CHI'89 PROCEEDINGS

MAY 1989

CONSTRAINT GRAMMARS—A NEW MODEL FOR
SPECIFYING GRAPHICAL APPLICATIONS

Bradley T. Vander Zanden

Camegie Mellon University
School of Computer Science
Pittsburgh, PA 15213
bvz@a.gp.cs.cmu.edu

ABSTRACT

User Interface Management Systems often attempt to
separate the graphical and nongraphical aspects of an
application, but rarely succeed. Constraint grammars
provide a new model for specifying interfaces that achieves
this goal by encapsulating the data structures in a single
package, and providing a powerful transformation-based
editing model for manipulating them. Constraint grammars
incorporate a number of important tools, such as the part-
whole hierarchy, almost hierarchical structures, and
multidirectional constraints, that permit designers to
specify a wide variety of graphical applications, including
simulation systems, program visualization systems, and
visual programming environments.

KEYWORDS: Constraint Systems, User Interface
Management Systems, Specification Languages, Graphical
Interfaces, Encapsulation, Programming Environments

INTRODUCTION

User Interface Management Systems (UIMS's) typically
strive to separate the nongraphical aspects of an application
. from the graphical aspects of its user interface. The
rationale behind this separation is that the application
programmer should focus on the nongraphical aspects of
the application and the interface designer should focus on
the graphical aspects. However, when the application must
display complex data structures, as in program visualization
systems, visual programming languages, visual
programming environments, and games, this separation
actually shifts the burden of updating the display to the
application programmer. The reason is that the graphics
system knows nothing about the data structures being
manipulated by the application. All it can do is dumbly
respond to a stream of output tokens sent by the application
that direct it where to position objects on the display.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distrib-
uted for direct commercilal advantage, the ACM copyright
notice and the title of the publication and its date appear,
and notice is given that copying Is by permission of the As-
sociation for (gomputlng Machinery. To copy otherwise, or
to republish, requires a fee and/or specific permission.

© 1989 ACM 0-89791-301-9/89/0004-0325 1.50

This paper proposes a new graphical model, constraint
grammars, that integrates the application's and graphic's
data structures. This integration actually frees the
application programmer from worrying about the graphical
aspects of the interface, shifting the responsibility back to
the interface designer where it belongs. Thus it achieves the
goal that UIMS's so often seek but fail to obtain.

Constraint grammars integrate ideas from constraint-based,
simulation systems and programming environments to
produce a powerful model that is capable of specifying not
just simulation systems and textual programming
environments, but also visual applications, such as the ones
listed above, that manipulate complex data structures.
Constraint grammars use the productions and attributes of
an attribute grammar to represent the data structures of an
application and constraint equations to represent the
dynamic, graphical behavior of the application. It goes
beyond previously proposed constraint-based graphics
paradigms in that it contains a powerful transformation-
based editing model that permits the manipulation of
complex data structures, such as lists, trees, and sets. From
both the interface designer's viewpoint and the application
programmer's viewpoint, the data structures are
encapsulated in a package, the transformations are a set of
messages or procedures that manipulate these data
structures, and the attributes are the exported portion of the
data structures that can be related via constraints. Thus,
once the application programmer and interface designer
agree upon a common set of data structures and an
appropriate set of transformations, they can perform their
tasks separately.

A graphical interface specified and implemented using
constraint grammars will work as follows. When a
transformation is invoked, the encapsulated data structures
will be updated and a constraint solver will be called to
reestablish the constraints. The application may then use
the updated attribute values to perform additional
processing, possibly modifying the data structures via
transformations in the process and causing the constraint
solver to be reinvoked. Once the application has finished its
processing and the constraint solver has resatisfied all
constraints, the graphics attributes can be used to redraw
the display.

Constraint grammars have been implemented in
CONSTRAINT, a system that automatically generates a

325



CHI'89 PROCEEDINGS

(a)

(©)
Figure 1: Display for the shortest path problem.

mouse and menu-based version of an application from its
constraint grammar specification [14,15]. CONSTRAINT
runs on top of the X window package and incorporates a
novel incremental constraint satisfaction algorithm that
provides instantaneous real-time response to editing
operations, even those that affect hundreds of constraints.
Thus far CONSTRAINT has been used to create a number
of graphical applications, including:

1. graphical input devices such as analog and digital
gauges;

2. a physics experiment that demonstrates the effects of
force on a screwplate;

3. mathematics experiments that visually demonstrate
geometric theorems;

4. a visual representation of the shortest path problem;
and

5. a system for visually representing and manipulating
binary trees.

