREQ 

STATEMENT MESSAGE 

DO filename object [parameter] ... parametern] 

MISCELLANEOUS MESSAGES 

DATE dd—dd 

SAVE 

  

Figure IX-49. AESOP commands used on typewriter. The general notation 

is the COBOL metalanguage described in Section II.6.2. Certain unique 

items for this figure include the following: # represents a line number; 

#—+# represents a range of line numbers; an objectspec specifies what 

objects are to be operated on (e.g. name and/or linenumber); propertylist is a 

variable length list of property names; LIST... and CHANGE... represent 

the longer expressions shown in earlier messages within the figure. 

Source: Summers and Bennett [UT67], pp. 85-86. 

673



674  SsPECIALIZED LANGUAGES 

top of the screen. The variable positions of these messages are filled in by 

using the light pen to select data from other parts of the screen. Any reader 
interested in more details on this system will find an excellent set of figures 
of many screen displays in the paper by Summers and Bennett [UT67]. 

The language used for input from a typewriter is shown in Figure [X-49. 

[X.3.3. GRAPHIC AND ON-LINE DISPLAY LANGUAGES 

The dividing line between languages used to provide graphical or other 

types of display output on a scope attached to a computer and systems 

(and languages) used for computer-aided design is a hazy one. I have at- 

tempted to draw the distinction by including in this section those languages 

which seem to be potentially of somewhat more generality than those 
primarily aimed at computer-aided design, although some in that category 

are also very general. Hence the reader is requested not to worry too much 
about the distinction between languages in this section and in Section IX.3.4. 

The DIALOG system described in Section IV.6.10 is specialized to the 

solution of numerical scientific problems, but it has some interesting features 
relative to on-line display systems. CORAL, discussed in Section VI.9.3.2, 

can be used for creating graphic displays. 

Discussions of some of the broader issues in graphics are given in some 
of the references listed at the end of this chapter. 

1. GRAF 

From a language point of view, the GRAF (GRaphic Additions to 

FORTRAN) system is a particularly clean-cut one. A new data type, namely 

a display variable, is added to FORTRAN. Its value is really a string of 
orders which are capable of generating a display when transmitted to an 

appropriate device. Display variables are named the same way as other 

FORTRAN variables, must be declared by writing DISPLAY, can be dimen- 

sioned, can appear in EQUIVALENCE and COMMON statements, and can be 

passed to subroutines as arguments. A set of built-in display functions 
  

DISPLAY A, B, SQU, POLE(11), K99 (3, 2, 4) 

A =B 

A=A+B 

A=B+A 

SQU = POLE(5) + POLE(3) 

POLE(1) == PLACE(RX,0) 

POLE(1) = PLACE(RX, 0) -+ LINE(X3, Y7) 

K99 = PLACE(O, 0) + PRINT 14, (ZK(I), | = 1, 7) ++ PLACE(2000,2000) 

  

Figure IX-50. Small GRAF program. 

Source: Hurwitz, Citron, and Yeaton [HW67], p. 554.



1X.3.3.1. GRAF 675 

include POINT, LINE, PLACE, CHAR, and PRINT, each of which has a value 

which is a string of graphic orders, e.g., LINE(X, Y) generates orders for 

plotting a line. A display expression is a sequence of display variables and 

display functions separated by plus signs; its value is the string of graphic 

orders obtained by concatenating the values from left to right, e.g., 

BOX = PLACE (xX, Y)+LINE(U, Y)+LINE(U, V)+LINE(X, Y). An assignment state- 
ment can be used to give a value to a display variable. The functions PLOT 

and UNPLOT, respectively, transmit or remove the values of the statement 

arguments to the device buffer. A cursor can be set in a display variable by 

the SETCUR subroutine and removed by RMVCUR. Other functions are 
available. A sample program is shown in Figure [X-50. This system was 

implemented on the IBM System/360 using FORTRAN CE level). 
  

Definition 

t POINT/NAME/X,Y/OP where OP = N for NAME, and 
+ LINE/NAME/PTI/PT2 T for TEXT 

ARC/NAME/PT1/PT2/PT3 
PARC/NAME/F/V/PT1/PT2 
EARC/NAME/F1/F2/PT1/PT2 

Manipulation (level 1) 
+ COIN/PTI/PT2 
+ MERGE/PTI/PT2 
+ COPY/NAME/L/PT 
+ INTPT/NAME/L/X,Y 

SPIN/L1/L2/PT/DEGREE 
Transformation 

tT MOVE/NAME/OP/PT/QUAL where OP = P for point 
+ ROTATE/NAME/OP/PT/DEGREE/QUAL N for node 
+ SCALE/NAME/OP/PT/DEGREE,XX,YY /QUAL S for subpicture 

D for display, .e., 
the screen level 

picture 

Control 
+ CLEAR 

f DELETE/NAME/OP/QUAL where OP = P for point 

+ ASSIGN/NAME/NODEI/ .../NODEn N for node 
+ USE/NAME/QUAL L for line 
tT SHOW/NAME S for subpicture 
t LOCATE/X,Y; ENDLOC U for uniformly 

+ TEXT/PT/OP1/H/W/OP2/---...$---...-$..-$$ | where OPT = TL for top left 
TR for top right 
BL for bottom left 
BR for bottom right 

L for left 

R for right 
OP2 

+Those primitives included in the present version [see source] of PENCIL are identified byt. This set 

provides all basic capabilities, including hierarchical assembly of pictures. 

  

Figure IX-51. List of PENCIL primitives. 
Source: Van Dam and Evans [VD67], p. 602.



  

<i 

\ 
<3 

BUFIN 

} | 
an 

4 
XTRANS PROC 

CLEAR 

USE/DIODE/1 

USE/DIODE/2 

USE/DIODE/3 

USE/RESIS/4 

USE/RESIS/5 

USE/RESIS/6 

USE/RESIS/7 

USE/TRANS/8 

USE/CAPAC/9 

USE/GROUND/11 

POINT /P1/==—21,=24 

POINT /P2/=—21,=12 

POINT /P3/=—21,=0 

POINT /P4/==—15,==12 

POINT/P5/=—15,=0 

POINT /P6/==/—12,==12 

POINT/P7/=12,==12 

POINT/P8/==15,=12 

POINT/P9/=21,=0 

POINT/OUT/=57,=12 

POINT/IN1 /=—48,==24 

POINT/IN2/= —48,=12 

  

      

  

      

END 

XBEGIN 

POINT/IN3/=—48,=0 

LINE/L1/P1/P3 

LINE/L2/P3/P5 

LINE/L3/P5/P4 

LINE/L4/P4/P6 

LINE/L5/P7/P8 

POINT/P10/=15,=0 

LINE/L6/P8/P10 

LINE/L7/P10/P9 

MOVE/DQ1/N/P1/1 

MOVE/DQ2/N/P2/2 

MOVE/DQ3/N/P3/3 
MOVE/A4/N/P3/4 

MOVE/A5/N/P9/5 

MOVE/D28/N/P9/8 

MOVE/B6/N/C8/6 

ROTATE/RESIS/S/A7/=90./7 

MOVE/A7/N/P5/7 

MOVE/D29/N/P6/9 
MOVE/A11/N/D8/11 

ASSIGN /BUFIN/IN1 /IN2/IN3/OUT 

  

Figure IX-52. PENCIL program for diagram shown. 

Source: Van Dam and Evans [VD67], p. 603. 

676



1X.3.3.3. GRAPHIC LANGUAGE 677 

2. PENCIL 

PENCIL (Pictorial ENCod/ng Language) is a language which applies 

to a relatively simple data structure, as distinguished from the more com- 

plicated ones existing in some of the systems described or referenced in 

Section IX.3.4. PENCIL was implemented on the IBM 7040 under the 

MULTILANG system (see Wexelblat and Freedman [WP67]). This list 

of elements in the system is shown in Figure IX-51. A specific program to 

match a complex diagram is shown in Figure IX-52. 

3. Graphic Language 

Another completely independent language is that developed by Schwinn 

[UZ67]. The language consists of statements in the following categories: 

User request, label request, data dimension, scan request, plot request, draw 

  

USER HEADING: SCHWINN; 

VARIABLE LABELS: X(1)=LABEL1, LABEL2, 

LABEL3, LABEL4, LABELS; 

DATA: 4 VARIABLES, 5 OBSERVATIONS: 

PLOT(X(1),X(2)) SAVE RAW DATA IN FILEI, 

HORIZONTAL INCHES = 3.0, 

VERTICAL INCHES = 4.0, 

GRAPH LABEL = ONE, SQUARE, 

SYMBOL SIZE = 0.15; 

FORMAT(F2.1,F2.1,2F1.1); 

004004; 

10301 3; 

302933; 

701071; 

951792; 

PLOT(X(1),X(2)) READ RAW DATA FROM FILEI, 

HORIZONTAL INCHES = 5.0, 

VERTICAL INCHES = 7.0; 

GRAPH LABEL = TWO, 

DRAW LEAST SQUARES LINE; 

PLOT(X(3),X(2)) READ RAW DATA FROM FILE 1, 

HORIZONTAL INCHES = 8.0. 

VERTICAL INCHES = 2.0, 

GRAPH LABEL = THREE.X, 

NUMBER OF HORIZONTAL INTERVALS = 9.0; 

END OF RUN 

  

Figure IX-53. Example in Graphic language. 

Source: Schwinn [UZ67], p. 476. By permission of Association for Com- 

puting Machinery, Inc.



678 SPECIALIZED LANGUAGES 

request, and a few miscellaneous items. Some of the facilities available under 

the plot request include DRAW LEAST SQUARES LINE, DRAW LINE 

BETWEEN THE POINTS, HORIZONTAL MAXIMUM FROM DATA, VERTICAL 

MINIMUM FROM DATA, and SAME HORIZONTAL MAXIMUM. Some of 

the optional specifications available to the user include the following: 

NUMBER OF HORIZONTAL INTERVALS, DRAW ALL AXES, DRAW 

HORIZONTAL AXIS, NUMBER OF PERPENDICULAR INTERVALS, SUPPRESS 

PLOT OUTPUT, and SAME PERPENDICULAR SCALE. In order to combine 
these facilities with calculations which might be required, the user is permit- 

ted to include a breakout character which allows him to use whatever other 

language he wants. Figure IX-53 shows an example of a program written 

in this language, assuming FORTRAN as the “other” language. 

4. DOCUS 

DOCUS (Display Oriented Computer Usage System) appears to be 

one of the most general in this area. It is based entirely upon a push-button 

scheme with responses shown on the scope. The overall system consists of 

a number of subsystems languages, specifically the General Operating 

Language (GOL), a Procedure Jmplementation Langugae (PIL), Display- 

Oriented Language (DOL), FORTRAN, CODAP, a debugging language, 

and some applications for file management, text manipulation, computation, 

and graphics. The system is implemented on a CDC 1604B. A list of the 

control functions in these various categories is given in Figure 1X-54. 

5. AESOP (cross-reference only) © 

AESOP is an on-line data management system with powerful graphical 

facilities for its own operations. See Section 1X.3.2.8. 

1X.3.4. COMPUTER-AIDED DESIGN 

1. General 

The area of computer-aided design is a complex one, of which the lan- 

guage capability is only one portion, and a relatively small portion at that. 

The design being referred to usually involves line (or three-dimensional) 

drawings which might be from areas such as circuit design, mechanical 

engineering, and automotive design. Much of the conceptual work that 

has been done in this area has pertained to on-line systems in general and 

to the use of graphics in particular. The early work of Sutherland on 

SKETCHPAD [QW63] was an illustration of the use of a computer to do 

design work. The tools developed for doing this, in particular the ring (list)



  

General Operating Language 

General communication 

SEND MESSAGE 

SHOW MESSAGE 

DOCUS library control 

LIST DISPLAYS 

LIST KEY PROGRAMS 

END DISPLAY 

END PAGE 

CHANGE PAGE 

DELETE PAGE 

INSERT PAGE 

ADD DISPLAY TO LIBRARY 

DELETE DISPLAY FROM LIBRARY 

COMBINE 

LIST COMBINE 

Output control 
LIST OUTPUT 

General control 

START/STOP 
HALT/PROCEED 
SELECT 
REJECT 
ENTER 

Display manipulation 

SEEK AND SHOW 

SAVE PAGE 

RESTORE PAGE 

NEXT PAGE 

PREVIOUS PAGE 

SCAN FORWARD 

SCAN BACKWARDS 

Sample of DOL Statements 

Controlling devices on console 

LIGHTS ON 

LIGHTS OFF 

ALARM ON 

ALARM OFF 

SAVE LIGHTS 

RESTORE LIGHTS 

Composition of textual displays 

DEFINE AREA 

LITERAL AREA 

DEFINE COMPOSITE 

DEFINE STRING 

LITERAL STRING 

Composition of graphical displays 

DRAW LINE 

MOVE POINT 

ROTATE FIGURE 

EASE LINE 

Unique PIL Functions 

BEGIN PROGRAM 

INSERT CODE 

DELETE CODE 

CHANGE CODE 

END PROGRAM 

NAME LIGHT 

DEFINE LIGHT GROUP 

TEST IF LIGHTS ON 

READ CURSOR 

PROCESS LIGHT 

PEN MESSAGE 

MOVE AREA 

ROTATE AREA 

FILL AREA 

MOVE STRING 

JOIN LINE 

EXPAND FIGURE 

CONTRACT FIGURE 

COMPOSE PICTURE 

KEEP SOURCE PROGRAM 

COMPILE/ASSEMBLE 

ADD PROGRAM TO LIBRARY 

DELETE PROGRAM FROM LIBRARY 

LIST PROGRAM DESCRIPTION 

  

Figure IX-54. GOL, DOL, and PIL operations in DOCUS. 

Source: Corbin and Frank [CF66], extracts from pp. 520-522. By permission 

of Association for Computing Machinery, Inc.



680 SPECIALIZED LANGUAGES 

structure and CORAL (see Section VI.9.3.2), have somewhat wider impli- 

cations than that of computer-aided design. On the other hand, much of 

the work done at the General Motors Laboratories to provide computer aid 

to designers has little or nothing to do with languages as such; the primary 

concern is with the types of items that the user can display on a screen and 

change by operating with a light pen.'® 

From a purely language point of view, the only major system in this 

field (aside from possible consideration of the specialized list systems just 

mentioned) is the AED work at M.L.T. 

2. AED 

The work on AED (Automated Engineering Design or ALGOL Ex- 

tended for Design) has been carried on at M.I.T. since 1959 under the 

direction of D. T. Ross. In spite of the fact that representatives from 20 

industrial organizations which would have a use for this system have each 

made contributions of one person for a year, AED has not received widespread 

usage outside M.I.T. This is partly due to poor timing relative to computer 

conversions within the companies, massive and difficult documentation, and 

perhaps a lack of appreciation of its good qualities; it does not necessarily 

represent a repudiation of the system concepts or implementations. On the 

other hand, in my personal view, a discussion of AED more properly belongs 

in a compiler-writing section or perhaps even in the multipurpose language 

chapter rather than in a section on computer-aided design. It was placed 

here in order to comply with the general tenor of the remarks and literature 

of the developing group, who continually refer to it as a foundation for 

computer-aided design and man-machine problem-solving. 

AED has a strong philosophical foundation relating to problem-solving 

and associated models, and this is considered fundamental to the work. 

However, this aspect of it is beyond the scope of this book. Fortunately, 

it is not necessary either to understand or to know this facet of the work 

in order to understand those parts which are most significant from a lan- 

guage viewpoint. 

The AED-O language is an ALGOL-like extended subset. Some of the 

omissions or changes to ALGOL are as follows: Only one subscript is 
allowed, the parameter transfer mechanism employs references rather than 

name and value, block structure controls scope but is not used for storage 

allocation and control, recursive procedures must be declared recursive, 

and various syntactic forms are modified slightly. 

There are several new features of interest. The most significant innova- 

tion is the incorporation of n-component elements to permit plex programming 

  

'6 See Proc. FJCC (1964) for a number of articles describing this system.



1X.3.4.2. AED 681 

(a generalization of the early concepts of list processing introduced in a paper 

by Ross [RD61]). The data structure of a plex is a combination of elements 

interconnected in a network by multiple pointer components (1.e., each node 

of the network can have pointers to many other nodes). In AED-0, integer, 

real, Boolean, or pointer components occupying full or partial computer 

words may be declared and can be included as items in the n-component 

element. The system supplies routines which allow multiword elements to 

be created and destroyed in various ways. (A detailed discussion of the 

implementation techniques is given in Ross [RD67].) Component reference 

is identical to functional reference, and arbitrarily nested reference expres- 

sions, e.g., A(B(C(D))), may be made. In addition to the compiler, AED 
includes an elaborate macro preprocessor, and the philosophy of using the 

system and language puts heavy emphasis on the ability to improve efficiency 

by automatically changing the method of implementation of certain nota- 

tional forms merely by altering declarations. For example, the notation 

A(B) may be mapped into various implementations, depending on the 

declarations of A and B. Thus A(B) may represent a function of an argument, 

a component of an element, an array with index, or a macro call with 

argument, but it produces the same results in all cases. 

Another feature of AED-O is called phrase substitution (which is equiva- 

lent to or more general than what I have called embedding, depending on 

usage). The language and its compiler are designed such that any phrase 

or syntactic unit of an appropriate type may be used wherever a single 

identifier of that type is allowed. Assignment statements take on the value 

assigned. This enables such features as embedded assignment statements, e.g., 

Y=Z+(Z=A +B) 

(causing the value of Y to become 2(A + B)), and valued blocks of the general 

form 

INTEGER BEGIN... END 

which permit an entire program to replace a single identifier of the corre- 

sponding type. 

AED-0 also includes automatic stack declaration and manipulation, 

bit manipulation, character string manipulation, an operator LOC which 

provides pointers to values of expressions, a synonym feature which permits 

all spellings including those of reserved words to be altered, as well as a 

PRESET facility for initializing variables and arrays at compile time. 

Modification of AED-O as a language ceased in 1964 and further devel- 

opment of language features has been made in the form of integrated packages 

of procedures; these represent the raw semantics of language features which 

will be given appropriate syntax in future AED languages. The “culture”



682  sPECIALIZED LANGUAGES 

of AED usage depends heavily upon these packages, several of which inter- 

lock directly with the compiled features of the language itself. For example, 

an ISARG package permits the use of optional arguments in procedure 

calls; the DOIT package permits procedure names to be stored in and 

executed from data structures, including dynamic loading so that program 

control and data structures are interlocked (enabling generalizations of such 

techniques as coroutines to be easily performed); the GENCAL package 

permits dynamic compilation of molecular procedure calls at run time. 

Various techniques for using these features, in combination with the ability 

to nest procedure definitions and declare procedures separately from their 

definitions, permit many sophisticated control structures such as multientry 

procedures to be developed. Other packages provide facilities for system 

building. The RWORD package gives sophisticated free-format input and 

the ASMBL package gives free-format output of character streams; the 

generalized string package creates and manipulates arbitrary string structures 

of arbitrary elements in any combination, including ordered and unordered 

uni- or multidirectional lists and rings, stacks, queues, hash-coded tables, 

or other more elaborate specialized data structures; the JOBCP (input/output 

buffer control package) provides a uniform operating system interface for 

word- and character-oriented files for arbitrary storage or input/output 

devices, including control of logical and physical records, buffering, and 

timing; the delayed merge package and the generalized alarm package permit 

segmentation of large program actions, including alteration of control and 

a wide spectrum of error-handling facilities. Although many of these pack- 

ages are more closely related to software design than language, their use is 

so integral with the direct linguistic features of AED-O that they form a 
significant part of the pragmatics of AED-O0 as a language. 

The pragmatics of AED are completed by referring to Figure IX-55, 

which indicates the lexical, parsing, modeling, and analysis phases of a system 

constructed according to the AED philosophy (see Ross [RD67a]), using 

the machine and language independent AED-1| compiler as an example. 

(Initially that compiler processed the AED-0 language and there was no 

specific AED-1 language.) The RWORD system constructs a finite-state 

machine lexical processor in accordance with item descriptions expressed 

in the language of regular expressions; the AEDJR system (a syntax-driven 

parser based on Ross’s algorithmic theory of language {[RD62]) constructs 

tables for parsing a specified language; and the modeling and analysis 

phases (shown in Figure IX-55 for the special case of program compilation), 

may also be set up to handle specialized problem-oriented languages, though 

not yet in as systematic a fashion as the other phases. Because of the inter- 

relationships of the elements in the compiling process, it 1s easy to inter- 

mingle graphical elements (e.g., push buttons and light pen responses at a



1X.3.4.2, AED 683 

  

  

        

      

RWORD AEDJR SECOND-PASS SETUP 
System System System 

en NE A 

AED-O 
AED-O Item Language Machine and Listing Machine-Code 
Descriptions Definition Description Macros 

AED-O Binary 
Program | ltem—Builder _|First-Pass _ | Second-Pass ela bI Program 

" Machine" ™| Algorithm | & | Algorithm ssemdler -——————>-                         

Character String AED-O Item String First-Pass Structure Symbolic Program 

  

Figure IX-55. General structure of AED-I compiler. 

Source: Ross [RD67a], p. 372. By permission of Association for 

Computing Machinery, Inc. 

display console) with verbal elements (e.g., +, —, for) in a single language. 

Extensions of the systematic treatment of system building to include these 

mixed language forms as well as generalized modeling were being incor- 

porated during 1967 into the CADET (Computer-Aided Design £xperi- 

mental 7ranslator) system. 

Various combinations of the ‘‘system of systems”? which constitute 

AED have been successfully used in a variety of applications, including a 

system for formal algebraic manipulation (Wolman [YW66]), a translator 

from MAD to AED-O (Lapin [LB67]), a new processor for the DYNAMO 

language, as well as systems for information retrieval, econometric modeling, 

nonlinear circuit simulation, stress analysis, differential equations, ship design, 

geometric modeling, chemical process design, and other applications. 

In 1967 the AED system was being bootstrapped from the Compatible 

Time-Sharing System at M.I.T. (see Crisman [ZR65]) onto the IBM 

System/360, IBM 7094, and Univac 1108 computers. (An earlier batch- 

processing version had also been distributed for the IBM 7094 in previous 

years.) 

At the time of this writing, AED and its concepts do not play a major 

role in the computing community, either from a theoretical viewpoint or 

in terms of practical utility. I personally think this is due more to the dif- 

ficulties and/or lack of documentation and training rather than to the 

system itself. Although not widely publicized, an AED technical meeting 

held at M.I.T. in January, 1967 was attended by over 400 people represent- 

ing over 100 organizations. In view of this level of interest and the acknowl- 

edged impact of the APT system (developed earlier by the same group— 

see Section [X.2.1.1) in the field of numerical control, AED may yet become 

a significant force in the computing world.



684  sPECIALIZED LANGUAGES 

[X.3.5. TExT EDITING AND PROCESSING 

The increasing use of on-line systems has made it possible to develop 

systems which permit a user to modify text (e.g., material such as this book, 

letters, or reports) which is stored in some type of device accessible to a 

central computer. As the Acknowledgements indicate, the IBM ATS (Admin- 

istrative Terminal System) (originally designed by M. Nekora). was used 

in processing this book in its manuscript form. More specifically, nine 

chapters went through several revisions on ATS. A version of ATS called 

DATATEXT may be leased from IBM’s Information Marketing Depart- 

ment. The functions that such systems need to perform apply to small units 

of information (e.g., a few words) or larger units (e.g., lines, sentences, 

paragraphs). The operations include items such as deletion, insertion, 

replacement, movement of some units to a different place in the text, print- 

outs at a terminal, provision for saving and obtaining files, and the prep- 

aration of the text for use with high-speed printing or photocomposing 

devices. One of the key technical issues in this type of system is how much 

information will be defined by a physical line number and how much is to 

be specified by context. In the latter case, we might have something as 

  

Delete and close from the fifth paragraph through the second occurrence of a 

paragraph beginning with the name "Alice". 

Delete and close the expression ''and then unrolled the parchment scroll". 

Delete ‘she made some tarts. All on a”. 

Insert “and precisely’ before the fourth line in the eighth paragraph. 

Run on the first paragraph. 

Start a new line with the last sentence in the seventeenth paragraph. 

Start a new paragraph with the last two words in the fourth line of the seventh 

paragraph. 

Start a new page with the paragraph ending with the expression ‘'the king”. 

Indent the second sentence in the eighth paragraph. 

Start a new line with the fourth word in the twentieth paragraph. 

Exchange the last four words in the second line of the sixth paragraph with the first 

two words in the paragraph ending in the word ‘'talking”. 

Exchange the eighth occurrence of the word ‘King’ with the word "Hatter" in the 

twenty-first paragraph. 

Exchange the word ‘Hatter’ with the word king” in the twenty-third paragragh. 

Exchange the tenth paragraph through the paragraph ending in ‘away’ with the 

thirteenth paragraph. 

Exchange "''Not yet, not yet!'"’ with ‘the Rabbit hastily interrupted."’. 
+f Replace the word ''the’’ in the thirteenth paragraph with ‘'The”. 

Replace in the thirteenth paragraph with ".". 

  

Figure [X-56. Examples of editing statements in ES-1. 

Source: Barnett and Kelley [BI63], p. 101.



1X,3.5. TEXT EDITING AND PROCESSING 685 

elaborate as, DELETE THE THIRD OCCURRENCE OF ‘ANIMAL’ IN’ THE 

SENTENCE BEGINNING 'THE QUICK BROWN FOX’. Only the ES-1 system 

(see Barnett and Kelley [BI63]) permits anything as general as this, although 

it was used in a batch environment rather than on line. 

Since most of these systems have a primitive language at best, no attempt 

has been made to survey many of them; just a few are illustrated. Figure 

IX-56 shows an example of ES-1 commands. Figure [X-57 contains a sum- 

mary list of commands for the IBM DATATEXT system, while Figure IX-58 

shows an example of their use. Commands from the editing system avail- 

able under M.I.T.’s CTSS (see Crisman [ZR65]) are shown in Figure IX-59. 

A system called SAFARI has been developed at the MITRE Corpora- 

tion both to edit text and to perform a sophisticated linguistic and logical 

processing that structures the information content. The texts are presented 

on a graphic display: A light gun is used in conjunction with light button 

commands shown in the margin and with a typewriter; the latter is used to 

select, rearrange, paraphrase displayed material, insert new material, and to 

initiate various processing steps. 

  

Instruc- Instruc- 

tiont Meaning tiont Meaning 

a Automatic mode t Transmit message 

as Automatic mode—suppress space u Uncontrolled mode 

between paragraphs uc Line centering mode 

c Clear working storage + Additional line request 

d Delete permanent storage if Form letter mode 
e Erase lines and/or units Ig Storage report 

f Footing mode Ip Page numbering begins’ with 

9 Get document from permanent number following p 

storage Ir Reprint action 

h Heading mode I-t---+ Tab settings 
i Insert Inumber Number of lines to be printed 

i Justify (printout) per page 
jn Justify with unit numbers tO Transmit to customer assistance 
m Message retrieval terminal 

n Request for next unit number t96 Transmit to upper- and lower- 

p Print case printer 

po Print as entered t97 Transmit to tape from working 

pOn Print as entered with unit num- storage 

bers t98 Transmit to printer 

pn Print with unit numbers t99 Transmit to card punch 

s Store in permanent storage 

tEach instruction is preceded by hitting the Attention key on the terminal. 

  

Figure IX-57. List of DATATEXT commands. 
Source: [IB67b], p. 37. Reprinted by permission from DATATEXT Operator’s 
Instruction Guide. © 1967 by International Business Machines Corporation.



686 SPECIALIZED LANGUAGES 

  

a 

AUTOMATIC MODE 

This book was typed using ATS and I am 

now merely demonstrating some of the facilities 

that it has. 

Soppose I mkae an error leave out a word. 

I will make the corrections and also insert a sentence. 

110 

jn65 
DBL ATTN EA PAGE 

This book was typed using ATS andI am now merely 3 
demonstrating some of the facilities that it has. Soppose I mkae 4 

an error leave out a word. I will make the corrections and also 5 

insert a sentence. 

4 Soppose Suppose 

Suppose I mkae an error leave out a word. 

4 mkae an error make an error and 

Suppose I make an error and leave out a word. 

i4 

Suppose I make an error 

This is the inserted sentence, after the one beginning Suppose. 

jn65 

DBL ATTN EA PAGE 
This book was typed using ATS and I am now merely 

demonstrating some of the facilities that it has. Suppose I make 

an error and leave out a word. This is the inserted sentence, 

after the one beginning Suppose. I will make the corrections and 
also insert a sentence. 

O
n
 

&
 

  

Figure IX-58. Sample of DATATEXT usage. 

  

FIND LOCATE NEXT DELETE 

PRINT RETYPE TOP BOTTOM 

INSERT CHANGE BLANK OVERLAY 

VERIFY BRIEF CLIP SERIAL 

COLON TABSET FILE 
  

Figure IX-59. Names of commands in CTSS context editor. 

Source: Crisman [ZR65], extracts from Section AH.3.02, pp. 4-9.



1X.3.6. CONTROL LANGUAGES FOR ON-LINE AND OPERATING SYSTEMS 687 

1X.3.6. CONTROL LANGUAGES FOR ON-LINE AND OPERATING SYSTEMS 

The growth of the complicated and powerful batch operating systems 

and the increased interest and use of on-line systems have had many pro- 

found effects on the computing industry. The one which is being addressed 

here is naturally that which pertains to languages. There are two major 

philosophical problems which make this issue (and indeed this section) 

anomalous. First of all, it is not clear that the items discussed here are really 

languages in the sense of Chapter I since they violate some of the defining 

characteristics given there. Secondly, there is a legitimate question in the 

case of some of the on-line systems as to whether there is really a separate 

terminal language that differs from the problem language. I now wish to 

consider both of these issues briefly. 

It is no longer sufficient (or even possible) for a user who wishes to 

compile and execute a FORTRAN program to take his deck to a machine 

room and run it. Similarly, he is not able merely to type in a FORTRAN 

program at an on-line system and have it compiled and executed. Between 

the user’s problem statement and his desired results there is an additional 

barrier beyond writing the solution to his problem, namely the method by 

which he communicates his desires to the system. Lest any casual reader 

wonder why this is so, it should suffice to point out first that in an on-line 

system there are parallel wishes of other users for differing languages and 

actions to take place. In the batch operating systems, the preceding user 

may be asking for an entirely different language compilation, with data 

coming from many different directions. Thus there has grown up a rather 

complex sequence of control characters (i.e., a control language) which is 

needed to bridge the gap between the user who has finally stated his prob- 

lem in a higher level language, and the computer on which it is to be run. 

I use the phrase sequence of control characters rather than control language 

because the real issue is whether this is a higher level language in the sense 

of this book. It is true that machine code knowledge is unnecessary, but 

the potential for conversion to other computers is relatively small unless 

the other computer has duplicated the operating or time-sharing system. 

(Thus it is theoretically easy to convert, but it is difficult to do on a practical 

basis.) There is definitely an instruction explosion, but it is somewhat 

doubtful that the notation is particularly problem-oriented. Thus this 

sequence of control characters satisfies some—but not all—of the defining 
characteristics for a programming language. /f we consider the sequence a 

superstructure on the basic language, then the second philosophical question 

involved is whether this superstructure (1.e., control language) is really part 

of the problem language or not. I personally feel that the language used to 

communicate with an operating or on-line system 1s not now part of the 

language which is used to state solutions to problems; however, there are 

good arguments that can be given on both sides.



688 sPECIALIZED LANGUAGES 

Another way to consider this problem is to say that this control lan- 

guage should be, to the largest extent possible, the same as the actual lan- 

guage used to write the solutions to problems. This means that whenever 

the same functional capabilities are needed (e.g., input/output, tests, and 

obtaining data), the syntax should be the same as the problem language. 

Space does not permit a detailed description of the various types of 

commands that exist in operating and on-line systems. It will be more 

useful to provide general principles with specific illustrations and let the 

user draw on his own experience. 

In considering the on-line systems, we must distinguish carefully be- 

tween those which are general purpose and those which are dedicated to 

one, or at most, a few specific activities. In the first category exist the 

Project MAC system (CTSS) at M.I.T. (Crisman [ZR65]) and the time- 

sharing system at the System Development Corporation (Coffman, 

Schwartz, and Weissman [CO64]). In the second category are those systems 

described in Section IV.6, plus a few scattered others. In all these systems 
there is a provision for some type of sign in (usually a LOGIN command) 

and some type of sign off (e.g., LOGOUT). These serve the purpose of 

identifying the user and permitting the necessary accounting to take place. 

In the general purpose system with several higher level language com- 

pilers available, it becomes necessary to specify in some way what the 

specific task is that the user wishes done. For example, he may want to type 

ina FORTRAN program and have it compiled, or he may wish to retrieve 

from some storage area a program (in another language) he had been working 

on, change it, and then have it compiled and executed. This type of facility 

is usually provided by specifying the exact name of the language involved 

(e.g., in CTSS the user wrote mad in order to cause compilation of a MAD 

program). Editing facilities are strongly required, both for changing indi- 

vidual lines and for modifying large units of information. For example, 

when the user is typing in, he must have some immediate way to correct 

a typing error; this is usually handled by striking a special key which 

indicates where the error is, or how far back to go, and then permits retyping. 

On a larger level, it is often necessary (and, in fact, one of the valuable 

features of an on-line system) to insert, delete, or change individual lines or 

portions of a program. Thus there is a need for specific commands which 

can perform editing either by accessing numbered lines or by context. In 

the former case, the system is usually supplying specific line numbers as 

the user types in his program. In the latter, the user wants to say something 

like change the + in A + B to —. A more likely notation might be 

chA+BA— B 

The final category of commands that are essential in a general purpose 

on-line system are those which save files or programs and permit them to



1X.3.6. CONTROL LANGUAGES FOR ON-LINE AND OPERATING SYSTEMS 689 

be obtained subsequently. This also requires provisions for deleting elements 
from files, for printing out their contents, etc. One of the major issues, which 

is only tangentially a language one, is how an individual’s files are protected 
from unauthorized access by another person, where the access can be either 

in terms of deletion or examination of the information. 

An example of a portion of a console session on M.I.T.’s CTSS is shown 

in Figure IX-60. 

The commands that are provided for the on-line systems of the types 

discussed in Section IV.6 are simpler in the sense that there is little or no 

need for identification of the higher level language nor for as many opera- 

tions. Thus people who are using QUIKTRAN, JOSS, or CPS know exactly 

what they are running, and it is not necessary to specifically request a 

subsystem. On the other hand, they have similar requirements for signing 

in and out, editing, or saving and retrieving information from files. The 

condensed manual for CPS shown in Section IV.6.5 as Figure 1V-16 sum- 

marizes the commands available for that particular system (which also 

provides for a Remote Job Entry). For example, SAVE (with and without 

password) and LOAD are used, respectively, to store and retrieve programs 

from a file. Stored programs can be deleted by using LIB SCRATCH, and 

a listing of the names can be obtained by using LIB LIST. An interesting 
safety feature is the AUTOSAVE PARAMETERS option which is used with SAVE 

to request that the state of the user’s work be saved periodically (and auto- 

matically) for later retrieval if there is an unexpected system shutdown. 

The user starts and terminates by using LOGIN and LOGOUT, respectively 

(with appropriate account numbers). 

In QUIKTRAN there are seven commands involving communication 

with the system. Each is preceded by a semicolon for identification. The 

USER identifies the user to the system, and the CONSOLE command sets up 

the terminal for conversational operations. The EXIT deactivates the user’s 

identification code, and FINISH terminates the operation. EJECT causes the 

terminal printer to skip to a new page, and SEND transmits a message to 

the operator. An interesting command is the ECHO (fest pattern). In case 

of suspected system malfunction, the system reads any fest pattern typed 

by the user and echoes it back on the terminal. If they do not match, the 

fault is probably a system difficulty; if they do, then the user 1s probably 

In error. 

