THE TRANSMISSION OF INFORMATION

ROBERT M. FANO

TECHNICAL REPORT NO. 65

MARCH 17, 1949

RESEARCH LABORATORY OF ELECTRONICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY



The research reported in this document was made possible
through support extended the Massachusetts Institute of Tech-
nology, Research Laboratory of Electronies, jointly by the Army
Signal Corps, the Navy Department (Office of Naval Research)
and the Air Force (Air Materiel Command), under Signal Corps
Contract No. W36-039-s¢-32037, Project No. 102B; Department
of the Army Project No. 3-99-10-022.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Research lLaboratory of Electronics

Technioal Report No, 65 March 17, 1949

TEE TRANSMIS3ION OF IRFORMATION
Robert M, Fano

Abstract

Thie report presents a theoretical study of the transmissian of infor-
mation in the ocase of discrete measages and noiseless systems, The study
begins with the definition of a unit of information (a selection between
tvo cholces equally likely to be selected), and this is then used to deter-
mine the amount of information conveyed by the selectlion of one of an
arbitrary number of cholces equally likely to be selected, Next, the average
amount of information per selection is computed in the case of measages con-
slsting of sequences of independent selections from an arbitrary number of
cholces with arbitrary probabilities of thelr belng selected, A recoding
procedure is also presented for improving the officlency of transmission by
reducing, on the average, the number of seleotions (digits or pulses) re-
quired to transmit a message of given length and given statistical chbaracter,
The results obtalned in the case of sequences of independent melections are
extended later to the general oase of non-independent selections, Finally,
the optimum candition is determined for the transmission of information by
means of quantirzed pulses vhen the average power 1s fixed,



THE TRANSMISSION OF INFORMATION

Introductlion

It i1s the opinion of many workers in the fleld of electrical communi-
cations that the communication art 1s today at a major turning polnt of 1ts
development. The objective of almost all electrical communlcation systems
has been, up to now, to eliminate distance in some form of human activity or
relationships between men. Telegraph, telephone and television are typilcal
examples of such communication systems. We may add to these teletype, tele-
control and telemetering. It 1s interesting tc note that the names of all
these communication systeme involve the prefix tele, meaning "at a distance”.

Although, for obvious reasons, forms of communication over distances
much greater than the ranges of human senses and reach were first to recelve
attention, the magnitude of the distance involved 1s not of primary impor-
tance from a logical point of view 1n the concept of communication. Com-
munication 1s basically any form of tranamission of informatilon, regardless
of the distance between the transmitter and the recelver. 1In a broader
sense, the fileld of communication includes any handling, combining, comparing
or employing of information, since such processes involve and are intimately
connected wlth the transmission of such information,

It 18 clear, then, that most human activitles involve communication 1n
a broad sense, and, in particular, those activities which are considered of
higher lntellectual type because they depend to a high degree on the process
of "thinking". Thinking itself, in fact, involves a natural communication
Bystem of a complexity far beyond that conceivable for any man-made system,

The above consideratione polnt clearly to a very wide field of useful
applicatlions of the communication art which has hardly been touched as yet.
It is to be expected that each application should present problems of a
higher order of complexity than those encountered in the past. Consequently,
1t 18 also to be expected that the solution of these problems should neces-
sitate the use of more powerful analytical tools and, particularly, should
require a more fundamental study of the process of transmission of informa-
tion. As a matter of fact, the first and most significent step in the
direction of such a study was made by Norbert Wiener (1) in connection with
the development of predictors for antialreraft fire control, The statistical
nature of this problem led him to the realization that all communication
problems are fundamentally of a statlstical nature, and must be handled
accordingly. He argued that the signal to be transmitted in a communication
3ystem can never be consldered as a lmown function of time, because if it
were a priorl kmown 1t c¢ould not convey any new information and therefore
would not need to be transmitted. On the other hand, what can be known



a priori about a signal to be transmitted 1s 1te statistical character —
that is, for inetance, the probabllity distribution of its amplitude. In
addition, it 1s equally clear, that noise, which plays such an important
part in comminioation problems, can be described only in statlistical terms.
It follows that all communication problems are inherently statistical iIn
nature, and that disregarding this fact may lead to unexplainable inconsist-
encles in addition to precluding a deeper understanding of such problems,

The statistical theory of optimum prediction and filtering developed
by Wiener led further to the realization of the need for a basic and general
criterion for judging the quality of communication systems. In fact, the
mean-square error criterion used by Wiener in thies part of his work 1is dic-
tated by mathematical convenlence rather than by physical conslderations;
consequently it may not be useful in certain practical problems, The search
for a more appropriate criterion leads naturally to the question of what is
the operatlion that a communication aystem must perform, If we take as an
example a telegraph syatem, it might seem at first obvious that such a system
must reproduce at the output each and every letter of the input message in
the proper order, We may observe, however, that 1f one letter 1s received
incorrectly, the word contalning 1t is still perfectly understandable in
most cases, and so, of course, is the whole meseage, Moreover, the message
would still be comprehensible if, for instance, all the vowels were elimi-
nated (vhich is vhat 1s done in written Hebrew). On the other hand, the
incorrect transmission of & digit 1n a aumber would make the received mes-
sage Ilncorrect,

It appears therefore that the transmission of the information conveyed
by a vritten message 1s what we wish to obtain and that this is not neces-
sarily equivalent to the transmission of all the letteras contained in the
written message, More precisely, it appears that the different symboles,
letters or figures ocontained in a written message do not contribute equally
to the transmission of information -~ so much so, that some of them may be
completely unnecessary, J3imilar conclusions are reached by considering
other types of communication systems, In particular, the recent work on
the Vocoder (2) and the clipping of apeech waves (3) has provided consider-
able evidence in the same general direction,

The above considerations are relevant to another problem with which
cammunication engineers are becoming more and more concerned, namely, that
of bandvidth reduction. As a matter of fact, the Vocoder wae developed
primarily for the purpose of reducing the bandwvidth required for speech
transmission, It 1is clear that if different parts of a message are not
equally important, asome saving in bandwidth might be possible by providing
transmission facllities which are proporticnal to the importance of these



different parts, The bandwidth problem, in turn, 1s Intimately connected
vith the nolse-reduction problem. 1In fact, all the different types of
modulation developed for the purpose of noilse and Interference reduction
require a bandwidth wider than that required by amplitude modulation. This
method of paying for an improved signal-to-nolse ratio with an Increased
bandwidth appearas to be the result of some fundamental limitation which,
hovever, the conventional approach to communication problems has falled to
clarify.

The above discussion of some of the problems confronting or likely to
confront the communication engineer indicates clearly the necessity of pro-
viding a measure for the "thing" which is to be transmitted and which has
been vaguely called "information", Such a measure will then permit a quan-
titative and more fundamental study of the process involved in the trans-
mission of information which, in turn, will lead eventually to the design
of better and more efficlent communication devices, A comnaiderable amount
of work 1n thie direction has already been done independently by Norbert
Wiener (%) and Claude Shannon (5)., The work of Wiemer is particularly out-
standing because of 1ts philosophical profoundness and i1ts lmportance in
many branches of science other than communication engineering. Mention
should be made also of the piloneering work of Hartley (6) and of the more
recent vork of Tuller (7).

This paper presente the work done by the author in the past year on
the transmlssion of discrete signals through a noiseless channel., Although
most of the results obtalned have already been published by Wiener and
Shannon, 1t ie felt that the method of approach used here is sufficlently
different to justify thls redundant presentation.