A preliminary version of constraint grammars and the
CONSTRAINT system was presented in [14]. This paper
expands the constraint grammar model and describes it in
greater detail.

326

(b)

SAMPLE APPLICATIONS
Figures 1 and 2 illustrate two applications that have been:
implemented using CONSTRAINT. Figure 1 shows &
display for the shortest path problem. The labels on the
edges denote the distance between two nodes and the -
number inside each node represents the shortest path froma
designated node (the leftmost node) to that node. Adding or
deleting an arc (Figures 1.b) causes the shortest path
solutions to be automatically updated. The user can also
alter the layout of the graph (Figure 1.c) by grabbing a
comer of a node with the mouse and dragging it across the
screen. The adjacent arcs, their labels, and the node's cost
are all moved as well.

&3
I
e

Figure 2 shows a sample application involving binary trees.
This application allows the user to create or delete trees,
add or delete children, split or join trees, swap children or =
subtrees, and move or scale nodes of a tree. Figure 2 shows
several operations performed by a user including swapping
two children, splitting a tree, and scaling a tree. .

These two applications illustrate the weaknesses inherent in
two alternative interface specification models—object
systems and attribute grammars. Object systems do not
have the powerful editing models that are required to
manipulate the binary trees in Figure 2, while attribute
grammars do not allow the almost hierarchical structures or
multidirectional constraints that are needed to implement
the shortest path problem in Figure 1. Almost hierarchical
structures permit objects to share common components,
while multidirectional constraints permit an equation to be
satisfied by modifying any of its variables.

RELATED WORK

Relatively few general purpose UIMS's emphasize the
presentation of application data. Most UIMS's provide an
"escape hatch" to the application procedures such as active
values that link display variables with important variables
in the application's data structures [7,12]. However, these
approaches normally shift the burden of updating the
graphical display to the application.

Consequently, a number of researchers have begun
investigating an approach in which the interface and
application are integrated and share common data
structures. Such an approach allows the interface to browse
the application's data structures, effectively relieving the



:

. CHI'89 PROCEEDINGS

MAY 1989

(©

- Figure 2: Display for a binary tree application.

application programmer of any need to consider the
problem of updating the display. STUF [9], Higgens [4,5],
and GROW [2] are examples of systems that implement
this approach. Of these systems, only STUF provides an
editing model that is truly capable of manipulating complex
data structures. However, it takes a procedural approach,
whereas constraint grammars emphasize a declarative
approach.

Constraint grammars have also been influenced by the ideas
found in simulation systems, such as ThingLab [3],
CONSTRAINTS [13], and microCOSM [1]. These systems
provide constraints that allow the designer to specify both
the display and semantic properties of an application, thus
allowing the simulation of physical systems such as
electrical circuits or springs. They also provide tools, such
as the part-whole hierarchy (described in the next section)
that effectively utilize these constraints in building
simulations.

(@

Finally constraint grammars have integrated the powerful
transformational editing models that are found in the
literature on attribute grammars. The Synthesizer Generator
[11] is an example of a nongraphical UIMS that
incorporates transformations to help designers build
programming environments for handling textual objects
such as programs or theorems.

CONSTRAINT GRAMMARS

Constraint grammars incorporate a number of ideas that
have been found to be particularly useful in graphical
settings. These ideas include the part-whole hierarchy
(also known as the principle of compositionality), almost
hierarchical structures, and multidirectional constraints.

Part-Whole Hierarchy

In a part-whole hierarchy, objects are built from collections
of subparts, where the subparts may be either previously
defined objects or primitive objects such as points, text, and
bitmaps. For example, a thermometer may consist of two
rectangles representing the mercury and outer shell and a

327



CHI'89 PROCEEDINGS

bintree

null_tree
(@

MAY 1989
bintree
bintree bintree
null_tree null_tree null_tree
null_tree
(b)

Figure 3: A binary tree as it is externally presented to the user (a) and internally presented to the application and interface (b)

labeled line segment corresponding to the scale. This
hierarchical decomposition of an object reduces the
complexity of specifying an application by allowing the
designer to assemble new objects from existing parts
without having to repeat the work of respecifying these
parts from scratch.