DIAMAG, which is an extension to ALGOL for on-line usage on the 

IBM 7044 with a satellite computer for the teletypes, has a fairly powerful 

set of control commands, considering that this is a dedicated system. It can 

be used in a desk calculator mode, a conversational mode, and a batch 

processing mode. The control language acts on a file which is a sequence 

of elements of the following four types: Bits, characters, machine words, 

and lines. The basic operations on the files are insertion, extraction, and



login ml1416 1591 

WAIT, 

M1416 1591 LOGGED IN 5/27 1112.9 

READY. 

listf 5 20 63 

WAIT, 

10 FILES 20 TRACKS USED 

DATE NAME MODE NO. TRACKS 

5/20/63 MAIN MAD 15 

5/17/63 DPFA SYMTB P 

5/17/63 DPFA BSS P 1 

5/17/63 DPFA FAP P 

READY. 

input 

WAIT, 

00010 entry recoup 

00020 recoup tra *+1 

00030 cal 1,4 

00040 sto recoup 

00050 trs 2,4 

00060 end 

00070 1 

MAN. 40 sta recoup 

MAN. file subr fap 

WAIT, 

READY. 

fap subr 

WAIT, 

Oo 00005 .000 00 4 00002 TRS 2,4 00000050 

00006 FIRST LOCATION NOT USED 

FAILED 

READY. 

~ 

start 

WAIT, 

FILE TEST DATA NOT FOUND. 

NO ERROR RETURN SPECIFIED 

READY. 

pm lights 

WAIT, 

PROG SEEK STOP= 112 REL., 14273 ABS. TSX 007400414161 

AC = 000014000000, S =0, Q =0 MQ = 000010000000 SI = 400004000000 

IxXl = 2 IX2 = 14 1X4 = 63505 SENSE LIGHTS ON 4 

FPT ON ,DCT OFF, ACOF OFF 

READY, 

save may27 

WAIT, 

READY. 

listf 

WAIT, 

16 FILES 66 TRACKS USED 

DATE NAME MODE NO. TRACKS 

5/27/63 MAY27 SAVED Pp 31 

5/27/63 MAIN BSS P 3 

5/27/63 MAIN MADTAB # QUIT, 

READY. 

logout 

WAIT, 

M141G 1591 LOGGED OUT 5/27 1140.3 

TOTAL TIME USED= 01.6 MIN. 

READY. 

Figure IX-60. Sample of actual CTSS session. The user types in lower case 

and the computer responds in upper case. 

Source: Corbato [ZV63], pp. 89-91. 

690



1X.3.6. CONTROL LANGUAGES FOR ON-LINE AND OPERATING SYSTEMS 691] 

concatenation, with commands for these and other operations, e.g., INSERT, 

EXTRACT, CONCAT, LIST, ERASE, COPY, STORE, DELETE, COMPILE, 

SAVECOMP, TRANSFORM, and INCLUDE. 

The concept whereby people enter jobs at a terminal but expect them 

to be executed at some future time, presumably in a batch environment or 

as background, is becoming increasingly important. The terms remote job 

entry (RJE) or foreground initiated background (FIB) are often used; regard- 

less of the term, the user has entered information from a terminal but is 

not waiting for instantaneous response. 

At least two different systems (see Pyle [PY65] and Bequaert [BV67]) 

have a hazy border line between the actual problem language and the 

means of communication with the specific system. In both cases, the system 

asks the user for information rather than having the user supply it directly. 

For example, in Pyle’s QUIN system, the user replies in lower case to the 

upper-case system query:!? 

WHICH CALCULATION DO YOU WANT? what do you have 

THE FOLLOWING CALCULATIONS ARE NOW AVAILABLE 

KINET 

WHICH CALCULATION DO YOU WANT? kinet 

PLEASE GIVE INPUT VALUES NOW 

YOU MAY EDIT NOW 

EDIT? change gen 

THIS CHANGE MAY AFFECT INICON REACT 

When the on-line system involves the use of graphic display, then some 

differing types of control functions are either needed or useful. The ability 

to point with a light pen rather than type in information provides a different 

framework within which to work. Relevant examples are given in Section 

IX.3.3. 
Turning now from the subject of on-line systems, let us consider a 

complex operating system such as that for the IBM System/360 (OS/360). 

The Job Control Language (JCL) is the method by which the user communi- 

cates with the operating system. It provides him with facilities for retrieving 

data sets of varying kinds and optimizing the use of input/output equipment, 

as well as the basic requirement for specifying just what is to be done with 

the program. There are six types of statements involved in JCL: job, ex- 

ecute, data definition, command, delimiter, and null. The general format for 

the first four of these statements is 

  

17 Pyle [PY65], extracts from pp. 223-24.



692 SPECIALIZED LANGUAGES 

// name opcode parameters comments 

where the name is optional in some cases. The operation codes for the first 

three statement types are JOB, EXEC, and DD. Some of the parameters can 

appear in an arbitrary order. The purpose of JOB is to identify the job and 

the user. A COND parameter permits the user to test the completion of 

previous jobs and use this to control what is to happen next; this is done 

by means of a code number returned by the operating system and tests 

  

//LOOKUP EXEC PGM=SEARCH 
//IN1 DD DSNAME=A.B.C,DISP=OLD 
//ovuTl DD  —_—UNIT=2311,SPACE==(TRK,(10,2)),==DISP(,PASS) 
/ /REDUCE EXEC PGM=TRUNCATE 
//\N2 DD DSNAME=x.LOOKUP.OUTI,DISP=(OLD,DELETE) 
//\WORK DD  UNIT=TAPE 

//OUT2 DD  UNIT=2311,SPACE=(TRK,(5,1)),DISP==(,PASS) 
//DISPLAY EXEC PGM=PRINT 
//\N3 DD DSNAME=x.REDUCE.OUT2,DISP=(OLD,DELETE) 
//OUT3 DD SYSOUT=A 

(a) 

//STEPI EXEC ANALYSIS 
//LOOKUP.OUT] DD —UNIT=2400,DISP= 
//REDUCE.WORK DD  UNIT=180 
//REDUCE.XTRA DD  UNIT=181 
//DISPLAY.IN3 DD _ DISP==(OLD,KEEP) 

(b) 

//LOOKUP EXEC PGM==SEARCH 
//IN\ DD DSNAME=A.B.C,DISP==OLD 
//ouTl DD —UNIT=2400,SPACE=(TRK,(10,2)) 
//REDUCE EXEC PGM==TRUNCATE 
//IN2 DD DSNAME=x.LOOKUP.OUTI,DISP=(OLD,PASS) 
//WORK DD  UNIT=180 
//XTRA DD  UNIT=181 
//OUT2 DD _UNIT=2311,SPACE==(TRK,(5,1)),DISP(,PASS) 
//DISPLAY EXEC PGM==PRINT 
//1N3 DD DSNAME==x.REDUCE.OUT2,DISP==(OLD,KEEP) 
//OUT3 DD SYSOUT=A 

(c) 

  

Figure IX-61. Uses of Job Control Language: (a) catalogued procedure, 

(b) changes to catalogued procedure, and (c) result of changing catalogued 

procedure. 
Source: [IB67g], pp. 63-64. Reprinted by permission from JBM System/360 

Operating System Job Control Language. © 1967 by International Business 

Machines Corporation.



REFERENCES 693 

involving relational operators, e.g., 

// PAYROLL JOB 5048321,A.USER,COND((12,LE),(8,EQ), .. . 

EXEC primarily identifies the program to be executed. In some cases the 

user can specify the maximum amount of time for completion of the job 

since this is useful information in making assignments in a multipro- 

gramming system. The data (DD) statements specify the required infor- 

mation about retrieving and storing data; this is essential since the data 

can occur in a number of different places. This is probably the most complex 

part of JCL. The command statements are inserted by the operator and 

provide for things such as DISPLAY, MOUNT, START, STOP, and UNLOAD. 

The delimiter statement is simply used to mark the end of a data set in the 

overall input stream to the operating system. The null statement is simply 

used to mark the end of a certain job. 

Applications requiring many control statements can be stored as cata- 

logued procedures and then retrieved and modified by other control cards. 

Figure 1X-6la,b, and c shows (1) an example of a catalogued procedure, 

(2) the cards to change it, and (3) the result. 

REFERENCES 

IX.1. SCOPE OF CHAPTER 

[L165] Licklider, J.C. R., “Languages for Specialization and Application of 
Prepared Procedures”, Information System Sciences: Proceedings of 

the Second Congress. Spartan Books, Washington, D.C., 1965, pp. 

177-87. 

1X.2.1. MACHINE TOOL CONTROL 

[A161] APT Concept and Application, Aerospace Industries Association of 

America, Inc. (1961). 

[Al6la] APT Introduction to Part Programming, Aerospace Industries Associ- 

ation of America, Inc. (1961). 

[BP63] Brown, S. A., Drayton, C. E., and Mittman, B., “A Description of the 

APT Language”, Comm. ACM, Vol. 6, No. 11 (Nov., 1963), pp. 649- 

58. 

[IB67k] §System/360 APT Numerical Control Processor (360A-CN-10X)—Part 

Programming Manual, 1BM Corp., H20-0309-0, Data Processing Divi- 

sion, White Plains, N.Y. (1967). 

[1167] APT Part Programming. McGraw-Hill, New York, 1967. 

[ZC67] Mittman, B., “Development of Numerical Control Programming Lan- 
guages in Europe”, Proc. ACM 22nd Nat'l Conf., 1967, pp. 479-82.



694 SPECIALIZED LANGUAGES 

IX.2.2. Civil ENGINEERING 

[FE66] Fenves, S. J., “Problem-Oriented Languages for Man-Machine Com- 

munication in Engineering”, Proceedings of the IBM Scientific Com- 

puting Symposium on Man-Machine Communication, IBM Corp., 320- 

1941-0, Data Processing Division, White Plains, N.Y. (1966), pp. 43-56. 

[WQ66] Walter, R.A., “A System for the Generation of Problem-Oriented 

Languages”, Proc. 5th Nat’l. Conf., The Computer Society of Canada 

(May-June, 1966), pp. 351-55. 

IX.2.2.1. COGO 

{[EI67] Engineer’s Guide to ICES COGO I (first edition), M.1.T., R67-46, Dept. 

of Civil Engineering, Cambridge, Mass. (Aug. 1967). 

[RS64] Roos, D. and Miller, C. L., COGO-90: An Engineering User’s Manual, 
Dept. of Civil Engineering, Research Report R64-12, M.I.T., Cam- 

bridge, Mass. (Apr., 1964). 

TX.2.2.2. STRESS 

[FE64] Fenves, S. J. et al., STRESS: A User’s Manual. M.1.T. Press, Cam- 

bridge, Mass., 1964. 

[FE65] Fenves, S.J. et al., STRESS: A Reference Manual. M.I.T. Press, 

Cambridge, Mass., 1965. 

[LG67] Logcher, R. D., et al., ICES STRUDL-I, The Structural Design Lan- 

guage Engineering User’s Manual (first edition), M.I.T., R67-56, Dept. 
of Civil Engineering, Cambridge, Mass. (Sept., 1967). 

IX.2.2.3. ICES 

[MT00] JCES Programmers’ Guide (preliminary edition), M.I.T., Dept. of Civil 

Engineering, Cambridge, Mass. 

[RS65] Roos, D., “An Integrated Computer System for Engineering Problem 

Solving”, Proc. FICC, Vol. 27, pt. 2 (1965), pp. 151-59. 

[RS67] Roos, D., ICES Systems Design (2nd ed., revised). M.I.T. Press, 
Cambridge, Mass., 1967. 

[RS67a] Roos, D. (ed.), ICES System: General Description, M.1.T., R67-49, 

Dept. of Civil Engineering, Cambridge, Mass. (Sept., 1967). 

[WQ66] Walter, R.A., “A System for the Generation of Problem-Oriented 

Languages”, Proc. 5th Nat’l Conf., The Computer Society of Canada 
(May-June, 1966), pp. 351-55. 

IX.2.3. LOGICAL DESIGN 

IX.2.3.1. APL (Iverson) 

[FA64] 

[IV63] 

Falkoff, A. D., Iverson, K.E., and Sussenguth, E. H., “A Formal 

Description of System/360”, JBM Systems Jour., Vol. 3, Nos. 2 and 3 

(June, 1964), pp. 198-262. 

Iverson, K.E., “Programming Notation in Systems Design”, 1BM 

Systems Jour., Vol. 2 (June, 1963), pp. 117-28.



[X.2.3.2. 

[QY 64] 

[X.2.3.3. 

[PC64] 

[X.2.3.4. 

[MZ65] 

[X.2.3.5. 

[MX66] 

IX.2.3.6. 

[CB65] 

[YZ67] 

[X.2.3.7. 

[PN66] 

[PN66a] 

REFERENCES 695 

LOTIS 

Schlaeppi, H. P., “A Formal Language for Describing Machine Logic, 
Timing, and Sequencing (LOTIS)”, JEEE Trans. Elec. Comp., Vol. 

EC-13, No. 4 (Aug., 1964), pp. 439-48. 

LDT 

Proctor, R. M., “A Logic Design Translator Experiment Demonstrat- 
ing Relationships of Language to Systems and Logic Design”, JEEE 

Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), pp. 422-30. 

Language for Simulating Digital Systems 

McClure, R. M., “A Programming Language for Simulating Digital 

Systems”, J. ACM, Vol. 12, No. 1 (Jan., 1965), pp. 14-22. 

Computer Compiler 

Metze, G., and Seshu, S., “A Proposal for a Computer Compiler”, 

Proc. SJCC, Vol. 28 (1966), pp. 253-63. 

Computer Design Language 

Chu, Y., “An ALGOL-Like Computer Design Language”, Comm. 
ACM, Vol. 8, No. 10 (Oct., 1965), pp. 607-15. 

Mesztenyi1, C. K., Translator and Simulator for the Computer Design 

and Simulation Program (CDSP), Version I. University of Maryland, 

TR-67-48, Computer Science Center, College Park, Md. 

SFD-ALGOL 

Parnas, D. L., “A Language for Describing the Functions of Synchro- 

nous Systems”, Comm. ACM, Vol. 9, No. 2 (Feb., 1966), pp. 72-76. 

Parnas, D. L., “State Table Analysis of Programs in an ALGOL-Like 
Language”, Proc. ACM 21st Nat’l Conf., 1966, pp. 391-400. 

[X.2.4. DIGITAL SIMULATION OF BLOCK DIAGRAMS 

1X.2.4.1. 

[CR66] 

[PS64] 

[QD66] 

Introduction 

Cramer, M. L. and Strauss, J.C., “A Hybrid-Oriented Interactive Lan- 

guage,” Proc. ACM 2Ist Nat’l Conf., 1966, pp. 479-88. 

Petersen, H. E. et al., “MIDAS—How It Works and How It’s Worked”, 

Proc. FICC, Vol. 26 (1964), pp. 313-24. 

Busch, K. J., “TELSIM, A User-Oriented Language for Simulating 

Continuous Systems at a Remote Terminal”, Proc. FJCC, Vol. 29 

(1966), pp. 445-63.



696 SPECIALIZED LANGUAGES 

[YD55] 

[YR64] 

[YR64a] 

[ZZ65] 

IX.2.4.2. 

[OZ58] 

[TD58] 

IX.2.4.3. 

[HJ63] 

IX.2.4.4. 

[GL63] 

[GL64] 

IX.2.4.5. 

[QP66] 

Selfridge, R.G., “Coding a General-Purpose Digital Computer to 

Operate as a Differential Analyzer”, Proc. WJCC (1955), pp. 82-84. 

Brennan, R. D. and Sano, H., “PACTOLUS—A Digital Analog Simu- 

lator Program for the IBM 1620”, Proc. FJCC, Vol. 26 (1964), 

pp. 299-312. 

Brennan, R. D. and Linebarger, R. N., “A Survey of Digital Simula- 

tion: Digital Analog Simulator Programs”, Simulation, Vol. 3, No. 6 

(Dec., 1964), pp. 22-36. 

Clancy, J.J. and Fineberg, M.S., “Digital Simulation Languages: 

A Critique and a Guide”, Proc. FJCC, Vol. 27, pt. 1 (1965), pp. 23-36. 

DYANA 

Olsztyn, J.T., “DYANA: Dynamics Analyzer-Programmer, Part I, 

Structure and Function”, Proc. EJCC (1958), pp. 148-52. 

Theodoroff, T. J.. “DYANA: Dynamics Analyzer-Programmer, Part 

I, Description and Application”, Proc. EJCC (1958), pp. 144-47. 

DYSAC 

Hurley, J.R. and Skiles, J.J., “DYSAC: A _ Digitally Simulated 

Analog Computer”, Proc. SJCC, Vol. 23 (1963), pp. 69-82. 

DAS 

Gaskill, R. A., Harris, J.W., and McKnight, A. L., “DAS—A Digital 

Analog Simulator”, Proc. SJCC, Vol. 23 (1963), pp. 83-90. 

Gaskill, R.A., “A Versatile Problem-Oriented Language for Engi- 

neers”, JEEE Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), 

pp. 415-21. 

DSL/90 

Syn, W. M. and Linebarger, R. N., “DSL/90—A Digital Simulation 

Program for Continuous System Modeling”, Proc. SJCC, Vol. 28 

(1966), pp. 165-87. 

[X.2.5. COMPILER WRITING 

1X.2.5.1. Introduction 

[BX62] 

[BX63] 

Brooker, R. A. and Morris, D., “A General Translation Program for 

Phrase Structure Languages”, J. ACM, Vol. 9, No. 1 (Jan., 1962), 

pp. 1-10. 

Brooker, R.A. et al., “The Compiler Compiler”, Annual Review in 

Automatic Programming, Vol. 3 (R. Goodman, ed.). Pergamon Books, 

New York, 1963, pp. 229-76.



REFERENCES 697 

[CH64] Cheatham, T.E., Jr. and Sattley, K., “Syntax Directed Compiling”, 
Proc. SJCC, Vol. 25 (1964), pp. 31-57. (Also in [RO67].) 

(FJ68] Feldman, J. A. and Gries, D., “Translator Writing Systems”, Comm. 
ACM, Vol. 11, No. 2, (Feb., 1968), pp. 77-113. 

[FL64] Floyd, R.W., “The Syntax of Programming Languages—A Survey”, 
IEEE Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), pp. 346-53. 
(Also in [RO67].) 

[GC60] Glennie, A. E., On the Syntax Machine and the Construction of a Uni- 
versal Compiler, Tech. Report No. 2, Carnegie Inst. of Tech. Com- 

putation Center (AD-240512) (July, 1960). 

[GW64a] Garwick, J. V., “GARGOYLE, A Language for Compiler Writing”, 
Comm. ACM, Vol. 7, No. 1 (Jan., 1964), pp. 16-20. 

[IC6é2b] “Panel Discussion: Languages for Aiding Compiler Writing”, Sym- 
bolic Languages in Data Processing. Gordon and Breach, New York, 
1962, pp. 187-203. 

[IR61] Irons, E. T., “A Syntax Directed Compiler for ALGOL 60”, Comm. 

ACM, Vol. 4, No. 1 (Jan., 1961), pp. 51-55. (Also in [RO67].) 

[IR63] Irons, E. T., “The Structure and Use of the Syntax Directed Compiler”, 

Annual Review in Automatic Programming, Vol. 3 (R. Goodman, ed.). 
Pergamon Press, New York, 1963, pp. 207-28. 

[PT66] Pratt, T. W. and Lindsay, R.K., “A Processor-Building System for 

Experimental Programming Languages”, Proc. FJCC, Vol. 29 (1966), 

pp. 613-21. 

[QS61] Sibley, R. A., “The SLANG System”, Comm. ACM, Vol. 4, No. 1 (Jan., 

1961), pp. 75-84. 

[RO64] Rosen, S., “A Compiler-Building System Developed by Brooker and 

Morris”, Comm. ACM, Vol. 7, No. 7 (July, 1964), pp. 403-14. (Also 
in [RO67].) 

[X.2.5.2. CLIP 

[BO60] Book, E. and Bratman, H., Using Compilers to Build Compilers, System 

Development Corp., SP-176, Santa Monica, Calif. (Aug., 1960). 

{[BR59] Bratman, H., Project CLIP (The Design of a Compiler and Language 

for Information Processing), System Development Corp., SP-106, Santa 
Monica, Calif. (Sept., 1959). 

[EG61] Englund, D. and Clark, E., “The CLIP Translator’, Comm. ACM, 

Vol. 4, No. | VJJan., 1961), pp. 19-22. 

[1S59] Isbitz, H.M., CLIP: A Compiler Language for Information Processing, 

System Development Corp., SP-117, Santa Monica, Calif. (Oct., 1959). 

[X.2.5.3. TMG 

[MZ65a] McClure, R. M., “TMG—A Syntax Directed Compiler”, Proc. ACM 

20th Nat'l Conf., 1965, pp. 262-74. 

[X.2.5.4. COGENT 

[RE65] Reynolds, J. C.. COGENT Programming Manual, Argonne Nat’! Lab., 
ANL-7022, Argonne, II]. (Mar., 1965).



698  sPECIALIZED LANGUAGES 

[RE65a] 

TX.2.5.5. 

[OP66] 

[QT64] 

[QV64] 

1X.2.5.6. 

[CH66a] 

[DE64] 

IX.2.5.7. 

[FJ64] 

[FJ66] 

[IT 66] 

[LQ67] 

Reynolds, J.C., “An Introduction to the COGENT Programming 

System”, Proc. ACM 20th Nat’l Conf., 1965, pp. 422-36. 

META 5 

Oppenheim, D. K. and Haggerty, D.P., “META 5: A _ Tool to 

Manipulate Strings of Data”, Proc. ACM 2Ist Nat'l Conf., 1966, 

pp. 465-68. 

Schorre, D. V., “META-II—A Syntax-Oriented Compiler Writing Lan- 

guage”, Proc. ACM 19th Nat’! Conf., 1964, pp. D1.3-1-D1.3-11. 

Schneider, F. W. and Johnson, G. D., “META-3—A Syntax-Directed 

Compiler-Writing Compiler to Generate Efficient Code”, Proc. ACM 

19th Nat’l Conf., 1964, pp. D1.5-1-D1.5-8. 

TRANDIR 

Cheatham, T.E., Jr., “The TGS-II Translator Generator System”, 
Proceedings of the IFIP CONGRESS 65, Vol. 2. Spartan Books, 

Washington, D.C., 1966, pp. 592-93. 

Dean, A. L., Jr., Some Results in the Area of Syntax Directed Compilers, 

Massachusetts Computer Associates, CA-6412-011, Wakefield, Mass. 

(Dec., 1964). 

FSL 

Feldman, J. A., A Formal Semantics for Computer-Oriented Languages, 

Carnegie Inst. of Tech., Pittsburgh, Pa. (Ph. D. thesis) (May, 1964). 

Feldman, J. A., “A Formal Semantics for Computer Languages and 

its Application in a Compiler-Compiler”, Comm. ACM, Vol. 9, No. 1 

(Jan., 1966), pp. 3-9. 

Iturriaga, R. et al., “Techniques and Advantages of Using the Formal 

Compiler Writing System FSL to Implement a Formula ALGOL 

Compiler”, Proc. SJCC, Vol. 28 (1966), pp. 241-52.. 

Mondshein, L.F., VITAL: Compiler-Compiler System Reference 

Manual, M.I.T. Lincoln Lab., Tech. Note 1967-12, Lexington, Mass. 

(Feb., 1967). 

IX.2.6. MISCELLANEOUS 

IX.2.6.1. 

[MF57] 

1X.2.6.2. 

[ED66] 

Matrix Computations: Matrix Compiler 

McGinn, L. C., “A Matrix Compiler for UNIVAC”, Automatic Coding, 

Jour. Franklin Inst., Monograph No. 3, Philadelphia, Pa. (Apr., 1957), 

pp. 71-83. 

Cryptanalysis: OCAL 

Edwards, D. J., OCAS—On-Line Cryptanalytic Aid System, M.L.T., 

MAC-TR-27, Project MAC, Cambridge, Mass. (May, 1966).



[X.2.6.3. 

[KO64] 

[LL66] 

[X.2.6.4. 

[DF67] 

[HD67] 

IX.2.6.5. 

[QU65] 

[SD66] 

[SD66a] 

[X.3. 

TX.3.1.1. 

[JM67] 

[KQ67] 

[KW66] 

[RP67] 

[TE66] 

[X.3.1.2. 

[PG63] 

REFERENCES 699 

Movie Creation: Animated Movie Language and BUGS YS 

Knowlton, K.C., “A Computer Technique for Producing Animated 
Movies”, Proc. SJCC, Vol. 25 (1964), pp. 67-87. 

Ledley, R. S., Jacobsen, J., and Belson, M., “BUGSYS: A Program- 

ming System for Picture Processing—Not for Debugging”, Comm. ACM, 

Vol. 9, No. 2 (Feb., 1966), pp. 79-84. 

Social Science Research: DATA-TEXT 

Couch, A. S., The DATA-TEXT System (Presented at SHARE meeting, 
Aug., 1967, unpublished). 

DATA-TEXT Manual (preliminary manual), Dept. of Social Relations, 

Harvard U., Cambridge, Mass. (Mar., 1967). 

Equipment Check-out: STROBES, DIMATE 

Quatse, J.T., “Strobes—Shared Time Repair of Big Electronic Systems”, 
Proc. FICC, Vol. 27, pt. 1 (14965), pp. 1065-71. 

Scheff, B. H., “A Simple User-Oriented Compiler Source Language 
for Programming Automatic Test Equipment”, Comm. ACM, Vol. 9, 

No. 4 (Apr., 1966), pp. 258-66. 

Scheff, B.H., “Bypassing Professional Programmers”, Datamation, 

Vol. 12, No. 10 (Oct., 1966), pp. 65-81. 

1 DISCRETE STIMULATION 

Introduction 

Jones, M. M., “On-Line Simulation”, Proc. ACM 22nd Nat’l Conf., 
1967, pp. 591-99. 

Krasnow, H.S., “Computer Languages for System Simulation”, 

Digital Computer User’s Handbook (M. Klerer and G. A. Korn, eds.). 
McGraw-Hill, New York, 1967, pp. 1-258—-1-277. 

Kiviat, P. J., “Development of New Digital Simulation Languages”, 

Jour. Ind. Eng., Vol. XVII, No. 11 (Nov., 1966), pp. 604-609. 

Reitman, J., “The User of Simulation Languages—The Forgotten Man”, 
Proc. ACM 22nd Nat’! Conf., 1967, pp. 573-79. 

Teichroew, D. and Lubin, J. F., “Computer Simulation—Discussion of 

the Technique and Comparison of Languages”, Comm. ACM, Vol. 9, 
No. 10 (Oct., 1966), pp. 723-41. 

DYNAMO 

Pugh, A. L., DYNAMO User’s Manual (2nd ed.). M.1.T. Press, Cam- 

bridge, Mass., May, 1963.



700 = sPECIALIZED LANGUAGES 

[X.3.1.3. 

[EF64] 

[GG6l] 

[GG62] 

[HK65] 

[1B67i] 

[1B67)} 

[X.3.1.4. 

[DC64] 

[K W66a] 

[MA63] 

[TN65] 

1X.3.1.5. 

[KN64] 

[KN64a] 

[X.3.1.6. 

[Y C64] 

[YCé64a] 

GPSS 

Efron, R. et al., “A General Purpose Digital Simulator and Examples 

of Its Application, pts. I, II, HI, and 1V”, [BM Systems Jour., Vol. 3, 

No. | (1964), pp. 21-56. 

Gordon, G., “A General Purpose Systems Simulation Program”, Proc. 

EJCC, Vol. 20 (1961), pp. 87-104. 

Gordon, G., “A General Purpose Systems Simulator”, /BM Systems 

Jour., Vol. 1 (Sept., 1962), pp. 18-32. 

Herscovitch, H. and Schneider, T. H., “GPSS III—An Expanded General 

Purpose Simulator”, /BM Systems Jour., Vol. 4, No. 3 (1965), pp. 

174-83. 

General Purpose Simulation System/360 User’s Manual, IBM Corp., 

H20-0326, Data Processing Division, White Plains, N.Y. (1967). 

General Purpose Simulation System/360 Introductory User’s Manual, 

IBM Corp., H20-0304, Data Processing Division, White Plains, N.Y. 

(1967). 

SIMSCRIPT 

Dimsdale, B. and Markowitz, H.M., “A Description of the 

SIMSCRIPT Language”, JBM Systems Jour., ‘Vol. 3, No. 1 (1964), 

pp. 57-67. 

Kiviat, P. J., Introduction to the SIMSCRIPT II Programming Lan- 

guage, RAND Corp., P-3314, Santa Monica, Calif. (Feb., 1966). 

Markowitz, H. M., Hausner, B., and Karr, H. W., SIMSCRIPT—A 

Simulation Programming Language. Prentice-Hall, Inc., Englewood 

Cliffs, N.J., 1963. 

Tonge, F. M., Keller, P., and Newell, A., “QUICKSCRIPT—A SIM- 

SCRIPT-Like Language for the G-20”, Comm. ACM, Vol. 8, No. 6 

(June, 1965), pp. 350-54. 

SOL 

Knuth, D. E. and McNeley, J. L., “SOL—A Symbolic Language for 

General-Purpose Systems Simulation”, [EEE Trans. Elec. Comp., Vol. 

EC-13, No. 4 (Aug., 1964), pp. 401-408. 

Knuth, D. E. and McNeley, J. L., “A Formal Definition of SOL”, 

IEEE Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), pp. 409-14. 

MILITRAN 

MILITRAN Reference Manual, DDC #AD601-794, Gulton Systems 

Research Group, Inc., Mineola, N.Y. (June, 1964). 

MILITRAN Programming Manual, DDC # AD601-796, Gulton Systems 

Research Group, Inc., Mineola, N.Y. (June, 1964).



[X.3.1.7. 

[DH66] 

1X.3.1.8. 

[JM67] 

REFERENCES 701 

SIMULA 

Dahl, O. and Nygaard, K., “SIMULA—An ALGOL-Based Simulation 

Language”, Comm. ACM, Vol. 9, No. 9 (Sept., 1966), pp. 671-82. 

OPS 

Jones, M. M., “On-Line Simulation”, Proc. ACM 22nd Nat?’l Conf, 

1967, pp. 591-99. 

[Y P65} Greenberger, M. et al., On-line Computation and Simulation: The 

OPS-3 System. M.1.T. Press, Cambridge, Mass., 1965. 

[Y P66} Greenberger, M. and Jones, M. M., “On-Line Simulation in the OPS 

System”, Proc. ACM 2Ist Nat'l Conf., 1966, pp. 131-38. 

TX.3.2. QUERY 

[X.3.2.1. Introduction 

[BB64] Bobrow, D.G., Natural Language Input for a Computer Problem 

Solving System, M.I.T., MAC-TR-1I, Project MAC, Cambridge, Mass. 

(Sept., 1964) (Ph. D. thesis). 

[BB64c] Bobrow, D.G., “A Question-Answering System for High School 

Algebra Word Problems”, Proc. FJCC, Vol. 26, pt. 1 (1964), pp. 591-614. 

[CC62a] “Discusston—The Pros and Cons of a Special IR Language”, Comm. 

ACM, Vol. 5, No. 1 (Jan., 1962), pp. 8-10. 

[CD63] Climenson, W.D., “RECOL—A Retrieval Command Language”, 

Comm. ACM, Vol. 6, No. 3 (Mar., 1963), pp. 117-22. 

[CH62] Cheatham, T. E., Jr. and Warshall, S., “Translation of Retrieval Re- 

quests Couched in a ‘Semiformal’ English-Like Language”, Comm. 

ACM, Vol. 5, No. 1 (Jan., 1962), pp. 34-39. 

[CV64] Cooper, W.S., “Fact Retrieval and Deductive Question-Answering 
Information Retrieval Systems”, J. ACM, Vol. 11, No. 2 (Apr., 1964), 

pp. 117-37. 

[CV65] Cooper, W.S., Automatic Fact Retrieval, 1.B.M. Corp., RJ 326, Re- 

search Division, San Jose, Calif. (Jan., 1965). 

[D167] Dixon, P. J. and Sable, J. D., “DM-1, a Generalized Data Management 

System”, Proc. SJCC, Vol. 30 (1967), pp. 185-98. 

[FO65] Foster, D.C., “The Information Processing System for the AN/FYK1(V) 

Data Processing Set”, Information System Sciences: Proceedings 

of the Second Congress. Spartan Books, Washington, D.C., 1965, 

pp. 49-SS. 

[FW66] Franks, E. W., “A Data Management System for Time-Shared File 

Processing Using a Cross-Index File and Self-Defining Entries”, Proc. 

SJICC, Vol. 28 (1966), pp. 79-86. 

[GH65]_ Grant, E. E., The LUCID Users’ Manual, System Development Corp., 

TM-2354/001/00, Santa Monica, Calif. (June, 1965).



702 SPECIALIZED LANGUAGES 

[GR62] 

[HV63] 

[KG66] 

[KG67] 

[MW66] 

[NB67] 

[QE66] 

[RA64] 

[SE65] 

[SE66] 

[SE66a] 

[SK67] 

[SL65] 

[UW67] 

[UY63] 

[ZT67] 

1X.3.2.2. 

[QZ67] 

[SZ65] 

Grems, M., “A Survey of Languages and Systems for Information 

Retrieval”, Comm. ACM, Vol. 5, No. 1 (Jan., 1962), pp. 43-46. 

Haverty, J. P. and Patrick, R. L., Programming Languages and Stan- 

dardization in Command and Control, RAND Corp., Memo No. RM- 

3447-PR, Santa Monica, Calif. (1963). 

Kellogg, C. H., An Approach to the On-Line Interrogation of Structured 

Files of Facts Using Natural Language, System Development Corp., 

SP-2431/000/00, Santa Monica, Calif. (Apr., 1966). 

Kellogg, C. H., On-Line Translation of Natural Language Questions 

into Artificial Language Queries, System Development Corp., SP- 

2827/000/00, Santa Monica, Calif. (Apr., 1967). 

Meadow, C. T., and Waugh, D. W., “Computer Assisted Interroga- 
tion”, Proc. FJCC, Vol. 29 (1966), pp. 381-94. 

Nelson, D. B., Pick, R. A., and Andrews, K. B., “GIM-1, a Generalized 

Information Management Language and Computer System”, Proc. 

SJCC, Vol. 30 (1967), pp. 169-73. 

Bryant, J. H. and Semple, P., Jr., “GIS and File Management”, Proc. 

ACM 21st Nat’l Conf., 1966, pp. 97-107. 

Raphael, B., “A Computer Program Which ‘Understands’”, Proc. 
FICC, Vol. 26, pt. 1 (1964), pp. 577-89. 

Simmons, R.F., “Answering English Questions by Computer: A 
Survey”, Comm. ACM, Vol. 8, No. 1 (Jan., 1965), pp. 53-69. 

Simmons, R. F., Burger, J. F., and Long, R. E., “An Approach Toward 

Answering English Questions from Text”, Proc. FJCC, Vol. 29 (1966), 

pp. 357-63. 

Simmons, R. F., “Natural-Language Processing”, Datamation, Vol. 12, 
No. 6 (June, 1966), pp. 61-72. 

Savitt, D. A., Love, H.H., Jr., and Troop, R.E., “ASP: A New 

Concept in Language and Machine Organization”, Proc. SJCC, Vol. 30 

(1967), pp. 87-102. 

Slagle, J. R., “Experiments with a Deductive Question-Answering Pro- 
gram”, Comm. ACM, Vol. 8, No. 12 (Dec., 1965), pp. 792-98. 

Summit, R. K., “DIALOG—An Operational, On-Line Reference Re- 

trieval System”, Proc. ACM 22nd Nat’l Conf., 1967, pp. 51-56. 

Swets, J. A. et al., The Socratic System: A Computer System to Aid 

in Teaching Complex Concepts, Bolt, Beranek, and Newman, Report 

No. 1007, Cambridge, Mass. (Apr., 1963). 

Chapin, P.G. et al., SAFARI, An On-Line Text-Processing System 

User’s Manual, MITRE Corp., MTP-60, Bedford, Mass. (Mar., 1967). 

COLINGO and C-10 

Steil, G. P., Jr., “File Management on a Small Computer: The C-10 

System”, Proc. SJCC, Vol. 30 (1967), pp. 199-212. 