I. Definition of the Unit of Information

In order to define, in an appropriate and useful manner, a unit of
information, we must first consider in some detail the nature of those
processes in our experience which are generally recognized as conveylng
information., A very simple example of such processes 1a a8 yes-or-no answer
to some specific question. A Blightly more involved process 1s the indlca-
tion of one object 1n a group of N objecta, and, in general, the selectlon
of one choice from a group of N specific cholces, The word "specific" is
underlined because such a qualification appears to be essentisl to these
information-conveylng processes., It means that the receiver is conecious
of all poseible cholces, aB 18, of course, the tramnsmitter (that i1s, the
individual or the machine which is supplying the information). For instance,
saying "yes" or "no” to a person who has not asked a question obviocusly does
not coanvey any information. Similarly, the reception of a code number which



is supposed to represent a particular message does not convey any informa-
tion unless there is avallable a code bock containing all the messages vwith
the corresponding code numbers,

Considering next more complex processes, such as writing or speaking,
ve observe that these processes consist of orderly sequences of selections
from a number of specifio choices, namely, the letters of the alphabet or
the corresponding sounds, Furthermore, there are indiocations that the aig-
nals transmitted by the nervous system are of a discrete rather than of a
continuous nature, and might also be considered as sequences of selections.
If this were the case, all information received through the senses could be
anslyzed in terms of selections, The above dlscussion indicates that the
operation of selection forme the basis of & number of processes recognitced
as conveying information, and that it 1s likely to be of fundamental impor-
tance in all such processes, We may expect, therefore, that a unit of
information, defined 1n terms of a selection, will provide a useful basis
for a quantitative study of communication systems,.

Considering more closely this operation of selection, we observe that
different informational value 1s naturally attached to the selection of the
same cholce, depending on howv likely the recelver considered the melectlion
of that particular choice to be, For example, we would say that little
information 1s given by the selection of a choice which the receiver was
almost sure wvould be selected. It seem appropriate, therefore, 1n order to
avold difficulty at this early stage, to use in ocur definition the particular
case of equally likely choices — that 1s, the case in which the receiver has
no reason to expect that one choice will be seleocted rather than any other,
In addition, ocur natural concept of information indicates that the informa-
tion conveyed by a selection increases with the number of cholces from which
the selection is made, although the exact functional relation between these
tvo quantities 1s not immediately clear.,

On the basis of the above considerations, it seems reasonsable to define
as the unit of information the simplest possible melection, namely, the
selection betveen two equally likely choices, called, hereafter, the "ele-
mentary selection”, For completeness, we must add to this definition the
postulate, conslestent with our intultion, that N independent selections of
this type constitute K units of information., By independent selectione we
mean, of course, selectlions which do not affect one another, We shall adopt
for this unit the convenient name of "bit" (from "binmary digit"), suggested
by Shannon, We shall also refer to a selection between two cholces (mot
necessarily equally likely) as a "binary selection", and to a selection from
N choices, as an N-order Belection, When the cholces are, a priori, equally
likely, we shall refer to the selection as an "equally likely selection".




We can nov proceed to develop vays of measuring the information content of
discrete messages 1n terms of the unit Just defined, Moet of this paper
will be devoted to the solution of this problem,

II. BSelectlon from N Equally Likely Choices

Consider now the selection of one among & number, N, of equally likely
choices. In order to determine the amount of information corresponding to
such a selection, we must reduce thie more complex operation to a series of
independent elementary selections., The required number of these slementary
selections will be, by definition, the measure in bits of the information
glven by such an N-order selection.

Let us assume for the moment that N is a power of two, In addition
(just to make the operation of selection more physical), let us think of
the R cholces as N objects arranged in a4 row, as indicated in Figure 1,

Binary
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These R cbjects are first divided in two equal groups, sc that the object
to be selected is Just as likely to be 1mn one group as in the other, Then
the indication of the group containing the desired object 1is equivalent to
one elementary selection, and, therefore, to one bit. The next step con-
silsta of dividing each group lnto two equal subgroups, so that the object
to be selected is agaln just as likely to be 1n either subgroup, Then one
additional elementary selection, that 1s a total of two elementary selec-
tions, will suffice to indicate the desired subgroup (of the possible four
subgroups). This process of succeesive subdivisions and corresponding ele-
mentary selections 1s carried ocut until the desired object is isolated from



the othera, Two subdivisions are required for N « 4, three for K = 8, anq,
in general, a number of subdivisions equal to logzl, in the case of an
N-order selection.

The same process can be carried out in a purely mathematical form by
assigning order numbers from O to N-1 to the N choices. The numbers are
then expressed in the binary system, as shown in Figure 1, the number of
binary digits (0 or 1) required being equsl to 1og2H. These diglite represent
an equal number of elementary selections and, moreover, correspond in crder
to the successive divisions mentioned above, In conclusion, an N-order,
esqually likely selection conveys an amount of information

Hp = log ¥ . (1)

The above result is striotly correct only if H i1s a powver of two, in
which case Hl i3 an integer, If N is not a powver of two, then the number of
elementary selectione required to specify the desired choice will be equal
to the logarithm of either the next lower or the next higher power of two,
depending on the partioular choice selected. Consider, for instance, the
case of N = 3, The three cholces, expressed as binary numbers, are then

00; 01 ; 10 ,

If the binary digites are read in order from left to right, it 1s clear
that the first two numbers require two binary selections — that 1es, two
digits, wvhile the third number requirees only the first digit, 1, in order to
be distinguished from the other two, In other words, the number of elemen-
tary selections required wvhen N 18 not a pover of two is equal to either one
of the two integers closest to logzl. It follows that the corresponding
amount of information must lie between these two limits, although the sig-
nificance of a non-integral value of H 1s not clear at this point. It will
be shown 1n the next section that Eq.{(1l) 1s still correct when N is not a
pover of two, provided HN 1s coneidered as an average value over a large
number of selections,

III. Messages and Average Amount of Information

We have determined in the preceding eection the amount of information
conveyed by a single mselection from N equally likely choices., In general,
bovever, ve have to deal with not one but long series of such selectione,
vhich ve call messages., This 1s the case, for instance, in the transmiession
of written intelligence, Ancther example is provided by the communication
eystem known as pulse-code modulation, in whieh audic waves are msampled at
equal time intervals and then eack sample is quantized, that is approximated
by the closest of a number N of amplitude levels,



Let us consider, then, a message consisting of a sequence of n succes-
sive N-order selections, We shall assume, at first, that these selections
are independent and equally likely., In this simpler case, all the different
sequences which can be formed equal in number to

8 = N, (2)

are equally likely to occur, For instance, in the case of N = 2 (the two
choices being represented by the numbers O and 1) and n = 3, the possible
sequences would be 000, 001, 010, 100, 011, 101, 110, 111. The total number
of these sequences is 3 = 8 and the probability of each sequence is 1/8,

In general, therefore, the ensemble of the possible sequences may be con-
pidered ae forming a set of 3 equally likely cholces, with the result that
the selection of any particular sequence ylelds an amount of information

Hy = log,8 = n log,M. (3)

In vords, n independent equally likely selections give n times as much
information as 4 single selection of the same type. This result 1s certainly
not surprising, since 1t is Just a generalization of the postulate, stated
in Section II, which forms an integral part of the definition of informatiom,.
It is often more convenlent, in dealing with long messages, to use a
quantity representing the average amount of information per N-order selectilon,
rather than the total information corresponding to the whole message. We
define this quantity 1n the most general case as the total information con-
veyed by a very long message divided by the number of selections in the
mespsage, and we 8shall indicate it with the symbol HN’ vhere N 18 the order
of each selection., It 1s clear that when all the selections in the message
are equally likely and independent and, in addition, N is a power of two,
the quantity HN is just equal to the information actually given by each
gelection, that 1is

Hy = % log,8 = log N . (4)

We shall show nov that this equation is correct aleo wvhen N ims not a power
of two, in which case Hl has to be actually an average value taken over a
sufficlently long sequence of selections.”