Constraint grammars provide the part-whole hierarchy by
adopting the attribute grammar framework. An attribute
grammar is a context-free grammar with equations added to
each production to calculate context-sensitive information,
such as type information [6]. The variables in the equations
are called artributes, and each equation computes the value
of one attribute. Each attribute is owned by one of the
nonterminals that form the production.

The nonterminals in a constraint grammar correspond to
designer-defined objects, while the terminals represent
primitive objects such as points, text, and bitmaps. The
productions of the constraint grammar define an object,
with the nonterminal on the left side of the production
representing the object's name and the nonterminals and
terminals on the right side of the production representing
the components that comprise the object. For example, the
productions

bintree —> left_child : bintree
right_child : bintree
and

bintree —> null_tree

indicate that a binary tree has two representations—a
displayed representation, and a null, nondisplayed
representation. The displayed representation consists of two
components, a left child and a right child, both of which are
also binary trees, while the null representation consists of
one component, a null tree. Figure 3 illustrates how these
productions are used to build an internal representation of
the application. Figure 3a shows a binary tree as it is
externally presented to the user, and Figure 3b shows the
binary tree as it is internally represented. Notice how the
internal representation is composed from the two
productions for a bintree.

The attributes associated with each nonterminal maintain

display information about an object's layout, such as its size
and dimensions, and semantic information about the

object's behavior, such as the amount of current flowing
through an electrical component, the amount of force
applied to a spring, or the allocation of resources ina
production system. :

Almost Hierarchical Structures -
Many applications that arise in practice cannot be
adequately represented by a hierarchical structure in which
there are no shared objects. For example, electrical
components need to share common terminals. Thus,
simulation systems typically introduce the idea of "merges”
in which two data structures representing the same common
object are conceptually combined into one common data
structure. For example, if a resistor is connected to 2
battery, the two terminals that form the connection between
these components are merged into one terminal. Merges
give rise to almost hierarchical structures [13].
Conceptually, such models are very powerful since the user
can specify a relationship between any two objects on the
screen, provided that one object can be legitimately madea
subcomponent of the second object.

Constraint grammars provide almost hierarchical structures
by allowing the internal representation of a graphical
application to be a directed graph rather than a tree (cycles
are permitted). In other words, the information extracted
from an application's specification using the grammars
productions can be represented as a directed graph. Thus an
instance of a nonterminal may have multiple parents. Each
node of the graph corresponds to an instance of the left
nonterminal of a production and its successors correspond
to instances of the nonterminals and terminals on the right
side of the production. The leaf nodes of the graph are
terminals, and the interior nodes are nonterminals. Asinan
attribute grammar, each node N that represents an instance
of the nonterminal X contains a set of attribute instances
that correspond to the attributes of X.

Multidirectional Constraints _
The part-whole hierarchy and merges provides ways of
relating the structure of objects. Multidirectional
constraints, on the other hand, provide a way of relating the
attributes of these structures, such as their height, their
width, their position on the screen, and the amount of space
they occupy. A constraint specifies a relationship between
the attributes of two or more subparts that must always be
satisfied. These relationships might describe a syntactic
property of an application such as the alignment of two
objects, or a semantic property of an application such asthe
amount of current flowing through a circuit. For exampl»




CHI’89 PROCEEDINGS

MAY 1989

the binary tree specification uses the constraints

left_son.top = bottom - spacel2 +
left_son.spacel2 + nodeheight

right_son.top = bottom + space/?2 -
right_son.space 12 + nodeheight

to position the left and right children of a node on a screen,
so that the binary trees rooted at these children do not
overlap. In this example, the attributes top and bortom
refer to the top and bottom of a binary tree node, space
refers to the space occupied by the binary tree rooted at a
binary tree node, and nodeheight refers to the height of the
node.