Spitzer, J. F., Robertson, J. G., and Neuse, D. H., “The COLINGO 

System Design Philosophy”, Information System Sciences: Proceedings 

of the Second Congress. Spartan Books, Washington, D.C., 1965, 
pp. 33-47.



1X.3.2.3. 

[BL65] 

TX.3.2.4. 

[CY 66] 

1X.3.2.5. 

[GB61] 

IX.3.2.6. 

[CJ64] 

[CJ66] 

[TH63] 

[TH64] 

(TH64a] 

[TH66] 

IX.3.2.7. 

[SE63] 

[SE64] 

[SE65] 

1X.3.2.8. 

[QA65] 

REFERENCES 703 

473L Query 

Barlow, A. E. and Cease, D. R., “Headquarters, U.S. Air Force Com- 

mand and Control System Query Language”, Information System 
Sciences: Proceedings of the Second Congress. Spartan Books, Wash- 

ington, D.C., 1965, pp. 57-76. 

ADAM 

Connors, T. L., “ADAM—A Generalized Data Management System”, 

Proc. SJICC, Vol. 28 (1966), pp. 193-203. 

BASEBALL 

Green, B. F., et al., “BASEBALL: An Automatic Question-Answer”, 
Proc. WICC, Vol. 19 (1961), pp. 219-24. (Also in [FG63].) 

DEACON 

Craig, J. A., Pruett, J., and Thompson, F., DEACON Breadboard 

Grammar, General Electric Co., RM64TMP-14, TEMPO, Santa 

Barbara, Calif. (1964). 

Craig, J. A., et al., “DEACON: Direct English Access and COMtrol”, 
Proc. FJCC, Vol. 29 (1966), pp. 365-80. 

Thompson, F. B., The Semantic Interface in Man-Machine Communi- 

cations, General Electric Co., RM63TMP-35, TEMPO, Santa Barbara, 
Calif. (1963). 

Thompson, F.B. et al., DEACON Breadboard Summary, General 

Electric Co., RM64TMP-9, TEMPO, Santa Barbara, Calif. (1964). 

Thompson, F. B., The Application and Implementation of DEACON 

Type Systems, General Electric Co., RM64TMP-11, TEMPO, Santa 

Barbara, Calif. (1964). 

Thompson, F. B., “English for the Computer”, Proc. FJCC, Vol. 29 

(1966), pp. 349-56. 

Protosynthex 

Simmons, R. F. and McConlogue, K. L., “Maximum-Depth Indexing 
for Computer Retrieval of English Language Data”, Amer. Documen- 

tation, Vol. 14, No. 1 (1963), pp. 68-73. 

Simmons, R. F., Klein, S., and McConlogue, K. L., “Indexing and 

Dependency Logic for Answering English Questions”, Amer. Documen- 

tation, Vol. 15, No. 3 (1964), pp. 196-204. 

Simmons, R.F., “Answering English Questions by Computer: A 

Survey”, Comm. ACM, Vol. 8, No. 1 (Jan., 1965), pp. 53-69. 

AESOP 

Bennett, E., Haines, E.C., Jr., and Summers, J. K., “AESOP: A 

Prototype for On-Line User Control of Organizational Data Storage, 

Retrieval and Processing”, Proc. FJCC, Vol. 27, pt. 1 (1965), pp. 435-55.



704  sPECIALIZED LANGUAGES 

[UT67] 

IX.3. 

[QW63] 

[QW66] 

[QX66] 

[RB65] 

[SU66] 

[SU67] 

[YF67] 

IX.3.3.1. 

[HW67] 

IX.3.3.2. 

[VD67] 

[WP67] 

IX.3.3.3. 

[UZ67] 

[X.3.3.4. 

[CF66] 

Summers, J. K. and Bennett, E., “AESOP—A Final Report: A Proto- 

type On-Line Interactive Information Control System”, Information 

System Science and Technology (D. Walker, ed.). Thompson Book Co., 

Washington, D.C., 1967, pp. 69-86. 

3. GRAPHICS 

Sutherland, I. E., Sketchpad: A Man-Machine Graphical Communi- 

cation System, M.1.T. Lincoln Lab., Tech. Report No. 296, Lexington, 

Mass. (Jan., 1963). 

Sutherland, I. E., “Computer Graphics; Ten Unsolved Problems’’, 

Datamation, Vol. 12, No. 5 (May, 1966), pp. 22-27. 

Skinner, F. D., “Computer Graphics—Where Are We?”, Datamation, 

Vol. 12, No. 5 (May, 1966), pp. 28-31. 

Roberts, L. G., “Graphical Communication and Control Languages”, 
Information System Sciences: Proceedings of the Second Congress. 

Spartan Books, Washington, D.C., 1965, pp. 211-17. 

Sutherland, W. R., On-Line Graphical Specification of Computer Pro- 

cedures, M.I.T. Lincoln Lab., Tech. Report No. 405, Lexington, Mass. 

(May, 1966). 

Sutherland, W. R., “Language Structure and Graphical Man-Machine 

Communication”, Information System Science and Technology (D. 

Walker, ed.). Thompson Book Co., Washington, D.C., 1967, pp. 29-31. 

Morrison, R.A., “Graphic Language Translation with a Language 

Independent Processor”, Proc. FJCC, Vol. 31 (1967), pp. 723-31. 

GRAF 

Hurwitz, A., Citron, J. P., and Yeaton, J. B., “GRAF: Graphic Addi- 

tions to FORTRAN”, Proc. SJCC, Vol. 30 (1967), pp. 553-57. 

PENCIL 

Van Dam, A. and Evans, D., “A Compact Data Structure for Storing, 

Retrieving and Manipulating Line Drawings”, Proc. SJCC, Vol. 30 

(1967), pp. 601-610. 

Wexelblat, R. L. and Freedman, H.A., “The MULTILANG On-line 

Programming System”, Proc. SJCC, Vol. 30 (1967), pp. 559-69. 

Graphic Language 

Schwinn, P. M., “A Problem Oriented Graphic Language”, Proc. ACM 

22nd Nat’! Conf., 1967, pp. 471-77. 

DOCUS 

Corbin, H.S. and Frank, W. L., “Display Oriented Computer Usage 

System”, Proc. ACM 2Ist Nat’l Conf., 1966, pp. 515-26.



REFERENCES 705 

IX.3.4. COMPUTER-AIDED DESIGN 

1X.3.4.1. 

[JG67] 

[QW63] 

[UU63] 

1X.3.4.2. 

[LB65] 

[LB67] 

[MT00a] 
[RD61] 

[RD62] 

[RD63] 

[RD67] 

[RD67a] 

[Y W66] 

General 

Gray, J. C., “Compound Data Structure for Computer Aided Design; 

A Survey”, Proc. ACM 22nd Nat’l Conf., 1967, pp. 355-65. 

Sutherland, I. E., Sketchpad: A Man-Machine Graphical Communi- 
cation System, M.1.T. Lincoln Lab., Tech. Report No. 296, Lexington, 

Mass. (Jan., 1963). 

Stotz, R.H., “Man-Machine Console Facilities for Computer-Aided 
Design”, Proc. SJCC, Vol. 23 (1963), pp. 323-28. 

AED 

Lapin, R. B., Ross, D. T. and Wise, R. B., Some Experiments with an 

Algorithmic Graphical Language, M.1.T., ESL-TM-220, Electronic 

Systems Lab., Cambridge, Mass. (Aug., 1965). 

Lapin, R. B., Translation Between Artificial Programming Languages, 

M.I.T., ESL-R-306, Electronic Systems Lab., Cambridge, Mass. (Apr., 
1967). 

AED Kit, (unpublished). 

Ross, D. T., “A Generalized Technique for Symbol Manipulation and 

Numerical Calculation”, Comm. ACM, Vol. 4, No. 3 (Mar., 1961), 

pp. 147-50. 

Ross, D. T., An Algorithmic Theory of Language, M.1.T., ESL-TM-156, 

Electronic Systems Lab., Cambridge, Mass. (Nov., 1962). 

Ross, D. T. and Rodriguez, J. E., “Theoretical Foundations for the 
Computer-Aided Design System”, Proc. SJCC, Vol. 23 (1963), pp. 
305-322. 

Ross, D. T., “The AED Free Storage Package”, Comm. ACM, Vol. 10, 

No. 8 (Aug., 1967), pp. 481-92. 

Ross, D. T., “The Automated Engineering Design (AED) Approach 

to Generalized Computer-Aided Design”, Proc. ACM 22nd Nat?’l 

Conf., 1967, pp. 367-85. 

Wolman, B.L., “Operators for Manipulating Language Structures”, 

(summary only), Comm. ACM, Vol. 8, No. 9 (Aug., 1966), pp. 553-54. 

1X.3.5. TExT EDITING 

[B163] 

[IB67b] 

[WV67] 

Barnett, M. P. and Kelley, K. L., “Computer Editing of Verbal Texts, 

pt. 1. The ES] System”, Amer. Documentation, Vol. 14, No. 2 (Apr., 
1963), pp. 99-108. 

DATATEXT Operator’s Instruction Guide, IBM Corp., J20-0010, Data 

Processing Division, White Plains, N.Y. (1967). 

Walker, D. E., “SAFARI, an On-line Text-Processing System”, Pro- 

ceedings of the American Documentation Institute Annual Meeting, Vol. 4. 

Thompson Book Co., Washington, D.C., 1967, pp. 144-47.



706 SPECIALIZED LANGUAGES 

1X.3.6. CONTROL LANGUAGES FOR ON-LINE AND OPERATING SYSTEMS 

[AU67] 

[BV67] 

[C064] 

[FZ67] 

[GQ67] 

[I1B67g] 

[PY65] 

[ZV62] 

[ZV63] 

Auroux, A., Bellino, J., and Bolliet, L., “DIAMAG: A Multi-Access 

System for On-Line ALGOL Programming”, Proc. SJCC, Vol. 30 

(1967), pp. 547-52. 

Bequaert, F.C., “RPL: A Data Reduction Language”, Proc. SJCC, 

Vol. 30 (1967), pp. 571-75. 

Coffman, E. G., Jr., Schwartz, J. I., and Weissman, C., “A General- 

Purpose Time-Sharing System”, Proc. SJCC, Vol. 25 (1964), pp. 397-411. 

Feingold, S.L., “PLANIT: A Flexible Language Designed for Com- 
puter-Human Interaction”, Proc. FJCC, Vol. 31 (1967), pp. 545-52. 

Gross, L. N., On-Line Programming System User’s Manual, MITRE 

Corp., MTP-59, Bedford, Mass. (Mar., 1967). 

IBM System/360 Operating System Job Control Language, 1BM Corp., 

C28-6539-4, Data Processing Division, White Plains, N.Y. (Mar. 1967). 

Pyle, I.C., “Data Input by Question and Answer”, Comm. ACM, 

Vol. 8, No. 4 (Apr., 1965), pp. 223-26. 

Corbato, F. J.. Merwin-Daggett, M., and Daley, R.C., “An Experi- 

mental Time-Sharing System”, Proc. SJCC, Vol. 21 (1962), pp. 335-44. 

Corbato, F. J. et al., The Compatible Time-Sharing System, A Program- 

mer’s Guide. M.1.T. Press, Cambridge, Mass., 1963.



x SIGNIFICANT UNIMPLEMENTED 
CONCEPTS 

X.1. SCOPE OF CHAPTER 

This very short chapter serves the purpose of providing a space for a few 

ideas that either have not been mentioned in any earlier chapter or, alterna- 

tively, deserve somewhat more attention in a more general content. 

It was stated in the preface to this book that only languages which had 

been implemented were going to be described. The reason for this restriction 
is that the number of proposed languages is probably at least as great as 

those already in existence, if one considers significant additions to existing 

languages as new ones. In spite of this previous stipulation, there are several 

ideas, concepts, or unimplemented languages (the term depends on your 

viewpoint) which have been around for differing lengths of time and which 

seem to be of greater than average importance or interest. Whether any of 

these can or ever will come into practical existence is highly questionable; 

they are currently of theoretical interest only but it seems essential that the 

concepts at least be recorded. Clearly, my personal biases and interests show 

through strongly here. 

Brief sections are devoted to (1) one of the earliest—but still unsolved 

—problems, namely that of a Universal Computer-Oriented Language to 

bridge the gap between higher level languages and machine code; (2) a 
theoretical approach to data processing, the Information Algebra; (3) the 

programming language of Iverson, beyond the implemented subset in Section 
IV.6.8; (4) the use of English as a programming language; and (5) attempts 

to consider building hardware to accept higher level languages directly. 

707



708 SIGNIFICANT UNIMPLEMENTED CONCEPTS 

X.2. UNCOL 

The first of the languages to be discussed which is of theoretical interest 

only is in fact one of the oldest, namely that known as UNCOL (UNiversal 

Computer Oriented Language). The motivation for this language unfor- 

tunately still exists and here we have a dual problem. In the other parts of 

this chapter there are /Janguages which have not been implemented; here we 

are faced with a situation in which the /anguage itself does not exist, except 

as a concept. The basic problem which motivated this work is one that still 

remains with us, namely that we may have M machines and N languages 

which we would like to have translated into these M machines. Simple 

arithmetic shows that this requires M x N compilers, which is a prohibitive 

cost. The proposed solution to this is illustrated in Figure X-1, which shows 

  

  

      

Languages Machines 

L, M, 

Lo Mo 

mN LO, M3 
UNCOL 

L4— oom May 

Ly Mu 

  

Figure X-1. Use of UNCOL to reduce the number of compilers in going 

from N languages to M machines. 

a language that would be neither a programming language as we understand 

the term nor a machine language but something which is intuitively between 

them. The idea is to translate each higher level language to UNCOL and 

write a translator of UNCOL to each machine language. Simple arithmetic 

shows that in this case far less than M x N compilers are required—it is 

essentially M+ N “half compilers.” If such a language existed and a new 

higher level language were defined, it would be necessary only to write the 

first half of a compiler, namely translating the new language to UNCOL;



X.3. INFORMATION ALGEBRA 709 

this language would then be available on all computers because the UNCOL 

machine program existed. Similarly, if a new computer were developed, 

it would only be necessary to write the second half of the compiler, namely 

the UNCOL-to-machine-language translator. These first and second halves 

could be joined together in any appropriate fashion. This concept is de- 

scribed in great detail in the referenced papers by Strong et al. [QR58] and 

[QR58a]. Unfortunately, in my opinion, the people proposing this concept 

(which I think is a valid one) did a disservice in proposing the word generator 
to mean the first half of the compiler and translator to mean the second half. 

This is contrary to the intuitive notions of these terms held by many people. 

To a limited extent, people involved in writing JOVIAL compilers have 

provided an intermediate language for their own use. However, since they 

have a fixed front end, this is not really a useful UNCOL for a variety of 

languages. A few attempts at specifying UNCOL are given in the reference 

list at the end of this chapter. 

X.3. INFORMATION ALGEBRA 

The Language Structure Group (LSG) of the Development Committee of 

CODASYL (see Section V.3.1 for discussion of CODASYL) was formed 

in July, 1959 to study the structure of programming languages for data 

processing and to make recommendations for future developments. Recog- 

nizing the limitations of programming languages in the area of machine 

dependence, the need for sequencing procedural statements, and problems 

of dividing a large data processing application into specific runs, the LSG 

decided to try to devise some language to serve as a theoretical basis for 

truly automatic programming. The LSG did not produce a user-oriented 

language for defining problems, nor was it able to specify even in general 

terms an algorithm for translating statements in the Information Algebra 

that was developed into machine language programs. On the other hand, 

the Information Algebra which the LSG defined in [CC62], based on work 

of R. Bosak, is an attempt to provide a theoretical framework for concepts 

that have been understood for years by business systems analysts. The con- 

cepts are mathematical; particularly, they include notions of set theory. 

The algebra has been built on three undefined concepts and three 

postulates. The concepts are property, value, and entity. The first postulate 

says that each property has one and only one set of values (called the prop- 

erty value set) assigned to it. The second postulate states that every entity 

has one and only one value assigned to it from each property value set. The 

third postulate states that each property has at least the values undefined 

and missing assigned to it if necessary. As an illustration, in a payroll applica- 

tion, one class of entities is the employees. Some of the properties which



OT
L 

  

Areas 
  

  

    

Properties Value set Old pay file Daily work file New employee file New pay file 

OP DW NE NP 

q, = File ID PF, DW NE X X X X 

(always PF) (always DW) (always NE) (always PF) 

gq. = Man ID 00000 --- 99999 X xX X XxX 

gq; = Name 20 alphabetic characters X Q X X 
gq, = Rate 00.00 --- 99.99 X D X X 
qs = Hours 00 --- 24 Q X QD Q 

de = Day # 0--- 7 Q xX Q Q 

Gz = Total salary 00000.00 - - - 99999.99 X Q Q X 

Gg = Pay period # 00 --- 52 X Q X xX 

9g = Salary 000.00 - -- 999.00 XxX Q QD X       
  

Figure X-2. System information for payroll problem written in Information Algebra. 
Items designated by © are undefined. 

Source: [CC62], p. 202. By permission of Association for Computing Machinery, Inc.



X.3. INFORMATION ALGEBRA 711 

might be selected are identification number, name, sex, and pay rate. A payroll 

file would contain a set of values of these properties for each entity. Various 

ways of grouping data must be provided and these are done through specifi- 

cally defined concepts called line, area, and bundle and the definitions of 

the concept of functions of lines, areas, and bundles. \n a very rough intuitive 

  

p~Expression for New Pay file 
  

Function of a Glump 

Glumping function 

Area glumped 

yen of areas 

NP = Filqie — 4225 H(q2, DW), OP] U Felis = 922, H(q2, DW), NE] 
  

Lond area of Bundle 

Ist area of Bundle 

Bundling function 

| Function of a Bundle 
| |     

L_Derived area for L_perived area for 

old employees new employees 

qo =e 

Qs = lds (4s < 8) 7 1.5%95—-41 +h, 

fe = SIs <— (Gs < 8) > 8] 

fi =90<— (fo < 40) > 0.5 x fg — 20 

Qe = ar + Ws * Goa 

Fi = 498 = 4 + 1 
qo = G15 * Fas 

q; = PF 

— JW = 5 * Gu Fy = 3% 
Vas’ = dog + 1 
do = 15 * Ju 

qi; = PF (For F, the qg,’ have the same value as 

qo = Man ID the corresponding q, in the second area 
q3; = Name of the bundle. For F, the q,’ are taken 

qi = Rate from the New Employee File.) 

qs = 

Ge = 

  

Figure X-3. Payroll program written in Information Algebra. 

Source: [CC62], p. 203. By permission of the Association for Computing 

Machinery, Inc.



712 SIGNIFICANT UNIMPLEMENTED CONCEPTS 

sense, an area is analogous to a file, and a bundle provides ways of match- 

ing. A third rigorously defined concept called a glump is introduced to 

provide ways of summarizing. As an illustration of what statements in this 

language actually look like, Figure X-2 defines the information needed in 

a payroll problem and Figure X-3 shows what the actual program would 

look like in the Information Algebra. An even more interesting application 

or illustration, particularly because it was not done by any of the people on 

the committee, is that described by Katz and McGee [K Z63] in which they 

show how to express an assembly program using the Information Algebra. 

The committee which prepared the report consisted of R. Bosak (SDC), 

R. Clippinger (Honeywell), C. Dobbs (UNIVAC), R. Goldfinger (IBM) 

(chairman), R. B. Jasper (Navy Management Office), W. Keating (NCR), 

G. Kendrick (GE), and J. E. Sammet (IBM). They, plus a few others, voted 

in the summer of 1964 to disband (probably one of the few committees in 

history to do so) because the members did not really have the time to devote 

to the activity and, frankly, did not have any significant approaches about 

how to try to implement such a system, even in very broad terms. 

The greatest significance of this work hopefully will show up when more 

is understood about the theory and science of programming in general, 

and data processing in particular. An even earlier attempt to formalize some 

concepts in the data processing area is that of Young and Kent [YJ58]. Other 

individuals (e.g., Lombardi [LM62]) and groups (e.g., SHARE Committee 

on Theory of Information Handling) have also done work in this area. 

X.4. APL (IVERSON) 

The language developed by Iverson (see the various references at the end 

of this chapter, with his book [[V62] as the definitive work) has been known 

in public form since at least 1962 and had then been under development for 

several years. It has more recently been referred to as APL (A Programming 

Language), which means the language, as distinct from APL/360, which is 

an implemented subset (described in Section IV.6.8.) The computer world 

seems to be divided into an inside and an outside on this particular subject; 

namely those who think it is the solution to all problems and those who see 

no use whatsoever for it. I am not trying to evade the issue in taking a middle 

ground because I can see many of the advantages and the power of this 

language, while still recognizing its practical limitations. To quote Iverson, 

“The language is based on a consistent unification and extension of existing 
mathematical notations, and upon a systematic extension of a small set of 

basic arithmetic and logical operations to vectors, matrices, and trees.”! 

I think this is a very fair statement, but it overlooks what many people find 

1 ([V62a], p. 345.



  

  

  

  

  
    

    

    

  

          

Operation Notation® Definition® 

Scalar x 
a Vector x X =X, Ky °° ', XOx-1 vX = number of components 

a 

a Xo Bix -1 X* = ith row vector 
a . X; = jth column vector 

© | Matrix « X= ; ; uX = number of rows 

XV yt vX = number of columns 

Arithmetic +- xX + Usual definitions ) All operations are extended 
p t-by p t to 

3 Absolute value z¢|z z = maximum of z and —z dimensionally compatible 
| Floor kel kszr<k+1 vectors and matrices. If one 

3 Ceiling ke[ zx k-~l<2<k k, m, n, q | of the operands is a scalar, it 
> | Residue modulo m | k —m|n n =(mXq)+hk,{ integers | is treated as a vector or ma- 
a O<k<m trix of appropriate dimension 
g whose components are all 

And we-uNAv u = 1 and v = 1 | equal. Examples: 
2 Or we-uvo u=lorv=l1 zext+y 
& Negati wet w=l1if Ju=0 ze—xXy 
S egation { we ~u and only if }u = 0 W-UAV 
I | Relation w— rRy zy is true wexey 

J we-i<cy 

Reduction z2<— ©/x 2 =%XO%x1O °°: © xX,x)-1 © is any binary operator or 
& | Row reduction z«©/X zi = ©/X* relation. The case X ¢ Y is 
fj | Column reduction z¢O//X z= O/X; the ordinary matrix product. 

3 Matrix product Z~-X3:Y Zi = ©:/X* ©: Y; The expressions X ¢ y, 
Q x ¢: Y, and x 9: y are treated 
a as in matrix algebra. Thus 

x X% y is the scalar product. 

fa | Base 10 value z¢+10]|x z is the base-10 value of the vector x 
2 z-—lu z is the base-2 value of the vector u 
2 Base 2 value ze Lu z= | U 

sq | Representation _ 
4 base 10 z<-—10(n) ij vz =nand10 | z =10"°|j 

| base 2 u«(n) Tj vu =nand | u = 2"|j 

Catenation ze X,y Z = Xo, X1y °° y X(vx)-1) Yor Yr» °° * ys Yory)-1 

Row catenation Z<-x@y B=xh=zy 
Compression 

vector zeu/x z obtained by suppressing from x each x; for which u; = 0 

row Z—u/X Z2* = u/X* 

Zz column Z—u//X Z; = u/X; . 
© row list ze E/X zZ = X°, XY, XU! 20 et 

& | Row list expansion | X<&(m,n)\z | wX =m, »X =n, and £/X =z, Thus X= | 
a _ _- * Z¢mxn)—1 Fl | Mask ze /xjujy/ |u/z su/x;  u/z =u/y. (mxn 

Ze-Xm Zi = 2m, 

Indexing Ze X™ Zits xm 
Z—Xm Z; = Xm, 

Maximum prefix w—a/u w = (vu) and j is maximum for which A/w/u = 1 

© | Left rotation zekfx Zs = Xj;j = (vx) |i + kl cyclic left (right) rotation of 
% | Right rotation ze-kIx Zo = X55 = (vx) |i — k) x by k places. 

fa | Left shift zek]x zg =atAktx \ left (right) shift bringing zeros 
i Right shift zek t x zezaAk|x into evacuated positions 

w | Full w < e(n) w;, =1 

& Characteristic w << €i(n) wow, =(V/i = J) 
& | Prefix w — ai(n) w; = (t <7) Dimension of w is n. The n 

Ba Gy w — wi(n) w; = ((n — i) <j) may be omitted if it is clear 

we? w = 0 or 1 (arbitrary) from context. 
a Random w <— ?(n) w, = Oorl 
oD w <— ?i(n) w; = Oor!] but +/w =j 

& | Interval z= wn) zejjti,-s,jtn-] 
n 
    

Figure X-4. Partial list of APL notation. 

Source: Falkoff, Iverson, and Sussenguth [FA64], p. 200. Reprinted by 

permission from /BM Systems Journal. © June, 1964 by International 
Business Machines Corporation. 

713



  
Co 

Oo
 
N
W
O
 

A
 

Rh 
WY 

LF 
—
 

p
h
 
m
m
m
 

m
e
k
 

mm
 

m
k
 

ee
k 

I
 

A
 

wr 
&
 

W
Y
 

N
O
 

—
|
 

OS 

  

  

  

          

a 

v<0 

a(D) <E 

v/p, vig <— v/® 

v <-vV(q =A, €) 

s <0 

v:i€ 

Z<v 

s<st+l 

j-GRODIO) 
r —K(D;) 

©,” <p; 

p; < 0; 

r : k(p;) 

v,;<1 

Z;<1 

Z.e€ 

  

  

  

    

  

    

                        

  

    

          

0,7 <>, Ao 18 

a(®) <—E 19 

si + | 20 

s<[s + m] 21 

P= 0,” 22 

— i<0 23 

i<xit+l] 24 

j<s 25 

r <k(p) 26 

A p<? J 28 
< 
— r: k(p) 29 

S # 
=|Jj/<j-! 30 

> 

< l-origin indexing 
7: 

®,1 | Input to merge; output of 
classification, i « U(m). 

®,? | Output of merge; input to 
classification. 

p | Item positions 

Legend | 2 File partitions yam. 

v | Exhausted files 

z | Ineligible items 

s | String count. 

r | Key of last recorded item. 

° | Final dummy item. 

i | Index of output file. 

j_ | Index of input file.       
  

Figure X-5. m-way merge sort written in APL. 

Source: Iverson [IV62a], p. 182. 

714 

 



X.5. ENGLISH 715 

to be its greatest difficulty, namely the notation involved. A subset of the 

language notation is shown in Figure X-4, and a program to do sorting is 

shown in Figure X-5. Programs have been very successfully written to deal 

with scientific applications, systems programming, data processing, and 

descriptions of hardware. Unfortunately, current hardware does not permit 

the practical usage of such a language. The subset which has been imple- 

mented (see Section [V.6.8) is proving to be of extreme interest to a number 

of people. 

The major characteristics are the heavy use of operators on vectors and 

matrices; thus, for example, the need for a loop-control statement is elimina- 

ted in many cases. Other operators also contribute to the conciseness of the 

language. On the other hand, the question has been raised as to whether this 

is a language or a notation. 

Since I stated the view in Chapter III that the character set is of prime 

importance in the design of a programming language, I cannot become 

enthusiastic about a language which has this notational complexity. Perhaps 

a good use of Iverson’s language would be to serve as a canonical form for 

use in defining the meaning of many (although certainly not all) statements 

in other languages. 

X.5. ENGLISH 

It may surprise some readers to find English being listed as a language in 

this section. The reasons for it are discussed to a large extent in Chapter XI, 

where an argument is given in favor of allowing the user to converse with 

a computer in his own natural language. For the sake of convenience, I 

choose to call this English, but it should definitely be understood that it is 

a shorthand way of saying any natural language. It must be emphasized that 

a natural language includes scientific notation wherever appropriate, in 

one or two dimensions. For example, the input of two-dimensional dia- 

grams for chemical structures is a perfectly appropriate language and is 

legitimately included in my meaning of English. 

A number of arguments in favor of the use of English as a programming 

language are given in Fraser [F V67], Sammet [SM66b], Halpern [HL66], and 

Thompson [TH66]. In addition, Section IX.3.2 described a number of query 

and retrieval systems, some of which are very English-like. It is not the pur- 

pose of this section to repeat those arguments, some of which are sum- 

marized in Chapter XI. The main reason for reintroducing the concept here 

is to point out and emphasize the difference between the use of English for 

retrieval and/or query, and its use as a specific programming language. In the 

former case, as illustrated earlier, the user tends to specify one or two simple 

sentences or questions, which might even have conditional statements within 

them. He then expects to obtain results. For example, he might simply be



716 SIGNIFICANT UNIMPLEMENTED CONCEPTS 

requesting specific information from a system, such as FIND ALL OF THE 

TRAINS FROM PODUNK TO OSHKOSH WHICH ARRIVE AFTER 6:00 P.M., 

BUT BEFORE 8:00 P.M. AND WHICH HAVE DINING CARS. This is some- 

thing far different from a specific program in which an individual may wish 

to actually solve a detailed problem stated in English. The main point 

to be made here is that there is a matter of degree involved from several 

different points of view. One involves the actual syntactic and semantic 

analysis of English. This may not really be any worse for full English pro- 

grams than it is for the query systems, assuming that the programs themselves 

are known to be within some reasonable area of application. However, we 

would of course like to be able to have one program for handling all programs 

written in English, rather than have to have a separate one for each data 

base or each application. The second place in which a matter of degree 

occurs is the actual size of the program. While this is not necessarily of 

great theoretical interest, it tends to have many practical implications as far 

as implementation is concerned. Thus, even if we have the mechanism for 

parsing English sentences and understanding what to do with them, the fact 

that there might be several hundred of these in a single program, together 

with a large number of data variables, control transfer statements, complex 

calculations, etc., presents a problem which transcends the mere syntactic 

and semantic analysis that we already know is a major difficulty. For 

example, consider the following two problems: 

(1) A deck of cards is given to be read in format (/3, F/0.2), one card for 

each person in a certain village. The number in the first field is the person’s 

age; the number in the second is his income for 1960. Following this deck 

is a card with —/ in the first field; this information will be used to test 

for the end of deck. 
Find the average salary of the people in each 5-yr. age group, 1.e., 

0-4, 5-9, 10-14, ..., 95-99. Print out the lower age limit for each group, 
i.e., 0,5, 10,...,95, the average salary for that group, and the number 

of people in each group. Precautions should be taken to avoid division by 

zero in case there are no people in an age group.’ 

(2) Determine the current in an AC circuit consisting of resistance, induc- 

tance, and capacitance in series, given a number of sets of values of resis- 

tance, inductance, and frequency. The current is to be determined for 

a number of equally spaced values of the capacitance (which lie between 

specified limits) for voltages of /.0, 1.5, 2.0, 2.5, and 3.0 volts. The equa- 

tion for determining the current flowing through such a circuit 1s 

E 
TR? + nfl — lanfC? 
  

2 (IB61], p. 79. Reprinted by permission from FORTRAN II General Information 

Manual. (© 1961 by International Business Machines Corporation.



X.6. HARDWARE IMPLEMENTATION OF PROGRAMMING LANGUAGES 717 

where / = current, amperes C 

E = voltage, volts f 

R = resistance, ohms 7 
L = inductance, henrys 

= capacitance, farads 

= frequency, cycles per second 
= 3.1416° 

These examples involve difficulties which are orders of magnitude be- 

yond those involved in executing just a few commands or merely retrieving 

information. Most of the work shown in the references appears superficially 

to contribute toward this goal, but very little involves actual programs rather 

than query answering. 

X.6. HARDWARE IMPLEMENTATION OF PROGRAMMING LANGUAGES 

Considering the large number of programming languages which are discussed 

in this book, to say nothing of their variations and dialects which are not 

covered, it is almost surprising that nobody (as far as I know) has actually 

built a machine to directly handle one or more of these languages. It seems 

worth mentioning a few of the suggestions that have been made over a period 

of time for actually doing so. No discussion of the economic or technical 

feasibility of this approach is intended. 

The first attempt to build a computer with a programming language 

order code that | am aware of, and actually the only one I know that was 

ever really implemented, was the NCR 304. A justification for that machine 

in terms of automatic coding as it was understood in /957 is given by Yowell 

[Y O57]. He stated that the objective of the 304 was to reduce the cost of many 

business applications by incorporating into the hardware some of the fea- 

tures found in automatic coding systems. However, the “highest level” that 

was really receiving major public consideration at the time were languages 

of the Autocoder level; hence the 304 became a three-address machine with 

powerful commands, including Merge, Edit (with check protection), and 

Summarize. When COBOL was developed, it actually did not contain (at 

least in its earliest versions) an instruction as powerful as that on the 304, 

namely the Merge. Furthermore, because some of the instructions on the 

304 were relatively high level, it was difficult to break them down to perform 

equivalently high level operations which were specified in COBOL but with 

very different rules. Having heard of this particular situation, I personally 

have been a nonadvocate of machine hardware implementation of higher 

level languages since then. However, some of the more recent work might 

turn out to be more useful, particularly if applied to standardized languages 

(e.g., FORTRAN). 

3 (IB61], p. 86. Reprinted by permission from FORTRAN II General Information 

Manual. © 1961 by International Business Machines Corporation.



718 —sIGNIFICANT UNIMPLEMENTED CONCEPTS 

The Burroughs B-5000 included hardware to directly execute Polish 

notation strings, which are often used as the output from the first pass of 

a compiler. 

The proposed computer described by Anderson [AJ61] was actually 

meant to implement much of ALGOL 60. His design included a large part 

of ALGOL 60, but with the major omission of comment. 

Far more recently, a proposal has been made by Bashkow, Sasson, and 

Kronfeld [UF67] to actually implement a FORTRAN machine. Their pro- 

posal shows a subset that consisted essentially of the assignment state- 
ment, the GO TO and the computed or assigned GO TO, IF, PAUSE, DO, 

CONTINUE, END, READ, PRINT, and DIMENSION. This 1s roughly equivalent 

to the FORTRAN for the IBM 1620. The major concept missing from their 

proposed design is that of subroutines, either programmer-invoked or 

built-in. | 

Another proposed FORTRAN hardware computer is described by 

Melbourne and Pugmire [ZM65]. They discuss using micro-programs and 

say that the results of various simulations showed execution times greater 

than hand-coded programs but less than compiled programs. 

The CDC 3600 was modified to implement IPL-V and used for checker 

playing. (See Hodges [HX64] and Cowell and Reed [ZN65], respectively.) 

The approaches just mentioned attempt to consider the design of 

hardware to implement an existing language. Still another proposed approach 

is to create a new higher level language and then to try to build hardware 

to implement it. This was the approach taken in considering ADAM as 

described by Mullery, Schauer, and Rice [MH63] and also in Mullery 

[MH64]. They postulate the existence of data of completely variable length, 

with up to eight identifiers to indicate the data structure. These correspond 

to character, symbol, phrase, sentence, paragraph, chapter, book, and library. 

The language itself is meant to consist of verbs, nouns, and modifiers. They 

say, for example, that an instruction might be written as follows: 

v Start VQA + B > CG. 

where @) is meant to show one of the data levels. The verbs that they de- 
scribe include define (shown as a right arrow), insert, join, and delete. Verbs 

which operate on data strings as sets include intersect, union, and difference. 

Normal arithmetic verbs are allowed and set and truncate are provided; 

they may be modified by the adverb round. Verbs to change structure, to 

do editing, and for control and conditional statements are also described. 

This machine was not implemented. 

In machines which permit micro-programming, there is much more 

potential for this type of thing to be done. CPS (see Section IV.6.5) has a 

version in which the micro-programming facility of the IBM System/360 was 

used to provide more efficiency in some of the frequently used operations. A



REFERENCES 719 

micro-programmed implementation of EULER (a generalization of ALGOL) 

on the IBM System/360 Model 30 has been done (see Weber [YB67]). 

Whether micro-programming of the future will permit significant building 

of new languages in a hardware-software mixture is unforeseeable at this 

time. Many of the elements discussed in Chapter II along with economic 

considerations, rather than technical feasibility, may be the determining 

factors in the decisions to build such systems. 