The number 3 of different and equally likely sequences which can be
formed with n independent and equally likely selections is still given by
Eq.(2), even when N 1is not a pover of two, On the contrary, the number of
elementary selections required tco specify any one particular sequence must

* The author is indebted to Mr. T. P. Cheatham, Jr. (of this laboratory) for the

original idea on which 1s based both this proof and the corresponding recoding
procedure (see Section IV).



be written nov in the form

Bg = log8 +d , (5)

3

vhere 4 is 8 number, smaller in magnitude than unity, vhich makes Bs an
integer and which depends on the particular sequence selected, The average
amount of information per N-order selection is then, by definition,

Hy = 1t 7(log8+a) . (6)

Since ¥ is a constant and since the magnitude of d is smaller than unity
vhile n approaches infinity, this equation together with Eq.(2) yields

Hy = log M . (7)

We shall consider nov the more complex case in which the selections,
although still independent, are nct equally likely. In thie case, too, wve
wish to compute the average amount of 1nformation per selection. For this
purpose, we consider again the ensemble of all the messages conslistling of
n independent selections and we look for a way of indicating any one partic-
ular message by means of elementary selectlions, If we were to proceed as
before, and divide the ensemble of messages in two equal groups, the selec-
tion of the group containing the deslired message would no longer be a
selection between equally likely cholces, since the sequences themselves
are not equally likely. The proper procedure is now, of course, to make
equal for each group not the number of messages in it but the probabllity
of 1its containing the desired message. Then the Belection of the desired
group will be & selectlon between equally likely choices. This procedure
of division and selection 1s repeated over and over again until the desired
message has been separated from the others. The successive eelections of
groups and subgroups willl then form a sequence of lndependent elementary
selections.

One may observe, howvever, that 1t will not generally be poasible to
form groupe equally likely to contaln the desired message, becauase shifting
any one of the messages from one group to the other will change, by finite
amounts, the probabllities corresponding to the two groups., On the other
hand, if the length of the messages 1s 1ncreased indefinitely, the accuracy
wlth which the probabilities of the two groups can be made equal becomes
better and better since the probabllity of each individual message approaches
zero, Even so, when the resulting subgroups include only a few messages
after & large number of divisions, it may become impossible to keep the
probabilities of such subgroups aB closely equal as desired unless we pro-
ceed from the beginning in an appropriate manner as indicated below., The



messages are first arranged in order of thelr probabilitliea, which can be
eanslly computed i1f the probabilities of the cholceas are known,

The divisions
In groups and subgroups are then made successively without changing the order

of the messages, as 1llustrated in Figure 2, In this manner, the smallar

subgroups vill contaln messages with equal or almost equal probabilities, so
that further subdivielons can be performed satiasfactorily,
It is clear that when the above procedure is followed, the number of
binary selectlions required to separate any message from the others varies

Probabilities of Groups Obtalned
by Successive Dlvisions
I I1 | 111 | v | Vv VI Recoded
Div, |{Div. | Div, | Div, | Div, | Div. |Message | F{(1) | Message P(i)Bg(i)
00 0.49 |0 0.49
0.49
0.51 01 0.1% | 100 0.42
0.14
0.14 10 0.14 | 101 0.42
.28
0.23 02 0.07 | 1100 0.28
0.07
0.07 20 0,07 | 1101 0.28
0.14
0.09 11 0.04 | 1110 0.16
0.04
0.05 12 0.02 |11110 0.10
0.02
0.03 21 0.02 | 111110 0.12
0.02
0.01 | op 0.01 |111111 0.06
(Bglay, = 2.33

Fig. 2 Recoding of meesages consisting

of 2 third—order

selectione, for choice probabilities p(0) = 0.7, p(1) = 0.2,

p(2) = 0.1, H

= 1.157. =

For original code

For new code

= — [0.7 10g,0.7 + 0.2 10g,0.2 + 0.1 log, 0.1]

Hs
N = ESEEB = 0,73 ;
2H5
- t j - 00993 ')
n Bg av.




from message to mesesage. Messages with a8 high probabllity of belng selected
require lees binary selections than those with lower probabllities, This
fact i1s 1n agreement with the Intultive notion that the selection of a
little-probable message conveys more information than the selection of a
more-probable one, Certainly, the occurrence of an event which we know

& priori to have a 99 per cent probability is hardly surprising or, in our
terminology, ylelds very little information, while the occurrence of an
event vhich has a probabllity of only 1 per cent yields considerably more
information, More precisely, as shovn below, if P(1) i1s the probability
of the 1th message, the number of binary selectlions required to indicate
this message will be an integer Bg(1) close to -log,P(1). In fact, P(1)

1s Just the probabllity of the last subgroup obtained by successively
halving (approximately) the probability of the wvhole ensemble of meesages
(vhich 1s unity) a number of times equal to Bs(i), so that P(1) =~ 2-Bs 1).
By making the messages sufficiently long — that i1s, the number n of N-order
selections sufficlently large — the integer 33(1) can be made to differ in
percentage from -logQP(i) by less than any desired amount. Hence, in this
limiting case, we can write

Bg(1) = -log,P(1) . (8)

Let us consider nowv a sequence of M selections of messsges, each message
consisting of n N-order selections (forming a sequence of nM selections).
By making the number M sufficiently large,we can be practically sure that
the 1th meseage willl appear in the sequence with a frequency as close to
P(1) as desired, Therefore the number of binary selections required on the
average to select one message, that 1s, "the mathematical expectation of
Bs", vill be

3-1
E(Bg) = >  P(1) Bg(1) . (9)

1=0

The average amount of information per N-order aelectlion i1s then, from
Eqgs. (B) and (9):

By - lim - um- Q) > P(1) logB(1) ,  (10)
1=0

that 1e, the 1limit ¢of the ratio of the number of binary selection required,
on the average, to select one message to the number of N-order selections
in the message.

Kov let p(k) be the probability of the kB

choice (of the R), and n,

-10-



be the number of times the k*® cholce 1s selected in the 1th mesaage

(sequence of n selections). The probablility of the 1th message is
q

N1
(1)
P(1) = | ] [p(k)] X , (11)
k=0

The number of binary selections required to Indlcate this message can be
vritten as

-1 nk(i) N1
Bg(1) = ~log, | | [ [p()] = = > m (1) logsp(k)  (12)
k=Q k=0

vith any degree of accuracy desired, In the limit wvhen n approaches infinity
these binary selections become elementary selectionms, that 1s, bilnary selec-
tions between equally likely cholces, We must nowv compute E(BS) according

to Eq.(9). The number of sequences of selections, that is, messages, to

vhich correspond the same values of P{1) and Bs(i), is equal to the number

of different permutations of the choices selected in the ith sequence; that

is, to
n!

=

1T o, (1)t
k=0

It follows that the average value of Bs(l) is glven by

N1
E(Bg) = —> | | g2 | T T (pte)r %

a ! | Lx=0
k=0
(13)
F-1
x anlosep(k) ,
k=0

vhere the o, and p(k) are alvays positive and subject to the conditlons

N-1
an=n , (1%)

k=0
N-1

> () =1 . (15)

kaQ

-11-



The overall summation in Eq,(13) 1s made over all possible combinations of
integral positive valuee of the n, which satisfy Eq.(14).

In order to compute the values of E(Bs) ve begin by expreesing the
factorials in Eq.{13) by means of Stirling's formula (8)(9).

n! = /2rn n® e | (16)
valid for large values of n, We obtain then
1
e || o1
..
N
_ K1 o,
-F'/Q"_IM -I_[ liP-S.—_]:-l] em']Ic - o (F1) f(x) (17)
T /o, =0
k=0
vhere
n
(k-1)/2 [ =2 x |1 R -1/2
£(x) = (&) W(R}[ﬁ} TTap ™l . s
g0 L 7K K0

The variables X, = nk/n are always poslitive, smaller than unity and subject

to the constraint
-1
g xk = 1 . (19)
k=0

It is oonvenient, at this point, to conmsider the function f(x) as a
continuous, rather than a discontinuous, function of the Xy end to transform
the summation of Eq.(13) intc an integral. We observe, in this regard, that
when n, varies from zero to n,x, varies from zero to one, It follows that
to a unit increment of n, (nk takes only integral values) corresponds an
increment of xk equal tc 1/n, Therefore, vhen n approaches infinity, to the
unit increments of the n, correspond the differentials dx, = 1/n, 1In con-
c¢lusion, the summation of Eq.(13) can be transformed (10) into an integral
and Eq.(10) then becomes

F-1
By =~ lim [dxl fdxz fd.xn_l £(x) Z x, log,p(k}| (20)

k=0

The integration 1e extended cver the region of the hyperplane defined by

-12-



Eq.(19), in which all the x, are positive and smaller than one. It vill be

noted that in Eq.(20) x, 1s considered as a function of all the other x,.