AN EDITING MODEL

One of the factors that has limited systems that utilize part-
whole hierarchies and almost hierarchical structures to the
realm of graphical simulations and picture drawing is the
absence of a powerful editing model that permits users to
manipulate the part-whole hierarchy. Merges and
constraints provide a limited capability to modify objects,
but for many graphical applications, such as the binary tree
example in Figure 2, these capabilities are too limited.
Merges typically can only combine points or lines.
Constraints can manipulate the attributes of a structure,
such as requiring two resistances 1o be the same. Neither of
these concepts allows the user to conveniently modify the
structure of the more complex objects that can be created
within the part-whole hierarchy framework, such as sets,
trees, and lists. For example, the binary tree system shown
in Figure 2 does not permit a user to add a child to a tree
node if such a child already exists. However, neither a
merge nor a constraint allows the application or interface to
examine the tree to determine if such a condition exists. In
this section, we present an editing model that is powerful
enough to fully exploit the richness offered by constraints
and the part-whole hierarchy.

The editing model we propose for constraint grammars is
based on rransformations [11]. A transformation is a
function that maps a collection of nodes in the directed
graph and a command into a modified set of nodes. A
transformation consists of a selection pattern, a command
name that invokes the transformation, and a set of
replacement actions. Formally, a transformation is written
as:
transform selection_pattemn on
command_name { replacement rules }

The selection pattern consists of zero or more hierarchical
patterns that must match the objects that the user has
selected on the display. In the event that there is more than
one pattern, each pattern must match a different object that
has been selected. A pattem is organized as a tree, with an
object name or nonterminal at its root and the names of
subcomponents (terminals and nonterminals) as children.
Each of these subcomponents is in turn the root of its own
tree. Figure 4 shows a sample pattern that would match a

bintree

/\

null_tree *

Figure 4: Sample selection pattern that matches a binary
tree node that has a null left child and anything for the right
child.

binary tree node whose left child is nonexistent. bintree and
null_tree represent nonterminals in the constraint grammar,
and * denotes the wildcard character that matches anything.

The selection pattern is compared against the selected
portion of the encapsulated directed graph. If the pattern
matches a portion of the subgraph that is rooted at the
selected object, the transformation can be enabled by
selecting the command name. For example, suppose the
user selects the tree node shown in Figure 3.a. This node
corresponds to the darkened node in the encapsulated
directed graph (Figure 3.b). The pattern in Figure 3 does
not match the subgraph rooted at this node. The root nodes
match since both nodes are "bintrees”. However, the left
children do not match, since the pattern expects a
"null_tree" but the child in the actual graph is a "bintree". If
the user had selected the left child of this node instead, the
match would have succeeded.

Selection patterns can be thought of as a set of conditions
that the selected objects must satisfy if the transformation is
to be enabled. For example, the binary tree application uses
the selection pattern in Figure 3 to ensure that the user does
not add a left child to a node that already has a left child.
Those transformations whose selection patterns match the
selected portions of the encapsulated directed graph are
invoked by choosing the appropriate command name. Once
invoked, the selected objects are modified by the
replacement actions associated with the transformation.
These commands typically perform operations such as
creating or destroying objects, or replacing subcomponents.

For example, the CONSTRAINT system [14,15] provides
three basic types of commands—delete, create, and
replace. The delete command simply deletes an object if
it has no parents. The object's subcomponents are
recursively deleted if they have no other parents. The
create and replace commands are directed by a
hierarchical replacement pattern which is constructed in the
same manner as the selection pattern. The create
command builds the subgraph directed by the replacement
pattern and inserts it in the appropriate place in the
encapsulated directed graph. For example, the command

create(bintree(bintree(null_tree,null_tree),null_tree))

would create a subgraph that has the nonterminal bintree as
its root node and the nonterminals bintree and null_tree as
its successors. This subgraph corresponds to a binary tree
with a left child.

In the replace command, the replacement pattern serves as
the model subgraph that the selected portion of the

329



CHI'89 PROCEEDINGS

MAY 1989

.ucapsulated directed graph should resemble when the
replacement command terminates. The replacement pattern
typically refers to portions of the selection pattern in
directing these changes. This is done by refering to
variables bound as a result of matching the selection pattern
to the selected subgraph. For example, if the selection
pattern is "bintree(left_child : bintree, right child :
bintree)", then the replacement pattern
"bintree(right_child,left_child)" switches the order of the
two subtrees of the selected tree.