REFERENCES 

X.2. UNCOL 

[BR61] Bratman, H., “An Alternate Form of the ‘UNCOL Diagram’”, Comm. 

ACM, Vol. 4, No. 3 (Mar., 1961), p. 142. 

[C158] Conway, M.E., “Proposal for an UNCOL”, Comm. ACM, Vol. 1, 

No. 10 (Oct., 1958), pp. 5-8. 

[ST61] Steel, T. B., Jr., “UNCOL: The Myth and the Fact”, Annual Review 
in Automatic Programming, Vol. 2 (R. Goodman, ed.). Pergamon Press, 

New York, 1961, pp. 325-44. 

[ST6la] Steel, T. B., Jr., “A First Version of UNCOL”, Proc. WJCC, Vol. 19 
(1961), pp. 371-78. 

[QR58] Strong, J. et al., “The Problem of Programming Communication with 

Changing Machines: A Proposed Solution”, Comm. ACM, Vol. 1, 

No. 8 (Aug., 1958), pp. 12-18. 

[(QR58a] Strong, J. et al., “The Problem of Programming Communication with 

Changing Machines: A Proposed Solution, Part 2”, Comm. ACM, 

Vol. 1, No. 9 (Sept., 1958), pp. 9-16. 

X.3. INFORMATION ALGEBRA 

[CC62] “An Information Algebra” (Phase 1 Report, Language Structure Group 

of the CODASYL Development Committee)”, Comm. ACM, Vol. 5, 

No. 4 (Apr., 1962), pp. 190-204. 

[KZ63] Katz, J. H., and McGee, W. C., “An Experiment in Non-Procedural 

Programming”, Proc. FJCC, Vol. 24 (1963), pp. 1-13. 

[LM62] Lombardi, L. A., “Mathematical Structure of Nonarithmetic Data Pro- 

cessing Procedures”, J. ACM, Vol. 9, No. 1 (Jan., 1962), pp. 136-59. 

(YJ58] Young, J. W., Jr. and Kent, H. K., “Abstract Formulation of Data 

Processing Problems”, Jour. Ind. Eng., Vol. IX, No. 6 (Nov.—Dec., 

1958), pp. 471-79. 

X.4. APL (IVERSON) 

[FA64]  Falkoff, A.D., Iverson, K.E., and Sussenguth, E.H., “A Formal 

Description of System/360”, IBM System Jour., Vol. 3, Nos. 2 and 3 

(June, 1964), pp. 198-262.



720 SIGNIFICANT UNIMPLEMENTED CONCEPTS 

[1V62] 

[IV62a] 

[IV62b] 

[1V64a] 

Iverson, K.E., A Programming Language. John Wiley & Sons, New 

York, 1962. 

Iverson, K.E., “A Programming Language”, Proc. SJCC, Vol. 21 

(1962), pp. 345-51. 

Iverson, K, E., “A Common Language for Hardware, Software, and 

Applications”, Proc. FJCC, Vol. 22 (1962), pp. 121-29. 

Iverson, K. E., “Formalism in Programming Languages”, Comm. ACM, 

Vol. 7, No. 2 (Feb., 1964), pp. 80-88. 

See also entries under IV.6.8 and 1X.2.3.1. 

X.5. ENGLISH 

[BB63] 

[FV67] 

[HL66] 

(1B61] 

[KG67] 

[K164] 

[MMO00] 

[SE65] 

[SE66] 

[SE66a] 

[SM66b] 

[TH66] 

[TR67] 

[WZ67a] 

Bobrow, D.G., “Syntactic Analysis of English by Computer—A Survey”, 

Proc. FICC, Vol. 24 (1963), pp. 365-87. 

Fraser, J. B.,“The Role of Natural Language in Man-Machine Com- 

munication”, Information System Science and Technology (D. Walker, 

ed.). Thompson Book Co., Washington, D.C., 1967, pp. 21-28. 

Halpern, M.I., “Foundations of the Case for Natural-Language Pro- 

gramming”, Proc. FJCC, Vol. 29 (1966), pp. 639-49. 

FORTRAN II General Information Manual, IBM Corportion, F28- 
8074-3, Data Processing Division, White Plains, N.Y. (1961). 

Kellogg, C. H., On-Line Translation of Natural Language Questions into 
Artificial Language Queries, System Development Corp., SP-2827/000/00, 

Santa Monica, Calif. (Apr., 1967). 

Kirsch, R. A., “Computer Interpretation of English Text and Picture 

Patterns”, JEEE Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), 
pp. 363-76. 

McMahon, L.E., FASE: A Fundamentally Analyzable Simplified 
English, Bell Telephone Lab., Murray Hill, N.J. (unpublished). 

Simmons, R.F., “Answering English Questions by Computer: A 
Survey”, Comm. ACM, Vol. 8, No. 1 (Jan., 1965), pp. 53-69. 

Simmons, R. F., Burger, J. F., and Long, R. E., “An Approach Toward 

Answering English Questions from Text”, Proc. FJCC, Vol. 29 (1966), 
pp. 357-63. 

Simmons, R. F., “Natural-Language Processing”, Datamation, Vol. 12, 
No. 6 (June, 1966), pp. 61-72. 

Sammet, J.E., “The Use of English as a Programming Language”, 
Comm. ACM, Vol. 9, No. 3 (Mar., 1966), pp. 228-30. 

Thompson, F. B., “English for the Computer”, Proc. FJCC, Vol. 29 
(1966), pp. 349-56. 

Tabory, R. and Peters, P. S., Jr., Can One Instruct Computers in English ? 
A Feasibility Study Concerning the Use of English in User/Computer 
Communication, IBM Corp., TM 48.67.003, Federal Systems Division, 
Cambridge, Mass. (Oct., 1967). 

Weizenbaum, J., “Contextual Understanding by Computers”, Comm. 
ACM, Vol. 10, No. 8 (Aug., 1967), pp. 474-80. 

See also entries under 1LX.3.2.



REFERENCES 721 

X.6. HARDWARE IMPLEMENTATION OF PROGRAMMING LANGUAGES 

[AJ61] 

[HX64] 

[MH63] 

[MH64] 

[UF67] 

[YB67] 

[YO57] 

[ZG67a] 

[ZM65] 

[ZN65] 

Anderson, J. P., “A Computer for Direct Execution of Algorithmic 
Languages”, Proc. EJCC, Vol. 20 (1961), pp. 184-93. 

Hodges, D., JPL-VC, A Computer System Having the IPL-V Instruction 
Set, Argonne Nat’l Lab., ANL-6888, Applied Mathematics Division, 

Argonne, Ill. (May, 1964). 

Mullery, A.P., Schauer, R.F., and Rice, R., “ADAM—A Problem- 

Oriented Symbol Processor”, Proc. SJCC, Vol. 23 (1963), pp. 367-80. 

Mullery, A. P., “A Procedure-Oriented Machine Language”, JEEE 

Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964), pp. 449-55. 

Bashkow, T.R., Sasson, A., and Kronfeld, A., “System Design of a 

FORTRAN Machine”, JEEE Trans. Elec. Comp., Vol. EC-16, No. 4 

(Aug., 1967), pp. 485-99. 

Weber, H., “A Microprogrammed Implementation of EULER on the 
IBM System/360 Model 30”, Comm. ACM, Vol. 10, No. 9 (Sept., 

1967), pp. 549-58. 

Yowell, E. C., “A Mechanized Approach to Automatic Coding”, Auto- 

matic Coding, Jour. Franklin Inst., Monograph No. 3, Philadelphia, Pa. 

(Apr., 1957), pp. 103-111. 

McKeeman, W.M., “Language Directed Computer Design”, Proc. 

FICC, Vol. 31 (1967), pp. 413-17. 

Melbourne, A. J. and Pugmire, J.M., “A Small Computer for the 

Direct Processing of FORTRAN Statements”, Computer Jour., Vol. 8, 

No. 1 (Apr., 1965), pp. 24-27. 

Cowell, W. R. and Reed, M.C., A Checker-Playing Program for the 
IPL-VC Computer, Argonne Nat'l Lab., ANL-7109, Applied Mathe- 

matics Division, Argonne, III. (Oct., 1965).



I FUTURE LONG-RANGE 

xX DEVELOPMENTS 

  

X1I.1. INTRODUCTION 

Any reader who expects this chapter to provide a crystal ball which will 

specifically foretell the future is doomed to disappointment. Without the 

facilities of Nostradamus or more modern people with similar abilities, 

it is only possible for me to extrapolate from present knowledge. Considering 

the normal delay between writing and physical publication, it is highly likely 

that some (although hopefully not all) of the material in this chapter will be 

either irrelevant or obsolescent by the time it is actually being read. In spite 

of these disclaimers, it does seem worthwhile to attempt to forecast what is 

likely to be done and to indicate some purely personal opinions on what 

should be done. No particular attempt is being made to distinguish between 

what is likely to, and what should, be done although in some places an indica- 

tion will be given. In both cases, the prognostication 1s basically long-range 

rather than something which involves the next few years. 

Pertinent references are listed at the end of this chapter, but without 

any specific citations of them in the text since the titles are generally self- 

explanatory relative to the topics involved. 

It seems likely that the future development of programming languages 

will fall primarily into two major categories, one of which can be labeled as 

theory-oriented, while the other can be called user-oriented. The first area is 

but a subset of what hopefully will be forthcoming within the next 10 years, 

namely a real theory of programming. Right now, the analysis of a problem, 

its statement in some type of machine-understandable form, and the pro- 

duction of the desired results in a reasonable amount of time and at a non- 

prohibitive cost is very much of an art with very little associated science. 

Among the two most important aspects of this general theory of program- 

722



XI.2. THEORY-ORIENTED CATEGORY 723 

ming which will not be discussed in this chapter are the general problem of the 

tradeoff between time and space in a program and a scientific way of mea- 

suring tradeoffs between hardware and software. These are problems which 

need general solutions; when these solutions are available, they can be applied 

to programming languages and their implementation. 

The user-oriented category naturally contains those facets which are 

directly related to making it easier for the user to communicate with a com- 

puter to solve his problem. 

It is no accident that the development of a specially created universal 

programming language is omitted from this chapter. It 1s my firm opinion 

that not only is such a goal unachievable in the foreseeable future, but it 1s 

not even a desirable objective. It would force regimentation of an undesir- 

able and impractical kind and either would prevent progress or, alterna- 

tively, would surely lead to deviations. However, the possibility of a single 

programming language with powerful enough features for self-extension to 

transform it into any desired form is interesting to consider. (By any desired 

form, | mean all the languages in this book, plus any others which are devel- 

oped subsequently.) The techniques for this development are clearly un- 

known currently, but they could conceivably be found in the future. 

X1.2. THEORY-ORIENTED CATEGORY 

The theory-oriented aspect of future programming language work can be 

divided into five major categories: (1) language definition, translation, and 

creation; (2) next major conceptual step; (3) nonproceduralness; (4) problem- 

describing; and (5) use of mathematical concepts. 

X1.2.1. LANGUAGE DEFINITION, TRANSLATION, AND CREATION 

As of the end of 1967, we do not have an adequate tool for defining 

the syntax of several programming languages in a form which can be auto- 

matically—but effectively—handled by some type of translating program. 

This comment seems valid in spite of the vast work and progress that has 

been made in the whole field of developing syntax-directed compilers. 

Methods that work for defining one (or perhaps two) language(s) exist, but the 

moment dissimilar languages (e.g., ALGOL and COBOL) are considered, 

then the techniques either collapse completely or are so inefficient as to 

render them useless, Part of the difficulty is that the border line between 

syntax and semantics of a programming language is not clearly understood 

or defined. Furthermore, the formalism for defining the semantics is only 

in a very preliminary stage at the moment, although certainly some of the



724 FUTURE LONG-RANGE DEVELOPMENTS 

developments are encouraging; there is work underway both in formalizing 

PL/I semantics (see references for Section VIII.4) and in providing better 

formal tools for implementing the semantics. Finally, there is no way to 

record in any formal fashion the view of the actual user relative to what he 

means by a particular language (1.e., the pragmatics). 

One of the many currently unsolved problems is how to determine when 

a compiler actually translates correctly a source program in a given program- 

ming language. The reason this is a major difficulty is because we have two— 

not just one—unsolved problems here. The first relates to the lack of com- 

plete rigor and clarity of the actual language definition itself. The second, 

however, is a more fundamental problem that transcends just the area of 

programming languages, namely the fact that we do not in general know 

how to determine when a program does what we want it to do. (In this 

situation it is the compiler, not the source program, whose validity is being 

questioned.) Any measures of this latter characteristic are currently default 

or intuitive judgments; thus if we obtain answers that satisfy the right people 

or seem to resolve some particular problem or provide information to 

somebody that he accepts as being reasonable, then we say that a program 

is working. However, we have no formal way of defining the intent of a 

program; thus there is certainly no rigorous measure of success, even for a 

substantial—although incomplete—set of cases. We do not have any tech- 

niques for knowing when a program is completely debugged; in fact, the 

complexity of current programs seems to make it impossible to ascertain this 

on a practical basis at all. Although on a digital computer the number of 

paths in a program may be finite and the variations of input data may also 

be finite, the practical situation indicates that the number of possibilities in 

each of these cases by itself is so large that no practical adequate testing 

procedure can be devised. Furthermore, the necessity for combining pro- 

gram paths and data just increases the difficulty of the problem at an expo- 

nential rate. Thus, in summary of this aspect, we do not know how to 

rigorously define languages and, even if we did, we have no techniques for 

determining when a compiler provides a complete and correct translation 

of all possible legal programs written in that language. 

Related to this facet of the problem is the one of compiler efficiency, 

which is (only) partially a language problem. The user should have avail- 

able to him the ability to specify whether he wants rapid compilation or 

maximally efficient object programs or whether he wants to specify a par- 

ticular compromise between these. While this is primarily an implementation 

rather than a language problem, nevertheless there are features and clues 

in the language design which could help. 

Another facet of the general theory-oriented problem is the actual 

language design methodology itself. Up until now, virtually all languages 

have been designed on a completely ad hoc basis, even though the designers



XI.2. THEORY-ORIENTED CATEGORY 725 

may in fact have had (or least thought they had) rational reasons for their 

decisions. Thus, if a specific objective is defined, there is no algorithm for 

designing a programming language to meet that objective; there is not even 

any clear delineation of various tradeoffs involved, let alone any quantita- 

tive measures of them. As a result, language designers continue to argue over 

the merits (or lack thereof) of things such as requiring data names to begin 

with a letter, allowing them to coincide with fixed words in the language, or 

having fewer than N characters. Each of these decisions is made on an 

arbitrary—although often well-founded—basis, usually with some concern for 

tradeoffs involved. However, there is no general overall approach to language 

design which would say that to achieve certain objectives the following well- 

defined tradeoffs exist, and the language designers need only go down the 

list and check what they are least willing to sacrifice and what facets or 

facilities are most important to them. The ultimate in this direction would 

be a true /anguage generator whose input parameters would be the complete 

characterization of all objectives to be achieved by the proposed language. 

This is a utopia that does not seem likely to be achieved for many decades— 

if ever. 

X1.2.2. NEXT MAJOR CONCEPTUAL STEP 

Because there is no theory, there is a need for both a definition of and 

a concern for the next major conceptual step forward in programming 

languages. There have been only a few schools of language development 

to date, although the absolute improvements and advantages from beginning 

to end within each line are considerable. One of these schools is exemplified 

by FORTRAN, COBOL, and ALGOL at its base, and PL/I and its extensions 

at its summit. Except from a very pragmatic point of view, we probably 

cannot push this line of development much further. 

Another line of development is that exemplified by the LISP school. 

However, the advocates of that type of formalism seem to have learned the 

hard way that while the logical concepts and notation which were introduced 

in LISP 1 and LISP 1.5 contribute to clarity of logic and easy solution of 

certain kinds of problems, nevertheless the notation cannot really exist very 

well in the practical world. This is clearly demonstrated by the development 

of LISP 2, which is much more ALGOL-like in its approach to the user than 

it is LISP-like. 

It is possible that the work done by Iverson (see Sections IV.6.8 and 

X.4) represents an independent school, but this is not my current view. It 

is really a side branch of the procedural languages exemplified by FORTRAN, 

COBOL, ..., PL/n. 
Hence what is missing—and unpredictable—is what the next major 

conceptual step in programming languages will be. The closest I care to



726 FUTURE LONG-RANGE DEVELOPMENTS 

come in predicting this is in the area of fewer requirements for stating 

detailed sequential procedures. 

XI.2.3. NONPROCEDURAL LANGUAGES 

It seems clear that one of the necessary directions for theoretical develop- 

ment is to pinpoint more specifically the concept of proceduralness. It was 

pointed out in Chapter I that nonprocedural is really a relative term that 

changes with the state of the art. It would be very desirable to have some 

way of making these concepts fixed rather than relative by assigning a 

proceduralness factor. Thus we might establish machine code as a base at 

one end and a true problem-describing language (which is discussed in the 

next section) at the other end; however, while it is relatively easy to establish 

the end points, there does not appear to be any way at the moment to 

establish fixed points along the scale. Certainly the number of primitives or 

executable commands in the language is a factor, but it is far from clear how 

one compares the statement integrate F(x) dx from A to B with calculate the 

square root of the prime numbers from 3 to 97 and print in three columns. 

In an intuitive sense, the first statement corresponds to what we think of as 

a subroutine, whereas the second is essentially a concatenation of a series 

of individual statements, of which some may be real subroutines and others 

may be basic components of any language (e.g., looping facilities). However, 

it is not clear which should be considered more procedural than the other. 

The theoretical problem involved 1s really to establish some type of mea- 

suring scale by which the amount of proceduralness to be specified by the 

user can be defined for any given language. 

It seems to me that one of the most likely candidates for the next 

major conceptual step forward lies along the lines of defining what is meant 

by more nonprocedural languages and then designing and implementing 

them. The Information Algebra (see Section X.3) was an attempt at this 

which collapsed at the first attempt to develop an approach to implementa- 

tion. 

XI1.2.4. PROBLEM-DESCRIBING LANGUAGES 

Another aspect of the theory-oriented future of programming languages 

is in the direction of what I choose to call true problem-describing languages. 

In the ultimate and in the simplest illustration, the user would write calculate 

the payroll for the X YZ Company and the computer would do the rest. We 

may subdivide this situation into two different cases. The first occurs the 

initial time that this command Is given; in that situation, we must assume 

that the computer will enter into a dialogue (in which the physical means



XI.3. USER-ORIENTED CATEGORY 727 

of doing this is irrelevant theoretically, although significant from a practical 

viewpoint) in order to obtain the necessary information. A key point, how- 

ever, is that the computer would have stored within it enough background 

and enough knowledge of what a payroll and a company are to ask the 

appropriate questions. 

A significant aspect of this mythical problem-describing language 

involves the data structure. It is much easier to envision a system which could 

understand or generate the necessary commands, or ask the necessary ques- 

tions to establish them for a given task, than it is to envision the system 

understanding the general problem of data structure. 

X1.2.5. USE OF MATHEMATICAL CONCEPTS 

The final aspect of the theory-oriented approach is the potential applica- 

tion of mathematical notations and concepts. While this might be considered 

implicit within any definition of a theoretical approach to programming 

languages, it seems important enough to make the category explicit. An 

early attempt at this was made with the Information Algebra (see Section 

X.3) which several people have said was 10 years ahead of its time (when 

published in 1962). The fact that it was extremely difficult to work with is 

perhaps some indication of the validity of that comment. (Simpler uses of 

fundamental mathematical concepts or notations appeared in LISP and in 

Iverson’s work.) Regardless of whether that particular development (i.e., 

the Information Algebra) was or was not significant, there is clearly a wide 

open field for the application of mathematical structures to data processing 

in general and programming languages in particular. It may be that pro- 

gramming languages of the future will consist of mathematical descriptions 

of operations to be performed, that are “sugarcoated” to create an actual 

language which is suitable for use by a reasonably large number of people. 

X1.3. USER-ORIENTED CATEGORY 

There are five main aspects to the user-oriented developments: (1) User- 

defined languages, (2) natural language usage, (3) utilization of, and 

communication with, the hardware and executive software systems, (4) lan- 

guages for new application areas, and (5) languages for creating software. 

X1.3.1. USER-DEFINED LANGUAGES 

It seems to me that from several points of view the area of user-defined 

languages is the most likely and the most promising future development. 

Before discussing these, it is of course necessary to define what is meant by



728 FUTURE LONG-RANGE DEVELOPMENTS 

this phrase. The one thing that has become clear over the relatively short 

life of the computer industry is that there are almost as many ways to say 

add a to b as there are people capable of saying it. Furthermore, while each 

of these different ways achieves the same result, almost every person has a 

specific reason for preferring his notation to somebody else’s. In other 

words, we have a very heavy built-in personal prejudice to either satisfy or 

counteract. Trying to satisfy people has not worked too well; for every group 

that is pacified with a particular language, another group that is trying to 

do similar kinds of problems finds itself unhappy and either develops a new 

language or makes significant changes in the existing one. Some of the ways 

in which these people could be satisfied are indeed trivial; for example, these 

changes might range from something as elementary as allowing the user to 

specify whether he wants to say GO TO, JUMP, or TRANSFER TO to some- 

thing which provides him with some type of simple language extension and, 

therefore, would permit him to add integrate to his list of commands (at 

the language level, not just as a subroutine) if it were not available to him 

initially. However, in this case there is a great efficiency problem, particularly 

in this conceptually trivial area of providing alternative ways of saying the 

same thing. Of more fundamental significance, and correspondingly harder 

to satisfy, is the need for differing executable packages. Thus, the mathemati- 

cally oriented people are concerned with integration, matrix inversion, etc., 

and they need not only the language facilities for requesting these operations 

but the routines which will carry them out. On the other hand, the insurance 

or banking people will be very concerned with report writing, tabulations, 

etc. Although we have attempted to develop languages which are fairly 

general purpose for certain broad categories (as defined in Chapters IV to 

VIII), the very number of them indicates that we have not succeeded. It 

therefore seems appropriate to look very hard at techniques and systems for 

permitting users to define their own artificial languages. In order for this to 

be meaningful and practical, there must be some type of simple language- 

translating-mechanism creator; i.e., it is not enough for the user to be able 

to easily define his own language; he must also have some type of system 

which will have it implemented for him very easily. To accomplish this, there 

needs to be great assistance from some of the aspects under the theory- 

oriented future developments, namely improved means of defining lan- 

guages, having them translated, and knowing that we have actually created 

a translator for them. One very broad approach to this problem of user- 

defining languages is of course to provide large sets of subroutines which 

will actually do the work and then provide a language on top which allows 

the user to specify the way in which he wants to invoke these facilities. 

The advantage of allowing the user to define his own language is that 

he can insist that the computer (and compiler) adapt itself to his terminology 

and method of expression and not vice versa as the situation has been up



XI.3. USER-ORIENTED CATEGORY 729 

until now. Another reason for this particular approach being extremely 

important is that there are now, and will surely continue to be, very diverse 

opinions on the overall types of languages that should exist. As noted in the 

next section, one school of thought holds that future language development 

should be toward the direction of natural language input; on the other 

hand, there is a vociferous school that says this is very bad because users 

need to be forced to use the rigor and clarity that come with formal notations 

and languages. There does not appear to be any potential resolution of 

these diverse viewpoints on the horizon; by permitting users to choose the 

course they prefer, it may be that one or the other of these approaches will 

show itself to be more valid. 

A short-range goal and approach is the inclusion of effective macro 

facilities in programming languages. Just as assembly programs with powerful 

macro capabilities begin to approach the higher level languages, so the latter 

might really begin to approach user-defined languages. The original PL/I 

macro facility was an excellent step in the right direction, but naturally it 

could not be expected to provide the full capability of this type which is 

needed. Thus we can expect to see an increase in the development of lan- 

guages which are relatively simple but provide very good facilities for 

extensions at the same level as the base language. However, just as macros 

added to assembly languages do not cause them to become full-fledged pro- 

gramming languages, we cannot necessarily expect programming languages 

with macros to become full-fledged user-defined languages. 

XI.3.2. USE of NATURAL LANGUAGE 

I have long favored the use of natural language (and for myself that 

means English) as a programming language, where this concept definitely 

includes mathematical or any other relevant scientific notation. An increas- 

ingly large number of programmers will be needed to keep the computers 

of future generations busy, where the term future generation applies to 

hardware and not to people. Since we have had new computer generations 

roughly every 5 years and since the engineers seem to be able to design bigger 

and faster machines more rapidly than the programmers can keep them 

occupied, it is clear that the number of programmers, or at least programmer 

productivity, must be significantly improved. There are generally conceded 

to be two approaches to improving this productivity. One is to give the 

professional programmer better tools with which he can perform his work; 
whether these tools are better languages, better subroutine packages, or on- 

line systems, is almost irrelevant. The significant thing is that improved 

facilities are given to those people whose fundamental training and mission 

is to take some kind of problem statement and put it into a form which can



730 FUTURE LONG-RANGE DEVELOPMENTS 

be understood by a computer and hence solved. In order to indicate—if not 

prove—the fallacy of this approach, I must again use the oft-quoted analogy 

with the telephone company. It has been said that if the telephone company 

had not gone to dial telephoning, then every woman between the ages of 20 

and 50 would have been forced to become a telephone operator in order to 

keep up with the demands. Similarly, at the rate the hardware and applica- 

tions are both developing, it may be necessary for vast numbers of people 

to become programmers. In fact, the programmers may well have to out- 

number significantly the number of people who have problems to solve, 

although the problems themselves become more and more complex. 

The other method of improving programmer productivity is to essentially 

make everybody his own programmer, just as almost everybody drives his 

own car rather than obtaining the services of a professional driver. In order to 

make this practical, it is obviously necessary to make it very easy for people 

to communicate with the computer. The physicist or insurance broker who 

has a problem he wishes to have solved on the computer would like to do 

this with maximum attention to his problem and minimum attention to the 

annoying intricacies of the computer itself. Obviously he cannot do this 

without learning something, just as to use an adding machine, a slide rule, 

or any other tool, a person must learn how to operate it. One can consider 

three major levels of ease (or lack thereof) of usage. The first 1s direct usage 

of machine language, even through a symbolic assembly program. The second 

is through the use of artificial languages of the type discussed in this book. 

The third is through a language which is natural to the user. It seems to me 

that the third choice is by far the most desirable course. It is essential to 

note that there is a very significant difference between this approach and the 

one which was discussed somewhat earlier, namely giving the user the ability 

to define his own artificial language. In that case, the user has a very definite 

responsibility for creating a language which 1s specifically tailored to his 

needs, and of course it is assumed that he would be given some mechanism 

for easily implementing this. In the case of the natural language approach, 

there is no artificial language per se defined; the user communicates with the 

computer in the same way that he communicates with people. When he is 

ambiguous, then the computer will query him to determine more specifically 

the meaning of what he says. If he uses unfamiliar terms, then again the 

computer must request further enlightenment. If he asks for something 

that seems unreasonable, either because it is in conflict with other directives 

or because it might take too much of the computer facilities, then the com- 

puter might object, just as a single engineer in a large corporation who asks 

for 25 typists, 17 technicians, 15 engineering aids, and several computers 

is likely to be told that his demands upon the resources of the organization 

are quite unreasonable. Among the objections to this natural language



XI.3. USER-ORIENTED CATEGORY 731 

approach are that it encourages lack of rigor and that the user must under- 

stand the computer in order to use it. To dispose of the latter point first, 

most people are today using equipment whose inner workings they do not 

understand at all; it is a rare and unusual person who knows very much 

about what goes on under the hood of a car, inside a television set, or even 

inside something as simple as a toaster. With regard to the lack of rigor, I 

have never noticed that a programming language really forced rigor onto 

anybody. An individual is just as likely to omit logically necessary steps from 

a FORTRAN program as he is from stating the problem in English; in fact, 

he 1s more likely to omit them from the FORTRAN than from the English 

because in the former case he must remember a whole host of notational 

devices which are irrelevant to his problem and detract from his thoughts 

about the application. In other words, when we made the step from assembly 

languages to the higher level languages discussed in this book, one of the 

great advantages of the programming languages was that the user could 

concentrate upon the logic of his program and not have to worry about 

intricate details of modifying index registers appropriately. Similarly, we 

are ready to take the step forward to again allow an order-of-magnitude 

improvement in the ability to think constructively about the problem rather 

than about the means of stating the way of solving it. 

One of the objections to this approach has been its potential cost and 

difficulty. It is clearly not within the current state of the art; it is not even 

within any reasonable cost factor relevant to current technology. However, 

that has never deterred us before and it does not seem a sufficient reason to 

stop us now. 

There are two main ways in which this approach can be brought to 

fruition, and both seem worthy of support. One is the approach which can 

be called bottom up, in which artificial languages are developed to become 

increasingly close to natural language; the opposing, or top down view is 

that exemplified by the work of the linguists who are concentrating on 

understanding English grammar and developing generative and recognition 

procedures for increasingly large subsets of it. Neither of these approaches 

seems to have any major advantage over the other and it is probable that 

both will continue to proceed and perhaps meet near the middle to solve 

this problem. 

In summary, it seems essential that a major area of future language work 

is to allow people to communicate with the computer in the same way that 

they communicate with each other, at least from a language point of view. 

Naturally it would be desirable to have hardware developments go along 

with this so that a person could indeed talk to the computer rather than 

writing what he wants to say, but this is a factor not within the scope of this 

discussion.



732 FUTURE LONG-RANGE DEVELOPMENTS 

XI.3.3. COMMUNICATION WITH HARDWARE AND SOFTWARE 

The third area of the user-oriented developments of the future con- 

cerns itself with the language interaction between the person and the system. 

System is used to encompass both the hardware and the software systems. 

Let us consider each of these separately. 

In the first place, the user needs better facilities for making use of specific 

hardware devices that he has or for overcoming the difficulties of the ones 

that exist. For example, relatively new graphic equipment needs languages 

which can suitably manipulate this hardware without the user worrying about 

the details of the equipment. In a similar vein, anybody who has ever written 

an equation on a typewriter, let alone a keypunch machine, has been 

plagued by the necessity of linearizing what is essentially two-dimensional 

mathematical notation. In Section IV.7 there was a discussion of several 

systems which were designed to overcome this difficulty; in each of those 

cases, special hardware was needed. Since that hardware has been known to 

exist and since its availability makes it easier for users to communicate 

certain types of problems, further mutual development for language and 

hardware is certainly needed. 

Another future development will be the creation of languages (or 

features in them) to permit effective utilization of multiprocessors, parallel 

computation, and special machine configurations. Until there are some 

languages which truly eliminate the need for specifying sequential steps, 

the language will have to provide the compiler with the information needed 

to utilize some of the hardware configurations. Some ideas along these lines 

have been described. 

In spite of the comments above, the largest need in this area is for better 

language developments for the user to communicate with the software sys- 

tem. Let us consider the batch environment first. With today’s complexity 

of operating systems, the user must not only write his program in some 

programming language, but then he must worry about a whole separate 

language which is going to tell the operating system about tapes and other 

peripheral units and a host of information which has even less to do with 

his problem than some of the requirements of the programming language. 

Some way must be developed for the user to be able to take his problem, 

written in a programming language, and place it directly into a complex 

operating system without having to learn an additional (new) language. 

The advent of time-sharing has of course opened an area of interesting 

problems and opportunities in languages. There are three distinctions 

which must be made here. The first 1s the availability of languages under 

a time-sharing system which are also available under a batch system. For 

example, FORTRAN, which is naturally a language developed for a batch 

environment, is no different as a language under time-sharing, although the



XI.3. USER-ORIENTED CATEGORY 733 

on-line facilities indeed make it easier to debug the program and/or obtain 

fast response. However, there is nothing at all significant about the language 

elements here. The second distinction involves a separate language develop- 

ment which provides the user with specific facilities which are only mean- 

ingful in an on-line environment. Some of the facilities in QUICKTRAN, 

for example, are not meaningful unless the user 1s at a computer terminal. 

Similarly, in the field of algebraic manipulation, certain facilities which are 

meaningful and essential in an on-line environment are out of place or irrele- 

vant in a batch situation. Thus we need the further development of lan- 

guages which are specifically oriented to the user who is operating in an 

on-line situation and whose characteristics relate to the problem solution 

rather than the control functions. Finally, the last facet actually does relate 

to the control function. In other words, the fact that the user is on line gives 

him both the duty and the right to instruct the system to carry out certain 

tasks for him. These are the kinds of facilities that were mentioned in Section 

[X.3.6. These might be along the lines of editing or correcting, etc., and have 

relatively little to do with the problem solution itself. 

It is possible to develop control functions for use with a time-sharing 

system that is combined with a standard language. This has been done and 

described in some of the existing developments, e.g., QUIKTRAN. 

One interesting combination and/or usage of time-sharing and pro- 

gramming languages is in the area of a teaching machine. It is not the purpose 

of this book to go into a discussion of teaching machines per se. However, 

to the extent that a programming language is not a natural language and 

therefore must be learned, the on-line situation may be ideally suited to 

help in this. Some systems have already developed simple facilities in this 

direction (e.g., MAP, described in Section IV.6.6). For the inexperienced 

user, long and elaborate directions are given on what to type in and how, 

as well as for the interpretation of the response. These same systems provide 

the knowledgeable or sophisticated user with shortcuts, both in terms of 

input and shorter responses, thus making the entire time span much shorter. 

This type of facility should be increased and improved in future develop- 

ments. 

X1.3.4. LANGUAGES FOR NEW APPLICATION AREAS 

Another facet of future developments which is user-oriented is the 

opening of new application areas. While in theory there is certainly nothing 

to prevent any user or group thereof from utilizing the computer for any 

application that is meaningful, nevertheless the presence or absence of a 

suitable language may be the determining factor. A clear illustration occurs 

in considering the general area of formal algebraic manipulation. Packages 

to do certain specific tasks, e.g., differentiation, have existed since 1953,



734 FUTURE LONG-RANGE DEVELOPMENTS 

but people did not rush to use a computer in this area until suitable languages 

became available. In other words, it is not necessarily sufficient to have the 

subroutines which will carry out the desired operations; the user may either 

want or need, in order to work effectively, a better means of communication 

with these packages than simply invoking them as subroutines. Thus, one 

of the functions of future language development must be to look for areas 

in which the nonexistence of a suitable language is a barrier or at least a 

hindrance in using the computer in this particular direction. 

XI.3.5. LANGUAGES FOR WRITING SOFTWARE 

One class of computer users which usually is overlooked in discussions 

like this is the writer of the computer software. By software I mean the 

programs which assist the user in solving his problem but do not in and of 

themselves produce useful results. The obvious examples of this software are 

the compilers themselves, the operating and time-sharing systems, the sorts 

and report writers, etc. This is becoming an increasingly important part of 

the overall programming effort; some people have said facetiously that if 

all the people who are doing software development would discontinue that 

and instead devote their time to solving the practical problems, the industry 

would be in a much better position. It should be clear that I do not share 

that view. Software development is simply another type of computer usage 

which should be made more efficient. Again, although there was a discussion 

in Section [X.2.5 of languages which were designed to help make it easier to 

write compilers, there is no really practical or widely used system for that 

purpose today, and one is desperately needed. This is obviously connected 

with not only the problem of language definition and compiler interaction but 

with techniques for writing compilers and also with the on-line and operating 

systems functions. If we consider the software developer as one of the com- 

puter users, then he also needs languages which are suitable for his purpose. 

The biggest problem here, however, lies in somewhat contradictory objec- 

tives. In most applications, the objective of the programming language is 

to remove any worry about machine operation and machine facilities from 

the programmer. However, in the case of the programmer who Is writing 

operating and time-sharing systems, obviously there must be access to the 

physical hardware. The trick is to do this in such a way that the programmer 

has all the advantages of the higher level language without losing any control 

over the actual hardware that he must manipulate. 

X1.4. INTERRELATIONSHIPS AMONG SOME OF THESE CONCEPTS 

There tends to be considerable confusion about the connections and dif- 

ferences among user-defined languages, natural language systems, and non-



XI.4. INTERRELATIONSHIPS AMONG SOME OF THESE CONCEPTS 735 

procedural languages. This section attempts to point out the relationships 

among these three ideas. 