-1
Xg=1- > xm (21)
k=1

#c 48 to 1limit the integration to the above-mentioned hyperplane,

To compute the integral appearing in Eq.{20), we observe first that the
integral of f(x) alone over the same region represents the summation of the
Probabllities of all poseible messages consisting of n Belections, provided,
of course, that n 1s sufficiently large, Therefore, the integral of f(x)
ruet be equal to unity for all large values of n. On the other hand, as
shown in Appendix I, f(x) has & peak at a point which approaches x, = plk)
vhen n apprecaches infinity, The helght of thie peak 1s proportional to
(N—l)/ne. It follows that when n approaches infinity, f(x) becomes a delta-
function, or unit impulse, located at x, = p(k). The integral of Eq.(20)
is, therefore, equal to the value for X, = p(k) of the rest of the integrand,
that 18, of the summation. Eq.(20) yilelds finally

A1
Hy = — » . p(k) logp(k) (22)
k=0

which is then the average amount of informsation per N-order selection.
The conclusions which can be reached from the evaluation of the integral
in Eq.(20) extend far beyond Eq.{(22). It is easy to see that 1if the function

N-1

Z Xy logep(k)

k=0

vere any other finite function of the Xy the limiting value of the integral
would still be equal to the value of the functlon for X = p{k). 1In other
wordse, the expectation (or average value) of any function of the x, 18 equal
to the value of the function itself for X, = p(k). From a rhysical point of
view, we can say that the ensemble of posslble sequences of selections can
be divided in two groups. The first group consiats of sequences for which
the frequencies x, of occurrence of the different choices differ from the
probabilities p(k) of the choices by less than amounts which approach zero
as 1//n when n approaches infinity. The total probability of the sequences
in this group approaches unity when n increases indefinitely, and therefore
the number of sequences 1n this group spproaches
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M= ]| [p(k)] = )-2 N (23)
k=0

The second group consists of all other sequences, and its total probabllity
approaches zero when n approaches inf'inity,

The sequences of the first group are all equally probable and, there-
fore, the selection of one of them ocut of the group requires a number of
binary selectlons squal to

log M = oHe . (24%)

In other worde, the sequences of the first group can be represented by means
of sequences of n HH binary digits, that 1is HN digits per N-order selaction:
All the other sequences together, regardless of the way in which they are
represented, cannot increase by any finite amount, beyond H,, the number of
binary digits required on the average per N-order amelection.

The expreselon for BN obtalned above indicates that HN can be considered
ap the expectation of 1032 [l/p(k)]. In other vords, we may say that the
selection of a particular cholce k conveys an amount of information equal to
the logarithm-base-two of the reciprocal of its probability. This inter-
pretation is fundamental. It will be shown later to apply alsoc to the
general case of non-independent selections, in which case p{k) will be
substituted by the conditional probability that the k" choice will be selec-
ted, based on the knovledge of all preceding selections,

It 18 esey to see from Eq,.(22) that ]1.H vanishes only when all but one
of the p(k) are equal to zero, in which case the one different from zero
must be equal to unity., In other wvords, HN vanishes only when the cholce
whiech will be selected 1s lmown a priori with unity probabllity. In this
instance, it is Intuiltively clear that no information is being transmitted,
On the other hand, EHy is & maximum (as shown in Appendix I), vhem all the
p(k) are equal, that 1s, when there is no a priori lknowledge at all about
the selections, Under these circumstances, Eq,(22) reduces to Eq.(7), since
p(k) =« 1/n. The manner in which Hp varies vith the probabilities of the
cholces is i1llustrated in Figure 3, for the particular case of N = 2,

The amount of information conveyed by a message of glven length was
defined above as the number of independent elementary (binary, equally likely)
selections required, on the average, to specify such a message, The notion
of & minimum number of binary selections required did not enter the defini-
tion, It should be intuitively clear, however, that the minimum number of
binary selectlons required, on the average, to specify a message is equal
to the average information conveyed, or, in other words, the number of
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Fig. 3 The amount of information per
H2=-— p(o)logz plo) binary selection as a function of the
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binary selections becomes a minimum when the selections are equally likely
and independent, To prove this ldentity, we observe that the amount of
informatlion conveyed by a sequence of independent binary selections 18 a
maximum when the selectione are equally llkely., Conversely, therefore, it
is alvays possible to represent any sequence of m binary, not equally likely
selections with a number of elementary selections emaller, on the average,
than m, It follows that no binary representation of a message can be ob-
talpned with a number of selections smaller than the amount of information
conveyed, It 1s clear, of courss, that all message representations, which
employ independent equally likely selections,require,on the average,the same
number cf selectlions. It will be showvn later that a larger number of
selections is required whenever non-independent selections are used,

It 1s appropriate to point out here that the mathematical form of
Eq.(22) suggests a very interesting analogy betveen information and entropy,
as expregsed 1n statistical mechanice, In fact, HN appears formally as the
entropy of a system whose possible states have probabilities p(k). For a
physical lnterpretation of this analogy, the reader 1s referred to the work
of Norbert Wiemer (Ref. 1).

IV, Codea and Code Efficlency

The precedling sections have been devoted to the definition of the unit
of information and to the computation of the average amount of information
per selectlion in the case of messages conelisting of sequences of independent
N-order selectionse, It was pointed out in Section III that Hn represents
the minimum number of binary selections required, on the average, to perform
an N-order selection with given cholce probabilities, Therefore, 1f ve take
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the number of binary selections employed as a basis for comparing different
methods of conveying the same informatilon, HR represents a theoretical limit
correasponding to maximum efficiency.

The knowledge of such a theoretical l1limit 1s extremely important, but
perhaps even more important 1s the ability to apprcocach this limit in practice.
In our came, fortunately, the procedure followed in computing HH (that 1s,
the theoretical limit) indicates a convenlent method for approaching this
limit in practice, Let us consider again all the sequences of n N-order
selections (in which, however, n may be a small integer), and arrange them
in order of increasing probability. If we wvish to separate any one partic-
ular sequence from the others by means of successive division in almost
equally probable groups, as discussed 1In the preceding section, the number
of divisions required, on the average, that 1is, E(Bs), will be larger
than nEN. However, 1f we increase n, that 18, the length of the sequences,
ve find that E(BS)/n keeps decreasing and approaches Hy when n approaches
infinity. It must be kept in mind, in this regard, that E(Bs)/n does not
decrease necessarily in a monotonic manner, but may have an osclllatory
behavior as a function of n.* It follows that an increase of n may actually
produce an increase of E(Bs)/n. For instance (as shown in Figure %), in the
case of N = 2, p(0) = 0,7, p(1l) = 0,3, the value of E(Bs)/n is 0,905 for
n=2, 0,909 for n = 3, and 0,895 for n = 4, the limiting value being
H 0,882,

The above diascusalon indicates that, in transmitting a message consisting
of a large number of selections, ve should tranemit the selections not indi-
vidually, but in sequences of n a8 units, the number n being aas large as
permitted by practical considerations, The transmission of each of these
units 1is then performed by means of sequences of blnary selections corres-
ponding in order to the successive divisions of the ensemble of all possible
sequences of n N-order selections, as indicated in Figures 2, 4, and 5. It
vill be noted that, although the sequences of binary selections are not equal
in length, 1t i1s alwvays possible to l1dentify the end of any of them 1n a long
message, In fact, the firet m selections of any sequence of length larger
than m are alvays different from any of the sequences conslsting of exactly
m selsections.