CONCLUSIONS AND FUTURE WORK

Constraint grammars offer a promising model for UIMS's
that seek to separate the graphical and nongraphical aspects
of an application. By encapsulating the data structures
needed by both the interface designer and application
programmer, and by providing access to these data
structures via transformations, constraint grammars allow
the graphical and nongraphical aspects of the application to
be designed and implemented independently. UIMS's that
incorporate constraint grammars should be able to able to
specify and automatically generate applications that
manipulate complex data structures, such as program
visualization systems, as well as applications currently
implemented by UIMS's, such as simulation systems and
Pprogramming environments.

In the future, the constraint grammar model will be
enhanced by incorporating inheritance hierarchies and
Structural constraints. Structural constraints describe
structural relationships between the components of an
object; thus they can change internal nodes of the
encapsulated directed graph as well as the leaf nodes and
attributes. Structural constraints will be useful in
automatically adjusting data structures such as balanced
trees.

ACKNOWLEDGEMENTS

Much of the work in this paper was performed at Cornell
University under National Science Foundation Grant DRC
86-02663. Production of the paper was supported by the
Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976, Amendment 20, under contract
F33615-87-C-1499, monitored by the Avionics Laboratory,
Air Force Wright Aeronautical Laboratories, Aeronautical
Systems Division (AFSC), Wright-Patterson AFB, Ohio
45433-6543. The views and conclusions contained in this
document are those of the author and should not be
interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the US Government.

I wish to thank Brad Myers, Dexter Kozen, and Bill Pugh
who were especially helpful in providing comments and
insights during the development and presentation of the

330

ideas in this paper.

REFERENCES b
1. Barford, L.A. 1987.A Graphical, Language-Based
Editor for Generic Solid Models Represented by
Constraints. PhD thesis, Comell University.
2. Barth, P.S. 1986. An object-oriented approach to grahical
interfaces. ACM Transactions on Graphics, 5,2 (Apr.
1986), 142-172.
3. Borning, A. 1981. The programming language aspects of
ThingLab, a constraint-oriented simulation laboratory.
ACM Transactions on Programming Languages and
Systems, 3, 4 (Oct. 1981), 353-387.
4. Hudson, S.E. 1986a. A User Interface Management
System Which Supports Direct Manipulation. PhD
thesis, University of Colorado, 1986. :
5. Hudson, S.E. 1986b. Implementing a user interface asa
system of attributes. In 2nd ACM
SIGSOFTISIGPLAN symposium on practical sofiware
development environments, (1986), pages 143-149, 1
6. Knuth, D.E. 1968. Semantics of context-free languages.
Math. Syst. Theory, 2, 2, (1968), 127-145. 3
7. Myers, B.A. 1987a. Creating dynamic interaction
techniques by demonstration. In Proceedings
SIGCHI+GI'87: Human Factors in Computing
Systems, 271-278. 4
8. Myers, B.A. 1987b. Creating User Interfaces by
Demonstrations. PhD thesis, University of Toronto,
Technical Report CSRI-196, May 1987. 3
9. Olsen, D.R. 1986a. Editing templates: a user interface
generation tool. [EEE Computer Graphics and
Applications, 6, 11 (Nov. 1986), 40-45.
10. Olsen, D.R. Jr. 1986b. MIKE: the menu interaction
kontrol environment. ACM Transactions on Graphics,
5, 4, (Oct. 1986), 318-344. 4
11. Reps, T. and Teitelbaum, T. The Synthesizer
Generator Reference Manual, Department of
Computer Science, Comell University, Ithaca, NY,
1988. 4
12. Stefik, M., Bobrow, D.G., and Kahn, K.M. 1986,
Integrating access-oriented programming into a multi-
paradigm environment. [EEE Software, 3, 1, (Jan.
1986), 10-18.
13. Sussman, G.J. and Steele, G.L., 1980. Jr.
CONSTRAINTS—A language for expressing almost-
hierarchical descriptions. Artificial Intelligence, 14
(1980), 1-39. 4
14. Vander Zanden, B.T. 1988a. Constraint Grammars in
user interface management systems. Graphics
Interface ‘88 Conference Proceedings, (June 1988), -
Edmonton, Canada, June 6-10. 3
LS. Vander Zanden, B.T. 1988b. Incremental Constraint *
Satisfaction and Its Application to Graphical -
Interfaces. PhD Dissertation, Comell Univ., Ithaca,
NY. 14853. ]