For any given artificial language, it is possible to introduce more 

English-like terminology to express the same ideas. For example, the simple 

assignment statement X = Y + Z could be written as ASSIGN THE VALUE 

OF Y + Z TO X; similarly, a GO TO K could be written as TRANSFER 

CONTROL TO STATEMENT LABEL K. There are very few people who would 

claim that this Anglicized version was better or more natural. 

On the other hand, if one considers the short program (in a mythical 

language) 

DO I = 3, 95, 2 

CALL PRIME (I) 

IF T, CALL SQURT(I); ELSE RETURN 

PRINT I, SQURT(I) 

RETURN 

then many people would claim that its replacement by 

COMPUTE THE SQUARE ROOT OF THE PRIME NUMBERS BETWEEN 3 

AND 95 AND PRINT IN TWO COLUMNS 

was an improvement in clarity for both reading and writing. In this case, 

however, two different concepts are being combined. The first is the use of 

a more natural (i.e., English-like) language. The second concept is the com- 

bination into a single sentence of all the actions to be performed, thus 

eliminating the requirement for the sequential information inherent in the 

program steps. Hence, one is dealing with the natural language aspect, while 

the other deals with the nonprocedural aspect; they are clearly not the same. 

If we assume the desirability of allowing people to define their own 

artificial languages, with some type of general system for generating the 

necessary processors, then obviously some type of common core is necessary. 

The one common core among all applications which can be utilized is English. 

Thus, the approach to developing a system which permits people to define 

their own application languages goes hand in hand with certain develop- 

ments in the use of English as a programming language. If each language 

is highly symbolic, then there is no common central core and the develop- 
ment of a general generating system requires much more work by the 

language builder. On the other hand, improved knowledge of how to handle 

English-like input for a particular application probably sheds very little (if 

any) light on the problems of developing a system in which people can define 

their own languages. 

The issue of developing nonprocedural languages is separate from the 

two problems above. In addition to the examples given earlier, the key factor



736 FUTURE LONG-RANGE DEVELOPMENTS 

is that nonprocedural refers to the amount of specific detail (including 

sequencing information) that an individual must supply about the problem 

he wants to solve or its method of solution: The form in which he states 

this information is almost irrelevant. For example, writing DIFFERENTIATE 

THE FUNCTION SIN (X * COS(X)) WITH RESPECT TO X does not convey 

any more meaning than the symbols DIFF SIN (X*COS (X)), X. Within 
a given application area, the user might have a language which is quite non- 

procedural but very unnatural (e.g., Information Algebra) or one which was 

nonprocedural and natural but shed no light on the problem of easily 

creating languages (and their processors) for a given application area. 

X1.5. CONCLUSIONS AND SUMMARY 

One of the philosophical considerations that must be kept in mind in view- 

ing the future developments of programming languages is the role that the 

computer will play in society. If the computer is considered no more than a 

tool such as the slide rule or an adding machine, then there is no doubt but 

that programming languages must develop into the area of naturalness for 

the user. If, on the other hand, the computer is considered a very special 

device whose usage is to be limited to a relatively few specialists, then it is 

legitimate to require a higher level of actual computer skill for the use of 

this equipment. 

The two main directions for most likely and most needed future develop- 

ments are theoretical and user-oriented. While these are clearly not completely 

independent, their points of overlap are surprisingly small. This is actually 

quite encouraging because it means that some of the practical user-oriented 

problems are not really being completely held up by lack of appropriate 

theoretical development. On the other hand, some of the theoretical develop- 

ments will need somewhat more input from the user-oriented side before they 

can come to fruition. Therefore, it seems essential that a two-pronged attack 

be made along the indicated lines. 

REFERENCES 

XI. FUTURE LONG-RANGE DEVELOPMENTS 

[AJ65] Anderson, J. P., “Program Structures for Parallel Processing”, Comm. 

ACM, Vol. 8, No. 12 (Dec., 1965), pp. 786-88. 

[CH66] Cheatham, T. E., Jr., “The Introduction of Definitional Facilities into 

Higher Level Programming Languages”, Proc. FJCC, Vol. 29 (1966), 

pp. 623-37.



[DJ63] 

[FV67] 

[HL66] 

[ML60] 

[OA65] 

[RC65] 

[SM66b] 

[WA67] 

[ZY 62] 

REFERENCES 737 

Dijkstra, E. W., “On the Design of Machine Independent Programming 
Languages”, Annual Review in Automatic Programming, Vol. 3 (R. 

Goodman, ed.). Pergamon Press, New York, 1963, pp. 27-42. 

Fraser, J. B., “The Role of Natural Language in Man-Machine Com- 
munication”, Information System Science and Technology (D. Walker, 

ed.). Thompson Book Co., Washington, D.C., 1967, pp. 21-28. 

Halpern, M.I., “Foundations of the Case for Natural-Language Pro- 

gramming”, Proc. FJCC, Vol. 29 (1966), pp. 639-49. 

Mcllroy, M.D., “Macro Instruction Extensions of Compiler Lan- 

guages”, Comm. ACM, Vol. 3, No. 4 (Apr., 1960), pp. 214-20. 

Opler, A., “Procedure-Oriented Language Statements to Facilitate Par- 

allel Processing”, Comm. ACM, Vol. 8, No. 5 (May, 1965), pp. 306-307. 

Rice, R. et al., “Promising Avenues for Computer Research”, Proc. 

FICC, Vol. 27, pt. 2 (1965), pp. 85-100. 

Sammet, J. E., “The Use of English as a Programming Language”, 

Comm. ACM, Vol. 9, No. 3 (Mar., 1966), pp. 228-30. 

Waite, W. M., “A Language-Independent Macro Processor”, Comm. 

ACM, Vol. 10, No. 7 (July, 1967), pp. 433-40. 

Cantrell, H.N., “Where Are Compiler Languages Going ?”, Datamation, 

Vol. 8, No. 8 (Aug., 1962), pp. 25-28.



A BIBLIOGRAPHY ARRANGEMENTS 
AND AUTHOR LIST 

  

In deciding which works to include in the bibliography, I decided not to 

make a distinction between those items specifically referred to in the text 

and those items which might be of use to people interested in pursuing the 

subject further. With the exception of “GENERAL” and “RELATED 

INFORMATION?” lists, which may be found in the BIBLIOGRAPHY 

(pp. 739-741), all citations have been placed at the end of the relevant chapter, 

grouped by subsection (which usually corresponds to a single language). 

Those “REFERENCES” are actually combined Reference-Bibliography 

lists. The material included ranges from essential to useful to items that 

are not particularly good but represent the only material on the subject 

known to me or present some unusual facet of the work. (I have personally 

seen most—but not all—of the items listed.) No particular attempt has 

been made to include a// material relevant to each language, especially for 

the major ones. In many cases, the items describe problems for which the 

language was used rather than the language itself. A few items which were 

referenced from, or should be included in, many sections were placed in 

the GENERAL list; readers not finding a particular citation at the end 

of the chapter they are reading should consult the GENERAL list. 

A four- or five-character code has been assigned to each citation. In 

most cases, this consists of the first two letters of the leading author’s name, 

but where this would have involved duplication or where there was no author, 

arbitrary letters were chosen. The two digits generally represent the year 

of publication. Wherever there was more than one reference from the same 

source during one year, the letters a, b, etc., were used to distinguish them. 

The digits 00 were used when no date was clearly given on the document. 

The references for each section have been arranged alphabetically by code 

738



BIBLIOGRAPHY 7739 

number, not by author, to expedite lookup from the text where there was 

no author. Much effort has been used to try to provide full citations of the 

source documents, in order to help readers with differing methods of access 

to the literature. 

The GENERAL list of references consists of either items which are 

referred to in the text many times, or material which might be of interest to 

readers of this book even though not necessarily referred to in the text. The 

RELATED INFORMATION list contains items which do not logically fit 

anywhere else but might be of interest to some readers, or appeared too late 

to be put in a more appropriate place. 

Following the RELATED INFORMATION references, there is an 

AUTHOR LIST containing an alphabetic listing of the author for each item, 

together with the code numbers assigned to each of his references and the 

specific page(s) in the book where the full citation occurs. Documents by a 

single author are shown separately from those by a leading author or editor. 

The documents without specific authors are not included in this list. The 

major issuer of such material is the IBM Corporation, whose manuals are 

identified by the code letters IB. 

It is hoped that this arrangement will provide the reader with all the 

relevant material on a subject grouped together in the appropriate chapter, 

and also a listing of authors so that a particular document may be easily 

found if the author is known. 

The following abbreviations for the major sources have been used: 

Comm. ACM: Communications of the Association for Computing Machinery. 

J. ACM: Journal of the Association for Computing Machinery. 

Proc. SJCC: Proceedings of the Spring Joint Computer Conference. 

Proc. FJCC: Proceedings of the Fall Joint Computer Conference. 

Proc. EJCC: Proceedings of the Eastern Joint Computer Conference. 

Proc. WJCC: Proceedings of the Western Joint Computer Conference. 

For the 1962 F/CC through the 1966 FJCC, the publisher is Spartan 

Books, Washington, D.C.; this is not shown in the individual citations. The 

1967 SJCC and FJCC were published by Thompson Books, Washington, 

D.C. (also not shown in the citations). Earlier publishers are not listed since 

the volume could be found in a library without knowing the publisher or 

the reader may have a copy or be able to find information through AFIPS. 

BIBLIOGRAPHY 

GENERAL 

[ACOO0] ACM SIGPLAN Notices, ACM, New York, N.Y. (appears monthly).



740 BIBLIOGRAPHY ARRANGEMENTS AND AUTHOR LIST 

[BI62] 

[BU65a] 

[CC63] 

[DT65] 

[DV66] 

[FG63] 

[FX66] 

[GD61] 

[GD63] 

[HG67] 

[C62] 

[IE64] 

[PA65] 

[PW68] 

[RO64a] 

[RO67] 

[SM68] 

[SP65] 

[ZR65] 

Barnett, M.P. and Futrelle, R.P., “Syntactic Analysis by Digital 

Computer”, Comm. ACM, Vol. 5, No. 10 (Oct., 1962), pp. 515-26. 

Burkhardt, W. H., “Universal Programming Languages and Processors: 

A Brief Survey and New Concepts”, Proc. FJCC, Vol. 27, pt. 1 (1965), 
pp. 1-21. 

“Survey of Programming Languages and Processors”, Comm. ACM, 
Vol. 6, No. 3 (Mar., 1963), pp. 93-99. 

“The RAND Symposium, Part 2”, Datamation, Vol. 11, No. 9 (Sept., 

1965), pp. 66-73. 

Davis, R. M., “Programming Language Processors”, Advances in Com- 
puters (F. L. Alt and M. Rubinoff, eds.). Academic Press, New York, 

1966, pp. 117-80. 

Feigenbaum, E. A. and Feldman, J. (eds.), Computers and Thought. 

McGraw-Hill, New York, 1963. 

Fox, L. (ed.), Advances in Programming and Non-Numerical Computation. 
Pergamon Press, New York, 1966. 

Goodman, R. (ed.), Annual Review in Automatic Programming, Vol. 2. 

Pergamon Press, New York, 1961. 

Goodman, R. (ed.), Annual Review in Automatic Programming, Vol. 3. 
Pergamon Press, New York, 1963. 

Higman, B., A Comparative Study of Programming Languages. American 

Elsevier Publishing Co., Inc., New York, 1967. 

Symbolic Languages in Data Processing (Proceedings of the Symposium 

organized and edited by the International Computation Centre, Rome, 

March 26-31, 1962). Gordon and Breach, New York, 1962. 

IEEE Trans. Elec. Comp., Vol. EC-13, No. 4 (Aug., 1964). 

Pantages, A., “Language in the Sixties” (report on SHARE-JUG 
Workshop on programming languages), Datamation, Vol. 11, No. 11 
(Nov., 1965), pp. 141-42. 

Wegener, P., Programming Languages, Information Structures, and 
Machine Organization. McGraw-Hill, New York, 1968. 

Rosen, S., “Programming Systems and Languages—A Historical Survey”, 
Proc. SJCC, Vol. 25 (1964), pp. 1-15. (Also in [RO67].) 

Rosen, S. (ed.), Programming Systems and Languages. McGraw-Hill, 

New York, 1967. 

Sammet, J. E., “Roster of Programming Languages—1968”, Comp. 

and Automation, Vol. 17, No. 6 (June, 1968), pp. 120-23. 

Spiegel, J. and Walker, D.E. (eds.), Information System Sciences: 

Proceedings of the Second Congress. Spartan Books, Washington, D.C., 

1965. 

Crisman, P. A. (ed.), The Compatible Time-Sharing System, A Pro- 
grammer’s Guide, Second Edition. M.1.T. Press, Cambridge, Mass., 1965. 

RELATED INFORMATION 

[AF65] Advanced Programming Developments: A Survey, Air Force Systems 

Command, ESD-TR-65-171, Electronic Systems Division, Directorate 

of Computers, Bedford, Mass. (Feb., 1965).



AUTHOR LIST 741 

[FF63]  Carracciolo di Forino, A., “Some Remarks on the Syntax of Symbolic 

Programming Languages”, Comm. ACM, Vol. 6, No. 8 (Aug., 1963), 
pp. 456-60. 

{G167] Ginsberg, A. S., Markowitz, H. M., and Oldfather, P. M., “Program- 

ming by Questionnaire”, Proc. SJCC, Vol. 30 (1967), pp. 441-46. 

[GO62] Gorn, S., “Mechanical Pragmatics: A Time-Motion Study of a Minia- 
ture Mechanical Linguistic System”, Comm. ACM, Vol. 5, No. 12 
(Dec., 1962), pp. 576-89. 

[GO67] Gorn, S., “Handling the Growth by Definition of Mechanical Lan- 
guages”, Proc. SJCC, Vol. 30 (1967), pp. 213-24. 

{(GU62] Grau, A.A., “A Translator-Oriented Symbolic Programming Language”, 
J. ACM, Vol. 9, No. 4 (Oct., 1962), pp. 480-87. 

[GY66] Gosden, J. A., “Explicit Parallel Processing Description and Control 

in Programs for Multi- and Uni-Processor Computers”, Proc. FJCC, 
Vol. 29 (1966), pp. 651-60. 

[LD66] Landin, P. J., “The Next 700 Programming Languages”, Comm. ACM, 

Vol. 9, No. 3 (Mar., 1966), pp. 157-66. 

[NR67] Narasimhan, R., “Programming Languages and Computers: A 

Unified Metatheory”, Advances in Computers, Vol. 8 (F. L. Alt and 

M. Rubinoff, eds.). Academic Press, New York, 1967, pp. 188-245. 

[OA66] Opler, A., “Requirements for Real-Time Languages”, Comm. ACM, 
Vol. 9, No. 3 (Mar., 1966), pp. 196-99. 

[PN67] Parnas, D. L. and Darringer, J. A., “SODAS and a Methodology for 

System Design”, Proc. FJCC, Vol. 31 (1967), pp. 449-74. 

[PR64a] Perlis, A. J., “A Format Language”, Comm. ACM, Vol. 7, No. 2 (Feb., 

1964), pp. 89-97. 

[QC65] Bauer, F.L. and Samelson, K., “Sequential Formula Translation”, 
Comm. ACM, Vol. 3, No. 2 (Feb., 1960), pp. 76-82. (Also in [ROQ67].) 

[ST64] Steel, T. B., Jr., “Beginnings of a Theory of Information Handling”, 

Comm. ACM, Vol. 7, No. 2 (Feb., 1964), pp. 97-103. 

[VR58a] Voorhees, E. A., “Algebraic Formulation of Flow Diagrams”, Comm. 

ACM, Vol. 1, No. 6 (June, 1958), pp. 4-8. 

AUTHOR LIST 

Page numbers set in bold face indicate the pages on which the full citation appears. 

Page numbers set in regular type indicate pages in the text which contain a reference 

to the document specified. Sets of page numbers are subdivided by chapters. 

Abrahams, P. W. [AH63], 467; [AH66], 126, 109; [AH67], 464. 

Abrahams, P. W., ef al. [AH66a], 602, 590, 591, 592; 761. 

Adams, C. W., et al. [AD54], 26, 132, 300. 

Alber, K. [AL67], 62, 600. 

Allen, C. D., et al. [AN66], 62, 600. 

Allen, J. J., et al. [AX63], 62, 42; 302, 147; 153, 164. 

Alt, F.L. [AT64], 62. 

Anderson, J. P. [AJ61], 721, 718; [AJ65], 736. 

Arden, B. W., et al. [AR61], 304; [AR6la], 308, 206. 

Ash, R., et al. [AS57], 301; 135.



742 BIBLIOGRAPHY ARRANGEMENTS AND AUTHOR LIST 

Auroux, A., et al. [AU67], 304, 195; 706; 757. 

Ayers, J. A. [AY63], 302, 159. 

Bachman, C. W. [QJ65], 381. 

Bachman, C. W., et al. [QJ64], 381; 760. 

Backus, J. W. [BS54a], 300; [BS60], 62, 53; 304, 175. 

Backus, J. W., et al. [BS54], 300; [BS57], 302; 144; [BS64], 302. 

Baker, C.L. [BK56], 26, 8; [BK64], 308, 219; [BK66], 308, 217. 

Balke, K. G., et al. [BQ62], 312, 265, 66, 268, 269, 270; 756. 

Balzer, R. M. [YH67], 602. 

Bandat, K. [BA67], 62; 600, 548. 

Barlow, A. E., et al. [BL65], 703, 667; 758. 

Barnett, M. P., et al. [B162], 739; 448, 605, 635; [BI63], 705, 684, 685. 

Bashkow, T. R., et al. [UF67], 721, 718. 

Bastian, A. L., et al. [UB62], 468. 

Bates, F., et al. [QB67], 601, 548. 

Bauer, F. L., et al. [QC65], 741. 

Baumann, R., et al. [BN64], 304, 181. 

Beech, D., et al. [BC66], 62; 600, 548 ; [BC66a], 62; 600, 548; [BC67], 62; 600, 548. 

Bemer, R. W. [QF57], 301. 

Bennet, N. W. [BE65], 379, 335. 

Bennett, E., et al. [QA65], 470, 461; 703; 754. 

Bequaert, F.C. [BV67], 706, 691. 

Bergin, G. P. [BG64], 126. 

Berkeley, E. C., et al. [BY66], 467, 410; 761. 

Berman, R., ef al. [BF62], 379, 344. 

Bernick, M. D., et al. [BM61], 520, 473; 754. 

Blackwell, F.W. [QK67], 311, 255; 470, 464; 761. 

Bleiweiss, L., et al. [JL66], 521, 475. 

Bobrow, D.G. [BB63], 720; [BB64], 701, 664; [BB64c], 467; 701, 664; [BB67a], 
465; 520. 

Bobrow, D. G., et al. [BB64a], 465, 386; [BB64b], 465, 388; [BB67], 467. 

Bond, E.R., et al. [BZ64], 520, 476; 758; [BZ67], 521, 476; 600, 546. 

Book, E. [BO66], 602, 590. 

Book, E., et al. [BO60], 697. 

Bottenbruch, H. [BH62], 304, 181. 

Bouricius, W. G., ef al. [UD67], 310. 

Boyer, M.C. [QI65], 312, 313, 264, 299. 

Bradford, D. H., et al. [BD61], 312. 

Bratman, H. [BR59], 697; [BR61], 719. 

Brennan, R. D., et al. [YR64], 696, 627 ; [YR64a], 696, 627. 

Brody, T. A. [UQ65], 468. 

Bromberg, H. [BJ61], 379, 332; [BJ67], 379.



AUTHOR LIST 743 

Brooker, R.A., ef al. [BX62], 62, 57; 696, 635; [BX63], 696. 

Brown, P. J. [UH67], 127. 

Brown, S. A., ef al. [BP63], 693, 606, 610; 755. 

Brown, W.S. [BW66], 522; [BW66a], 522, 502; 754. 

Brown, W.S., et al. [BW63], 522. 

Bryan, G. E. [UJ67], 308. 

Bryan, G.E., et al. [UJ67a], 308; 760; [UJ67b], 308. 

Bryant, J. H., et al. [QE66], 702. 

Budd, A. E. [QH66], 28, 23; 303; 380. 

Burkhardt, W. H. [BU65], 62; 302; 156; [BU65a], 740; [BU66], 600, 548. 

Busch, K. J. [QD66], 695, 627. 

Callahan, M. D.,et al. [ZQ67], 381, 335. 

Cameron, S. H., et al. [CS66], 311, 255; [CS67], 311, 255, 257; 757. 

Cantrell, H. N. [ZY62], 737. 

Carleton, J. T., et al. [CT64], 302, 170, 171, 172; 763. 

Carracciolo di Forino, A. [FF63], 740. 

Carter, G. L., et al. [CA63], 312, 265. 

Chanon, R.N. [ZS66], 469, 435. 

Chapin, N. [CZ64], 466; [CZ65], 27, 23. 

Chapin, P. G., et al. [ZT67], 470; 702. 

Cheatham, T. E., Jr. [CH66], 127; 736; [CH66a], 698. 

Cheatham, T. E., Jr., et al. [CH62], 701; [CH64], 63, 57; 697, 635. 

Christensen, C. [CQ64], 470, 454, 457; 754; [CQ65], 470, 455; 754; [CQ66], 470, 

457. 

Christensen, C., et al. [CQ6Sa], 600, 542; [CQ67], 600. 

Chu, Y. [CB65], 695, 623, 625, 656. 

Church, A. [ZP41], 468, 413. 

Clancy, J. J., et al. [ZZ65], 696, 627. 

Clapp, L. C., et al. [CL63], 522, 510, 511, 512; [CL66], 522, 512; 522. 

Clark, E.R. [CE67], 599, 530. 

Clem, P. L., Jr., et al. [CM66], 311, 258. 

Climenson, W. D. [CD63], 701. 

Clippinger, R. F. [CP61], 378, 327. 

Coffman, E. G., Jr. [CO61], 599, 530. 

Coffman, E. G., Jr., et al. [CO64], 706, 688. 

Cohen, L. J. [ZX67], 127. 

Connors, T. L. [CY66], 703, 667, 703. 

Conway, M.E. [C158], 719. 

Conway, R. W., et al. [CN63], 313, 756; [CN65], 470; 755. 

Cooper, W.S. [CV64], 701; [CV65], 701. 

Corbato, F. J., et al. [ZV62], 706; [ZV63], 706, 690. 

Corbin, H.S., et al. [CF66], 704, 679; 757.



744 BIBLIOGRAPHY ARRANGEMENTS AND AUTHOR LIST 

Couch, A. S. [DF67], 699, 646, 647. 

Cowan, R.A. [CW64], 379, 345. 

Cowell, W. R., et al. [ZN65], 467, 394; 721, 718. 

Craig, J. A., et al. [CJ64], 703; [CJ66], 703, 669; 757. 

Cramer, M. L., et al. [CR66], 695, 627. 

Crisman, P. A. (ed.) [ZR65], 740; 216, 240, 406, 417, 438, 475, 491, 611, 612, 660, 

683, 685, 686, 688. 

Culler, G. J. [CU67], 311; 757. 

Culler, G. J., et al. [CU62], 311, 254; [CU63], 311, 253; [CU65], 311, 253, 254. 

Cunningham, J. F. [CG63], 379, 345. 

Cuthill, E., et al. [CX65], 521. 

d’Agapeyeff, A., et al. [DG63], 377. 

Dahl, O., et al. [DH66], 701, 661; 763. 

Darlington, J. L. [DA65], 468, 435. 

Davis, R. M. [DV66], 740. 

Dean, A. L., Jr. [DE64], 698, 640; 764. 

de Bakker, J. W. [UE67], 64; 306. 

Desautels, E. J., et al. [DS67], 469. 

Dijkstra, E.W. [DJ63], 61, 35; 737; [DJ64], 312. 

Dimsdale, B., et al. [DC64], 700. 

Dixon, P. J., et al. [D167], 701. 

Dodd, G.G. [DQ66], 465; 600, 546. 

Donally, W. L. [DO62], 379. 

Donovan, J. J., et al. [IDL67], 600. 

Duby, J.J. [DB67], 521. 

Dunn, T. M., et al. [DM64], 309, 226. 

Dupchak, R. [DU63], 466, 393; [DU65], 466, 394. 

Edwards, D. J. [ED66], 698, 642, 643; 762. 

Efron, R., et al. [EF64], 700. 

Emery, J.C. [EM62], 379. 

Engelman, C. [EN65], 467; 521; 761. 

Englund, D., et al. [EG61], 697; 755. 

Evans, T.G. [EV64], 467, 410. 

Evans, T. G., et al. [EV66], 126, 114. 

Falkoff, A. D., et al. [FA64], 694, 620; 719, 713; 755; [FA67], 310, 247, 249, 250; 
[FA67a], 310, 247, 248; 755. 

Farber, D. J., et al. [FB64], 469, 436; [FB66], 469, 436, 437; 763. 

Feigenbaum, E.A. [FG61], 466, 393. 

Feigenbaum, E. A., et al. [FG63], 385; 740. 

Feingold, S. L. [FZ67], 706. 

Feldman, J. [FN62], 466. 

Feldman, J. A. [FJ64], 698; 759; [FJ66], 602, 584; 698, 641; 759. 

Feldman, J. A., et al. [FJ68], 697, 634.



AUTHOR LIST 745 

Fenves, S. J., et al. [FE64], 694; 616; 764; [FE65], 694; 764; [FE66], 694, 611, 615. 

Ferguson, H.E., et al. [FR63], 27. 

Fimple, M. D. [FP64], 302, 157; 379. 

Firth, D., et al. [F166], 602, 590. 

Floyd, R. W. [FL64], 63,52, 53, 57; 697, 635. 

Forest, B. [FS61], 305, 174. 

Forgie, J. W. [FY65], 310, 245. 

Forte, A. [FT67], 469; [FT67a], 469. 

Foster, D.C. [FO65], 701. 
Fowler, M.E., et al. [FH64], 302, 164. 

Fox, L. (ed.) [FX66], 740. 

Franks, E.W. [FW66], 701. 

Fraser, J.B. [FV67], 720, 715; 737. 

Fredericks, D.S., et al. [FD65], 379, 338. 

Freeman, D.N. [FM64], 313. 

Fried, B.D. [FQ66], 311, 253. 

Fried, B. D., et al. [FQ64], 311, 253. 

Galler, B. A., et al. [GA67], 127; 305, 192. 

Garwick, J. V. [GW64], 305; [GW64a], 697. 

Garwick, J. V., et al. [GW00], 305, 192, 195; 759. 

Gaskill, R. A. [GL64], 696, 631. 

Gaskill, R. A., et al. [GL63], 696; 757. 

Gawlik, H.J. [GK63], 312, 281, 283; 762. 

Gawlik, H. J., et al. [GK67], 312, 281; 762. 

Gelernter, H., et al. [GE60], 465, 467, 388, 406. 

Ginsberg, A.S. [GI167], 741. 

Glass, R. L. [GX67], 600, 542. 

Glennie, A. E. [GC60], 63, 57; 697, 635. 

Goodman, R. (ed.) [GD61], 740; [GD63], 740. 

Goodstat, P. B. [GS67], 62, 46. 

Gordon, G. [GG61], 700, 653; [GG62], 700. 

Gordon, R. M. [GN63], 380. 

Gorn, S. [GO61], 63; [GO6la], 63, 57; [GO62], 741; [GO67], 741. 

Gosden, J. A. [GY66], 741. 

Grad, B. [UC61], 29, 11. 

Graham, R., et al. [GMO00], 301, 142; 759. 

Grant, E.E. [GH65], 701. 

Grau, A.A. [GU62], 741. 

Gray, J.C. [JG67], 465, 705. 

Green, B. F. [GB6la], 465. 

Green, B. F., et al. [GB61], 466; 703; 755. 

Green, J. [GT59], 305, 174. 

Greenberger, M., et al. [Y P65], 701; 762; [YP66], 701, 662; 762.



746 BIBLIOGRAPHY ARRANGEMENTS AND AUTHOR LIST 

Greene, I. [GV62], 380. 

Grems, M. [GR62], 702. 

Grems, M., et al. [GR55], 301, 133; 755. 

Griswold, R. E. [GF65a], 469. 

Griswold, R. E., et al. [GF65], 469; [GF67], 469, 447; [GF68], 763. 

Gross, L.N. [GQ67], 470; 706. 

Gullahorn, J. T., et al. [ZK63], 467. 

Guzman, A., et al. [ZH66], 466, 468, 469, 388, 416, 435. 

Haines, E. C., Jr. [HA65], 470, 457, 458; [HA67], 470; 764. 

Halpern, M.I. [HL64], 27, 8; [HL65], 62; [HL66], 61, 35; 720, 715; 737; 758. 

Halstead, M.H. [HS62], 307, 197, 198, 200; 762; [HS63], 307, 197, 198; [HS67a], 
307. 

Halstead, M. H., et al. [HS67], 307, 205. 

Haverty, J.P. [HV64], 27, 23. 

Haverty, J. P., et al. [HV63], 702. 

Haynam, G.E. [HN65], 305, 181. 

Heising, W. P. [HE63], 302, 146, 156; [HE64], 302, 154, 156; [HE64a], 302, 152. 

Hellerman, H. [HH64], 310, 253; 762. 

Herscovitch, H., et al. [HK65], 700. 

Hicks, W. [HI62], 380. 

Higman, B. [HG67], 740. 

Hilsenrath, J., et al. [HR66], 313, 297; 762. 

Hilton, W. R., et al. [HT66], 468, 419. 

Hodges, D. [HX64], 466, 394; 721, 718. 

Holberton, F. E. [HF54], 27, 4; 378, 322. 

Homer, E.D. [HM66], 27; 313, 300. 

Hopper, G. M. [HP53], 27, 12; [HP55], 27, 4. 

Hopper, G. M., et al. [HP53a], 27, 12. 

Howard, J.C. [HQ67], 521. 

Humby, E. [HY62], 61, 35; 380, 338; [HY63], 61, 35; 380, 338. 

Hunt, E. B., et al. [HB63], 466. 

Hurley, J. R., et al. [HJ63], 696, 629, 630; 758. 

Hurwitz, A., et al. [HW67], 704, 674; 759. 

Huskey, H. D., et al. [HU60], 307; [HU61], 305, 192; [HU63], 307, 197, 198. 

Irons, E. T. [IR61], 63, 57; 305; 697, 635; [IR63], 697. 

Irons, E. T., et al. [IR59], 305, 174. 

Isbitz, H. M. [IS59], 697; 755. 

Iturriaga, R. [IT67], 602, 584. 

Iturriaga, R., et al. [IT66], 602, 584, 698, 641, 642; [IT66a], 602, 584. 

Iverson, K. E. [IV62], 310, 247; 620; 720, 712; 755; [[V62a], 720, 712, 714: 
[IV62b], 720; [I[V63], 694, [IV64], 63; 305; [I1V64a], 720. 

Johnsen, R. F., Jr. [JO60], 307. 

Jones, M.M. [JM67], 699, 701, 661.



AUTHOR LIST 747 

Junker, J. P., et al. [JU65], 303; 380. 

Kahrimanian, H.G. [KD54], 520, 472. 

Kameny, 8S. L. [KA66], 602, 590. 

Kanner, H. [KF59], 305, 174. 

Kaplow, R., et al. [KP66], 309, 240, 241, 242, 244; 761; [KP66a], 310, 240; 

761. 

Kapps, C. A. [KC67], 470, 462; 764. 

Katz, C. [K X62], 379, 328, 329. 

Katz, J. H., et al. [KZ63], 719, 712. 

Kavanagh, T. F. [KV60], 28, 11. 

Keller, J. M., et al. [KR64], 28, 12; 309, 226. 

Kellogg, C. H. [KG66], 702; [KG67], 702; 720. 

Kemeny, J. G., et al. [KM66], 309, 229; [K M67], 309; 755. 

Kennedy, P. R. [KE62], 599, 529; [KE65], 599, 528. 

Kesner, O. [KS62], 380. 

Kinzler, H. M., et al. [KB57], 378, 316. 

Kirsch, R. A. [KI64], 720. 

Kiviat, P. J. [KW66], 699, 651; [KW66a], 700. 

Klein, S. [KK65], 599, 530. 

Klerer, M., et al. [KL64], 313, 294; [KL65], 313; [KL65a], 313, 285, 292, 293; 
760; [KL65b], 313, 286, 287; 760; [KL66], 313, 288; [KL67], 28, 20; 
313, 291; [KL67a], 313. 

Knowlton, K.C. [KO64], 699, 644; 755; [KO65], 467; [KO66], 467, 400, 404; 760. 

Knuth, D. E. [KN67], 305. 

Knuth, D. E., et al. [KN61], 305; [KN64], 700, 658; 764; [KN64a], 700, 657; 764. 

Krasnow, H.S. [KQ67], 699, 651. 

Landin, P, J. [LD65], 305; [LD65a], 305; [LD66], 741. 

Landweber, P.S. [LW64], 63. 

Laning, J. H.; et al. [LA54], 28, 301, 131; 760. 

Lapin, R. B. [LB67], 705, 683. 

Lapin, R. B., et al. [LB65], 705. 

Lawson, H. W., Jr. [LH67], 601, 567. 

Leavenworth, B. M. [LV66], 127. 

Ledley, R.S., et al. [LL66], 699, 645; 755. 

Leroy, H. [LR67], 127; 305. 

Leslie, H. [LS67], 377, 314. 

Levin, M. [LE64], 602, 590. 

Levin, M., et al. [LE66], 602. 

Licklider, J.C. R. [LI65], 693, 604. 

Lippitt, A. [LP62], 380. 

Logcher, R. D., et al. [LG67], 694. 

Lombardi, L. A. [LM62], 719, 712. 

Longo, L. F. [LN62], 377, 380, 314.



748 BIBLIOGRAPHY ARRANGEMENTS AND AUTHOR LIST 

Madnick, S. E. [VB67], 465. 

Makinson, T. N. [MN61], 380. 

Manove, M., et al. [MV67], 522. 

Markowitz, H. M., et al. [MA63], 700, 655, 656; 763. 

Marks, S. L., et al. [ZL67], 308, 225. 

Marsh, D.G. [MD64], 599, 530. 

Martin, W. A. [ZB67], 522, 514, 515, 516, 517; 764. 

Masterson, K.S., Jr. [MS60], 307. 

McCarthy, J. [MC60a], 467, 405. 

McCarthy, J., et al. [MC60], 467, 405; [MC62], 468, 406, 408, 409. 

McClure, R. M. [MZ65], 695, 622; 763; [MZ6S5a], 522, 503; 697, 636, 637; 

764. 

McCracken, D.D. [MR61] 305; [MR64], 601, 548; [MR65], 303, 152. 

McGee, W.C. [MGS59], 377; [MG63], 377. 

McGee, W. C., et al. [MG60], 377. 

McGinn, L. C. [MF57], 698; 762. 

McIlroy, M.D. [ML60], 127, 121; 737. 

Mclliroy, M. D., et al. [ML66], 522, 505; 754. 

McKeeman, W.M. [ZG67a], 721. 

McKeeman, W. M., et al. [ZG67], 602, 542. 

McMahon, J.T. [YS62], 304, 307. 

McMahon, L. E. [MMO00], 720. 

Meadow, C. T., et al. [MW66], 702. 

Mealy, G.H. [YM67], 126. 

Melbourne, A. J., et al. [ZM65], 721, 718. 

Mesztenyi, C. K. [YZ67], 695, 623. 

Metze, G., et al. [MX66], 695, 623, 624; 756. 

Millen, J. K. [ZJ67], 522, 501. 

Miller, E. R., et al. [YL59], 378. 

Mittman, B. [ZC67], 693. 

Mondshein, L. F. [LQ67], 698, 641. 

Mooers, C.N. [ME66], 469, 449, 451; 764; [ME67], 470, 449, 453. 

Mooers, C.N., et al. [ME65], 469, 449. 

Morris, A. H., Jr. [MB67], 522, 507; 758. 

Morrison, R. A. [YF67], 704. 

Morrissey, J. H. [MJ65], 309. 

Moulton, P. G., et al. [MO67], 303. 

Mullery, A. P. [MH64], 721, 718. 