If 1t 18 desired to perform the transmission by means of K'-order selec-
tions (N' being any integer), wve can proceed in the same manner aes in the
case of binsary selections, the only difference being that we must divide
successively the ensemble of all poasible sequences in N' groupe instead of
Just two. After each division, the groups containing the desired sequence

2-

* This fact was first pointed out to me by L. G. Kraft of this Laboratory.
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Original Recoded Original Recoded
Message |P(1) |Meesage P(i)Bs(i) Message | F(1)} |Message P(i)Bs(i)
[s]] 0.49 |0 0.49 0000 0.2400 | 00 0.%60
01 0.21 |10 0.42 oool lo.1030 | 010 0.309
10 0.21 110 0.63 o010 |0.1030 | o011 0.309
11 0.09 [111 0.27 0100  |0.1030 | 100 0.309
1000 |o0.1030 | 1010 0.412
E(Bg) - 1.81 o011  |o.okh1 | 1011 0.176%
E(Bg}/2 = 0.905 0110 |0.04k1 | 11000 0.2205
n = 0.975 1100  [0.0441 |11001 0.2205
0101  |0.04¥1 {11010 0.2205
original Recodod 1001 |o.ouk1 | 12011 0,2205
Message (P{(1) |Message P(i)Bs(i) 1010 0,0441 | 11100 0.2205
0111  |o.0189 |11101 0.0945
000 0.333 | 00 0.686 1011 |0.0189 |111100 0.1134
001 0.147 {01 0.29% 1101 |0.0189 [111101 0.1134
010 0.147 | 100 0.54 1110 |0.0189 |111110 0.1134
100 0.147 | 101 0.4481 1111 |o.0081 [111111 0.0486
011 0.063 | 1100 0.252
101 0,063 |1101 0,252 E(Bg) = 3.5812
110 0.063 | 1110 0.252 E(Bg)/% = 0.895
111 0,027 | 1111 0.108 n = 0.985
E(Bs) - 2.726 Fig. 4 Recoding of binary messages for
E(Bg)/3 = 0.909 n=2 3 4 p(0) =0.7, p(1) = 0.3,
= 0.972 H2 = 0,582,
Original Recoded Original Recoded
Message | P(1) | Mesnage P(i)BS(:L) Message | P(1) |Message P(1)33(1)
00 0.81 |0 0.81 0000 [0.0550 [0 0.6550
01 0,09 | 10 0.18 0001 |0.0729 100 0,2187
10 0.09 | 110 0.27 0010 |[0.0729 [101 0.2187
11 0.01 | 111 0.03 0100 |[0.0729 l110 0.2187
1000 [0.0729 |1110 0,2916
E(Bg) = 1.29 0011 |0.0081 [111100 0.0486
1= 0.725 0110 |0.0081 |1111010 0.0567
1100 [0,0081 |1111011 0.0567
original Fecoded 0101 |0.0081 |1111100 0.0567
Message | P(1) | Measage P(i)Bs(i) 1010 (0,0081 (1111101 0.0567
1001 [0.0081 (1111110 0.0567
000 0.723 | 0 0.723 0111 [0,0009 |111111100 | 0.0081
001 0.081 | 100 0.243 1011 |0.0009 |111111101 | ©.0081
010 0.081 | 101 0.243 1101 |0.0009 |111111110 | 0.0081
100 0.081 | 111 0.243 1110 [0,0009 |1111111110| 0.0090
011 0.009 | 11100 0,085 1111 [0.0001 |1111111111| 0.0010
101 0.009 | 11101 0,045
110 ©.009 | 11110 0.045 E(Bg) = 1.9691
111 0.001 | 11111 0.001 N = 0.95
E(Bs) = 1.594 Fig. 5 Recoding of binary messages for
n = 0.882 n =2, 3, b; p(0) = 0.9, p(1} = 0.1,H,= 0,468,
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will then be indicated by means of an N'-order selection,

The operation described above 18, effectively, a change of code, that
is, we may say, of the conventional language 1n which the message 1s written,
Therefore this operation will be referred to as "message recoding". The
advantage resulting from this recoding is convenlently expressed in terms
of the code efficlency H
"= TogN (25)
that is, the ratio of the iInformation transmitted on the average per selec-
tion, to the information which could be transmitted with an equally likely
selection of the same order. The efflclency of a bimnary code resulting from
the recoding of sequencea2 of N-order selections can be computed most con-
venliently in the form

n= E(E,) ) (26}

vhere n 1s the number of N-order selections used 1n the recoding operation.
Note that nEH 1s the average amount of informatlion per mequence of n N-order
selections and E(BS) represents the amount of information which could be
transmitted, on the average, by one of the seguences of blnary selections

in which the original sequences are recoded, 1f these binary selections vere
equally likely. If the new code 1s of R' order, wve must substitute for
E(BS) the product of loggl' by the number of N'-order selectlone required,
on the average, to specify a sequence of n N-order selectlons,

A fipnal remark must be made regarding the recoding operation., Since
the process of successlive divisions of an ensemble of sequences Into equally
probable groups cannot be carried out exactly, it ie not clear at times
vhether one sequence should be included in one group or im another, Of
course, we wish to perform all divisions in such a vay as to obtaln at the
end the most efficient code, Unfortunately, no general rule could be found
for determining at once how the divisions should be made in doubtful caees
in order to cbtaln maximum code efficlency. However, so long as the divi-
sions are made in a reasonable manner the resulting code efficiency will not
differ appreciably from its maximum value.

We have implicitly assumed in the foregoing discuasion that we lnow
a priori the probabilities p(k) of the choices for a message still to be
transmitted. It seems approprlate at this point to discues in mome detall
this assumption, since the practical value of the results obtained above
depends entirely on 1its validity, When we state that the probabllity of a
particular choice has a value p(k) we mean that the frequency of occurrence
of that cholce in a message originating from a given source 1s expected to
be close to p(k). The longer 1s the message, the closer we expect the
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frequency to approach p(k). It must be clear, however, that we have no
assurance that the frequency of occurrence will not differ considerably from
the probability even in the case of a very long meseage, although such a
pituation 1s very unlikely to arise,

In practice, p(k) must be estimated experimentally following the reverse
Process, that 1s, by inference from the measurement of the frequency in a
number of sample messages, If the frequencles 1n the sample messages are
reasonably alike, or, more precisely, if their values are ascattered in the
manner which might be expected cn the basis of the length of the messages
used, we may feel relatively safe in taking thelr average value as a good
estimate of the probabillity. In other words, ve may expect that the fre-
quency In any other message originating from the same source will be reason-
ably close to the average value obtained. If this i1s the case, the source
of such messages 1es sald to have s stationary statistical character, We oan
concelve the case, howvever, in vhich the frequencies in the sample messages
available are so widely scattered that hardly any significance can be attrib-
uted to thelr average value, Such a result may mean that the source has not
s stationary atatistical character, at leasat for practical purposea, in which
case the concept of probabillity loses any physical significance. Fortunately,
howvever, the sources of interest appear to have a stationary character for
any practical purpose, In addition, the estimates of the probabllities of
the cholices do not need to be tco close, It should be clear, in this respect,
that the fact that a code has been desligned for a particular set of cholce
probabilities does not mean that only messages with the same statistical
character can be transmitted. It means only that such a code willl transmit
most efficlently, that 1is, with the smallest number of selections — messages
vith the choice frequenclee equal to the aspumed probabilities., Moreover,
ve can expect that the efficlency of transmission will not depend in a criti-
cal manner on the actual frequencies of the meassages to be transmitted, A
proof that this 1s actually the case 1s given below,

Suppose that a code which 1s optimum for a set of choice probabilities
p' (k) 1s used to transmit messages with choice probabilities p(k). If we
consider again all possible sequences of n selections, the expreseion for
the number of bilnary selections required, on the average, to 1ndicate one
particular sequence, E(Bé), ie 8t1ll given by Eq,(13), where, however, the
p(k) which appear in the form logzp(k) should be changed into p'(k), It
follows that, in the limit vhen n approaches infinity, the number of binary
selectione per N-order selection will approach, according to Eq.{(22), the
value

F-1
BEg = — Ez: plx) logep'(k) . (27)
k=0
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It is clear from this equation that Hﬁ varies rather slowly with any one of
the p'(k), unless the corresponding p(k) 1s cloee to zero or unity. Hg 1s,

of course, & minimum vhen p'(k) = p(k). The case of N = 2 18 1llustrated in
Figure 6 for p(0) = 0.5 and p(0) = 0.7. We may conclude, therefore, that
the atatistical characteristice assumed a prlori can be rather different from
those of the messages actually transmitted, without the efficiency belng
lowered too much.,
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V. The Case of Non-Independent Selections