Mullery, A. P., et al. [MH63], 721, 718. 

Mullin, J. P. [MU62], 380. 

Myer, T. H. [MY66], 308. 

Naftaly, S. M. [NF64], 380. 

Narasimhan, R. [NR67], 741.



AUTHOR List 749 

Naur, P. (ed.) [NA60], 53; 305, 176, 181; [NA63], 53; 126, 103; 306, 177, 181, 
182, 191, 754; [NA63a], 306, 181. 

Neidleman, L.D. [ND67], 521. 

Nelson, D. B., et al. [NB67], 702. 

Nelson, E. A., et al. [NE65], 28, 19. 

Newell, A. [NW63], 466, 393. 

Newell, A., et al. [NW56], 465, 466, 382, 389, 391 ; [NW57], 466, 389; [NW57a], 
466, 389; [NW60], 466, 389; [NW61], 466, 393; [NW65], 466, 389, 391, 
393, 395, 398; 765. 

Nolan, J. [NOS53], 520, 472. 

Olsen, T. M. [OL65], 62, 42; 303, 153. 

Olsztyn, J.T. [OZ58], 696; 757. 

Opler, A. [OA65], 737; [OA66], 741. 

Oppenheim, D. K., et al. [OP66], 698, 639; 762. 

O’Sullivan, T.C. [O0U67], 308, 216. 

Oswald, H. [OS64], 303, 147, 152. 

Pantages, A. [PA65], 740. 

Parnas, D. L. [PN66], 695, 623, 627; 763; [PN66a], 695, 623. 

Parnas, D. L., et al. [PN67], 741. 

Peck, J. E. [PK67]}, 306, 194. 

Perlis, A. J. [PR64a], 741; [PR65], 126, 65, 104. 

Perlis, A. J., et al. [PR57], 302, 139; 760; [PR57a], 302, 139; [PR58], 28, 22; 306, 
173; [PR64], 602, 583; [PR66], 602, 584; 758. 

Perstein, M. H. [PE66], 599, 529; [PE66a], 599, 529, 539; 760. 

Petersen, H. E., et al. [PS64], 695, 627. 

Pratt, T. W., et al. [PT66], 697. 

Proctor, R. M. [PC64], 695, 622; 760. 

Pugh, A. L. [PG63], 699, 652; 758. 

Pursey, G. [PU67], 63; 601. 

Pyle, I. C. [PY65], 706, 691. 

Quatse, J.T. [QU65], 699, 648; 764. 

Rabinowitz, I. N. [RN62], 303, 156. 

Radin, G., et al. [RG65], 601, 548. 

Raphael, B. [RA64], 702; [RA66], 126, 65; [RA66a], 465, 385; [RA66b], 465, 385. 

Raphael, B., et al. [RA67], 126, 65; 465, 387; 520. 

Reinfelds, J., et al. [R66], 311, 258; 754. 

Reitman, J. [RP67], 699. 

Reynolds, J.C. [RE65], 697; 756; [RE65a], 698, 638, 639; 756. 

Rice, J. R., et al. [R166], 28, 20; 313, 299. 

Rice, R., et al. [RC65], 737. 

Robbins, D. K. [RM62], 28, 14; 303, 157, 164. 

Roberts, L.G. [RB65], 470, 462; 704; 756. 

Rochester, N. [RT53], 29, 2; [RT66], 63, 56.



750. ~=—s BIBLIOGRAPHY ARRANGEMENTS AND AUTHOR LIST 

Roos, D. [RS65], 694, 620; 759; [RS67], 694; [RS67a], 694; 759. 

Roos, D., et al. [RS64], 694, 612, 613; 756. 

Rose, A. J. [RJ66], 310, 247. 

Rosen, S. [RO61], 303; 153; [RO64], 697; [RO64a], 740; [RO67], 740. 

Rosen, S., ef al. [RO65], 303, 164. 

Ross, D. T. [RD61], 705, 681; [RD62], 705, 682; [RD67], 705, 681; [RD67a], 705, 
682, 683. 

Ross, D. T., et al. [RD63], 705. 

Roth, J. P., et al. [RQ67], 310, 247. 

Ruyle, A., et al. [RU67], 308, 217, 240, 245, 254, 258. 

Sakoda, J. M. [SA65], 303, 164; 465, 388. 

Sammet, J. E. [SM61], 306; 379, 380, 330; 598; [SM6la], 63, 56; 380, 340, 344; 
[SM61b], 380, 332; [SM6lc], 381, 332; [SM62], 381, 345; [SM66], 465, 
385; 520, 472; [SM66a], 520, 471, 472; [SM66b], 61, 35; 720, 715; 737; 
[SM67], 520, 521, 471, 472; [SM67a], 465, 385; 520, 472; [SM68], 740, 
753. 

Sammet, J. E., et al. [SM64], 521, 476, 486. 

Sanders, N., et al. [SS63], 306. 

Sandin, N.A., et al. [SN65], 599, 528. 

Satterthwait, A.C. [SR66], 465. 

Savitt, D. A., et al. [SK67], 702. 

Saxon, J. A. [SX63], 381, 345. 

Saxon, J. A., ef al. [SX66], 307. 

Scheff, B. H. [SD66], 699, 648, 649; 757; [SD66a], 699, 648. 

Schlaeppi, H. P. [QY64], 695, 621; 761. 

Schlesinger, S., et al. [QL67], 28, 20; 313, 299. 

Schneider, F. W., et al. [QV64], 698. 

Schorré, D. V. [QT64], 602, 592; 698. 

Schwalb, J. [SB63], 379, 329. 

Schwartz, J. I. [SC65], 29, 23. 

Schwartz, J.I., et al. [SC60], 599, 528. 

Schwarz, H.R. [QN62], 306, 181. 

Schwinn, P. M. [UZ67], 704, 677; 759. 

Sconzo, P., et al. [SO65], 521, 474. 

Seitz, R. N., et al. [UV67], 311, 258, 259, 263; 754. 

Selfridge, R.G. [YDS55], 696, 627. 

Shantz, P. W., et al. [SY67], 303, 164. 

Shaw, C.J. [SH00], 599, 525, 529; [SH61], 599, 529; [SH61la]}, 599; [SH62], 29, 
23; 126, 65; [SH63], 599; 760; [SH63a], 599, 529; [SH63b], 599, 524, 
525, 528, 529, 530; [SH64], 599, 530; [SH64a], 29; [SH65], 377; [SH66], 
29, 19, 23. 

Shaw, J.C. [JC64], 308, 217, 218; 760; [JC65], 308, 220. 

Shaw, J. C., et al. [JC58], 466, 389. 

Sibley, R. A. [QS61], 697. 

Siegel, M., ef al. [SG62], 380.



AUTHOR List ‘751 

Simmons, R. F. [SE65], 702, 703, 662, 669; 720; [SE66a], 702, 662, 670; 720. 

Simmons, R. F., et al. [SE63], 703; [SE64], 703; 763; [SE66], 702, 720. 

Singman, D., et al. [S165], 307, 205. 

Skinner, F.D. [QX66], 704. 

Slagle, J. R. [SL61], 468, 410; [SL65], 702. 

Spiegel, J., et al. [SP65], 740. 

Spitzer, J. F., et al. [SZ65], 702, 665; 756. 

Standish, T. A. [QM67], 126. 

Steel, T. B., Jr. [S157], 29, 8; [ST61], 719; [ST61a], 719; [ST64], 741; [ST66], 599, 
525, 528, 530 [ST66a], 63, 52; [ST67], 62, 46. 

Stefferud, E. [SF63], 467, 393. 

Steil, G. P., Jr. [QZ67], 702, 666; 755. 

Stone, H.S. [TS67], 306, 192. 

Stone, P. J., et al. [SJ63], 468, 435. 

Stotz, R.H. (UU63], 310, 240; 705. 

Stotz, R. H., et al. [UU67], 310, 240. 

Stowe, A. N., et al. [SW66], 310, 245, 246; 761. 

Strachey, C. [SQ65], 470, 450. 

Strachey, C., et al. [SQ61], 126, 90; 306, 181, 194. 

Strong, J., et al. [QR58] and [QRS58a], 709; 719; 764. 

Summers, J. K., et al. [UT67], 704, 671, 673; 674; 754. 

Summit, R. K. [UW67], 702. 

Sutherland, I. E. [QW63], 470, 462; 704, 705, 678; [QW66], 704. 

Sutherland, W.R. [SU66], 470, 463; 704; [SU67], 704. 

Swets, J. A., et al. [UY63], 702. 

Swigert, P. [SV66], 521. 

Syn, W. M., et al. [QP66], 696, 632, 633; 757. 

Tabory, R., et al. [TR67], 720. 

Taylor, A. [TB60], 301; 378. 

Taylor, W., et al. [TA61], 306. 

Teichroew, D., et al. [TE66], 699, 651. 

Theodoroff, T. J. [TD58], 696, 628; 757. 

Thompson, C.E. [TM56], 29, 5. 

Thompson, F. B. [TH63], 703; [TH64a], 703; [TH66], 703; 720, 715; 758. 

Thompson, F. B., et al. [TH64], 703. 

Tobey, R.G. [TO66], 521. 

Tonge, F.M. [TN60], 467, 393. 

Tonge, F. M., et al. [TN65], 700. 

Van Dam, A., et al. [VD67], 704, 675, 676; 762. 

van Wijngaarden, A. [VW63], 306; [VW68], 306, 178. 

von Sydow, L. [VS67], 306, 193. 

Voorhees, E. A. [VR58a], 741. 

Waite, W. M. [WA67], 127; 737. 

Waks, D. J. [WK67], 308.



752 BIBLIOGRAPHY ARRANGEMENTS AND AUTHOR LIST 

Walk, K., et al. [VK67], 601, 548. 

Walker, D. E. [WV67], 705. 

Walter, R.A. [WQ66], 694, 620. 

Walton, J.J. [WB67], 521. 

Watt, J. B., et al. [WJ62], 307, 205. 

Weber, H. [YB67], 721, 719. 

Wegner, P. [PW68], 740. 

Wegstein, J. H., et al. [WG62], 306, 194. 

Weil, R. L., Jr. [WL65], 126, 91; 306. 

Weinberg, G. M. [WC66], 601, 548. 

Weissman, C. [WE67], 468, 410; 761. 

Weizenbaum, J. [W2Z63], 304, 164; 466, 387, 388; [WZ67], 468, 416; 602, 592, 598; 
[WZ67a], 720. 

Wells, M. B. [WS61], 312, 280; [WS63], 312; 761; [WS64], 312, 278; [WS64a], 313. 

Wexelblat, R. L., et al. [WP67], 704, 677. 

Whiteman, I. R. [WF66], 29, 20. 

Whitmore, A. J. [WH62], 381, 345. 

Wiesen, R.A., ef al. [WU67], 310. 

Wilkes, M. V. [W164], 29, 20; [W164a], 465, 468, 409. 

Wilkes, M. V., et al. [WIS51], 29, 4. 

Willey, E. L., et al. [WY61], 381; [WY6la], 377, 315. 

Winiecki, K. (ed.) [WN66], 311, 253. 

Wirth, N. [W163], 307; [WT68], 29, 9. 

Wirth, N., et al. [WT66], 307; [WT66a], 307, 194; [WT66b], 307, 194. 

Wolman, B. L. [YW66], 705, 683. 

Wood, L. H., et al. [WD66], 312, 258. 

Woodger, M. [W0O64], 307. 

Woodward, P. M. [WxX66], 468, 409. 

Wright, D. L. [WR66], 304, 152. 

Yershov, A. P. [YE66], 307. 

Yngve, V.H. [YN57], 468, 416; [YN58], 469; [YN62], 469, 435; [YN63b], 469, 
420, 421; [YN66], 469, 423. 

Yngve, V. H., et al. [YN63], 64, 58; [YN63a], 64, 58. 

Young, J. W., Jr. [YJ65], 29, 20. 

Young, J. W., Jr., et al. [YJ58], 719, 712. 

Yowell, E.C. [YOS57], 721, 717. 

Zemanek, H. [ZE66], 64, 51.



LANGUAGE 
SUMMARY 

  

This appendix contains a list of every language specifically listed in the 

outline, together with the acronym and a very brief description. The chapter 

(and subsection) in which the language is described is shown and the code 

numbers of the one or two best references for the language, with the page on 

which the full citation can be found, are listed. In cases where the best refer- 

ence is less accessible than a slightly inferior document, both have been 

given. (It should be obvious that old reports are probably unavailable; they 

are being listed only for the sake of completeness.) 

Languages considered as specialized (and discussed in Chapter IX) 

have been marked with a t. Languages with a { are of primarily historical 

interest, even though they might still be in use somewhere. 

Readers who are interested in contacting specific individuals about 

a particular language should—with caution—see Sammet [SM68], which is 

similar (but not identical) to this Appendix. That article contains the names 

of individuals or organizations to contact for information. Those names 

have not been included here because they are valid as of the spring of 1968 

but not necessarily much beyond that. 

A-2 and A-3 { 

An early language on UNIVAC for doing mathematical problems. 

Basically a three-address code. 

IV.2.1.4 [RR55], p. 301. 

ADAM (A DAta Management System) ft 

A data-base handling system with facilities for some user defining of 

source language. 

IX.3.2.4 [CY66], p. 703. 

753



754 LANGUAGE SUMMARY 

AED (Automated Engineering Design or ALGOL Extended for Design) tf 

A generalized language system and a set of concepts; includes AED JR.., 

AED-0, and AED-1. Based on ALGOL and an algorithmic theory of 

language. Provides techniques for building processors for new lan- 

guages. 
IX.3.4.2 [RD67a], p. 705; [MTO0a], p. 705. 

AESOP (An Evolutionary System for On-Line Processing) Tt 

An on-line query system, based primarily on the use of a display screen 

and light pen. 

IX.3.2.8 [QA65], p. 704; [UT67], p. 703. 

AIMACO (A/r MAteriel COmmand Compiler) {| 

An improvement and modification of FLOW-MATIC. Supplanted by 

COBOL. 

V.2.2 [AM58], p. 378. 

ALGOL (ALGOrithmic Language) 

A language developed jointly by people in the United States and Europe. 

Suitable for expressing solutions to problems requiring numeric com- 

putations and some logical processes. Second version, ALGOL 60 

(which had a few revisions in 1962) is the current language. It has no 

officially defined input/output. Revised ALGOL 60 (with input/output 

specifications added) has been approved for all practical purposes as an 

ISO Standard. 

IV.4 [NA63], p. 306. 

ALGY {¢ 

One of the first attempts at an independent language for doing formal 

algebraic manipulation. 

VITI.2.1 [BM6]1], p. 520. 

ALTRAN 

An extension to FORTRAN to do formal algebraic manipulation of 

rational functions. Uses ALPAK subroutines. 

VII.S [ML66], p. 522; [BW66], p. 522. 

AMBIT (Algebraic Manipulation By Jdentity Translation) 

A string manipulation language based on a replacement rule involving 

a pointer. 

VI.9.1 — [CQ64], p. 470; [CQ65], p. 470. 

AMTRAN (Automatic Mathematical 7RA Nslation) 

An on-line keyboard system allowing input and output of equations 

in a seminatural format, and output of graphical and numerical solu- 

tions on a scope or typewriter. 

IV.6.11 [RF66], p. 311; [UV67], p. 311.



LANGUAGE SUMMARY 755 

Animated Movie_ t 

A language to assist in preparing animated movies. 

IX.2.6.3 [KO64], p. 699. 

APL/360 (A Programming Language on 360) 

An on-line version of a subset of APL. 

IV.6.8 [FA67a], p. 310. 

APL (A Programming Language) 

A general but unimplemented language with complex notation and 

unusual but powerful operations. See also APL/360 and PAT. 

IX.2.3.1 [FA64], p. 694; X.4 [IV62], p. 720. 

APT (Automatically Programmed Tools) ft 

A language for numerically controlled machine tools. A USASI stand- 

ard is being developed. 

IX.2.1.1 [BP63], p. 693; [II67], p. 693. 

B-@ { 
See FLOW-MATIC. 

BACAIC (Boeing Airplane Company Algebraic Jnterpreter Coding System) f 

One of the early languages for mathematical problems, 1.e., a pre- 

FORTRAN system on the 701. 

IV.2.1.5 [GRS55], p. 301. 

BASEBALL ft 
A question-answering system whose data base contains information 

about baseball. 

IX.3.2.5 [GB61], p. 703. 

BASIC (Beginner’s All-Purpose Symbolic Jnstruction Code) 

A very simple language for use in solving numerical problems developed 

in an on-line system. 

IV.6.4 [K M67], p. 309. 

BUGSYS ft 
A language for use in preparing animated movies. 

IX.2.6.3 [LL66], p. 699. 

C-10 fT 
An improved version of COLINGO. 

IX.3.2.2 [QZ67], p. 702. 

CLIP (Compiler Language for /nformation Processing) + f 

A language based on ALGOL 58, useful for writing compilers. JOVIAL 

is an outgrowth of CLIP. 

1X.2.5.2 [IS59], p. 697; [EG61], p. 697. 

CLP (Cornell List Processor) 

An extension of CORC to do list processing. 

VI.9.3.1 [CN65], p. 470.



756 LANGUAGE SUMMARY 

COBOL (COmmon Business Oriented Language) 

An English-like language suitable for business data processing prob- 

lems. Developed and maintained by a committee of representatives 

from manufacturers and users. It has been implemented on most 

computers. A USASI Standard has been approved. 

V.3 [US65], p. 381; [XB67], p. 381. 

COGENT (COmpiler and GENeralized Translator) Tt 

A compiler-writing language with strong elements of list processing. 

IX.2.5.4 [RE65], p. 697; [RE65a], p. 698. 

COGO (COordinate GeOmetry) ft 

A specialized language for solving coordinate geometry problems in 

civil engineering. 
IX.2.2.1 [RS64], p. 694; [EI67], p. 694. 

COLASL 
A language for numerical mathematical problems, based on use of a 

special typewriter which permits two-dimensional (i.e., natural) input 

of mathematical expressions. 

IV.7.2 [BQ62], p. 312. 

COLINGO (Compile On LINe and GO) t 

A formalized English-like query system for command and control 

applications. 

IX.3.2.2 [SZ65], p. 702. 

COMIT 
The first significant string-handling and pattern-matching language. 

VI.6 [MT61], p. 468; [MT6la], p. 468. 

Commercial Translator ¢ 

An English-like language for doing business data processing problems. 

Supplanted by COBOL. 

V.2.3 [IB60a], p. 378. 

Computer Compiler ft 

Proposed language for describing the design of a computer. 

IX.2.3.5 [MX66], p. 695. 

Computer Design ft 

An unimplemented ALGOL-like language for describing the design of 

a computer. 

IX.2.3.6 [CB65], p. 695. 

CORAL (Class Oriented Ring Associated Language) 

A language on the TX-2 for handling certain ring types of lists. 

VI.9.3.2 [RB65], p. 470. 

CORC (CORnell Compiler) 

A simple language for use by students in doing mathematical problems. 

IV.8.1 [CN63], p. 313.



LANGUAGE SUMMARY 757 

CPS (Conversational Programming System) 

An on-line PL/I-like extended subset. 

IV.6.5 [1B67a], p. 309. 

Culler-Fried 

An on-line system for doing mathematics, based on the use of a special 

keyboard for ease in building up arbitrary combinations of operations. 

Normally known by the names of the developers. 

IV.6.9 [CU67], p. 311. 

DAS (Digital Analog Simulator) t+ 

A language to provide representations of the components in an analog 

computer. 

1X.2.4.4 [GL64], p. 696. 

DATA-TEXT (Harvard) ft 

A language for use by social scientists in doing their numerical com- 

putations and analyses. 

IX.2.6.4 [HD67], p. 699. 

DEACON (Direct English Access and COMtrol) + 

A query system with fairly natural English input for command and 

control applications. 

1X.3.2.6 [CJ66], p. 703. 

DIALOG 

An on-line system for doing numerical mathematical computations by 

using a light pen pointing at a screen to create the program. 

IV.6.10 [CS67], p. 311. 

DIAMAG 

An on-line extension of ALGOL. 

IV.4.5.6 [AU67], p. 304. 

DIMATE (Depot /nstalled Maintenance Automatic Jest Equipment) ft 

Contains a language to assist in conducting automatic equipment tests. 

IX.2.6.5 [SD66], p. 699. 

DOCUS (Display Oriented Computer Usage System) Tf 

An on-line system based entirely upon push buttons, with responses 

shown on the scope. 

IX.3.3.4 [CF66], p. 704. 

DSL/90 (Digital Simulation Language on 7090) t 

An addition to FORTRAN which provides representation of blocks, 

switching functions, and function generators similar to those available 

with an analog computer. 

1X.2.4.5 [QP66], p. 696. 

DYANA (DYnamics ANAlyzer) t+ ¢ 

One of the early specialized languages. Used for describing vibrational 

and other dynamics systems. 

IX.2.4.2 [OZ58], p. 696; [TD58], p. 696.



7158 LANGUAGE SUMMARY 

DYNAMO ‘ft 

One of the first continuous simulation languages. 

1X.3.1.2 [PG63], p. 699. 

DYSAC (DigitallY Simulated Analog Computer) t 

A language to provide representation of a number of analog com- 

puter components. 

IX.2.4.3  [HJ63], p. 696. 

English 

The concept of using a natural language (e.g., English) as a program- 

ming language. 

X.5 [HL66], p. 720; [TH66], p. 720. 

Extended ALGOL 

A specific set of additions to ALGOL. 

IV.4.5.8 [QG66], p. 306. 

473L Query 7 

A formalized English-like query system for use in the Air Force 473L 

system. 

[X.3.2.3 [BL65], p. 703. 

FACT (Fully Automatic Compiling Technique) # 
An English-like language suitable for business data processing. Largely 

supplanted by COBOL. 

V.2.4 [HO61], p. 379. 

FLAP 
A program to do symbolic mathematics. 

VII.6 [MB67], p. 522. 

FLOW-MATIC ¢ 
The first English-like language for doing business data processing; 

implemented on UNIVAC I. Supplanted by COBOL. 

V.2.1 [RR59a], p. 378. 

FORMAC (FORmula MAnipulation Compiler) 

Originally an extension of FORTRAN to do formal algebraic manipula- 

tion. PL/I-FORMAC uses similar concepts and makes many improve- 

ments and additions. 

VIL.3 [BZ64], p. 520; [IB65c], p. 521; [IB67c], p. 521. 

Formula ALGOL 

An extension of ALGOL which provides basic operations for doing 

formal algebraic manipulation, list processing, and string manipulation. 

VIII.5 [PR66], p. 602.



LANGUAGE SUMMARY 759 

FORTRAN (FORmula 7RAWNslator) 

The first language to be used widely for solving numerical problems. 

Originally developed by IBM on the 704, it has existed in many versions 

and has been implemented on almost all computers of most manufac- 

turers. The first language to become a USASI Standard. There are 

actually two standards: Basic FORTRAN and FORTRAN, which 

correspond approximately to what are known as FORTRAN II and 

FORTRAN IV, respectively. 

IV.3 [AA66], p. 302; [AA66a], p. 302; [CC64], p. 302. 

FORTRANSIT (FOrmula TRANSlator /nternal Translator) t 

A subset of FORTRAN which was translated into IT on the IBM 650. 

IV.2.2.3 [IB57a], p. 301. 

FSL (Formal Semantics Language) ft 

A language for use in defining semantics needed for compiler writing. 

IX.2.5.7 [FJ64], p. 698; [FJ66], p. 698. 

GAT (Generalized Algebraic Translator) ¢ 

An improved version of IT. 

IV.2.2.3 [GMOO0], p. 301. 

GECOM (GEneralized COMpiler) ¢{ 

A language with a syntax similar in spirit to that of COBOL, but with 

some facilities from ALGOL added. 

V.2.5 [GZ61], p. 379. 

GPL (Generalized Programming Language) 

A relatively new attempt at defining a general language, also con- 

taining self-extending capabilities; similar in spirit to ALGOL. 

IV.4.5.7 [GWO00], p. 305. 

GPSS (General Purpose Systems Simulator) fT 

A language for discrete simulation problems based on a block diagram 

approach. 

IX.3.1.3 [1B67i], p. 700; [HK65], p. 700. 

GRAF (GRaphic Additions to FORTRAN) Tf 

A language which adds a graphic data-type to FORTRAN to facilitate 

the use of graphics on the computer. 

IX.3.3.1 [HW67], p. 704. 

Graphic Language fT 

A specific language for specifying graphic operations. 

IX.3.3.3 [UZ67], p. 704. 

ICES (Integrated Civil Engineering System) fT 

A generalized system for civil engineering, including specific languages 

(e.g., COGO) and some facilities for defining new languages. 

IX.2.2.3 [RS65], p. 694; [RS67a], p. 694.



760 LANGUAGE SUMMARY 

IDS (Untegrated Data Store) 

An extension to COBOL to permit data to be represented in ringtype- 

lists. 

V.4.1.1 [QJ64], p. 381. 

Information Algebra 

An abstract and theoretical approach to defining data processing; it 

has not been implemented. 

X.3 [(CC62], p. 719. 

IPL-V Unformation Processing Language V) 

The fifth version of a language to do list processing, in which the instruc- 

tions are conceptually at an assembly language level. 

VI.3 [NW65], p. 466. 

IT Unternal Translator) { 

An early language used for mathematical computations on the 650. 

IV.2.2.3 [PR57], p. 302. 

JOSS (JOHNNIAC Open Shop System) 

One of the first on-line systems for doing numerical computations. 

IV.6.2 [JC64], p. 308; [UJ67a], p. 308. 

JOVIAL (Jules’ Own Version of TAL) 
A language containing facilities for numerical computations and some 

data processing. Most widely used for command and control applica- 

tions. 

VIII.3 [PE66a], p. 599; [SH63], p. 599. 

Klerer-May 

A language for numerical mathematical problems, based on the use of 

a special typewriter which permits two-dimensional (1.e., natural) input 

of mathematical expressions. 

IV.7.5 [KL65a], p. 313; [KL65b], p. 313. 

L® (Bell Telephone Laboratories’ Low-Level Linked List Language) 

A list processing language which allows the user to define the types 

and sizes of his lists. 

VI.4 [KO66], p. 467. 

Laning and Zierler { 

One of the first systems to allow fairly normal mathematical expressions 

as input. It ran on the Whirlwind computer at M.I.T. at least as early 

as 1953. 

IV.2.1.3 [LA54], p. 301. 

LDT (Logic Design Translator) tf 

A language for writing logic equations for a computer from the informa- 
tion contained in the systems diagram and instruction repertoire of the 

machine. 

IX.2.3.3 [PC64], p. 695.



LANGUAGE SUMMARY 761 

Lincoln Reckoner 

An on-line system on the TX-2 to do mathematical computations with 

high level matrix operations provided. 

IV.6.7 [SW66], p. 310. 

LISP 1.5 (LISt Processing) 

A sophisticated and theoretically oriented language for doing list pro- 

cessing. LISP | and LISP 1.5 differ significantly from LISP 2. 

VI.5 [BY66], p. 467; [WE67], p. 468. 

LISP 2 

An ALGOL-like language which includes facilities and many concepts 

from LISP 1.5. 

VIII.6 [AH66a], p. 602. 

LOLITA (Language for the On-Line Investigation and Transformation of 

Abstractions) 

An addition to one of the Culler-Fried systems to permit symbol 

manipulation. 

VI.9.3.4 [QK67], p. 470. 

LOTIS (LOgic, Timing, Sequencing) ft 

A language for describing a computer by describing the structure and 

behavior of its data flow. 

IX.2.3.2 [QY64], p. 695. 

MAD (Michigan Algorithm Decoder) 

A language for doing numerical computations which has a fast compiler. 

IV.5.2 [UM66], p. 308. 

MADCAP 

A language for numerical mathematical problems and set theoretic 

operations, based on the use of a special typewriter which permits two- 

dimensional (i.e., natural) input of mathematical expressions. 

IV.7.3 [WS63], p. 312. 

Magic Paper 

An on-line system on a specialized computer configuration for doing 

certain types of formal algebraic manipulations. 

VII.7.1 [(CL66], p. 522. 

MAP (Mathematical Analysis Without Programming) 

An on-line system (under CTSS) for doing numerical computation; 

it has certain higher level mathematical operations (e.g., integrate) and 

considerable dialogue with the user. 

IV.6.6 [K P66], p. 309; [K P66a], p. 310. 

MATHLAB 

An on-line system for doing certain types of formal algebraic manipula- 

tion. 

VII.4 [EN65], p. 521.



762 LANGUAGE SUMMARY 

MATH-MATIC (AT-3) ¢ 

A language developed on UNIVAC, around the same time as FOR- 

TRAN, to do mathematical computations. Supplanted by FORTRAN. 

IV.2.2.1 [RR60], p. 301. 

Matrix Compiler ft { 

An early language to do matrix computations on the UNIVAC. 

IX.2.6.1 [MF57], p. 698. 

META 5 ft 
A language for syntax-directed compiling. 

IX.2.5.5 [OP66], p. 698. 

MILITRAN fT 
A discrete simulation language particularly oriented toward military 

applications. 

IX.3.1.6 [YC64], p. 700. 

MIRFAC (Mathematics Jn Recognizable Form Automatically Compiled) 

A language for mathematical problems, based on a specialized type- 

writer to permit two-dimensional (i.e., natural) input of mathematical 

expressions. 

IV.7.4 [GK63], p. 312; [GK67], p. 312. 

NELIAC (Navy Electronics Laboratory /nternational ALGOL Compiler) 

A language for doing numerical computation and some logical pro- 

cesses. The compilers are written largely in NELTAC. 

IV.5.1 [HS62], p. 307. 

OCAL (On-Line Cryptanalytic Aid Language) Tf 

A language for use in doing cryptanalysis. 

IX.2.6.2 [ED66], p. 698. 

OMNITAB 
A very simple language containing some operations which are the same 

as those on a desk calculator and some which are at a high mathematical 

level (e.g., matrix inversion). 

IV.8.2 [HR66], p. 313. 

OPS (On Line Process Synthesizer) ft 

A system under CTSS containing a discrete simulation language, among 

other facilities. 

IX.3.1.8 [YP65], p. 701; [Y P66], p. 701. 

PAT (Personalized Array Translator) 

A small subset of APL. 

IV.6.8 [HH64], p. 310. 

PENCIL (Pictorial ENCoding Language) ft 

A language in an on-line system for use with simple data structures 

to display line drawings. 

IX.3.3.2 [VD67], p. 704.



LANGUAGE SUMMARY 763 

PL/I 
A language suitable for doing problems involving both numerical 

scientific computations and business data processing. It combines the 

most significant concepts from previous languages in the individual 

areas. 
VIII.4 [IB66b], p. 601; [[B67d], p. 601; [IB67f], p. 601. 

PRINT (PRe-edited JNTerpreter) {+ 

An early language on the 705 for doing mathematical computations. 

IV.2.1.6 [IB56a], p. 301. 

Proposal Writing 

An extension of FORTRAN to facilitate the preparation of proposals. 

IV.3.6.1 [CT64], p. 302. 

Protosynthex f 

A question-answering system whose data base is English text. 

IX.3.2.7 [SE64], p. 703. 

QUIKTRAN 
An on-line version of FORTRAN with some restrictions, but with added 

facilities for debugging. 

IV.6.3 [IB67e], p. 309. 

SFD-ALGOL (System Function Description—ALGOL) ft 

An extension of ALGOL to permit descriptions of synchronous systems. 

[X.2.3.7 [PN66], p. 695. 

Short Code f 

Appears to be the first attempt at a higher level language for mathe- 

matical problems. Ran on UNIVACI. Really allows. a string of param- 

eters for each operation. 

IV.2.1.1 [RR52], p. 300. 

SIMSCRIPT ft 
A language for doing discrete simulation problems. 

IX.3.1.4 [MA63], p. 700. 

SIMULA (S7MUlation LAnguage) ft 

An extension to ALGOL to do discrete simulation. 

IX.3.1.7 [DH66], p. 701. 

Simulating Digital Systems t 

A language with a flavor like that of FORTRAN, for describing the 

logical design of digital computers. 

IX.2.3.4 [MZ65], p. 695. 

SNOBOL 
A string-handling and pattern-matching language. 

VI.7 [FB66], p. 469; [GF68], p. 469. 

SOL (Simulation Oriented Language) t+ 

A language for doing discrete simulation problems. 
IX.3.1.5 [KN64], p. 700; [KN64a], p. 700.



764 LANGUAGE SUMMARY 

Speedcoding ; 

One of the early attempts at a higher-level language for mathematical 

problems on the 701. Really allows a string of parameters following 

an operation code. 

IV.2.1.2 [BS54a], p. 300. 

SPRINT 

An approach to list processing which involves direct action on an 

operand stack. 

VI.9.3.3 [KC67], p. 470. 

STRESS (STRuctural Engineering Systems Solver) Tt 

A specialized language useful for solving structural analysis problems 

in civil engineering. 

IX.2.2.2 [FE64], p. 694; [FE65], p. 694. 

STROBES (Shared Time Repair Of Big Electronic Systems) ft 

A language for communicating with the computer hardware for purposes 

of testing. 

1X.2.6.5 [QU65], p. 699. 

Symbolic Mathematical Laboratory 

An on-line system (under CTSS) to do formal algebraic manipulations, 

based on major use of a display screen and light pen. 

VII.7.2 [ZB67], p. 522. 

TMG ft 

A syntax-directed compiling language. 

1X.2.5.3 [MZ65a], p. 697. 

TRAC (Text Reckoning And Compiling) 

A string manipulation language involving nested functions and macro 

facilities. | 

VI.8 [ME66], p. 469. 

TRANDIR (TRAWNslation D/Rector) Tt 

A syntax-directed compiling language. 

IX.2.5.6 [DE64], p. 698. 

TREET 
A list processing language which embodies many of the LISP concepts 

but in an easier notation. 

VI.9.2 [HA67], p. 470. 

UNCOL (UNiversal Computer Oriented Language) 

The concept of using a language intermediate between a programming 

language and machine language to minimize the number of compilers 

to be written. 

X.2 [QR58], p. 719; [QR58a], p. 719. 

UNICODE f 

A language (similar to MATH-MATIC) on the 1103 to do mathematical 

problems. Supplanted by FORTRAN. 

IV.2.2.2 [RR59], p. 301.



NAME AND 

SYSTEM INDEX 

This index contains names of people, organizations, systems, and languages. Page 

numbers shown in bold face represent a significant discussion, rather than just casual 

mention. Page numbers in italics for the major languages specify the location of the 

Sample Program for that language. Other italic page numbers indicate the existence 

of a bibliographic citation that is not referenced from the text or is not within an 
obvious subheading in the Reference Lists. Note that authors are not included in this 

index; they appear in the Author List in Appendix A. 

A ADAPT, 606 
AED, 244, 605, 641, 680-683, 754 

A-0, 6, 12, 132 AED-0, 651, 680-682 
A-1, 6, 132 AED-1, 682-683 
A-2 and A-3, 5, 6, 129, 132, 134, 137, AEDIR, 682 

316, 322, 753 
A-3 (see A-2 and A-3) 

Abrahams, P., 590 

Abrams, P. S., 247 

Aerospace Industries Association, 606 

AESOP, 461, 670-674, 678, 754 

AIMACO, 314, 323, 324, 331, 754 

ACM, 173, 542, 638 Air Force, 525, 665 

Collected Algorithms, 176 Materiel Command, 324, 330, 605 

Communications, 175, 176, 181, 335, ALCOR (see ALGOL, subsets) 
345, 472 ALGOL, 22, 39, 45, 48, 53, 56, 58, 75, 82, 

Programming Languages Committee, 84, 92, 103, 104, 134, 143, 144, 

176, 180 152, 153, 154, 172-196, 178, 205, 

SICPLAN Notices, 58, 341, 530, 548, 208, 229, 245, 294, 328, 329, 330, 

739 335, 340, 344, 388, 400, 454, 501, 

SICSAM, 65 541, 542, 543, 544, 582, 583-589, 

ADAM (IBM), 718 592-598, 621, 623, 625, 638, 651, 

ADAM (MITRE), 667-668, 753 656-658, 680, 719, 723, 754 

765



766 NAME AND SYSTEM INDEX 

(ALGOL)58, 22, 143, 172-175, 176, 

179, 194, 196, 197, 199, 204, 205, 

206, 215, 524, 525, 527, 635, 725 

(ALGOL)60, 175-177, 178, 196, 406, 

590, 598, 621, 658, 718 

(ALGOL)60, Revised, 177-178 

(ALGOL) 68, 178 

(ALGOL) 6X, 178 
(ALGOL)X, 194 (see also ALGOL 

6X) 
(ALGOL)Y, 194 (see also ALGOL 

6X) 
Bulletin, 174, 175, 177, 178, 180, 181 

extensions, 194-196 

metalanguage, 53-56 (see also BNF; 

see also Metalanguage, ALGOL 

in Subject Index) 

proposed ISO Standard, 178-192 

subsets: 
ALCOR, 175, 180 

ECMA, 180 

IFIP, 180 
SMALGOL, 180 

ALGY, 472, 473-474, 754 

Allen-Babcock Corporation, 232 

ALPAK, 502, 504, 505, 506 

ALTAC, 42, 146, 153 
ALTRAN, 472, 502-506, 502 636, 754 

AMBIT, 387, 454-457, 455, 754 

AMTRAN, 216, 217, 240, 245, 254, 258- 

264, 259, 754 

AN/FSQ-7, 525, 526, 527 | 
AN/FSQ-31, 525, 526, 527 

AN/FSQ-32, 389, 406, 408, 491, 492, 

525, 527, 591 
Animated Movie language, 644-646, 754 

APEX, 245 

APL, 620, 621, 707, 712-715, 725, 727, 
754 (see also APL/360) 

APL/360, 216, 217, 247-252, 248, 712, 
754 

APL (PL/I based), 465, 600 

APT, 7, 21, 33, 605-610, 683, 754 

Arden, B., 142, 205 

ARITH-MATIC (see A-3) 

Army Electronic Proving Ground, 198 
ARPA, 590 

ASA, 8, 46 (see also USAST) 

Asch, A., 324 

ASCII, 44 

Ash, A., 135 

ASP, 702 

AT-3 (see MATH-MATIC) 
ATS, 684 (see also DATATEXT (IBM) ) 

Auslander, M., 475 

Autocoder, 6, 7, 11, 42, 717 

AUTO-PROMPT, 606 

AUTOSPOT, 606 

B 

B-G, 5, 322 (see also FLOW-MATIC) 

Babcock, J. D., 232 

BACAIC, 5, 6, 7, 129, 133-134, 755 

Bachman, C., 376 

Backus, J. W., 130, 143, 144, 174, 175, 

176, 177 (see also BNF) 

BALGOL, 174, 621 

Barnett, J. A., 590 

Barnett, M., 635 

BASEBALL, 668, 669, 755 

BASIC, 216, 229-232, 230, 755 

Basic FORTRAN, (see FORTRAN, 

(Standard) Basic) 

Bauer, F. L., 174, 176, 177 

Beeber, R. J., 143 

Bell Telephone Laboratories, 244, 400, 

436, 502, 542 

BEMA, 47, 154, 345, 546 

Bendix, 332 (see also CDC computers, 

G20) 

Bennett, J., 417 

Berg, H., 540 

Best, S., 143, 417 

BINAC, 129 

BIOR, 6, 8 

Blackwell, F., 464 

BNF, 53-55, 175, 408, 606, 638, 639 

Bobrow, D. G., 590 

Boeing Airplane Company, 133 
Bond, E. R., 475 

Book, E., 529, 590 

Bosak, R., 709, 712 

Bosche, C., 417 

Bottenbruch, H., 174 

Brackett, J., 240 

Brayton, R., 406 

Breed, L. M., 247 

BRIDGE, 616 

British Computer Society, 176 
Broadwin, E., 135 

Bromberg, H., 331, 340



Brown, L., 540 

Brown, W. S., 502 

BUGSYS, 644-646, 755 

Burroughs, 330 

Burroughs computers: 

Burroughs 220, 174, 198, 294, 389 

Burroughs 5000, 718 

Burroughs 5000/5500, 611, 656 
Burroughs 5500, 196, 261, 306, 612 

Burroughs D825, 197, 527, 622 

Cc 

C-10 (MITRE), 664—665, 755 

C-10 (UNIVAC), 137 

CADET, 683 

CAL, 217 
California, University of: 

Berkeley, 205 

Los Angeles, 253 

Santa Barbara, 253 

Carnegie-Mellon University, 389, 583 

Case Institute of Technology, 139 

CDC, 332 

CDC computers: 

CDC 160A, 198, 611 

CDC 1604, 198, 294, 389, 525, 526, 

527, 611, 612, 622, 629, 678 

CDC 3100, 197, 436 

CDC 3200, 447 

CDC 3400, 612 

CDC 3600, 197, 393, 436, 525, 526, 

527, 611, 612, 655, 718 

CDC 3800, 197, 655 

CDC 6400, 655 

CDC 6600, 655 

CDC 6800, 655 

CDC G20, 389, 583 

CDL, 618-620 
CHARYBDIS, 522 

Chicago, University of, 417 

Chipps, J., 139 
CIB (see COBOL, Information Bulletin) 

CITRAN, 217 

Clapp, L., 511 

Clem, P. L., Jr., 258 
CLIP, 174, 196, 197, 215, 524, 529, 634, 

635-636, 755 
Clippinger, R., 327, 712 

CLP, 387, 461-462, 755 

NAME AND SYSTEM INDEX 767 

COBOL, 20, 21, 23, 33, 35, 43, 46, 47, 

53, 56, 58, 73, 78, 80, 82, 84, 85, 

97, 106, 119, 121, 152, 153, 180, 

193, 314, 324, 325, 326, 327, 328, 

329, 330-376, 336-337, 536, 541, 

542, 543, 544, 582, 634, 717, 723, 
725, 756 

(COBOL) 60, 324, 332, 333, 339 

(COBOL) 61, 328, 332-333, 344 

(COBOL) 61 Extended, 328, 333 

(COBOL) 61 Required, 339 

(COBOL) 65, 333-334, 345-375 

(COBOL) standard, 340-343 (see also 

X3.4.4) 

Basic, 339 

Compact, 339 

Extended COBOL 61, 328, 333 

Information Bulletin, 333, 340, 341, 

345 

Maintenance Committee, 332-334, 340 
metalanguage, 53-56 (see also 

Metalanguage, COBOL, in 
Subject Index) 

Short Range Committee, 323, 324, 325, 

327, 330-333, 339 
CODAP, 678 

CODASYL, 330, 340 (see also COBOL; 

Information Algebra) 

Executive Committee, 330, 331, 344 

Intermediate Range Committee, 330 

Language Structure Group (see LSG; 
see also Information Algebra) 

Long Range Committee, 330 

LSG, 709, 712, 719 

Short Range Committee (see COBOL, 

Short Range Committee) 

COGENT, 638-639, 756 

COGO, 21, 247, 611-613, 616, 618, 619, 
756 

COLASL, 79, 265-271, 268, 281, 756 

COLINGO, 664—665, 668, 756 

COMIT, 56, 58, 68, 386, 416-436, 418, 

438, 439, 447, 449, 453, 454, 455, 

756 

(COMIT) II, 417, 418, 419-420, 423 

compared with SNOBOL, 386-387 
COMMEN, 127 

Commercial Translator, 314, 324-326, 

327, 334, 375, 756 

COMPASS (see Massachusetts 
Computer Associates) 

COMPOOL, 526, 533, 536, 539



768 NAME AND SYSTEM INDEX 

COMPROSL, 299-300 

Computer Compiler, 623-624, 756 

Computer Design language, 623, 625, 

756 

Computer Research Corp., 511 

Computer Sciences Corp., 146, 327 

COMTRAN, 324, 331 (see also 

Commercial Translator) 

CONVERT, 388, 416, 435 

Cooper, W., 417 

CORAL, 387, 462-463, 674, 680, 756 

CORC, 294-296, 461, 756 

CORREGATE, 139 

COSMOS, 283 
Cousins, L., 316 

Cox, J., 540 

CPS, 58, 216, 232-240, 233, 689, 718, 
756 

CS, 132 
CTSS, 216, 240, 244, 406, 408, 417, 419, 

438, 475, 491, 611, 612, 660, 683, 

686, 688, 689-690, 740 

Culler, G., 253 

Culler-Fried system, 216, 217, 240, 245, 

253-255, 258, 464, 757 

D 

DAS, 631, 757 
Datamation, 42 

DATA-TEXT (Harvard), 646-647, 757 
DATATEXT (IBM), 646, 684-686 

David Taylor Model Basin, 330 

DEACON, 668-669, 757 
DEC computers: 

PDP-1, 406, 449, 510, 511 

PDP-5, 449 

PDP-6, 217, 223, 400, 498, 516 
PDP-8 and 8S, 449 

Delaney, F., 132, 316 

Della Valle, V., 135 

DEMON, 379 

Department of Defense, 330 

DesJardins, P. R., 232 

DETAB 65, 315, 335 
DETAB X, 315 

Deutsch, P., 449 

DIALOG, 216, 217, 255~258, 674, 757 
DIALOG (retrieval), 702 

DIAMAG, 195, 689-691, 757 
Dillon, G. M., 332 

DIMATE, 647-649, 757 

Discount, N., 331 

DITRAN, 303 

DM-1, 701 

Dobbs, C., 712 

DOCUS, 678-679, 757 

DOL, 678, 679 

DSL/90, 172, 632-633, 757 

Duncan, F., 175 

Dunn, T., 226 

DUO, 173 

DuPont, 332 

DYANA, 628, 757 

DYNAMO, 651-653, 683, 758 

DYSAC, 629-631, 758 

DYSTAL, 303, 387-388 

E 

Earley, J., 583 

Eastwood, D., 450 

ECMA, 156, 333, 340, 344 

ALGOL subset, 180 

EDSAC, 4 

Edwards, D., 406 

Ellis, T. O., 217 

Elmore, 4 

Engelman, C., 491, 498 

English, 52, 707, 715-717, 729-731, 758 
(see also English-like; Natural 

English; Natural language; 

Query, all in Subject Index) 

EPL, 542 

ES-1, 684-685 

ESI, 217 

EULER, 194, 719 

Evey, R. J., 475 

Extended ALGOL, 196, 758 

F 

473L Query, 665-667, 669, 758 

FACT, 314, 325, 327-328, 334, 758 
Falkoff, A. D., 247 

FAP, 6, 244, 502 

Farber, D. J., 436 

FASE, 720 

FAST, 526 

Feigenbaum, E. A., 391 

Feldman, J., 641 

Firth, D., 590



FLAP, 472, 506—510, 507, 758 

FLOW-MATIC, 6, 314, 316-324, 331, 
332, 375, 758 

FLPL, 388, 406 

FMS, 148 

Forgie, J., 245 

FORMAC, 33, 105, 144, 170, 171, 195, 

388, 472, 473—491, 477, 503, 758 
FORTRAN extension, 474—486 

PL/I-FORMAC, 474-475, 477, 486~ 

490, 554 
Formula ALGOL, 194, 435, 473, 524, 

583-589, 583, 641, 758 

FORTRAN, 6, 14, 20, 21, 23, 33, 38, 45, 

46, 47, 52, 58, 60, 73, 81, 100, 103, 

114, 123, 132, 134, 135, 137, 138, 

139, 141, 143-171, 157, 176, 180, 

190, 194, 206, 208, 211, 216, 226, 

229, 245, 269, 271, 294, 340, 344, 

387, 388, 400, 472, 473, 474, 475, 

476, 478-480, 498, 503, 525, 540, 

542, 543, 544, 547, 582, 610, 621, 

622, 628, 632, 634, 651, 657, 674, 

675, 678, 687, 688, 717, 718, 725, 
731, 732, 759 

(FORTRAN )I, 143-145, 146, 164 

(FORTRAN)II, 42, 144, 146, 147, 

148, 150, 152, 153-154, 155, 156, 

164, 170, 260, 503, 720 

(FORTRAN )III, 88, 147 

(FORTRAN)IV, 42, 146, 147, 148, 

150, 152, 153-154, 155, 157, 164, 

261, 475, 476, 478, 503, 540 

(FORTRAN )V, 541 

(FORTRAN) VI, 540 

(Standard) Basic FORTRAN, 150-165, 

168-169, 226, 228, 639 (see also 

X3.4.3) 

(Standard) FORTRAN, 150-157, 165- 

169 (see also X3.4.3) 

differences in standards, 168-169 

extensions, 170-172 

FORTRANSIT, 7, 141-142, 144, 150, 

759 
Fox, P., 406 

Franciotti, R., 177 

Franklin Institute, 5 

Fried, B., 253 (see also Culler-Fried 

system ) 

FRINGE, 329 

FSL, 583, 641-642, 759 

NAME AND SYSTEM INDEX 769 

G 

Galler, B., 205 

GAMM, 173-174 
GARGOYLE, 697 

GAT, 7, 142-143, 206, 759 
GATE, 139 

GECOM, 314, 328-329, 759 
General Electric, 332, 376, 606, 668 

General Electric computers: 
GE 225, 229, 284, 328, 379, 419 

GE 235, 284 

GE 635, 231, 527 

GE 645, 244, 651, 661 

GE Datanet-30, 449 

General Inquirer, 435 

General Motors Laboratories, 628, 680 

GIM-1, 702 

GIS, 702 

GOL, 678, 679 

Goldberg, R., 143 

Goldfinger, R., 324, 712 

Gordon, G., 653 

Gorn, S., 5 

GPL, 195-196, 759 
GPM, 450 

GPS, 466 

GPSS, 650, 651, 653-655, 656, 759 

GRAF, 172, 674-675, 759 
Graham, R., 142, 205 

Graphic language, 677-678, 759 
Greber, M., 417 

Green, B. F., Jr., 391 

Green, J., 176, 177 

Greenberger, M., 660 

Greene, M., 135 

Grisoff, S. F., 475 

Griswold, R. E., 436 

GUIDE, 541 

H 

Hansen, F., 417 

Harper, M. H., 132, 316 

Haines, E. C., 457 

Halstead, M., 197, 198 

Harvard University, 253, 646 

Hawes, M., 316 

Hawkinson, L., 590 

Helwig, F., 417 

Herrick, H. L., 130, 143



770 NAME AND SYSTEM INDEX 

Hodes, L., 406 

Holberton, F., 4 

Honeywell, 327, 330, 334 

Honeywell-800 business compiler (see 

FACT) 

Honeywell-800 computer, 327, 379 
Hopper, G. M., 4, 12, 132, 135, 144, 316 

Hudson Laboratories, Columbia 

University, 258 (see also Klerer- 

May system) 

Hughes, R. A., 143 

Huskey, H., 197 

I 

IAL (see ALGOL 58) 
IBM, 52, 134, 143, 152, 156, 247, 330, 

334, 540-542, 546, 547, 606, 646, 

684 
Hursley Laboratories, 52, 542, 548 

Vienna Laboratory, 52, 548 
IBM computers: 

IBM 650, 7, 139, 141, 142, 146, 149, 

301, 302, 389 

IBM 701, 5, 6, 26, 129, 130, 133, 300 

IBM 704, 3, 6, 28, 88, 126, 137, 142, 

143, 144, 145, 147, 149, 153, 170, 

198, 205, 206, 302, 303, 307, 377, 

389, 406, 416, 606, 628, 651 

IBM 705, 5, 6, 129, 134, 137, 149, 301, 

324 

IBM 709, 42, 146, 147, 198, 204, 307, 

325, 406, 419, 524, 525, 636, 651 

IBM 709/90, 42, 147, 149, 303, 378, 

389, 417, 536 

IBM 1130, 261, 611, 612 

IBM 1401, 148, 307, 664 

IBM 1410, 611, 665 

IBM 1620, 63, 146, 149, 253, 258, 303, 

389, 406, 436, 468, 611, 612, 696, 

718 
IBM 1800, 28 

IBM 7030, 146, 265, 267, 270, 458, 

470, 491, 667, 670 

IBM 7040, 207, 400, 462, 475, 677 
IBM 7044, 436 

IBM 7040/44, 226, 417, 419, 475, 502, 

611, 654 

IBM 7070, 7, 28, 146, 149, 198, 325, 

611 

IBM 7080, 325 

IBM computers (cont.): 

IBM 7090, 198, 307, 313, 325, 377, 

475, 476, 506, 525, 526, 527, 606, 

620, 631, 644, 651, 654 

IBM 7090/94, 63, 148, 205, 296, 303, 

326, 417, 419, 436, 445, 475, 502, 

611, 612, 632, 646, 654, 655, 657 

IBM 7094, 197, 255, 400, 462, 516, 

527, 542, 623, 645, 651, 683 

IBM 9020, 525, 526, 527 

IBM STRETCH (see IBM 7030) 

IBM System/360, 28, 29, 63, 126, 197, 

247, 303, 305, 325, 377, 400, 417, 

419, 436, 447, 448, 449, 458, 476, 

486, 526, 527, 542, 601, 611, 615, 

620, 651, 654, 655, 675, 683, 691, 

693, 694, 700, 706, 718, 719 

IBSYS, 63, 303, 475, 476, 478 

IBSYS/IBJOB, 148, 475 

ICES, 605, 613, 615-620, 759 

ICETRAN, 617-618 

IDS, 376, 760 
IFIP, 175 

ALGOL subset, 180 

TC 2, 177 

WG 2.1, 177, 178, 181, 194 
IIT, 255, 606 

Information Algebra, 707, 709-712, 726, 
727, 736, 760 

Information International, Inc., 590 

Ingerman, P. Z., 177 

IPL, 386 

IPL-I, 389 

IPL-II, 389 

IPL-III, 389 

IPL-IV, 389, 393 

IPL-V, 58, 386, 388-400, 392, 405, 

406, 449, 462, 668, 718, 760 

IPL-VI, 389 

IPL-VC, 394, 718 

IPSSB, 48 

ISIS, 217 

ISO, 47, 48, 340, 341 

IT, 5, 7, 139-143, 760 

Iturriaga, R., 583 

Iverson, K., 217, 247, 712, 725, 727 

Iverson’s language (see APL; APL/360) 

J 

Jasper, R. B., 712



JCL, 691-693 
Jenny, A., 135 

JOHNNIAC, 7, 217, 389 

Johnson, R., 197 

Jones, J. L., 324, 332 

Jones, T., 316 

JOSS, 216, 217-226, 218, 232, 258, 261, 

689, 760 

(JOSS) I, 217-223 

(JOSS) II, 217, 223-226, 218 

JOVIAL, 33, 58, 174, 179, 194, 196, 197, 
198, 205, 215, 523, 524-539, 528, 

541, 542, 543, 634, 636, 639, 709, 

760 

(JOVIAL) 1, 525, 536, 539 

(JOVIAL) 2, 525, 536 

(JOVIAL) 3, 525, 529, 530-539 

Basic (JOVIAL) 529 

JS, 639 

JTS, 528, 639 

TINT, 528 

JTS, 528, 639 

JUG, 740 

K 

Kahrimanian, H. G., 5 

Kameny, S. L., 590 

Kannel, M., 417 

Kaplow, R., 240 

Kapps, C. A., 462 

Katz, C., 135, 174, 176, 177, 328, 329 

Keating, W., 712 

Keller, J., 226 

Kemeny, J., 229 

Kendrick, G. 712 

Kenney, R., 475 

Klerer, M., 284 

Klerer-May system, 258, 265, 284-294, 

285, 760 

Knowlton, K. C., 400, 417, 644 

Kogan, R., 177 

Koschman, M., 139 

Koss, M., 132 

Krutar, R., 583 

Kurtz, T., 229 

L 

L*, 386, 389, 400—405, 401, 462, 645, 760 

Landen, W., 197 

Landin, P., 177 

NAME AND SYSTEM INDEX 771 

Laning and Zierler system, 5, 129, 131- 

132, 760 
LAP, 597 

Larner, R., 540 

Lathwell, R. H., 247 

LDT, 621-622, 760 
Leagues, D. C., 502 

LECOM, 419 

Levin, M. I., 590 

Lincoln Laboratory, 245, 462 

Lincoln Reckoner, 216, 217, 240, 245— 

247, 254, 258, 761 
LIPL, 394 

LISP, 60, 82, 96, 120, 386, 405-416, 407, 
435, 449, 453, 457-461, 472, 491, 

492, 494, 498, 506, 509, 589-598, 

591, 725, 727, 761 

(LISP) 1, 405—406, 725 

(LISP)1.5, 8, 82, 223, 405-416, 407, 

506, 516, 589, 592, 598, 725 

(LISP) 1.75, 406 

(LISP)2, 39, 195, 406, 410, 416, 458, 

524, 589-598, 591, 725, 761 

Logan, R., 129 

Logic Theorist, 393 
Logic Theory Machine, 466, 467 

LOLITA, 387, 464, 761 

Los Alamos Scientific Laboratory, 265, 

271 

LOTIS, 620-621, 761 
LUCID, 701 

Luckham, D., 406 

M 

MAC-360, 81, 264 
MAD, 142, 154, 174, 179, 194, 196, 205— 

215, 207, 216, 244, 644, 683, 688, 

761 
MADCAP, 265, 271-281, 272 

MADTRAN, 154, 206 

Magic Paper, 473, 510-514, 761 

Maling, K., 406 

MANIAC II, 271 
MAP, 216, 217, 240-245, 244, 254, 258, 

733, 761 

Martin, T., 540 
Martin, W. A., 514 

Massachusetts Computer Associates, 454, 

542, 640 

Masterson, K. S., Jr., 197



772 NAME AND SYSTEM INDEX 

MATHLAB, 472, 473, 491-502, 492, 

761 

(MATHLAB) 68, 491, 498-501 

MATH-MATIC, 6, 88, 132, 135-137, 
139, 316, 322, 762 

Matrix Compiler, 5, 6, 642, 762 
Matthews, G., 417 

Mauchly, J., 129, 130 

May, J., 284 (see also Klerer-May 

system ) 

McArthur, R., 197 

McCarthy, J., 176, 405, 406, 590 

McClure, R., 636 

McGarvey, J. E., 132 

Mcllroy, M. D., 436, 450, 502, 541 

Mealy, G. H., 391 

Medlock, C. W., 540 

META 2, 592 

META 3, 698 

META 5, 638-640, 762 

Michigan, University of, 139, 205, 206 

MIDAS, 627 

MILITRAN, 657, 659-660, 762 

Miller, C., 611, 615 

Minneapolis-Honeywell (see Honeywell) 
Minsky, M., 590 

MIRFAC, 281-284, 282, 762 
M. I. T., 2, 129, 206, 240, 244, 405, 409, 

417, 514, 542, 590, 605-606, 611, 

612, 615-616, 651, 660, 661, 680, 

683, 688 (see also CTSS; MUL- 
TICS) 

Mitchell, L. B., 143 _ 

MITRE, 491, 664, 667, 670, 685 
ML/I, 127 

MOBIDIC, 198, 400 
Mooers, C., 448 

Moore, R. D., 247 

Morris, A. H., Jr., 506, 510 

Morrissey, J., 226 

MPL, 542 

MPPL, 542 

Mulder, M., 316 

MULTICS, 244, 542, 634, 661 
MULTILANG, 677 
Myszewski, M., 475 

N 

9 PAC, 314 

NAPSS, 299 

NASA, 258 

National Bureau of Standards, 296, 330 

Naur, P., 175, 176, 177 

Naval Research, Office of, 4, 5 

Navy Electronics Laboratory, 197, 200 

NCR, 332, 717 

NCR 304 computer, 717 

Nehama, I., 217 

Nekora, M., 684 

NELIAC, 58, 174, 179, 194, 196, 197— 

205, 199, 762 

(NELIAC) BC, 197 

Nelson, R. A., 143 

Newell, A., 217, 388, 391 

NICOL I, 542 

NICOL 2, 600 

North Carolina, University of, 143 

NPL, 542 

Nutt, R., 143, 327 

O 

OCAL, 642-644, 762 

OCAS, 642 

OLC, 253 

OMNICODE, 5 

OMNITAB, 296-299, 297, 762 
ONR, 4, 5 

OPS, 660-662, 762 
Orgel, S., 139 

OS/360, 691 (see also JCL) 

P 

Packard Bell 250 computer, 198 

PACT, 6, 8, 173 

PACTOLUS, 627 
Park, D., 406 

PAT, 217, 252-253, 762 
Paul, M., 177 

PDP, (see DEC computers) 

PENCIL, 675-677, 762 

Pennsylvania, University of, 330 

Perlis, A. J., 139, 174, 176, 583 
Philco, 332 

Philco computers: 

Philco 210-211, 207, 655 
Philco 2000, 146, 389, 466, 473, 525 
Philco 2000/210, 526, 527 

Philco Basicpac, 198 
Philco CXPQ, 198



Phillips, C. A., 330 
PIL, 678, 679 

PIL/I, 217 

PL360, 9 

PLANIT, 706 

PL/I, 20, 33, 37, 45, 52, 60, 73, 74, 81, 

84, 100, 102, 103, 106, 119, 121, 

125, 157, 179, 217, 232, 236, 472, 

476, 486-487, 489-490, 523, 524, 

$30, 539, 540-582, 544, 610, 634, 
639, 640, 644, 724, 725, 763 (see 
also CPS) 

PL/I-FORMAC (see FORMAC) 

Polonsky, I. P., 436 

Porter, C. B., 197 

Porter, S. W., 197 

POSE, 299 

PRINT, 5, 6, 129, 134, 763 
PROJECT, 616 

Proposal Writing, 170-172, 763 

Protosynthex, 669-670, 763 
PUFFT, 303 

Pulos, J., 130 

Purdue University, 139 

Q 

Quarles, D., 130 
QUIKTRAN, 12, 84, 170, 172, 216, 226— 

229, 227, 232, 611, 689, 733, 763 
QUIN, 691 

R 

Radin, G., 540 

Ramo Wooldridge computers: 

RW 400, 254 

AN/UYK, 198 

RAND Corporation, 6/7, 217, 223, 389, 

393, 655, 740 

Rapidwrite, 35, 338 

RCA, 330, 332 

RCA computers: 

RCA 501, 153, 332 

RCA 601/604, 436 

RECOL, 701 

Reeves, V., 331 

Reinfelds, J., 258 

Remington Rand, 12, 132, 135, 137, 144, 

322, 323, 330, 332, 334 (see also 

UNIVAC (computers) 

NAME AND SYSTEM INDEX 773 

Rempel, R., 197 

Report Program Generator, 11, 28 

Revised ALGOL 60 (see ALGOL 60, 
Revised ) 

Ridgeway, R. K., 132 
ROADS, 616 

Roberts, L. G., 462 

Rochester, N., 232, 486 

Rockford Research Institute, 448, 453 

Rogoway, H. P., 540 

Rosenblatt, B., 540 

Ross, D., 680 

Rossheim, R., 316 

RPG, 11, 28 

RPL, 706 

RUNCIBLE, 7, 139 

RUSH, 217, 232, 309 

Russell, S., 406 

Rutishauser, H., 5, 129, 174, 176 

S 

SACCS, 524 

SAD SAM, 669 
SAFARI, 470, 685, 705 

SAINT, 410 

Samelson, K., 174, 176, 177 

Sammet, J. E., 330, 331, 474, 475, 712 
SAP, 3, 6, 144 

Saunders, R. A., 590 

Sayre, D., 143 

SC5, 48 (see also ISO; TC97) 

Schmitt, W., 129 

Schroeder, D., 232 

Schwartz, J., 525, 529 

SDC, 491, 524, 525, 528, 529, 530, 590, 

634, 688 (see also AN/FSQ-7, 31, 

32) 

SDS 940 computer, 400, 406, 436, 467 

Seegmiiller, G., 177 

Seitz, R. N., 258 

Selden, W., 331 

SFD-ALGOL, 195, 623, 625-627, 763 

SHADOW, 448, 605, 739 

SHARE, 173, 174, 206, 406, 417, 541, 

547, 712, 740 

Advanced Language Development 

Committee, 540-542, 548 

FORTRAN Committee, 147, 148, 540 

Shaw, C. J., 58, 529 

Shaw, J. C., 217, 389



774 NAME AND SYSTEM INDEX 

Sheldon, J., 130 

Sheppard, R. C., 541 

Sheridan, P. B., 143 

SHORT CODE, 5, 6, 129-130, 763 

Siegel, A., 417 

Siegel, L., 130 

SIFT, 42, 150, 153-154, 164 

SIMSCRIPT, 33, 462, 650, 651, 655-656, 

661, 763 
SIMULA, 195, 651, 657, 659-661, 763 

Simulating Digital Systems, 622-623, 763 

Sketchpad, 462, 678 

Skillman, S., 130 

SLANG, 697 

SLIP, 304, 387-388, 644 

SMALGOL (see ALGOL, subsets) 

Smith, J. W., 139 

SNOBOL, 68, 386, 421, 435, 436-448, 
437, 454, 455, 644, 763 

SNOBOL3, 436-447, 437 

SNOBOL4, 436, 447-448 

compared with COMIT, 386-387 

SOAP, 7, 141 

SOCRATIC, 702 

SODAS, 741 

SOL, 656-658, 661, 763 
Somers, E., 316 

Sparks, M. A., 258 

Speedcoding, 5, 6, 129, 130-131, 764 
Sperry Rand (see Remington Rand; 

UNIVAC (computers) ) 

SPLINTER, 600 

Springer-Verlag, 174 

SPRINT, 387, 462-463, 764 

Standish, T., 583 

Stanford University, 409, 542, 602 

Stelloh, R. T., 197 

Stern, H., 143 

Stoller, G. S., 502 

Stowe, A. N., 245 

STRESS, 612-615, 764 

STROBES, 647-648, 764 
Strong, S., 240 

STRUDL, 613, 616, 620 (see also 

STRESS) 

Strum, E., 226 

STUDENT, 664 

Sullivan, D., 316 

SURGE, 8, 314 

Sutherland, I., 462, 678 

Sylvania, 330 
Sylvania computers (see MOBIDIC) 

Symbolic Mathematical Laboratory, 473, 

514-520, 515, 764 

T 

TABSOL, 28, 329 

TALL, 466 

TC97, 48 (see also ISO) 

TELCOMP, 217, 308 

TELSIM, 627 

TGS-IT, 640 

Tierney, G., 331 

TINT, 528 

TIPL, 393 

TMG, 503, 636, 764 
Tobey, R. G., 474, 475 

Tonge, F. M., 391 

Tonik, A., 129 

TRAC, 387, 448-454, 449, 764 

TRANDIR, 640-641, 764 

TRANGEN, 640 

TRANSIT, 616 

TREET, 387, 457-461, 458, 764 

TRW Systems, 253 

Turanski, W., 176 

TX-2, 462 

U 

Uncapher, K. W., 217 

UNCOL, 539, 707, 708-709, 764 

UNICODE, 6, 137-138, 764 
UNIVAC (computers), 4, 5, 6, 129, 130, 

132, 137, 139, 300, 301, 322, 324, 

334, 471, 642 

UNIVAC II, 6, 153, 301, 324, 332, 

334, 698 

UNIVAC 1103, 301 

UNIVAC 1103A, 6, 137 

UNIVAC 1105, 137, 143, 255, 301, 

324, 389 

UNIVAC 1107, 207, 389, 527, 611, 

612, 654, 655, 656, 657 

UNIVAC 1107/1108, 197, 307 

UNIVAC 1108, 542, 655, 657, 683 

UNIVAC LARC, 7, 146 

UNIVAC M-460, 198 

UNIVAC M-490, 198, 655 

UNIVAC SS80, 146, 198



USASI, 8, 46-48, 154, 339, 340 (see also 

X3; X3.4; X3.4.1; X3.4.2; etc.) 

USE, 173 

U. S. Steel, 332 

Utman, R. E., 177 

Vv 

van der Poel, W., 177 

van Wijngaarden, A., 176, 177 

Vauquois, B., 176 

VITAL, 641 

Ww 

Waite, 4 

Washington State University, 419 

WATFOR, 303 

Watt, J. B., 197 

Wattenburg, W., 197 

Weegstein, J., 174, 176, 177, 330 

Weinstein, M., 417 

Weissman, C., 590 

Weitzenhoffer, B., 540 

Wells, M. B., 271 

Westinghouse, 339 

Whirlwind, M.L.T., 2, 5, 7, 129, 131-132, 

301, 605 

Wiesen, R. A., 245 

NAME AND SYSTEM INDEX 775 

Wood, L. H., 258 

Woodger, M., 176, 177, 178 

X 

X3, 47, 48, 341, 547 
X3.4, 47-48, 154, 180, 546-547 
X3.4.1, 47 
X3.4.2, 47, 180 
X3.4.2C, 547 
X3.4.3, 47, 150, 154-156, 340 
X3.4.4, 47-48, 333, 340-341, 345 
X3.4.5, 48 
X3.4.6, 48 
X3.4.7, 48, 606 
X3.4.8, 49, 180 
XPOP, 8 

Y 

Yang, G., 226 

Yngve, V., 417, 420 

Yntema, D. B., 245 

Yu, L., 135 

Z 

Ziller, I., 143, 147 

Zilles, S., 475 

Zoeren, H. V., 139



SUBJECT 

INDEX 

Page numbers shown in bold face represent significant discussion of the indicated 
subject, rather than just casual mention. Page numbers in italics indicate the presence 

of a bibliographic citation pertaining to this subject. This was done in only the few 

cases where the reference otherwise might be overlooked. The page references for 

all language names, system names, people, and organization names are given in the 
Name and System Index. 