Thus far we have been considering only messages of a particularly
eimple type, namely, messages consisting of sequences of independent selec-
tions, Obviously, the statlstical character of most practical messages 1s
much more complex, Any particular selectlon depends generally on a number
of preceding selections, For instance, in a vritten message the probabllity
that a certain letter will be an "h" is highest when the preceding letter
is a "t", In a television signal the light intensity of a certain element
of a scanning line depends very strongly on the light intensities of the
corresponding elements In the preceding lines and in the preceding frames,

In fact, the light 1ntensity is very llkely to be almost uniform over wide
regions of the pleture and to remain unchanged for several successlve frames,

The simplifylng assumption that any one selection is independent of the
preceding eselections, although quite unrealistic, does not invalidate com-
Pletely the results obtained in the preceding sections, but merely reduces
thelr significance to that of first approximations. Intulitively, the average
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amount of informsation conveyed by a sequence of gilven length 18 decreased
by the a priori knowledge of any correlation existing between successive
selections. Therefore, the value given by Eq.(22) will always be larger
than the correct value for the average amount of 1nformation per selection,
and the same is true of the code efficlency glven by Eq.{(25). 3imilarly,
any recoding operation performed in the manmer dilscussed in 3ection IV will
result in a higher efficiency of transmission, but not so high as could be
obtained by taking into account the correlation between successive selectlons.

The procedure for computing the average amount of lnformation per selec-
tion and for reccding messages is stl1ll essentially the same as that used in
Sections IIT and IV, even when the dependence of any selection on the pre-
ceding selections 1s taken into account, The only difference 18 that the
Probability of a particular sequence will not be equal simply to the product
of the probabilities of the cholces in i1t, since theee are nc longer inde-
pendent, We must still arrange &l11 the possible sequences of given length
n in order of probabllity, and separate the deslired sequence by succeasive
divieions of the ensemble of sequences in groups as equally probable as
poseible. The number of divisions required, on the average, divided by the
number n of selectlons will approach HN when n approaches infinity.

Let P_(1) be the probability of the 1" sequence of n selections, and
Hs(n) the average amount of information per eequence of n selections when
successive sequences are assumed to be independent, We have then

1
Hg(n) = -Z P (1) log,Pp(1) . (28)

1=0

Let us conslder next a sequence of n+J. selections and let P 1(1 k) be the
conditional probabllity that the 1 sequence (of the 3 =  p sequences of n
selections) 1s followed by the k*P chotce {of the N). We have then

F1 ria
Hg(ml) = —> > P (1) P, (15k) logyP (1) Po,y(15k) ,  (29)
k=0 1=0
which, since
-1
> (k) =1, (30)
k=0
becomes
N1
Hg(n+1) = Bg(n) —> > Po(1) P, (13k) log, Py (15k) . (31)
=0 1=0
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The increment of information resulting from the (n+1)th selection is then,
on the average,

1 F-
Bg(p+l) = —Z z P (1) P, (15k) log,P ,(4;k) . (32)
k=0 1=0

Expressing now Hs(n) in terms of the successive increments, ve obtain

n
Bg(n) = ZHN(m) . (33)

m=1

The final correct value of the average amount of information per Belection
can then be written in the form

By = 1tn (1/n) ZHN(m) . (34)

m=1

Teo proceed further 1n our apalysis, ve must distingulsh between two
types of statistical character of practical importance, We shall say that
the output of a certain source 1s statlistically uniform if each and any
selection depends in the same manner on the m®h preceding selectlion, as seems
to be the case in a written measage, We shall say that the output 1s peri-
odically discontinuous 1if it is possible to dilvide any output sequence in
sub-sequences of fixed and equal length, so that each and any selection
depends in the same rmanner on the mth rreceding selection of the same sub-
sequence but 1s independent of all selections of the preceding sub-sequences,
This 1s the case vhen messages transmitted in succession are simllar in
character and equal 1n length but entirely unrelated to one another, as, for
example, in facsimile transmiesion, The above differentlation of statletical
character is not an exhaustive classification but only a characterization of
tvo apecilal cases of practical interest 1n which different results are ob-
tained,

Considering now in more detall the increments of information HN(n+1),
our intuition indicates that the average amount of information conveyed by
any additional selection can be, at most, equal to the value obtained when
the selection 1s independent of all preceding selectlons. Mathematically,
it must be

1
kO

A proof of this inequality 1is given in Appendix II. In addltion, 1t is
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intuitively clear also that, in the case of uniform statistical character,
the average amount of 1lnformation conveyed by the (n+1)th selectlion of a
sequence can be, at most, equal to the amount of information conveyed by the
nth selection, since the latter has less preceding selections on vhieh to
depend, Mathematlically, we expect that, for statiastically uniform sequences,

Hp(n+l) € By(n) . (36)

A proof of this inequality is given slso in Appendix II, Eq.(36) is eatis-
fied with the equal sign when the (n+1)th selection, and therefore any fol-
loving selection, depende only on the n—1 preceding selecticns,

Eq. (36) shows that the 1imit in Eq.(34) is approached in a monotonic
manner., In addition, we expect HN(m) to approach monotonically a limit with
Increasing m, since the dependence of any selection on the preceding selec-
tions cannot extend, in practice, over an indefinitely large number of selec-
tions, Suppose, for instance, that this dependence extends only over the
nd—l preceding selection, Then Hn(m) becomes constant and equal to Hﬂ(no)
vhen m 1s larger than n_, and Eq.(3%) ylelds

N = HN(no) . (37)

o’
E

Thils result 1s correct, of course, only in the case of statistioally uniform
gsequencee,

In the case of a periodlcally discontinuous statistical character,
Eq.(36) 1is valid only when the nth and the (n+1)th selections belong to the
same sub-sequence, If this is not the case, the (n+1)t'l:l selection muet be
the first selection cof a sub-sequence, and therefore 1s independent of all
precedlng selections, It follows that HN(m) 1s a periodic function of m with
perliod equal tc the length né of the sub-sequences, and that the limit of
Eq.(34) 1s approached in an oscillatory manner, If we compute this limit by
increaaing n in steps equal to né, it 1s easily seen that Eq.(34) ylelds

]
nD

By = (1/a)) ) Hy(m) (38)

M=l

a value larger than that given by Eq.(37), ae vae expected.

The recoding procedure in the case of messages consisting of non-inde-
pendent selections ims sti]ll the same as in the case of independent selections.
The efficlency of tranemission, still given by Eq.(25), increases (although not
necessarily monotonically), with the number of selections used as units in the
recoding procese, and approaches unity when the number increases indefinitely.
It is worth emphaplzing that in the recoding process any sequence, even if
statistically uniform, 18 considered as periodically discontinuous. In fact,
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the groups of selections recoded as units are effectively sub-sequences

vhich are treated as though they were totally unrelated, It follows that,
if the recoding operation of a statistically uniform sequence 1s performed
on groups of n, selections, the efficlency of transmission after recoding

can be at most equal to

2 ) - oonlB)

i By (m) (39)
m=l

In the case of statistically discontinuous sequences, 1t would seem
reasonable to make the number of selections iIn the recoding groups an
integral fraction or multiple of the length of the sub-sequences,