A 

Addresses: 

regional, 2 

relative, 2 

symbolic, 3 

Alphameric data (see Data types, 

alphanumeric) 

Aiphanumeric data (see Data types, 

alphanumeric) 
Ambiguity, 38, 52 

Application (see also individual 
applications listed by name): 

area, 21, 23, 24, 25, 31, 33-34, 39, 45, 

730, 733-734, 736 
oriented languages, 19, 21, Chapter IX 

package, 13-14 
Arithmetic: 

types of: 

complex, 99 

double precision, 99 

776 

Arithmetic (cont.): 

fixed point, 98 

floating point, 98 

integer, 98 

logical, 99~100 

mixed mode, 100 (see also Mode) 
mixed number, 98 

multiple precision, 99 

rational, 98—99, 479 
precision, 102 (see also types of, 

double; types of, multiple) 

Arrays, 74, 95, 97, 100, 118, 124 

Artificial intelligence, 383, 385, 389, 405, 

409, 740 

ASCII, 70 

Assembly language, 1, 2, 8, 14, 15, 16, 17, 

18, 21, 23, 32, 42, 81, 86, 114, 

120, 386, 389, 391, 604, 731 

symbolic, 2, 3, 5, 8, 11, 730 (see also 

Symbolic assembly program)



Assembly program (see Assembly 
language) 

Assembly program using Information 
Algebra, 712 

Atom (see descriptions of LISP 1.5 and 

LISP 2) 

Automatic coding, 3, 5, 13, 524, 717 

Automatic programming, 4, 13 
systems, 5-7 

Backus-Naur form (see BNF) 

Backus-Normal form (see BNF) 

Backward pointers, 385 

Blanks, 22, 70, 73, 77, 79 (see also 

individual language descriptions 

for specific rules) 

Block, 84, 103 (see also Statements, 

compound; see also descriptions of 

ALGOL and PL/I) 

BNF, 53-55, 175, 408, 606, 638, 639 
Bootstrapping, 40—41, 121-122 

Bugs (see Debugging; see also description 

of L‘) 

Built-in names, 74 (see also description 

of PL/I) 

Bundle (see description of Information 

Algebra) 

Business data processing languages, 21, 

33, Chapter V 

C 

Call by location (see Parameters, call by 

location) 

Call by name (see Parameters, call by 

name) 

Call by simple name (see Parameters, 

call by simple name) 

Call by value (see Parameters, call by 

value) 

Cambridge Polish notation, 416 

CAR (see descriptions of LISP 1.5 and 

LISP 2) 

CDR (see descriptions of LISP 1.5 and 

LISP 2) 

Character(s), 22, 23, 72 

escape, 69 

number of, 16 

punctuation, 70, 71, 72, 77, 78-79, 82 

sets, 68, 69-70, 264 

SUBJECT INDEX 777 

Character(s) (cont.): 

ASCII, 70 

commercial, 69 

sets for specific languages: 

ALGOL, 183 

AMTRAN, 259 
APL, 248 

COBOL, 346 

COLASL, 266 

COMIT, 421 

CORC, 294 
CPS, 233 
DIALOG, 256 

Formula ALGOL, 584 

FORTRAN, 69, 157 
IT, 139 

JOSS, 219 

JOVIAL, 530 

Klerer-May System, 285 

LISP 1.5, 410 
LISP 2, 592 

MAD, 207 
MADCAP, 273 

Magic Paper, 511-512 

MATHLAB, 493, 498 

NELIAC, 200 

PL/I, 70, 549 

SNOBOL, 439 

TREET, 458 

Civil engineering, 21, 603 

languages for, 610-620 
Closed shop, 24, 148 

Code generation, 4, 322 

Collating sequence, 37, 38, 338 

Command and control, 27, 523, 525, 526, 

530 

Commands, 67, 71, 77, 97, 99, 100, 105, 

118, 121 (see also Statements) 

Comments, 71, 72, 83, 86 (see also 

Programming languages, 

documentation, by using 

comments) 

Compatibility, 25, 31, 36-42, 43, 95, 335, 
338 (see also Conversion) 

Compiler, 11, 12, 20, 24, 25, 38, 39, 43, 
44, 50, 59, 87, 102, 111, 112, 113, 

118, 119, 137, 708 (see also 

Implementation) 

criticism, 59 

debugging facilities, 114, 125 

directives, 66, 68, 71, 83, 119-120



778 SUBJECT INDEX 

Compiler (cont.): 
efficiency, 21, 32, 61, 68, 119, 120, 724 

(see also Implementation 

efficiency ) 

evaluation, 23, 59 

independence, 38-39 
language structure interaction with, 

120-125 

modification, 121 

syntax directed, 57, 605, 634, 635, 723 

writing application, 121-122, 383, 530, 

584, 603, 734 

languages for, 633-642 

Computational linguistics, 175 

Computer, 102 (see also Hardware) 

configuration, 24, 25, 119 

errors, 110 

features, 112 

specific (see under the manufacturer’s 

name in Name and System Index) 

Computer aided design, 603 

languages for, 678-683 
Concatenation, 94, 104, 105, 112 (see 

also String) 
Constants, 71, 75, 93 (see also Litere1) 

Constituents, 387 (see also description of 

COMIT) 

Control cards, 35 (see also Control 

language) 

Control language, 687-693, 732-733 
(see also Time-sharing, control 

statements in; see also JCL in 

Name and System Index) 

Conversion, 25, 31, 36—42, 43 (see also 
Compatibility; Data types, 

conversion of) 

ease of, 16, 41-43 
Core-Language, 31 

Costs: 

hardware, 16, 36 

programming, 16, 36, 37, 38, 43 

Cryptanalysis, language for (see OCAL, 

in Name and System Index) 

D 

Data: 

computation, types of, 93 

declarations (see Declarations) 

description, 66, 111, 114 

Data (cont.): 

hierarchical, 74, 75-76, 94, 97, 100 
(see also Qualification) 

intermingling (see Data types, 

combining of) 

names (see Identifier) 

scope of, 103-104 

structured (see hierarchical) 

types (see Data types) 

Data base management (see Query) 

Data names (see Identifier, types of, data 

names) 

Data processing, 128, 134, 523, 539, 634, 

717, 728 (see also Business data 

processing languages) 

Data types, 66, 92-95, 104, 121 
alphanumeric, 93 

algebraic (see formal) 

arithmetic, 93, 101 
Boolean (see logical) 

character, 93 

combining of, 77, 97, 100, 144 

complex, 93 
_conversion of, 100, 101, 105—106 

formal, 94, 101, 111 

list, 94 

logical, 77, 93, 97, 101 
numeric (see arithmetic) 

pointer (see list) 

string, 94, 97, 104, 105, 112 
Debugging, 3, 15, 16, 18, 35, 59, 114, 125, 

724 (see also Diagnostics; 

Compiler, debugging facilities) 

Decision tables, 11, 315, 329 (see also 

DETAB 65 and DETAB X in 

‘Name and System Index) 

Declarations, 66, 67-68, 72, 83, 84, 86, 

87, 88, 89, 96, 97, 99, 114, 115- 
120 (see also Compiler, directives) 

default, 117 (see also description of 

PL/I) 

placement of, 88, 124 

types of: 

data description, 66, 116-117 
dimension, 125 (see also Subscripts) 

environment and operating systems, 

116, 119 

file description, 116, 117-118 

format, 116, 118 

storage allocation, 116, 118, 124 

subroutine, function, procedure, 119



Deconcatenable, uniquely, 55 
Default (see Declarations, default) 

Definition of programming languages, 8— 

11, 31, 41, 45, 48-59, 724, 734 

administrative, 49 

by characteristics, 9-11, 604 

by classification, 19-22 
in glossaries, 8 

technical, 44, 51-57 (see also 

Metalanguage; Pragmatics; 

Semantics; Syntax) 

by users, (see User defined languages) 

Delimiters, 66, 68, 71, 77, 78, 80, 89, 113 

Diagnostics, 18, 59 (see also Compiler, 

debugging facilities; Debugging) 

Differentiation, formal, 4, 61, 77, 104, 

111, 472, 733 

Dimensions, 118 (see also Arrays; 

Declarations, types of, dimension; 

Subscripts) 

two, for input, 81, 264, 732 

Dispatcher (see description of COMIT) 

Divisions in a language (see description 

of COBOL) 

E 

EBCDIC, 106 

Editing generator, 4 

Efficiency, 95 

of program, 9 

Embedding, 92, 111 
Emulation, 41 

English (see English-like; Natural 

English; Natural language; Query; 

see also English, in Name and 

System Index) 

English-like, 82, 144, 314, 323, 325, 335, 

343, 375, 715, 735 (see also 

Natural English; Natural lan- 

guage; Query; see also English in 
Name and System Index) 

Environment, 36, 68 

division (see description of COBOL) 

Equipment checkout, languages for (see 

DIMATE and STROBES in Name 

and System Index) 

Executable unit, 11 (see also Statements; 

Commands) 

smallest (SEU), 83-85 
Expressions, 102 

algebraic (formal), 95 

SUBJECT INDEX 779 

Expressions (cont.): 

arithmetic, 74, 75, 95, 100 

creation and evaluation of, 100-103 

evaluation of, 100-103 
logical, 95 

mixed mode, 100, 144 (see also Data 

types, combining of) 

Extensions (see Programming languages, 

extensions; Macro) 

F 

FIB, 691 

File, 95, 107, 662, 664 

layout, 96 

handling systems, 376-377 (see also 

Query) 

Fixed Words (see Key Words) 

Flow of control, 107 

Foreground initiated background, 691 

Formal algebraic manipulation, 33, 383, 

406, 471-472, 524, 582, 650, 733 

languages for, Chapter VII, 583-589 

Format (see also Declarations, types of): 
file, 13 

fixed, 5, 11 

free, 10 

Free list, 115, 384, 385, 386, 476 (see 

also Garbage collection; List, 

processing ) 

Functions, 85-86, 90, 92, 102, 111 (see 

also Subroutine) 

G 

Garbage collection, 115, 384, 385, 415- 

416, 598 (see also Free list) 

General purpose languages, 523, 728 
(see also Multipurpose languages) 

Generator, 539, 709 

Generators (See Code generation; 
Editing generator; Language 

generator; Report generator; Sort 

generators) 

Global variable, 103 (see also Scope of 

data) 

Glump (see description of Information 
Algebra) 

Graphic(s), 70, 71, 582 (see also 

Character(s); Character(s), sets) 

application, 603 

display devices, 82, 244, 732



780 SUBJECT INDEX 

Graphic(s) (cont.): 

languages, 674-678 

H 

Hardware, 12, 15, 19, 36, 41, 50, 59, 95, 

119, 730 (see also under manu- 
facturer’s name in the Name and 

System Index) 

compatibility, 16 

data units, 95 

descriptions of (see Logical design; see 

also APL in Name and System 

Index) 

effective use of, 9, 34, 87, 732 

facilities, 9, 19, 37, 96, 113, 264, 732, 

734 

implementation of programming 

languages, 707, 717-719 
instructions, 9 

new, 16 

representation (see Hardware 

language) 

selection, 30, 31 

Hardware language, 19, 22, 23, 69, 70, 74 

Hierarchy (see Data, hierarchical) 

Higher level languages (see Programming 

languages) 

I 

Identifier, 24, 39, 71, 72, 725 

definition of, 69, 72-76, 82 

types of, 72 

data names, 72, 73 

program unit labels, 72, 73 

statement labels (see program unit 
labels) 

statement names (see program unit 
labels) 

Implementation, 24, 31, 32, 50, 51, 57, 

59, 74, 95, 100, 113, 114, 115 (see 
also Compiler) 

efficiency, 25, 74, 122-124 

Implicit multiplication (see Juxtaposition) 

Information retrieval (see Query) 
Interpreter, 5, 11, 12—13 

J 

Juxtaposition, 73, 102, 131, 275, 512 

K 

Keyboard, 81, 82, 217, 512 (see also 

Typewriter ) 

Key punch, 69, 264, 732 

Key words, 70, 71, 73, 77, 80, 89, 108, 

109, 124, 725 

L 

Labels (see Identifier, types of) 

Language (see Assembly language; 

Machine language; Metalanguage; 

Programming languages; see also 

the individual languages in the 

Name and System Index) 

Language generator, 725 

Language L-like, 39 

Level numbers (see Data, hierarchical; 

see also descriptions of COBOL 
and PL/I) 

Library routines, 4 (see also Subroutine, 

library ) 

Light pen, 82, 216, 217, 255-257, 510, 

512, 516, 670, 671, 680, 682, 685, 
691 

Linguistic data processing, 383 

List, 382, 383-385 (see also Free list; 

‘Garbage collection; Statements, 
executable, types of ) 

processing, 383-385, 386, 388, 650, 658 

languages for, 388—416 
structure, 385 

Literals, 71-72, 80 

Local variable, 103 (see also Scope of 

data) 

Logical design, 33, 603 

languages for, 620-627 

Loops, 4, 84, 85, 110 (see also Statements, 

executable, types of, loop control) 
parameters, 85, 109 

range of, 84, 85, 109 

termination of, 85 

M 

Machine code (see Machine language) 

Machine independence, 10, 16, 37, 62, 96, 
112, 331 

Machine language, 1, 2, 8, 9, 10, 14, 18, 
35, 88, 114, 120



Machine tool control, 21, 33, 48, 603, 

605-610 

languages for, 605-610 
Machines (see Computer; Hardware) 

Macro (see also User defined languages) : 

assemblers, 10, 121 

in PL/I, 579-581 

with programming languages, 86, 120, 

121, 196, 453, 524, 729 
with symbolic assembly program, 8, 14, 

604, 729 

Matrix computation, language for (see 
Matrix Compiler in Name and 

System Index) 

Metalanguage, 53-57, 635 (see also 

Compiler, syntax directed) 

ALGOL, 53-56 (see also BNF) 

used 191, 231, 409 

Backus Normal Form (see BNF) 

BNF (see BNF) 

COBOL, 53-56 

used 234—235, 353-359, 364—365, 

367, 368—374, 481-484, 557, 558- 

561, 619, 672-673 

metalinguistic formula, 53 

metametalanguage, 53 

M-expression (see description of 

LISP 1.5) 

Microprogramming, 232, 718-719 

Mixed mode, 100, 144 (see also Data 

types, combining of; Mode) 

Mnemonics, 2, 3 

Mode, 100, 102, 106 (see also Data types) 

Movie creation, languages for, 644-646 

Multipurpose languages, Chapter VIII 

N 

Names (see Identifiers) 

Natural English, 82, 669-670 (see also 

English-like; Natural language; 

Query; see also English in Name 

and System Index 

Natural language, 662-664, 715, 729- 

731, 734-736 (see also English- 

like; Natural English; Natural 

language translation; Query; see 

also English, in Name and System 

Index) 

Natural language translation, 386 

Noise words, 74, 79-80 

SUBJECT INDEX 781 

Nonprocedural language, 19, 20, 22, 726, 

734-736 
Notation, 14, 39, 715 

better, 4 

formalism in, 24 

formalized, 52-57 (see also Metalan- 

guage; Semantics; Syntax) 

natural, 4, 5, 16, 24, 31, 32, 35 

problem-oriented, 10-11, 15, 87 
Numerical analysis and computations, 

128, 134, 216, 472, 490, 539, 540 

(see also Scientific applications) 

Numerical control (see Machine tool 

control) 

Numerical scientific languages, 21, 33, 

Chapter IV 

O 

Object code, 11, 17, 125 

efficiency, 18, 21, 59, 120, 122, 123, 124 

errors, 125 (see also Debugging; 
Diagnostics) 

inefficiency, 18 

Object program, 11, 12, 32, 38, 59, 137 
On line (see Time-sharing ) 
Open shop, 24, 148 

Operating system, 3, 12, 35, 36, 37, 111, 

113, 115, 603, 687, 732, 734 (see 

also Control cards; Control 

language; FIB; RJE; Statements, 

executable, types of, operating 

system interaction; Time-sharing; 

see also JCL, in Name and 
System Index) 

Operation, high level primitive, 20 

Operators, 66, 71, 77, 105 (see also 

Commands) 

computational, 66 

graphic, 70 

infix, 67 

logical, 66 
post fix, 67 

precedence rules for, 100 

prefix, 67 

relational, 66, 71 
suffix (see post fix) 

Overlays, 115, 118 

P 

Paper tape, 81, 82, 113, 131, 255, 510 

Parallel processor, 306, 732, 736, 737



782 SUBJECT INDEX 

Parameterized, 4, 13 (see also 

Parameters) 

Parameters, 12, 78, 86, 89, 102, 119 (see 

also Functions; Procedure; 

Subroutine) 

call by location, 90-92, 102, 160 

call by name, 90-92 

call by simple name, 90 
call by value, 90-92 

dummy arguments, 119 

formal, 90, 103, 119 
input, 113 
for loops, (see Loops, parameters) 

passing, 90-92, 113 (see also call by 

location; call by name; call by 

value) 

Part programmer, 605, 606 

Pattern matching, 68, 382, 386, 388, 582 

(see also descriptions of COMIT 

and SNOBOL) 

Payroll, 33 

Phrase substitution (see Embedding) 

Picture processing, 383 

Plex, 195, 384, 680-681 (see also 

description of AED) 

Pointer, 384 (see also Data types, list) 

Polish notation, 67, 414, 416 (see also 

Cambridge Polish notation) 

Polynomial manipulation, 302 (see also 

description of ALTRAN) 

Pragmatics, 41, 44, 52, 724 
Precision, 4, 9, 37, 59, 102 (see also 

Arithmetic, precision) 

Problem, one-shot, 17 

Problem-defining language, 19, 21 

Problem-describing language, 19, 22, 
7126-727 

Problem-oriented language, 19, 21, 603 

Problem-solving language, 19, 22 

Procedure, 85-86, 90, 107 (see also 

Subroutine) 

Procedure-oriented language, 19-20, 22 

Production runs, 17, 18, 122, 229 

Program: 

complete, 88 

conversion, 16 
efficiency of, 9 

object (see Object program) 

self modification of, 120 

source (see Source program) 

structure, 66, 68, 71, 82-88, 103 

Programming Languages, 1, 3, 8, 10, 11, 

13, 16, 17, 23, 32, 35, 41, 42, 81, 

87, 88, 96, 98, 101, 112, 113, 114, 

120, 175, 604, 718, 723, 731, 732, 

734, 736 (see also individual 

languages by name in the Name 

and System Index) 

advantages, 14-17, 60, 113 

advantages and disadvantages, 1, 14-19 

classifications of, 1, 19-23, 34 (see also 

the following subentries where 

they appear as main entries) 

application oriented, 19, 21, Chapter 

ix 

business data processing, 21, 33, 

Chapter V 
civil engineering, 610—620 

compiler writing, 121-122, 383, 530, 
584, 603, 633-642, 734 

computer aided design, 678-683 

control, 687-693, 732-733 
cryptanalysis (see OCAL in Name 

and System Index) 

equipment checkout (see DIMATE 

and STROBES in Name and 
System Index) 

formal algebraic manipulation, 

Chapter VII, 583-589 

general purpose, 523, 728 (see also 

Multipurpose languages) 

graphics, 674—678 

hardware, 19, 22, 23, 69, 70, 74 

information retrieval, (see query) 

list processing, 388—416 

logical design, 620-627 

machine tool control, 605-610 

movie creation, 644—646 

multipurpose, Chapter VIII 

nonprocedural, 19, 20, 22, 726, 734— 
736 

numerical scientific, 21, 33, 

Chapter IV 

problem-defining, 19, 21 

problem-describing, 19, 22, 726-727 

problem-oriented, 19, 21, 603 
problem-solving, 19, 22 

procedure-oriented, 19-20, 22 

publication, 19, 22, 69, 74 

query, 118, 662-674 

reference, 19, 22, 69, 70



Programming Languages (cont.): 

scientific applications, Chapter IV, 

Chapter VII 

simulation, 627~—633, 650-662 
social science research (see DATA- 

TEXT (Harvard) in Name and 

System Index) 

specialized (see application oriented) 

special purpose, 19, 21 

string processing, 416-454 

text editing, 684-686 

consistency of, 32 

defined by users (see User defined 

languages) 

definition of (see Definition of 

programming languages) 

dialects, 39, 42, 44, 45, 152, 179 

disadvantages, 17-19, 60-61 

documentation, 25, 43, 57-58 

ease of, 16, 17 

by using comments, 86-87 
efficiency of, 32 

English as a (see Natural English) 

evaluation, 19, 23, 31, 50, 58-61 

extensions, 40-41, 51 

self extensions, 121, 723 (see also 
Macro) 

functional, 386 

generality, 31, 123 

hardware implementation of (see 

Hardware, implementation of 

programming languages) 

input form, 80-82 

learning of, 14-15, 17, 31, 32 

maintenance of, 45, 50-51 

macro (see Macro, programming 

languages) 

ease of, 16, 17 

modification, 8, 120 

purpose, 31, 32-33, 49-50, 59-60 

selection of, 31, 34, 36 (see also 

evaluation) 

standardization of, 31, 43—48 (see also 

USASI, X3, X3.4, and ISO in 

Name and System Index) 
subsets, (see Subsets of programming 

languages) 

suitability, 23—24 (see also evaluation; 

selection of) 

translating of, 42 (see also Compiler; 

Implementation) 

SUBJECT INDEX 783 

Programming Languages (cont.): 
usage, 9, 13, 17, 18, 19, 20, 22, 23, 24, 

25, 31, 32, 33, 34-36, 58, 59-60, 

112, 730 
user defined (see User defined 

languages) 

users: 
types of, 24 

reactions of, 25 

Pseudocode, 8, 129 

Publication language, 19, 22, 69, 74 
Punched cards, 81, 82, 113 

Punctuation: 

rules, 70 

symbols (see Character(s), punctua- 

tion) 

Q 

Qualification, 74-76, 97 

prefixes, 76 

suffixes, 76 

Query, 715 

application, 118, 603 
languages, 118, 662-—674 

Question answering (see Query) 

R 

Rational arithmetic (see Arithmetic, 

types of) 

Recompilation, 12 

Recursion, 89-90, 124 

Recursive function theory, 386, 405 (see 
also description of LISP 1.5) 

Reference counts, 385 

Reference language, 19, 22, 69, 70 

Remote job entry, 689, 691 

Report generator, 11, 20, 21, 118, 314 

(see also Report Program 

Generator in Name and System 
Index) 

Reserved words, 73-74, 80, 89, 123-124 
Ring (see description of CORAL) 

RJE, 689, 691 

S 

Scientific applications, 122, 134, 148, 490, 

523, 539, 540, 634, 728 (see also 

Formal algebraic manipulation; 

Numerical analysis and 

computations )



784 SUBJECT INDEX 

Scientific applications (cont.): 

languages for, Chapter IV, Chapter VII 

Scope of data, 103-104 (see also 
descriptions of ALGOL and PL/I) 

Segmentation: 

automatic, 112, 137 

semiautomatic, 371 (see also Storage 

allocation) 

Self modification of languages, 120 (see 

also Macro; Programming 

Languages, extensions) 

Semantics, 41, 44, 51-52, 71, 77, 125, 

635, 664, 716, 723 (see also 

Syntax; see also description of 

FSL) 

Semiotics, 64 

Sentence (see Statements) 

Sequence of control characters, 687 

Set theoretic operations, 271, 279 

S-expression (see descriptions of LISP 1.5 

and LISP 2) 

Side effects problem, 102 

Simplification of expressions (see descrip- 

tions of FORMAC, Formula 

ALGOL, and MATHLAB) 

Simulation, 33, 122, 582, 603 

of block diagrams, 627-633 

continuous, 650 

discrete, 627, 650-662 

languages for, 627-633, 650-662 

Social science research, 646 

language for (see DATA-TEXT 

(Harvard) in Name and System 
Index) 

Sort generators, 4, 20, 21, 107, 322 

SORT statement (see description of 
COBOL) 

Source code, 12 

Source program, 10, 11, 12, 17, 43, 125 

inefficient, 18 

Spaces (see Blanks) 

Special purpose language, 19, 21 

Specialized languages (see Application, 
oriented languages) 

Statement names (see Identifier, types of, 

program unit labels) 

Statements, 10, 11, 38, 83-85, 88, 103, 

104-120 (see also Commands) 

compound, 84 (see also Block) 

declarative, 104 (see also Declarations) 

executable, types of, 104-115 

Statements (cont.): 

algebraic expression manipulation, 

111 

alphanumeric, 106-107 (see also 

conversion; editing; sorting) 

assignment, 104-106 

computed GO TO, 107-108 

conditional, 85, 107, 108-109 

control transfer, 84, 107-108, 119 

conversion, 106, 118 

debugging, 112, 114 

decision making, 107-111 

editing, 106, 118 

error condition, 107, 110-111 

IF (see conditional) 

input/output, 112, 113 

library referencing, 112, 113-114 

list handling, 111-112 

loop control, 107, 109-110, 129 

operating system interaction 112- 

113 

pattern handling, 112 

segmentation (see storage allocation) 

sequence control, 107-111 

sorting, 106-107 

storage allocation, 111, 112, 114- 

115 

string handling, 112 

switch control, 107 

symbolic data handling, 111-112 

imperative, 104 (see also Commands) 

Storage allocation, 114-115, 118, 383 

(see also Declarations, types of, 

storage allocation; Free list; 

Garbage collection; Statements, 

executable, types of, storage 

allocation) 

Storage locations, 4 

String, 385 (see also Statements, execu- 

table, types of, string handling) 

concatenation (see Concatenation) 

processing, 385, 386, 388, 650 

languages for, 416—454 

Structure (see Data, hierarchical) 

Sublist (see List) 

Subroutine, 4, 20, 85-86, 90, 92, 103, 

113, 114, 115, 121, 124 (see also 

Parameters) 

body, 119



Subroutine (cont.): 

calling (see invoking) 

closed, 86 

invoking, 86, 88, 107, 119, 121, 388 

library, 4 

open, 86 

packages, 387-388, 604, 610, 729 

parameters (see Parameters) 

use Of (see invoking) 

Subscripts, 22, 24, 74~—76, 97, 125, 264 

(see also Dimensions) 

Subsets of programming languages, 15, 

40-41, 45 
L-like extended, 41 

nested, 40 

non-nested, 40 

Symbol manipulation, 383, 387, 406—407, 

435, 436 
Symbolic assembly program, 8, 10, 11, 14 

Syntax, 41, 44, 51-57, 77, 79, 89, 111, 
125, 605, 664, 716, 723 (see also 

Compiler, syntax directed; 

Metalanguage ) 

Syntax directed compiler (see Compiler, 

syntax directed) 

T 

Table driven compiler (see Compiler, 

syntax directed) 

Tables, 13 (see also Decision tables) 

Tasking (see description of PL/I) 

Teaching machine, 733 

Terminal language, 687-691 (see also 

Control language; Time-sharing, 

control statements in) 

Text editing, 603, 646 

languages for, 684-686 

Theorem proving, 382, 383, 389, 406 

SUBJECT INDEX 785 

Threaded lists, 385 

Thruput, 30 
Time: 

for compilation, 17, 18, 123 

at compile, 118 

computer, 17 

elapsed, 17 
at object, 118 

for problem solution, 17 

turnaround, 3 

Time-sharing, 3, 35, 36, 215-216, 729, 

732 

control statements in, 87, 216, 603, 

687-691 (see also FIB; Operating 

system; RJE; see also CTSS in 

Name and System Index) 

Tokens, 68, 70-72, 77 

system defined, 71 
user defined, 71-72 

Tradeoffs, 122-124, 723, 725 

Translator, 12, 539, 709, 724 (see also 

Compiler; Interpreter) 

Typewriter, 69, 198, 216, 264, 732 (see 

also Keyboard) 

U 

Universal code, 5 

Universal programming language, 723 

User defined languages, 316, 605, 727- 

729, 734-736 (see also descriptions 

of AED and ICES) 

Ww 

Words (see Key words; Noise words; 

Reserved words) 

Word size, 37, 96 

Workspace (see description of COMIT)



5 
BABEL 

    

  

        
  

5 

2 &A-3 

ADAM [ AED 

AESOP. AIMACO 

ALGOL 
ALGY 

ALTRAN AMBIT 

AMTRAN 
APL 

Animated Mov
ie 

APL/360 
APT 

BACAIC BASEBALL   
JEAN E. SAMMET BASIC BuGSYS C-10 

CLIP 

COGENT 
CcOGO 

COLASL 

COLINGO COMIT 

Commercial Translator 

Computer Compiler 

Computer Design 
CORAL CORC 

CPS Culler—Fried 
DAS 

DATA-TEXT 
DEACON DIALOG | DIAMAG 

DOCUS DSL/90 DYANA 

      

DIMATE 

DYNAMO DYSAC English 
. 

Extended ALGOL 
sOn-NAL 

LAP 

473L Query 
FACT £ ZoRTRAN 

en. 

FORMAC 
Formula ALGOL 

GECOM 

FORTRANSIT FSL t a Kaerer-May 
ra 

aN 

GRAF 
yPL 

= 
IDS 

Information 
algebra 

a Fieriet 

ICES 
oY (arin sis 

JOSS JOVIAL 
se us ' 

LISP > 
| 

AP 

mn RECKONe! 
DC 

N 

LDT| ae 5 i) ee NA \c 

LOLITA i MATHLAB 
wine Ae 

MAP 
MILITRAN 

N \ 

Magic paper 
METAS 

“a AY nek uy 

Matrix Compiler 
OMNIT AB S prorosy 

OCAL 
es 

NELIAC a PRINT ProP 

SENCIL PL ce -ALGOL 
Short Code 

QuintRAN, 

SIMSCRIPT | | SIMULA 

4 
Simul. Dig. Syst: | SNOBOL sot} { Speedcoding 

        
  = —— SPRINT(] STRESS [_JsTROBES | __} Symbolic Math. Lab. 

TRANDIR TREET UNCOL | | UNICODE 

 



PROGRAMMING 

LANGUAGES: 
History and Fundamentals 

by Jean E. Sammet 

Here at last, in a definitive single 

source, the reader can find basic 

information about all of the major 

and most of the minor higher level 

languages developed in the U. S. 

This is not just another collection 
of previously published articles; 

rather, it is an original reference 

work that provides fundamental in- 

formation on programming lan- 

- guages, including history, general 
characteristics, similarities, and 

differences. The fundamental as- 
pects of programming languages 

are divided into technical and non- 

technical characteristics. These 

are defined and the concepts are 

then used consistently for the des- 
criptions of the major languages. 

The broad coverage, combined 
with numerous examples and a 
large bibliography, enables the 

reader to decide which languages 

he should investigate in more de- 
tail for his particular purpose. 

Outstanding Features: 

= Broad coverage—about 120 lan- 

guages. 
= Over 800 individual bibliographic 

items. 

= Sample programs show the 

basic elements of about 30 lan- 
guages at a glance. 

=» Extensive bibliographies for 
each language, including cita- 

tions of the major source docu- 
(continued on back flap)



(continued from front flap) 

ments, general description, uses, 
and related material. 

= Detailed description of the his- 
torical development of the major 
languages. 

= An appendix that includes a list 

arranged by author showing the 
page number where the full 

bibliographic citation can be 
found, and pages on which it is 
referenced. 

= Provides history and perspective 
to show why there are so many 
languages in use today. 

= An appendix containing a list of 
each language with the meaning 
of its acronym, a brief descrip- 
tion, relevant subsection num- 

ber and best references. 

= Avery detailed table of contents 
shows the structure of the pro- 

gramming language field at a 
glance. 

  

Jean E. Sammet, M.A., University 

of Illinois, Programming Language 
Technology Manager, Federal Sys- 

tems Division, IBM Corporation. 

She has had numerous articles 

published in books and _ profes- 

sional journals, and has given 

courses and lectures on program- 

ming languages at various univer- 
sities. 
Concept of the tower of BABEL to represent 
a large set of programming languages is due 
to the Communications of the ACM, a pub- 
lication of the Association for Computing 
Machinery, Inc. 

Jacket design by George Bakacs 

PRENTICE-HALL, INC. 
Englewood Cliffs, New Jersey 

270 © Printed in U.S. of America



PROGRAMMING LANGUAGES: 
History and Fundamentals 

by JEAN E. SAMMET 

A unique and definitive source book providing an overall view 

of higher level languages. The book brings together in one 

place fundamental information about programming languages, 

including history, general characteristics, similarities ai.d dif- 

ferences, as well as detailed technical descriptions. The book 

contains basic information and provides perspective on 120 

higher level languages, including all of the major, and most 

of the minor, languages developed in the United States. Major 

languages are described in a consistent way, following a funda- 

mental outline and general discussion of technical and non- 

technical characteristics of programming languages. Readers 

will be able to understand simple programs and write very 

simple programs in many of the current languages, to decide 

which languages to investigate in more detail, and to know what 

significant documents should be examined for different aspects 

of further study. 

Extensive bibliographies for each language include citations 

of major source documents, general descriptions, illustrations 

of actual usage, and other related material; also included is an 

appendix containing an author list showing the page number 

where each full citation can be found and the pages from 

which it is referenced. A second appendix provides a convenient 

reference by listing each language together with the meaning 

of its acronym, a very brief description, the section of the book 

in which it is discussed, and the best reference(s) for the lan- a 

guage. Other useful features in the book include sample prob- 

lems for about 30 languages showing the basic elements of 

the language at a glance, and a detailed table of contents 

which shows the structure of the programming language field. 

CONTENTS: (Chapter Titles) Gerieral Introduction, Func- 

tional Characteristics of Programming Languages; Techni- 

cal Characteristics of Programming Languages; Languages 

for Numerical Scientific Problems; Languages for Business 

Data Processing Problems; String and List Processing 
Languages; Formal Algebraic Manipulation Languages; 
Multipurpose Languages; Specialized Languages; Signifi- 

cant Unimplemented Concepts; Future Long Range De- 

velopments; Appendices: Bibliography Arrangements and 

Author List; Language Summary 

  

PRENTICE-HALL, INC. 

Englewood Cliffs, New Jersey 

13-729988-5


	Cover
	Preface
	Acknowledgements
	Contents
	List of Figures and Sample Programs
	I. General Introduction
	I.1. Machine Language Programming
	I.2. Symbolic Assembly Language Programming
	I.3. Early Development of Better Tools
	I.4. Definition of Programming Languages
	I.5. Advantages and Disadvantages of Higher Level Languages
	I.6. Classifications of Programming Languages and Proposed Definitions
	I.7. Factors in Choice of a Language
	References

	II. Functional Characteristics of Programming Languages
	II.1. Description of the Concept of Functional Characteristics
	II.2. Properties of Languages
	II.3. Purpose of Language
	II.4. Conversion and Compatibility
	II.5. Standardization
	II.6. Types and Methods of Language Definition
	II.7. Evaluation Based On Use
	References

	III. Technical Characteristics of Programming Languages
	III.1. Description of Concept of Technical Features
	III.2. Form of Language
	III.3. Structure of Program
	III.4. Data Types and Units and Computations with Them
	III.5. Executable Statement Types
	III.6. Declarations and Nonexecutable Statements
	III.7. Structure of Language and Compiler Interaction
	III.8. Other Features Not Included
	References

	IV. Languages for Numerical Scientific Problems
	IV.1. Scope of Chapter
	IV.2. Languages of Historical Interest Only
	IV.3. FORTRAN
	IV.4. ALGOL
	IV.5. Languages Motivated by ALGOL 58
	IV.5.1. NELIAC
	IV.5.2. MAD
	IV.5.3. JOVIAL

	IV.6. On-Line Systems
	IV.6.1. Introductory Remarks
	IV.6.2. JOSS
	IV.6.3. QUICKTRAN
	IV.6.4. BASIC
	IV.6.5. CPS
	IV.6.6. MAP
	IV.6.7. Lincoln Reckoner
	IV.6.8. APL/360 and PAT
	IV.6.9. Culler-Fried System
	IV.6.10. DIALOG
	IV.6.11. AMTRAN

	IV.7. Languages with Fairly Natural Mathematical Notation
	IV.7.1. Introductory Remarks
	IV.7.2. COLASL
	IV.7.3. MADCAP
	IV.7.4. MIRFAC
	IV.7.5. Klerer-May System

	IV.8. Miscellaneous
	References

	V. Languages for Business Data Processing Problems
	V.1. Scope of Chapter
	V.2. Languages of Primarily Historical Interest
	V.3. COBOL
	V.4. File Handling
	References

	VI. String and List Processing Languages
	VI.1. Scope of Chapter
	VI.2. Languages of Historical Interest Only
	VI.3. IPL-V
	VI.4. L6
	VI.5. LISP 1.5
	VI.6. COMIT
	VI.7. SNOBOL
	VI.8. TRAC
	VI.9. Languages Not Widely Used
	References

	VII. Formal Algebraic Manipulation Languages
	VII.1. Scope of Chapter
	VII.2. Languages of Historical Interest Only
	VII.3. FORMAC
	VII.4. MATHLAB
	VII.5. ALTRAN
	VII.6. FLAP
	VII.7. Systems Requiring Special Equipment
	VII.7.1. Magic Paper
	VII.7.2. Symbolic Mathematical Laboratory

	References

	VIII. Multipurpose Languages
	VIII.1. Scope of Chapter
	VIII.2. Languages of Historical Interest Only
	VIII.3. JOVIAL
	VIII.4. PL/I
	VIII.5. Formula ALGOL
	VIII.6. LISP 2
	References

	IX. Specialized Languages
	IX.1. Scope of Chapter
	IX.2. Languages for Special Application Areas
	IX.2.1. Machine Tool Control
	IX.2.2. Civil Engineering
	IX.2.3. Logical Design
	IX.2.4. Digital Simulation of Block Diagrams
	IX.2.5. Compiler Writing
	IX.2.6. Miscellaneous

	IX.3. Specialized Languages Across Application Areas
	IX.3.1. Discrete Simulation
	IX.3.2. Query
	IX.3.3. Graphic and On-Line Display Languages
	IX.3.4. Computer-Aided Design
	IX.3.5. Text Editing and Processing
	IX.3.6. Control Languages for On-Line and Operating Systems

	References

	X. Significant Unimplemented Concepts
	X.1. Scope of Chapter
	X.2. UNCOL
	X.3. Information Algebra
	X.4. APL (Iverson)
	X.5. English
	X.6. Hardware Implementation of Programming Languages
	References

	XI. Future Long-Range Developments
	XI.1. Introduction
	XI.2. Theory-Oriented Category
	XI.3. User-Oriented Category
	XI.4. Interrelationships Among Some of these Concepts
	XI.5. Conclusions and Summary
	References

	A. Bibliography Arrangements and Author List
	B. Language Summary
	Name and System Index
	Subject Index
	Dust Jacket