A final remark le in order regarding the fitting of the recoding pro-
cedure to the statistical character of the messages to be tranesmitted. It
may happen, as it does in the case of televlision signals, that the depend-
th preceding selection does pot decrease
monotonically when m increases, but behaves in an osclllatory manner. In
this case, one should first reorder the selections before recoding, in such
a manner that selections which are closely related take pomsitlions clecse to
one ancther in the sequence., Thls 1dea of reordering the selections in the
sequence can be generallzed as follcws. Any type of transmission of informa-
tion can be consldered as the transmiseion, 1n euccesalon, of patterne in
a tvo-dimensional or multi-dimensional space, time being one¢ of the dimen-
saions, Then the problem of ordering selections In an appropriate manner
can be generalized to the problem of how best to scan these patterns. It
is clear, on the other hand, that such a scanning problem 1s also at the
root of the problem of reducing the bandwidth required by televieion signals.
The generalized scanning problem seems to be, therefore, of fundamental
practical, as well as theoretical, importance. However, no work can yet be
reported on this subject,

ence of any one selection on the m

Vi, Practical Considerations

The maln purpose of this paper was to provide a logical basls for the
measurement of the rate of transmission of Information. It has been shown
that an appropriate measure for the rate of transmisselon 1n the case of
sequences of selections capn be provided by the minimum number of blnary
selections required, on the average, to indicate one of the original selec-
tions, We were then led naturally to coneider the problem of actually per-
forming the transmission of the orlginal sequencee by meane of as few binary
or higher-order selections as posslble, We did not consider, however, the
phyeical process corresponding to such selectlions — that is, their trans-
mission by electrical means,
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A convenlent way of transmitting binary selectlions in a practical
communication aystem is by means of pulses with two possible levels, one and
zero, This 18 just the technique employed 1in pulse-code modulation., The
maximum rate at which information can be tranamitted in this case 1s simply
equal to the number of pulsea per second which can be handled by the elec-
trical system — which we know to be proportiomal to the frequency band
available., However, as soon as ve start dealing with electrical pulses
rather than loglcal operations like selections, an additional item must be
considered in the problem, namely, the power required for the transmission.
In the case of two-level pulses, the average powver corresponding to the maxi-
mum rate of tranamission of information 1s equal to one-half the pulse pover,
since the zero and one levels are equally probable,

If pulees with N rather than two levels equally spaced in voltage are
used, the maximum rate of transmisslon i1s equal to logzn timesa the number of
pulses per second which can be handled by the system., The average pover
required becomea, in this case,

v\ 1
“'(‘KQ)Z 2, (40)
=0

where WO ie the power corresponding to the lowest (non-zero) voltage level,

The theoretical 1imit stated above for the rate of transmission of
information certainly has practical significance when the limiting factors
in the physical problem are the frequency band available and the number of
pulee levels permitted by technical and economical considerations, It 1s
to be noted, in this regard, that the effect of nolse 1s here taken into
account, to a first approximation, by setting a lower 1limit to the voltage
difference between pulse levels, and therefore to Wo. For a detailed dis-
cussion of the effect of nolse, the reader 1s referred to the work of
Shannon (5).

Eq.(40) shows, on the other hand, that the average power increases
approximately as Na, vhile the rate of transmisslon is proportional only to
logeﬂ. It follows that, if no limlitation is placed on the frequency band
employed, the smallest value of N should be used — that is, two. This value
has, in addition, the very important practical advantage that the receiver
1s not required to measure a pulse, but only to detect the exlstence or the
lack of & pulse, It might happen, on the other hand, that the frequency
band and the average power are the limiting factors, while any reasonable
number of pulse levels can be allowed. Thils case represents qulite a aif-
ferent problem from those considered above, and the maximum rate of trans-
miselon of information 18 no longer obtalned by making the pulee levels
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(that is, the choices) equally probable, as one might think at first., For
example, more than one unit of information per pulee can be transmitted with
an average power W Wo/e, by using pulses with three levels not equally
probable., It seems worth while, therefore, to determlne the maximum amount
of information which can be transmitted per pulse, for a glven average power
W, a minimum level powver Wo, and an unlimited number of pulse levels equally
spaced 1n voltage.

Let, therefore, p(0) be the probability of occurrence of the zero level
{no pulse), and p(k) the probability of the kD level, The amount of infor-
mation per pulee 1s given by

B =~ plk) logp(k) (42)
k=0
and the average power by w©
Wom W, g p(k) K2 . (32)
k=0

We wish to maximize H with respect to the p(k), subject to the condition
expressed by Eq.(42) and, of course, the usual condition

E -

k=0

The maximization procedure is carried out in Appendix III, and ylelds

Pmax, =~ H‘; [“32(%%}) * 1°82P(°)} ; (44)
%i%)f - <%%)I )ke y (45)

The values of p{1)/p(0) and p(0) are plotted im Figure 7 as functions

of W/Ho. The value of Hmax. is plotted as g function of the same variable
in Figure 8. The latter curve shows, for instance, that the maximum amount
of information per pulse for HEHO/Q is 1.14, that is, 14 per cent higher
than the value obtalned by using two equally probable levels.

The procedure for approaching iIn practice the theoretical limit obtained
above by appropriate recoding of the messages 1s very similar to that dis-
cussed in Section TV. It differs only in that the ensemble of all ssequences
of given length muat now be divided in groups with probabilities p(0), p(l)...
p(kx)..., instead of in equally probable groups, The number of pulse levels
to be used in practice (it should be infinite in theory) must be selected
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on a compromise basis, and the values of the p(k) must then be readjusted,
accordingly to make

-1

Zp(k):l .

k=0

In addition to the effect of limitations on the average power, another
important practical consideration has been neglected in the preceding sec-
tions., All the types of recoding procedures suggested, for approaching in
practice the theoretical limits derived above, require the use of devices
capable of storing the information for a certain length of time 1n both the
transmitter and the recelver, BSuch storage devices are needed to stretch
or compress the time scale according to the probablility of the group of
orlginal selections being recoded for transmission,

Satlsfactory storage units are not yet available, In addition, even
vere they available, their use would undoubtedly add considerably to the
complexity of communication systems. On the other hand, any substantial
increase of tranamission efflclency 1s fundamentally based on time stretch-
Ing. In fact, since the logarithm of the probabllity of the cholce or
sequence of cholces selected is a measure of the informatlion conveyed by
the selection (see p, 14), the time rate at which information 1s conveyed
in actual signals may vary considerably with time, Even so, a communieation
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syetem must be able to handle at any time the peak rate which may be present
in the signal, It follows that any system not employing storage devices to
stretch or compress the time scale 1s bound to have an efficlency lower than
the ratio of the average rate to the peak rate at which information 1s fed
to it, It is worth mentioning in this connection that in certaln types of
communications, such as telegraph and television, the input and output sig-
nals do not have lnherently fixed time scasles, This is the same as saying
that such forms of communication inherently incorporate storage devices,

In the case of the telegraph, the written messages at the input and at the
output are effectively storage devices, In the case of television, the
image to be televised and the cathode-ray tube perform the same functilon.

Although no reduction of frequency band for a given nolse level can
be obtalned without storage devices, appropriate coding may lead to some
reduction of average power. Thils reduction capn be obtalned vy assigning
sequences of pulses requiring the smallest energy to the most probable
messages, and vice versa, In the particular case of pulse-code modulatilon,
for instance, this can be done as followe., We arrange all digit combinations
in order of increaslng amount of energy required and the sampling levels in
order of decreasing probabllity. We aseign then the digit combinations to
the sampling levels 1n the resulting order, 3uch a coding method requires,
however, more flexible coding and decoding units than those used in present-
day systems,

Before concluding this sectlon, it should be made clear that the
improvement of transmission efficlency diacussed above and the resulting
possible reduction of bandwidth requirements for & given algnsal power have
little to do with the bandwidth reductlon obtalned by means of the Vocoder
or other similar schemes, The Vocoder (2), for instance, does not improve
the efficlency of transmission, but achieves a reduction in bandwidth by
eliminating that part of the speech eignal which 1s not strictly necessary
for the mere understanding of the words spoken., Obviously, the recoding
of messages according to their statistical character and the elimination
of unnecessary Information represent fundamentally different but equally
important contributicns to the solution of the bandwidth-reduction problem,

Appendix I

Maximization of f(x)

In determining the values of the x, for which f(x), as given in Eq.(18),
1s a maximum, it 13 more convenlent to operate on the function

9(x) = 1n £(x) (I-1)
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vhose raxima and minima at non-singular points coincide with those of f(x).
The X,
constralint

are the variables in the maximlzation procesa, but are subject to the

N-1
E X = 1 . (1-2)
k=0

Using Lagrange's method, we equate to zero the partlal derivatives, with
respect to the Xy of the functicn

olx) 42> x (1-3)

vhere A 1s a constant to be determined later, We obtain then N equations
of the form

n[lnpk—(1+1nxk)]—-2i—k+7\=o . (1-4%)

It is clear that vhen n approaches infinity these equations can be satis-
fied simultaneouely only vhen Xy = P, in vhich case Eq.(I-2) is also satis-
fied. In addition, the function f(x) is neither discontinuous nor a minimum
at the point X, = Py, 80 that the exlistence of a maximum at this point does
net require any further mathematical proof.
Maximization of HN
The function HH given by Eq.(22) must be maximized with respect to the
p(k) which are, of course, subJect tc the constraint

N-1

> plk) =1 . (1-5)

k=0

Following the same method as above, we obtain N equations of the form

1
——a—HN+7\Zp(k) =—LJ;—E[1+lnp(k)]+1=0. (1-6)
3 p(k) X=0

This set of equations can be satisfied only if all the p(k) are equal,
Agalin 1t 1s clear that HN 1s nelther discontinuous nor a minlimum when &all
the p(k) are equal, and therefore it must be a meximum,
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Appendix II

Proof That HN(n+1)~S HN(l)

We wish to show, first, that the lncrement of the amount of Ilnforma-
tion

F-1 N

HN(n+1) =-—Z£: ZE: Pn(i) Pn+1(1;k) log, Pn+l(1;k) (r11-1)
k=0 1=0

is a maximum when Pn+l(1;k) = p(k), the probability of the Kt cholce, that

is, when the additional selection le Iindependent of all preceding selections,
Mathematically, we rust maximize the functien HN(n+1) with respect to the
F**1 variables Pn+1(i;k), subject to the conditions

R'-1
> py(1) P (45k) = plx), (11-2)
1-0
and
-1
> Ppa(nE) =1 . (11-3)
k=0

Following Lagrange's method, we equate to zero the derivates with
respect to the Pn+1(i;k) of the function

N1 N-l _
HN(n+1) + :§:: Zg::xi Pn+l(i;k) + iy, Pn(i) Pn+1(i;k) {(11-4)
1=-0 k=0

vhere the Ri and Wy &are constants to be determined later. We obtain then,
for each palr of values of 1 and k, an equation of the form

P (1) (1+ 1n P (100] =y — P (1) =0 . (11-5)
The solution of the NZ'1 equations of this type, together with Egqs.{II-2)
and (II-3), is clearly

N o= Po(L) (11-6)
W = 1n P ,(1;k) = 1n p(k) . (I1-7)

Therefore, the increment of information Hy is & maximum for Pn+1(i;k) = p(k),
silnce this 1s the only point at which a maximum can exist and a maximum must
exlst at some polnt., Thils result can also be stated in the form
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HN(n+1) < HN(l) . (11-8)

where -1

Hy(1) = —-:{: p(k) log,p(k) (11-9)
k=0

ie the average amcunt of Information per selection, that 1s, the average
increment of information, when each selectlon 1s independent of all preced-
Ing selections,

Proof That HN(n+1)*S HN(n)

Let us consider a sequence of n selections as consisting of a first
selection followed by a sequence of n—-1 selections., Let Pn(h;j) be the
conditional probability that the selection of the h'P choice 13 followed by
the selection of the jth sequence from the Nn_l possible sequences of n—1
selections. Let also P 1(h,J k) be the conditional probability that the
kth cholce 13 selected after the h th cholce and the j th sequence, We shall
st111 indicate with p(k) the probsbility of the k" choice and, similarly,
with p(h) the probabllity of the hth chol¢ce, Uslng these mew symbols,
Eq.(II-1) becomes

HN(n+1) =

-1 Pl oy

= > >, »m) p(n;d) p (6, 35k) logyP, o (h,55k) L (1I-10)
h=0 J=0 k=0

We wish to show that, for a statistically uniform sequence, HN(n+1) 1s a
maximum when Pn+1(h,j;k) 1s independent of h., Mathematically, we must agaln
maximize the function HN(n+1) with respect to the R vartables Pn+l(h,j;k),
subject to the conditions

z{: Pn+1(h,J;k) =1 |, (11-11)
k=0
and
-1
> pln) Bo(h;5) P (B, 55k) - Pn——l(j) P_(35%) (11-12)
h=0

where P 1(,]) is the probablility of the J sequence of o1 selections, and
P (j k) is the conditlional probability that the k cholce will be selected

after the J th sequence, These two probabllitles must, in turn, satlsfy the
condition
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:§:: P 4(3) P (J;k) = p(K) (11-13)
j=0

which, hovever, does not concern us, since it does not involve directly the
Pn+1(h,j;k). It must be clear, on the other hand, that the Pn(j;k) are kept
constant in the maximization process. In other words, the dependence of the
(n+1)th selection on the p—1 preceding selection 1s fixed 1n this case, while
in the case dlscussed previously 1t was allowed to vary. In addition, since
we are deallng with a statistically uniform sequence, the (1:.+1)t'h selection
depends on the n—1 preceding selections 1n the same manner as the nth selec-
tion depends on its n~1 preceding, that 1s,on all the preceding selections,
Proceeding in the same manner as in the proof that HN(n+1) £ HN(l),
ve find that, for given Pn(j;k), the Pn+1(h,j;k) make HN(n+1) a maximum
vhen they are independent of h, that 1s, of the first selection of the
sequence, Mathematically speaking, the maximum occurs when Pn+1(h,j;k) =
Pn(j;k). It follows that Eq.{II-10) ylelds, with the help of Eq.(II-11),

HN(Ml)max. =

—l K1

(II-14)
Z ZP 1(3) Po(53K) logyP (55k) = Hy(n)

This result can also be stated 1n the form

Ey(n+l) < Hy(n) . (11-15)

It must be clear that, in the case of non-statistically uniform sequences,
Pn(j;k) may be an eg;irely different functlion than that representing the
dependencse of the n selection on the first n—1 selectlions of the sequence,
since, for instance, the (I:t+1)t‘h selection can be entirely lndependent of

the preceding selections while the nth gelection 1s not, It follows, in this
latter case, that Eq,(II-14) 1s not valid, and HN(n+1) can be as large as
Hy(1).

Appendix III

We wlsh to maximize the average amount of information per pulse, H, for
a glven average power and an unlimited number of pulse levels equally spaced
in veoltage. Mathematlcally, this amountes to maximizing the function gilven
by Eq.(41), subject to the conditions imposed by Eqs.(42) and (43), Follow-
ing Lagrange's method, as in Appendices I and II, we obtaln an infinite set
of equations of the form
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1+ 1n p(k) = A + k°p (1I1-1)
where A and U are indeterminate constants. The first of these conetanta, 3,
can be eliminated by subtracting the equation with k=0 from all the other
equations of the set, whiech take then the form

In p{k) — 1n p(0) = K2k . (I11-2)

The remaining constant, KL , is then eliminated by subtracting x° times

Eq.(III-2) — with k=0 — from the other equations of the same set. We obtain
in thie manner a set of equations of the form

[in p(k) — 1n p(0)] — k2 [1n p(1) — 1n p(0)] = © (111-3)
It follows that

2
plx) _ [Elll:]k , (I1II-4)
p(0) p{0)
Eqs.(42) and (43) can now be written in the forms
2
(0) [ 1 -0 (111-5)
P Eé; (0) w;
and
i 2
k
p(0) j;_j[%§3%1 =1 . (I11-6)
b

The values of p(l)/p(0) are plotted in Figure 7 as functions of W/WO. From
these values, the p(k) are immediately obtained by means of Eq.(III-4),

The maximum value of the average amount of information H can now be
obtained without difficulty by subatituting for the p(k) im Eq.(%41) the
values determined above, We have then, after appropriate manipulation of
the equatiocn,

frax, = = PLO) [pc ] [2oee 2e) * 2omr)
_k2
= — log,p(0) — p(0) z [ } log [E(l)- (III-7)
k=1 Lp(0) p(0)

= — log,p(0) — p(0) Z{: [ (0 )} log p(1)
P

o1 2 p(o)
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Using now Eq.(III-5), we obtain finally

o, --F%; log, ﬁ%%% + 1032p(0)] ) (I1I-8)

The value of Hmax ie plotted in Figure 8 as a function of W/Wo, using the
values of p{1)/p(0) and p(0)} given in Figure 7.
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